
Digital Object Identifier (DOI) 10.1007/s101070000189

Math. Program., Ser. A 89: 149–185 (2000)

Richard H. Byrd · Jean Charles Gilbert · Jorge Nocedal

A trust region method based on interior point techniques
for nonlinear programming

Received: May 1996 / Accepted: August 18, 2000
Published online October 18, 2000 –  Springer-Verlag 2000

Abstract. An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is
described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and uses
trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives.
This framework permits primal and primal-dual steps, but the paper focuses on the primal version of the new
algorithm. An analysis of the convergence properties of this method is presented.
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1. Introduction

Sequential Quadratic Programming (SQP) methods have proved to be very efficient
for solving medium-size nonlinear programming problems [12,11]. They require few
iterations and function evaluations, but since they need to solve a quadratic subprob-
lem at every step, the cost of their iteration is potentially high for problems with large
numbers of variables and constraints. On the other hand, interior-point methods have
proved to be very successful in solving large linear programming problems, and it is
natural to ask whether they can be extended to nonlinear problems. Preliminary com-
putational experience with simple adaptations of primal-dual interior point methods
have given encouraging results on some classes on nonlinear problems (see for ex-
ample [29,14,28,2]).

In this paper we describe and analyze an algorithm for large-scale nonlinear program-
ming that uses ideas from interior point methods and sequential quadratic programming.
One of its unique features is the use of a trust region framework that allows for the direct
use of second derivatives and the inaccurate solution of subproblems. The algorithm is
well suited for handling equality constraints (see [4]), but for simplicity of exposition
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we will only consider here inequality constrained problems of the form

min
x

f(x)

subject to g(x) ≤ 0,
(1.1)

where f : Rn → R and g : Rn → Rm are smooth functions.
Following the strategy of interior point methods (see for example [13,27,19]) we

associate with (1.1) the following barrier problem in the variables x and s

min
x,s

f(x)− µ
m∑

i=1

ln s(i)

subject to g(x)+ s = 0,

(1.2)

where µ > 0 and where the vector of slack variables s = (s(1), . . . , s(m))� is implicitly
assumed to be positive.

The main goal of this paper is to propose and analyze an algorithm for finding an
approximate solution to (1.2), for fixed µ, that can effectively enforce the positivity
condition s > 0 on the slack variables without incurring in a high cost. This algorithm
can be applied repeatedly to problem (1.2), for decreasing values of µ, to approxi-
mate the solution of the original problem (1.1). The key to our approach is to view
interior point methods from the perspective of sequential quadratic programming and
formulate the quadratic subproblem so that the steps are discouraged from violating the
bounds s > 0. This framework suggests how to generate steps with primal or primal-
dual characteristics, and is well suited for large problems. Numerical experiments with
an implementation of the new method have been performed by Byrd, Hribar and No-
cedal [4], and show that this approach holds much promise. We should note that in
this paper we do not address the important issue of how fast to decrease the barrier
parameter, which is currently an active area of research.

We begin by introducing some notation and by stating the first-order optimality
conditions for the barrier problem. The Lagrangian of (1.2) is

L(x, s, λ) = f(x)− µ
m∑

i=1

ln s(i) + λ�(g(x)+ s), (1.3)

where λ ∈ Rm are the Lagrange multipliers. At an optimal solution (x, s) of (1.2) we
have

∇x L(x, s, λ) =∇ f(x)+ A(x)λ = 0 (1.4)

∇s L(x, s, λ) = − µS−1e+ λ = 0, (1.5)

where

A(x) = (∇g(1)(x), . . . ,∇g(m)(x)
)

(1.6)

is the matrix of constraint gradients, and where

e =

1
...

1


 , S =


 s(1)

. . .

s(m)


 . (1.7)
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To facilitate the derivation of the new algorithm we define

z =
(

x
s

)
, ϕ(z) = f(x)− µ

m∑
i=1

ln s(i), (1.8)

c(z) = g(x)+ s, (1.9)

and rewrite the barrier problem (1.2) as

min
z
ϕ(z)

subject to c(z) = 0.
(1.10)

We now apply the sequential quadratic programming method (see for example [12,11])
to this problem. At an iterate z, we generate a displacement

d =
(

dx
ds

)

by solving the quadratic program

min
d
∇ϕ(z)�d + 1

2 d�Wd

subject to Â(z)�d + c(z) = 0,
(1.11)

where W is the Hessian of the Lagrangian of the barrier problem (1.10) with respect to

z, and where Â
�

is the Jacobian of c and is given by

Â(z)�= (A(x)� I
)
. (1.12)

Note that (1.10) is just a restatement of (1.2), and thus from (1.4)–(1.5) we have that

W ≡ ∇2
zz L(x, s, λ) =

(∇2
xx L(x, s, λ) 0

0 µS−2

)
. (1.13)

To obtain convergence from remote starting points, and to allow for the case when

W is not positive definite in the null space of Â
�

, we introduce a trust region constraint
in (1.11) of the form ∥∥∥∥

(
dx

S−1ds

)∥∥∥∥ ≤ 	, (1.14)

where the trust region radius 	 > 0 is updated at every iteration. The step in the
slack variables is scaled by S−1 due to the form µS−2 of the portion of the Hessian
W corresponding to the slack variables. Since this submatrix is positive definite and
diagonal, it seems to be the best scale at the current point; see also [4] for a discussion
of how this scaling is beneficial when using a conjugate gradient iteration to compute
the step.
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From now on we simplify the notation by writing a vector such as z, which has x
and s-components, as z = (x, s) instead of z = (x�, s�)�. In this way an expression like
that in (1.14) is simply written as

∥∥∥∥
(

dx

S−1ds

)∥∥∥∥ ≡ ∥∥(dx, S−1ds
)∥∥. (1.15)

The trust region constraint (1.14) does not prevent the new slack variable values
s+ ds from becoming negative unless	 is sufficiently small. Since it is not desirable to
impede progress of the iteration by employing small trust regions, we explicitly bound
the slack variables away from zero by imposing the well-known fraction to the boundary
rule [27]

s + ds ≥ (1− τ)s,

where the parameter τ ∈ (0, 1) is chosen close to 1. This results in the subprob-
lem

min
d
∇ϕ(z)�d + 1

2 d�Wd

subject to Â(z)�d + c(z) = 0,∥∥(dx, S−1ds
)∥∥ ≤ 	

ds ≥ −τs.

(1.16)

We will assume for simplicity that the trust region is defined using the Euclidean norm,
although our analysis would be essentially the same for any other fixed norm. It is true
that problem (1.16) could be quite difficult to solve exactly, but we intend to only com-
pute approximate solutions using techniques such as a dogleg method or the conjugate
gradient algorithm. Due to the formulation of our subproblem these techniques will
tend to avoid the boundaries of the constraints s > 0 and will locate an approximate
solution with moderate cost. To see that our subproblem (1.16) is appropriate, note
that if the slack variables are scaled by S−1, the feasible region of the transformed
problem has the essential characteristics of a trust region: it is bounded and contains
a ball centered at z whose radius is bounded below by a value that depends on 	 and
not on z.

It is well known [26] that the constraints in (1.16) can be incompatible since the steps
d satisfying the linear constraints may not lie within the trust region. Several strategies
have been proposed to make the constraints consistent [7,6,24], and in this paper we
follow the approach of Byrd [3] and Omojokun [20], which we have found suitable for
solving large problems [18].

The strategy of Byrd and Omojokun consists of first taking a normal (or transversal)
step v that lies well inside the trust region and that attempts to satisfy the linear constraints
in (1.16) as well as possible. To compute the normal step v, we choose a contraction
parameter 0 < ξ < 1 (say ξ = 0.8) that determines a tighter version of the constraints
(1.16), i.e., a smaller trust region radius ξ	 and tighter lower bounds −ξτ . Then we
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approximately solve the problem

min
v

∥∥Â(z)�v+ c(z)
∥∥

subject to
∥∥(vx, S−1vs

)∥∥ ≤ ξ	
vs ≥ −ξτs,

(1.17)

where here, and for the rest of the paper, ‖ · ‖ denotes the Euclidean (or �2) norm.
The normal step v determines how well the linear constraints in (1.16) will be satisfied.
We now compute the total step d by approximately solving the following modification
of (1.16)

min
d
∇ϕ(z)�d + 1

2 d�Wd

subject to Â(z)�d = Â(z)�v∥∥(dx, S−1ds
)∥∥ ≤ 	

ds ≥ −τs.

(1.18)

The constraints for this subproblem are always consistent; for example d = v is feasible.
Lalee, Nocedal and Plantenga [18] describe direct and iterative methods for approxi-
mately solving (1.18) in the case when the lower bound constraints are not present.

We now need to decide if the trial step d obtained from (1.18) should be accepted,
and for this purpose we introduce a merit function for the barrier problem (1.10). (Recall
that our objective at this stage is to solve the barrier problem for a fixed value of the
barrier parameter µ.) We follow Byrd and Omojokun and define the merit function to
be

φ(z; ν) = ϕ(z)+ ν‖c(z)‖, (1.19)

where ν > 0 is a penalty parameter. Since the Euclidean norm in the second term is not
squared, this merit function is non-differentiable. It is also exact in the sense that if ν is
greater than a certain threshold value, then a Karush-Kuhn-Tucker point of the barrier
problem (1.2) is a stationary point of the merit function φ (i.e., the directional derivative
ofφ in any direction is nonnegative).The step d is accepted if it gives sufficient reduction
in the merit function; otherwise it is rejected.

We complete the iteration by updating the trust region radius	 according to standard
trust region techniques that will be discussed later on.

We summarize the discussion given so far by presenting a broad outline of the new
algorithm for solving the nonlinear programming problem (1.1).

Algorithm Outline

Choose an initial barrier parameter µ > 0 and an initial iterate z = (x, s) and Lagrange
multipliers λ.

1. If (1.1) is solved to the required accuracy, stop.
2. Compute and approximate solution of the barrier problem (1.10), as follows.

Choose an initial trust region radius	 > 0, a contraction parameter ξ ∈ (0, 1), and
a penalty parameter ν > 0 for the merit function (1.19).
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(a) If the barrier problem (1.10) is solved to the required accuracy, go to 3.
(b) Compute a normal step v = (vx, vs) by approximately solving the normal

subproblem

min
v

∥∥ Â(z)�v+ c(z)
∥∥

subject to
∥∥(vx, S−1vs

)∥∥ ≤ ξ	
vs ≥ −ξτs.

(1.20)

(c) Compute the total step d = (dx, ds) by approximately solving the tangential
subproblem

min
d
∇ϕ(z)�d + 1

2 d�Wd

subject to Â(z)�d = Â(z)�v∥∥(dx, S−1ds
)∥∥ ≤ 	

ds ≥ −τs.

(1.21)

(d) If the step d does not give a sufficient reduction in the merit function (1.19),
decrease 	 and go to (b). Otherwise, set x ← x + dx , s ← s + ds, z = (x, s),
compute new Lagrange multipliers λ, and go to (a).

3. Decrease the barrier parameter µ and go to 1.

Since the inequality constraints are already being handled as equalities, this algo-
rithm can be easily extended to handle equality constraints. In that case the nonlinear
constraints in (1.10) have the form

c(z) =
(

gE(x)
gI(x)+ s

)
= 0.

The Jacobian matrix Â then takes the form

Â(z)�=
(

AE(x)� 0
AI(x)� I

)
,

where AE and AI denote the matrices of constraint gradients corresponding to gE and gI;
see [4] for a detailed discussion on the treatment of equality constraints in our new
method.

In Sect. 2 we discuss in more detail when to accept or reject a step, and how to update
the trust region. This will allow us to give a complete description of the algorithm. We
now digress to discuss the relationship between our approach and other interior point
methods. This discussion makes use of the well-known fact that Sequential Quadratic
Programming, in at least one formulation, is equivalent to Newton’s method applied to
the optimality conditions of a nonlinear program [11].
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1.1. KKT systems

The KKT conditions for the equality constrained barrier problem (1.2) give rise to the
following system of nonlinear equations in x, s, λ (see (1.4), (1.5))


∇ f(x)+ A(x)λ

−µS−1e+ λ
g(x)+ s


 = 0. (1.22)

Applying Newton’s method to this system we obtain the iteration

∇2

xx L 0 A(x)

0 µS−2 I

A(x)� I 0




 dx

ds

λ+


 =



−∇ f(x)

µS−1e

−g(x)− s


 , (1.23)

where λ+ = λ + dλ, and where we have omitted the argument of ∇ 2
xx L(x, s, λ) for

brevity. Note that the current values of the multipliers λ only enter in (1.23) through
∇2

xx L. When the objective function and constraints are linear, we have that ∇2
xx L = 0,

and thus the step does not depend on the current values of these multipliers; for this
reason a method based on (1.23) is referred to as a primal interior point method.

Let us now suppose that the quadratic subproblem (1.11) is strictly convex, i.e., that
W is positive definite on the null space of Â(z)�. Then it is easy to see that the solution
of (1.11) coincides with the step generated by (1.23). Therefore the SQP approach (1.11)
with W given by (1.13) is equivalent to a primal interior point iteration on the barrier
subproblem, under the convexity assumption just stated. Several researchers, including
Yamashita [29] have noted this relationship.

It is also possible to establish a correspondence between primal-dual interior point
methods and the SQP approach. Let us multiply the second row of (1.22) by S to obtain
the system 

∇ f(x)+ A(x)λ

Sλ− µe

g(x)+ s


 = 0. (1.24)

This may be viewed as a modified KKT system for the inequality constrained prob-
lem (1.1), since the second row is a relaxation of the complementary slackness con-
dition (which is obtained when µ = 0). In the linear programming case, primal-dual
methods are based on iteratively solving (1.24) in x, s, λ. Applying Newton’s method
to (1.24), and then symmetrizing the coefficient matrix by multiplying the second block
of equations by S−1, results in the iteration


∇2

xx L 0 A(x)

0 S−1� I

A(x)� I 0




 dx

ds

λ+


 =



−∇ f(x)

µS−1e

−g(x)− s


 , (1.25)

where we have defined

� = diag(λ(1), . . . , λ(m)). (1.26)
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Now the current value of λ influences the step through the matrix� and through∇ 2
xx L.

We refer to (1.25) as the primal-dual iteration.
Consider now the SQP subproblem (1.11) with the Hessian of the Lagrangian W

replaced by

W̃ =
(
∇2

xx L(x, s, λ) 0

0 S−1�

)
. (1.27)

It is easy to see that if the quadratic program (1.11) is strictly convex, the step generated
by the SQP approach coincides with the solution of (1.25). Comparing (1.13) and (1.27)
we see that the only difference between the primal and primal-dual SQP formulations
is that the matrix µS−2 has been replaced by S−1�.

This degree of generality justifies the investigation of SQP as a framework for
designing interior point methods for nonlinear programming. Several choices for the
Hessian matrix W could be considered, but in this study we focus on the (primal) exact
Hessian version (1.13) because of its simplicity. We note, however, that much of our
analysis could be extended to the primal-dual approach based on (1.27) if appropriate
safeguards are applied.

Many authors, among them Panier, Tits, and Herskovits [21], Yamashita [29],
Herskovits [15], Anstreicher and Vial [1], Jarre and Saunders [17], El-Bakry, Tapia,
Tsuchiya, and Zhang [10], Coleman and Li [8], Dennis, Heinkenschloss and Vicente [9],
have proposed interior point methods for nonlinear programming based on iterations
of the form (1.23) or (1.25). In some of these studies ∇ 2

xx L is either assumed positive
definite on the whole space or a subspace, or is modified to be so. In our approach there
is no such requirement; we can either use the exact Hessian of the Lagrangian with
respect to x in (1.23) and (1.25), or any approximation B to it. For example, B could
be updated by the BFGS or SR1 quasi-Newton formulae. This generality is possible by
the trust region framework described in the previous section.

Plantenga [22] describes an algorithm that has some common features with the
algorithm presented here, but his approach has also important differences. Among these
are the fact that his trust region does not include a scaling, that his iteration produces
affine scaling steps near the solution, and that his approach reverts to an active set
method when progress is slow.

We emphasize that the equivalence between SQP and Newton’s method applied to the
KKT system holds only if the subproblem (1.16) is strictly convex, if this subproblem is
solved exactly, and if the trust region constraint is inactive. Since these conditions will not
hold in most iterations of our algorithm, the approach presented in this paper is distinct
from those based on directly solving the KKT system of the barrier problem. However,
as the iterates converge to the solution, our algorithm will be very similar to these other
interior point methods. This is because near the solution point, the quadratic subproblem
(1.11) will be convex and the tolerances of the procedure for solving (1.11) subject to
the trust region constraint, will be set so that, asymptotically, it is solved exactly [4].
Moreover, as the iterates converge to the solution we expect the trust region constraint
to become inactive, provided a second order correction is incorporated in the algorithm.

In summary the local behavior of our method is similar to that of other interior point
methods, but its global behavior is likely to be markedly different. For this reason the
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analysis presented in this paper will focus on the global convergence properties of the
new method.

Notation. Throughout the paper ‖ · ‖ denotes the Euclidean (or �2) norm. The vector of
slack variables at the k-th iteration is written as sk , and its i-th component is s(i)k .

2. Algorithm for the barrier problem

We now give a detailed description of the algorithm for solving the barrier problem
(1.10), that was loosely described in Step 2 of the Algorithm Outline in Sect. 1.

From now on we will let Bk stand for ∇2
xx L(xk, sk, λk) or for a symmetric matrix

approximating this Hessian. At an iterate (xk, sk), the step d generated by the algorithm
will be an approximate solution of the tangential problem (1.21). Due to the definitions
(1.8), (1.12) and (1.13) we can write this tangential problem as

min
d
∇ f �k dx − µe�S−1

k ds + 1
2 d�x Bkdx + 1

2µd�s S−2
k ds (2.1a)

s.t. A�k dx + ds = A�k vx + vs (2.1b)∥∥(dx, S−1
k ds

)∥∥ ≤ 	k (2.1c)

ds ≥ −τsk . (2.1d)

Here, ∇ fk = ∇ f(xk), and v is the approximate solution to (1.20).
Now we focus on the merit function and, in particular, on how much it is expected

to decrease at each iteration. The merit function (1.19) may be expressed as

φ(x, s; ν) = f(x)+ ν‖g(x)+ s‖ − µ
m∑

i=1

ln s(i). (2.2)

We can construct a model mk of φ(·, ·; νk) around an iterate (xk, sk) using (2.1a) and
a linear approximation of the constraints in (1.2),

mk(d) = fk +∇ f�k dx + 1

2
d�x Bkdx + νk

∥∥gk + sk + A�k dx + ds
∥∥

− µ
(

m∑
i=1

ln s(i)k + e�S−1
k ds − 1

2
d�s S−2

k ds

)
. (2.3)

We will show in Lemma 4 below that mk is a suitable local model of φ. We define the
predicted reduction in the merit function φ to be the change in the model m k produced
by a step d,

predk(d) = mk(0)−mk(d)

= −∇ f �k dx − 1

2
d�x Bkdx

+ νk

(
‖gk + sk‖ −

∥∥gk + sk + A�k dx + ds
∥∥)

+ µ
(

e�S−1
k ds − 1

2
d�s S−2

k ds

)
. (2.4)
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We will always choose the weight νk sufficiently large that predk(d) > 0, as will be
described in Sect. 2.3.

The predicted reduction is used as a standard for accepting the step and for updating
the trust region. We choose a parameter η ∈ (0, 1), and if

φ(xk + dx, sk + ds; νk) ≤ φ(xk, sk; νk)− η predk(d), (2.5)

we accept the step d and possibly increase the trust region radius	k; otherwise we de-
crease	k by a constant fraction, e.g.	k ← 	k/2, and recompute d. Since predk(d) > 0
this implies that the merit function decreases at each step. More sophisticated strategies
for updating 	k are useful in practice, but this simple rule will be sufficient for our
purposes.

Next we consider conditions that determine when approximate solutions to the nor-
mal and tangential subproblems are acceptable. Since these conditions require detailed
justification, we consider these subproblems separately.

2.1. Computation of the normal step

At each step of the algorithm for the barrier problem we first solve the normal subproblem
(1.20), which can be written as

min
v

∥∥gk + sk + A�k vx + vs
∥∥

s.t.
∥∥(vx, S−1

k vs
)∥∥ ≤ 	̃k

vs ≥ −ξτsk,

(2.6)

where we have defined

	̃k = ξ	k. (2.7)

We now present two conditions that an approximate solution vk of (2.6)must satisfy,
in addition to the constraints of (2.6). To do this we introduce the change of variables

ux = vx, us = S−1
k vs, (2.8)

so that problem (2.6) becomes

min
u

∥∥gk + sk + A�k ux + Skus
∥∥

s.t. ‖(ux, us)‖ ≤ 	̃k

us ≥ −ξτ.
(2.9)

If the lower bound constraints are disregarded, it is straightforward to show [18] that
(2.9) has a solution in the range of (

Ak

Sk

)
. (2.10)
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Even when the lower bounds are present, keeping u in the range of (2.10)will prevent u
from being unreasonably long, and in the implementation of the new method described
in [4], u is chosen always in this space. A condition of this type is important as it allows
us to limit the increase in the objective function due to the normal step, and as we will
see, to limit the magnitude of ν. For the analysis in this paper it suffices to impose the
following weaker condition.

Range Space Condition. The approximate solution vk of the normal problem (2.6)
must be of the form

vk =
(

Ak

S2
k

)
wk, (2.11)

for some vector wk ∈ Rm, whenever (2.6) has an optimal solution of that form.

The second condition on the normal step requires that the reduction in the objective of
(2.6) be comparable to that obtained by minimizing along the steepest descent direction
in u. This direction is the gradient of the objective in problem (2.9) at u = 0, which is
a multiple of

uc
k ≡ −

(
Ak

Sk

)
(gk + sk). (2.12)

Transforming back to the original variables we obtain the vector

vc
k ≡ −

(
Ak

S2
k

)
(gk + sk), (2.13)

which we call the scaled steepest descent direction. We refer to the reduction in the
objective of (2.6) produced by a step v = (vx, vs) as the normal predicted reduction:

vpredk(v) = ‖gk + sk‖ −
∥∥gk + sk + A�k vx + vs

∥∥, (2.14)

and we require that this reduction satisfy the following condition.

Normal Cauchy Decrease Condition. An approximate solution vk of the normal prob-
lem (2.6) must satisfy

vpredk(vk) ≥ γv vpredk

(
αc

kv
c
k

)
, (2.15)

for some constant γv > 0, where αc
k solves the problem

min
α≥0

∥∥gk + sk + α
(

A�k vc
x + vc

s

)∥∥
s.t.

∥∥α(vc
x, S−1

k vc
s

)∥∥ ≤ 	̃k

αvc
s ≥ −ξτsk .

(2.16)
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Note that the normal Cauchy decrease condition and the range space condition (2.11) are
satisfied, with γv ≤ 1, by an optimal solution of (2.6). Both conditions are also satisfied
if the step is computed by truncated conjugate gradient iterations in the variable u on
the objective of (2.9) (see Steihaug [25]), and the results are transformed back into the
original variables. Also, since α = 0 is a feasible solution of (2.16), it is clear from
(2.15) that

vpredk(vk) ≥ 0. (2.17)

In Lemma 2 we give a sharper bound on the normal predicted reduction vpredk(vk)

of an approximate solution that satisfies the normal Cauchy decrease condition. First
we will find it useful to establish this generalization of the one-dimensional version of
a result by Powell [23].

Lemma 1. Consider the one dimensional problem

min
z≥0

ψ(z) ≡ 1
2 az2 − bz

s.t. z ≤ t,

where b ≥ 0 and t > 0. Then the optimal value ψ∗ satisfies

ψ∗ ≤ −b

2
min

{
t,

b

|a|
}
.

Proof. Consider first the case when a > 0. Then b
a ≥ 0 is the unconstrained minimizer

of ψ. If b
a ≤ t, then the unconstrained minimizer solves the problem and

ψ∗ = ψ
(

b

a

)
= − b2

2a
. (2.18)

On the other hand, if b
a ≥ t, since ψ is decreasing on [0, b

a ] and at ≤ b,

ψ∗ = ψ(t) = 1

2
at2 − bt ≤ −bt

2
. (2.19)

In the case a ≤ 0, ψ is concave everywhere so that

ψ∗ = ψ(t) ≤ −bt. (2.20)

Since one of (2.18), (2.19) or (2.20)must hold, the result follows.
��

Applying this to the normal problem yields the following result.

Lemma 2. Suppose that sk > 0 and that vk = (vx, vs) is an approximate solution of
(2.6) satisfying the normal Cauchy decrease condition (2.15). Then

‖gk + sk‖ vpredk(vk) = ‖gk + sk‖
(
‖gk + sk‖ −

∥∥gk + sk + A�k vx + vs
∥∥)

≥ γv

2

∥∥∥∥
(

Ak

Sk

)
(gk + sk)

∥∥∥∥ min


	̃k, ξτ,

∥∥∥∥
(

Ak

Sk

)
(gk + sk)

∥∥∥∥∥∥(A�k Sk
)∥∥2


 , (2.21)

where γv is defined in (2.15).
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Proof. Inequality (2.21) clearly holds when uc
k = 0 because (2.12) implies that the

right hand side of the inequality is zero. Therefore, we now assume that uc
k �= 0.

By the normal Cauchy decrease condition, (2.8) and (2.12), the scalarαc
k is a solution

of

min
α≥0

α2

2

∥∥(A�k Sk
)
uc

k

∥∥2 − α∥∥uc
k

∥∥2

s.t. |α| ≤ 	̃k∥∥uc
k

∥∥
α ≤ − ξτ(

uc
s

)(i) for all i such that
(
uc

s

)(i)
< 0.

(2.22)

Note that the upper bounds of problem (2.22) are satisfied if

α ≤ min

{
	̃k∥∥uc

k

∥∥ , ξτ

‖uc
k‖

}
.

Using this and Lemma 1 we have,

1

2

(∥∥gk + sk + αc
k

(
A�k vc

x + vc
s

)∥∥2 − ‖gk + sk‖2
)

= (αc)2

2

∥∥(A�k Sk
)
uc

k

∥∥2 − αc
∥∥uc

k

∥∥2

≤ −
∥∥uc

k

∥∥2

2
min

{
min{	̃k, ξτ}∥∥uc

k

∥∥ ,

∥∥uc
k

∥∥2∥∥(A�k Sk
)
uc

k

∥∥2

}

≤ −
∥∥uc

k

∥∥
2

min

{
	̃k, ξτ,

∥∥uc
k

∥∥∥∥(A�k Sk
)∥∥2

}
.

Now, since the normal Cauchy decrease condition holds, by (2.14) and (2.15),

‖gk + sk‖ vpredk(vk) ≥ γv‖gk + sk‖
(
‖gk + sk‖ −

∥∥gk + sk + αc
k

(
A�k vc

x + vc
s

)∥∥)
≥ γv

2

(
‖gk + sk‖2 −

∥∥gk + sk + αc
k

(
A�k vc

x + vc
s

)∥∥2
)

≥ γv

2

∥∥uc
k

∥∥min

{
	̃k, ξτ,

∥∥uc
k

∥∥∥∥(A�k Sk
)∥∥2

}
,

where we used the inequality 2a(a−b) ≥ a2−b2. Substituting for uc
k by its value given

by (2.12), we obtain (2.21).
��



162 Richard H. Byrd et al.

2.2. Approximate solution of the tangential problem

Consider now the tangential subproblem (2.1). We will write d = vk + h, where vk

is the approximate solution of the normal subproblem. Substituting this expression in
(2.1) and omitting constant terms involving vk in the objective function, leads to the
following problem in h = (hx, hs),

min
h

(∇ fk + Bkvx)
�hx + 1

2 h�x Bkhx (2.23a)

−µ
(

e�S−1
k hs − v�s S−2

k hs − 1
2 h�s S−2

k hs

)
(2.23b)

s.t. A�k hx + hs = 0 (2.23c)∥∥(hx, S−1
k hs

)∥∥ ≤ 	̂k (2.23d)

S−1
k (vs + hs) ≥ −τ. (2.23e)

This problem is equivalent to (2.1) if the normal step satisfies the range space condition
(2.11) and we set

	̂k =
(
	2

k −
∥∥(vx, S−1

k vs
)∥∥2
) 1

2
,

since then the vector (hx, S−1
k hs) is orthogonal to (vx, S−1

k vs).

When orthogonality is not imposed, we will still choose 	̂k in (2.23) to have the
property that if (hx, hs) satisfies (2.23d), then dk = vk+hk satisfies (2.1c). For example,
this can be achieved by setting

	̂k = 	k −
∥∥(vx, S−1

k vs
)∥∥,

although this choice restricts h more than (2.1c) in some cases. In our analysis, we will
always make the assumption

	k ≥ 	̂k ≥ (1− ξ)	k, (2.24)

which is satisfied by the choices mentioned above.
We now describe a decrease condition that an approximate solution of (2.23) must

satisfy. For this purpose we define the tangential predicted reduction produced by a step
h = (hx, hs) as the change in the objective function of (2.23),

hpredk(h) = −(∇ fk + Bkvx)
�hx − 1

2 h�x Bkhx

+ µ
(

e�S−1
k hs − v�s S−2

k hs − 1
2 h�s S−2

k hs

)
.

(2.25)

Next, we let Zk =
(
Z�x Z�s

)�
denote a null space basis matrix for the equality constraints

in problem (2.23), i.e., Zk is an (n +m)× n full rank matrix satisfying(
A�k I

)
Zk = A�k Zx + Zs = 0. (2.26)
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A simple choice of Zk is to define Zk = (I −Ak)
�, but many other choices are possible,

and some may have advantages in different contexts. In this paper we will allow Z k to
be any null space basis matrix satisfying

‖Zk‖ ≤ γZ and σmin(Zk) ≥ γ−1
Z
, for all k, (2.27)

where γZ is a positive constant and σmin(Zk) denotes the smallest singular value of Zk.
If {Ak} is bounded this condition is satisfied by Zk = (I − Ak)

� and by many other
choices of Zk.

Any feasible vector for (2.23) may be expressed as h = Z k p for some p ∈ Rn .
Thus, writing h = (hx, hs) = (Zx p, Zs p), the tangential subproblem (2.23) becomes

min
p
(∇ fk + Bkvx)

�Zx p− µ(S−1
k e− S−2

k vs
)�

Zs p

+ 1

2
p�
(
Z�x Bk Zx + µZ�s S−2

k Zs
)

p

s.t.
∥∥(Zx p, S−1

k Zs p
)∥∥ ≤ 	̂k

S−1
k (vs + Zs p) ≥ −τ.

(2.28)

Again, this has the form of a trust region subproblem for unconstrained optimization,
with bounds at some distance from zero (in the scaled variables) and by analogy with
standard practice, we will require that the step hk = Zk pk give as much reduction in
the objective of (2.28) as a steepest descent step. The steepest descent direction for the
objective function of (2.28) at p = 0 is given by

pc
k = −Z�x (∇ fk + Bkvx)+ µZ�s

(
S−1

k e− S−2
k vs

)
. (2.29)

We are now ready to state the condition we impose on the tangential step.

Tangential Cauchy Decrease Condition. The approximate solution hk of the tangen-
tial problem (2.23) must satisfy

hpredk(hk) ≥ γh hpredk

(
θc

k Zk pc
k

)
, (2.30)

for some constant γh > 0, where θc
k solves the problem

min
θ≥0
− hpredk

(
θZk pc

k

)
s.t.

∥∥θ(Zx pc
k, S−1

k Zs pc
k

)∥∥ ≤ 	̂k

vs + θZs pc
k ≥ −τsk.

(2.31)

Here Zk is a null space basis matrix satisfying (2.27) and 	̂k satisfies (2.24).

The tangential Cauchy decrease condition is clearly satisfied by the optimal solution of
(2.28). It is also satisfied if the step is chosen by truncated conjugate gradient iterations
in the variable p on the objective of (2.28) (see Steihaug [25]). Note also that since
θ = 0 is a feasible solution to (2.31),

hpredk(hk) ≥ 0. (2.32)

The following result establishes a lower bound on the tangential predicted reduction
hpredk(hk) for a step satisfying the tangential Cauchy decrease condition.



164 Richard H. Byrd et al.

Lemma 3. Suppose that sk > 0 and that hk = (hx, hs) satisfies the tangential Cauchy
decrease condition (2.30). Then

hpredk(hk) ≥ γh

2

∥∥pc
k

∥∥ min

(
min

(
	̂k, (1− ξ)τ

)
∥∥Z�x Zx + Z�s S−2

k Zs
∥∥1/2 ,

∥∥pc
k

∥∥∥∥Z�x Bk Zx + µZ�s S−2
k Zs

∥∥
)
,

(2.33)

where pc
k is given by (2.29) and γh is used in (2.30).

Proof. Note that the problem (2.31)may be expressed as

min
θ≥0
− hpredk

(
θZk pc

k

) = 1

2

(
pc

k

)�(
Z�x Bk Zx + µZ�s S−2

k Zs
)

pc
k θ

2 − ∥∥pc
k

∥∥2
θ

s.t. |θ| ≤ 	̂k∥∥(Zx pc
k, S−1

k Zs pc
k

)∥∥
θ ≤ −τ +

(
S−1

k vs
)(i)(

S−1
k Zs pc

k

)(i) for all i such that
(
S−1

k Zs pc
k

)(i)
< 0.

(2.34)

Since the normal problem ensures that (S−1
k vs)

(i) ≥ −ξτ , it follows from the defin-
ition of the Euclidean norm that the upper bounds on θ in the last group of (2.34) are
greater than or equal to

(1− ξ)τ∥∥(Zx pc
k, S−1

k Zs pc
k

)∥∥ .
Applying Lemma 1 to problem (2.34) we then have

− hpredk

(
θc

k Zk pc
k

)
≤ −1

2

∥∥pc
k

∥∥2 min

{
min{	̂k, (1− ξ)τ}∥∥(Zx pc

k, S−1
k Zs pc

k

)∥∥ ,
∥∥pc

k

∥∥2∣∣(pc
k

)�(
Z�x Bk Zx + µZ�s S−2

k Zs
)

pc
k

∣∣
}
.

The result (2.33) then follows from norm inequalities and (2.30) .
��

2.3. Detailed description of the algorithm

Now that we have specified how the normal and tangential subproblems are to be solved,
we can give a precise description of our algorithm for solving the barrier problem (1.2).

Algorithm I. Choose the initial iterate z0 = (x0, s0, λ0) with s0 > 0, the initial trust
region radius	0 > 0, four constants ξ , η, ρ, and τ in (0, 1) and a positive constant ν−1.
Set k = 0.

1. Compute the normal step vk = (vx, vs) by solving approximately (2.6), in such
a way that vk satisfies the range space condition (2.11) and the normal Cauchy
decrease condition (2.15).
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2. Compute the tangent step hk = (hx, hs) by solving approximately (2.23), in such
a way that hk satisfies the tangential Cauchy decrease condition (2.30), and the total
step dk = (dx, ds) = vk + hk satisfies ‖(dx, S−1

k ds)‖ ≤ 	k.
3. Update the penalty parameter of the merit function (2.2) as follows. Let ν̃k be the

smallest value of νk, such that

predk(dk) ≥ ρνk vpredk(vk). (2.35)

If ν̃k ≤ νk−1, set νk = νk−1; otherwise set νk = max(ν̃k, 1.5 νk−1).
4. If

φ(xk + dx, sk + ds; νk) > φ(xk, sk; νk)− η predk(dk)

decrease	k by a constant factor and go to 1.
5. Set xk+1 = xk + dx , sk+1 = max(sk + ds,−gk+1), compute a new multiplier λk+1,

update Bk, choose a new value	k+1 ≥ 	k, increase k by 1 and go to 1.

Steps 3 and 5 need some clarification. Writing dx = hx + vx and ds = hs + vs , the
total predicted reduction (2.4) becomes

predk(dk) =
−∇ f �k vx − 1

2
v�x Bkvx − (∇ fk + Bkvx)

�hx − 1

2
h�x Bkhx

+ νk

(
‖gk + sk‖ −

∥∥gk + sk + A�k dx + ds
∥∥)

+ µ
(

e�S−1
k vs − 1

2
v�s S−2

k vs

)
+ µ

(
e�S−1

k hs − v�s S−2
k hs − 1

2
h�s S−2

k hs

)
.

Recalling the definitions (2.14) and (2.25) of the normal and tangential predicted
reductions, we obtain

predk(dk) = νk vpredk(vk)+ hpredk(hk)+ χk, (2.36)

where

χk = −∇ f �k vx − 1

2
v�x Bkvx + µ

(
e�S−1

k vs − 1

2
v�s S−2

k vs

)
. (2.37)

We have noted in (2.17) and (2.32) that vpredk(vk) and hpredk(hk) are both nonnegative,
but χk, which gives the change in (2.1a) due to the normal step vk , can be of any sign.
Condition (2.35) in Step 3 compensates for the possible negativity of this term by
choosing a sufficiently large value of νk, so that predk(dk) is at least a fraction ρ of
νk vpredk(vk). More precisely, from (2.36) we see that if vpredk(vk) > 0, (2.35) holds
when

νk ≥ −χk

(1− ρ) vpredk(vk)
.

On the other hand, if vpredk(vk) = 0, then by (2.21) and sk > 0, it must be the case that
gk + sk = 0. In that case v = 0 is a solution to (2.6) and by the range space condition
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vk is in the range of (A�k S2
k )
�. Since sk > 0 the squared objective of (2.6) is a positive

definite quadratic on that subspace, so v = 0 is the unique minimizer in that space. This
uniqueness implies that vk = 0. In that case χk = 0 and (2.35) is satisfied for any value
of νk.

In Step 5 we do not always set sk+1 = sk + ds, because when g(i)k+1 < 0, the
i-th constraint is feasible and we have more freedom in choosing the corresponding
slack, s(i)k+1. In this case our rule ensures that the new slack is not unnecessarily small.
Furthermore, it is always the case that φ(xk+dx, sk+1; νk) ≤ φ(xk+dx, sk+ds; νk), so
that this update rule for sk+1 does not increase the value of the merit function obtained
after acceptance of the trust region radius.

Finally note that we have left the strategy for computing the Lagrange multipliers and
Bk unspecified. The treatment in this paper allows Bk to be any bounded approximation
to ∇2

xx L(xk, sk, λk), and allows λk to be any multiplier estimate consistent with this
boundedness. The important question of what choices of Bk and λk are most effective
is not addressed here, and we refer the reader to [4] for some possibilities.

3. Well-posedness of Algorithm I

The purpose of this section is to show that, if an iterate (xk, sk) is not a stationary point
of the barrier problem, then the trust region radius cannot shrink to zero and prevent
the algorithm from moving away from that point. We begin by showing that m k is an
accurate local model of the merit function φ. To analyze this accuracy we define the
actual reduction in the merit function φ from (xk, sk) to (xk + dx, sk + ds) as

aredk(d) = φ(xk, sk; νk)− φ(xk + dx, sk + ds; νk). (3.1)

Step 4 of Algorithm I thus states that a step d is acceptable if

aredk(d) ≥ η predk(d). (3.2)

Lemma 4. Suppose that ∇ f and A are Lipschitz continuous on an open convex set
X containing all the iterates {xk} generated by Algorithm I, and assume that {Bk} is
bounded. Then there is a positive constant γL such that for any iterate (xk, sk) and any
step (dx, ds) such that the segment [xk, xk + dx] is in X and ds ≥ −τsk,

| predk(d)− aredk(d)| ≤ γL
(
(1+ νk)‖dx‖2 +

∥∥S−1
k ds

∥∥2)
.

Proof. Using the Lipschitz continuity of A, we have for some positive constant γ ′,∣∣∣‖g(xk + dx)+ sk + ds‖ −
∥∥gk + sk + A�k dx + ds

∥∥∣∣∣
≤ ∥∥g(xk + dx)− gk − A�k dx

∥∥
≤ sup
ξ∈[xk,xk+dx ]

‖A(ξ)− Ak‖ ‖dx‖

≤ γ ′‖dx‖2.



A trust region method based on interior point techniques for nonlinear programming 167

Similarly, for any scalars σ and σ ′ satisfying σ > 0 and σ ′ ≥ −τσ ,∣∣∣∣ln(σ + σ ′)− lnσ − σ
′

σ

∣∣∣∣ ≤ sup
t∈[σ,σ+σ ′]

∣∣∣∣σ ′t − σ
′

σ

∣∣∣∣
= σ

σ + σ ′
(
σ ′

σ

)2

≤ 1

1− τ
(
σ ′

σ

)2

.

(3.3)

Using these two inequalities, the definitions (3.1), (2.4) of aredk(d) and predk(d), the
Lipschitz continuity of ∇ f , and the boundedness of {Bk}, we have

| predk(d)− aredk(d)|

=
∣∣∣∣∣∣ f(xk + dx)− fk − ∇ f �k dx − 1

2
d�x Bkdx

+ νk

(
‖g(xk + dx)+ sk + ds‖ −

∥∥gk + sk + A�k dx + ds
∥∥)

− µ
m∑

i=1


ln(sk + ds)

(i) − ln s(i)k −
d(i)s

s(i)k

+ 1

2

(
d(i)s

s(i)k

)2


∣∣∣∣∣∣

≤ γ ′′(1+ νk)‖dx‖2 + µ
(

1

1− τ +
1

2

)∥∥S−1
k ds

∥∥2
,

for some positive constant γ ′′.
��

This lemma implies that

| predk(d)− aredk(d)| ≤ γL(1+ νk)	
2
k . (3.4)

In the next proposition, we show that Algorithm I determines an acceptable step with
a finite number of reductions of 	k, i.e., that there can be no infinite cycling between
Steps 1 and 4 of Algorithm I. For this it is important that we ensure that, by decreasing
the trust region radius, we are able to make the displacement in s arbitrarily small.

Proposition 1. Suppose that sk > 0 and that (xk, sk) is not a stationary point of the
barrier problem (1.2). Then there exists	0

k > 0, such that if	k ∈ (0,	0
k), the inequality

(3.2) holds.

Proof. We proceed by contradiction, supposing that there is a subsequence (indexed
by i, the iteration counter k is fixed here) of trust region radii 	k,i converging to
zero, and corresponding steps dk,i = vk,i + hk,i and penalty parameters νk,i , such that
aredk,i(dk,i) < η predk,i(dk,i) for all i.

The inequality aredk,i(dk,i) < η predk,i(dk,i) and the assumption η ∈ (0, 1) imply
that | predk,i(dk,i)− aredk,i(dk,i)| > (1− η) predk,i(dk,i). This together with the limits

dk,i
x → 0, dk,i

s → 0, and Lemma 4 gives

predk,i(dk,i) = (1+ νk,i)o
(∥∥dk,i

x

∥∥)+ o
(∥∥dk,i

s

∥∥). (3.5)
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We will show that this equation leads to a contradiction, which will prove the proposition.
For the rest of the proof γ ′1, γ ′2, . . . , denote positive constants (independent of i but not
of k), and to simplify the notation, we omit the arguments in vpredk,i(vk,i), hpredk,i(hk,i),
and predk,i(dk,i).

Consider first the case when gk + sk = 0. From (2.14) and (2.17), we see that
vpredk,i = 0. Also, since gk + sk = 0, (2.6) has a solution (v = 0) in the range space of
(A�k S2

k )
�, so that the range space condition (2.11) implies that vk,i is of the form (2.11),

for some vector wk,i . Therefore 0 = vpredk,i = ‖(A�k Ak + S2
k )wk,i‖, which implies

that wk,i = 0 and vk,i = 0, because the matrix inside the parenthesis is nonsingular.
Given that vpredk,i and vk,i both vanish, we have from (2.36), (2.37) and (2.32) that
predk,i = hpredk,i ≥ 0. Hence, inequality (2.35) holds independently of the value of
νk,i , implying that {νk,i }i≥1 is bounded. Therefore, (3.5) gives

predk,i = o
(∥∥dk,i

x

∥∥)+ o
(∥∥dk,i

s

∥∥). (3.6)

On the other hand, from (2.29) and vk,i = 0 we see that pc
k = −Z�x∇ fk + µZ�s S−1

k e.
This vector is nonzero; otherwise the KKT conditions of the barrier problem (1.2) and
the definition (2.26) of Zk, would imply that (xk, sk) is a stationary point of the problem.
Then, for 	̂k,i sufficiently small, inequality (2.33), the trust region in (2.23), and the
fact that hk,i = dk,i give

predk,i = hpredk,i ≥ γ ′1	̂k,i ≥ γ ′1
∥∥(dk,i

x , S−1
k dk,i

s

)∥∥ ≥ γ ′2(∥∥dk,i
x

∥∥+ ∥∥dk,i
s

∥∥).
This contradicts (3.6).

Consider now the case when gk + sk �= 0. Since the matrix
(
A�k Sk

)
has full rank,

and by 	̃k,i → 0, we deduce from (2.21) that for i large

vpredk,i ≥ γ ′3	̃k,i . (3.7)

Then, from Step 3 of the algorithm, (3.7), and the fact that ‖d k,i
x ‖+‖dk,i

s ‖ ≤ (γ ′4)−1	̃k,i ,
we obtain

predk,i ≥ ρνk,i vpredk,i

≥ ρνk,iγ
′
3	̃k,i

≥ ρνk,iγ
′
3γ
′
4

(∥∥dk,i
x

∥∥+ ∥∥dk,i
s

∥∥) .
Since, νk,i ≥ ν−1 > 0 this contradicts (3.5), concluding the proof.

��

4. Global analysis of Algorithm I

We now analyze the global behavior of Algorithm I when applied to the barrier prob-
lem (1.2) for a fixed value of µ. To establish the main result of this section we make
the following assumptions about the problem and the iterates generated by the algo-
rithm.
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Assumptions 1. (a) The functions f and g are differentiable on an open convex set
X containing all the iterates, and ∇ f , g, and A are Lipschitz continuous on X .
(b) The iterates xk form an infinite sequence, the sequence { fk} is bounded below,
and the sequences {∇ fk}, {gk}, {Ak} and {Bk} are bounded.

Note that we have not assumed that the matrices of constraint gradients Ak have full
rank because we want to explore how the algorithm behaves in the presence of dependent
constraint gradients. Our most restrictive assumption is (b), which could be violated if
the iterates are unbounded. The practical value of our analysis, as we will show, is that
the situations under which Algorithm I can fail represent problem characteristics that
are of interest to a user and that can be characterized in simple mathematical terms. As
we proceed with the analysis, we will point out how it makes specific demands on some
of the more subtle aspects of Algorithm I whose role may not be apparent to the reader
at this point. Therefore the analysis that follows provides a justification for the design
of our algorithm.

We adopt the notation α+ = max(0, α), for a scalar α, while for a vector, u+ is
defined component-wise by (u+)(i) = (u(i))+. We also make use of the measure of
infeasibility x �→ ‖g(x)+‖, which vanishes if and only if x is feasible for the original
problem (1.1). Note that ‖g(·)+‖2 is differentiable and has for gradient

∇‖g(x)+‖2 = 2A(x)g(x)+.

We make use of the following definitions; here A(i) denotes the i-th column of A.

Definitions 1. A sequence {xk} is asymptotically feasible if g(xk)
+ → 0. We say that the

sequence {(gk, Ak)} has a limit point (ḡ, Ā) failing the linear independence constraint
qualification, if the set { Ā(i) : ḡ(i) = 0} is rank deficient.

Note that the concept of constraint qualification usually applies to a point x, but
that we extend it to characterize limit points of the sequence {(gk, Ak)}, and thus our
definition is not standard. The main result we will establish for Algorithm I is the
following.

Theorem 1. Suppose that Algorithm I is applied to the barrier problem (1.2) and that
Assumptions 1 hold. Then,

1) the sequence of slack variables {sk} is bounded,
2) Ak(gk + sk)→ 0 and Sk(gk + sk)→ 0.

Furthermore, one of the following three situations occurs.
(i) The sequence {xk} is not asymptotically feasible. In this case, the iterates approach

stationarity of the measure of infeasibility x �→ ‖g(x)+‖, meaning that Akg+k → 0,
and the penalty parameters νk tend to infinity.

(ii) The sequence {xk} is asymptotically feasible, but the sequence {(gk, Ak)} has
a limit point (ḡ, Ā) failing the linear independence constraint qualification. In this
situation also, the penalty parameters νk tend to infinity.

(iii) The sequence {xk} is asymptotically feasible and all limit points of the sequence
{(gk, Ak)} satisfy the linear independence constraint qualification. In this situation,
every component of {sk} is bounded away from zero, the penalty parameter νk is
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constant and gk is negative for all large indices k, and stationarity of problem
(1.2) is obtained, i.e., ∇ fk + Akλk → 0, where the multipliers are defined by
λk = µS−1

k e as in (1.4) and (1.5).

This theorem isolates two situations where the KKT conditions may not be satisfied
in the limit, both of which are of interest. Outcome (i) is a case where, in the limit, there
is no direction improving feasibility to first order. This indicates that finding a feasible
point is a problem that a local method cannot always solve without a good starting point.
In considering outcome (ii) we must keep in mind that in some cases the solution to
problem (1.2) is a point where the linear independence constraint qualification fails,
and which is not a KKT point. Thus outcome (ii) may be just as relevant to the problem
as satisfying the KKT conditions.

The rest of the section is devoted to the proof of this theorem, which will be
presented in a sequence of lemmas addressing in order all the statements in the theorem.
It is convenient to work with the following multiple of the merit function φ

φ̃(x, s; ν) ≡ 1

ν
φ(x, s; ν) = 1

ν

(
f(x)− µ

m∑
i=1

ln s(i)
)
+ ‖g(x)+ s‖ (s > 0).

Since Step 4 of Algorithm I requires that φ be reduced sufficiently at every new iterate,
we have that

φ̃(xk, sk; νk−1) ≤ φ̃(xk−1, sk−1; νk−1)− η predk−1

νk−1
,

and therefore

φ̃(xk, sk; νk) ≤ φ̃(xk−1, sk−1; νk−1)+
(

1

νk
− 1

νk−1

)(
fk − µ

m∑
i=1

ln s(i)k

)
− η predk−1

νk−1
.

(4.1)

This indicates that the sequence {φ̃(xk, sk; νk)} is not necessarily monotone when νk is
updated. To deal with this difficulty, we first establish that, under mild assumptions, the
slack variables are bounded above.

Lemma 5. Assume that { fk} is bounded below and that {gk} is bounded. Then the
sequence {sk} is bounded, which implies that {φ(xk, sk; νk)} is bounded below.

Proof. Let γ be an upper bound for − fk and for ‖gk‖. Since

m∑
i=1

ln s(i)k ≤ m ln ‖sk‖∞ ≤ m ln ‖sk‖, (4.2)

equation (4.1), the fact that the sequence {νk} is monotone non-decreasing, and the
non-negativity of predk give

φ̃(xk, sk; νk) ≤ φ̃(x0, s0; ν0)+
(

1

ν0
− 1

νk

)
(γ + µm max

0≤ j≤k
ln ‖s j‖). (4.3)
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On the other hand, from the definition of φ̃ and (4.2) we have that for any k,

φ̃(xk, sk; νk) ≥ − 1

νk
(γ + µm ln ‖sk‖)+ ‖sk‖ − ‖gk‖. (4.4)

Now, consider the indices l j such that ‖sl j ‖ = maxk≤l j ‖sk‖. Then combining (4.3)–(4.4)
for k given by any such l j we obtain

− 1

νl j

(γ + µm ln ‖sl j ‖)+ ‖sl j ‖ − ‖gl j‖

≤ φ̃(x0, s0; ν0)+
(

1

ν0
− 1

νl j

)
(γ + µm ln ‖sl j‖),

and thus

‖sl j ‖ ≤ φ̃(x0, s0; ν0)+ γ + 1

ν0
(γ + µm ln ‖sl j ‖). (4.5)

Since the ratio (ln ‖s‖)/‖s‖ tends to 0 when ‖s‖ → ∞, relation (4.5) implies that {sl j }
must be bounded. By definition of the indices l j we conclude that the whole sequence
{sk} is bounded.

��

Given that the slack variables are bounded above and that fk is bounded below, it is
clear that we may redefine the objective function f – by adding a constant to it – so that

fk − µ
m∑

i=1

ln s(i)k ≥ 0

at all iterates, and that this change does not affect the problem or the algorithm in any
way. This positivity, the fact that νk is nondecreasing and (4.1) imply that

φ̃(xk, sk; νk) ≤ φ̃(xk−1, sk−1; νk−1)− η predk−1

νk−1
(4.6)

for all k.
We can now show that our rule in Step 5 of Algorithm I for determining the new slack

variables, sk+1 = max(sk + ds,−gk+1), is such that the step between two successive
iterates is still controlled by the trust radius	k.

Lemma 6. Assume that { fk} is bounded below, that {gk} is bounded, and that g is
Lipschitz continuous on an open set X containing all the iterates xk. Then there exists
a positive constant γ1 such that for all k ≥ 1,

‖(xk+1, sk+1)− (xk, sk)‖ ≤ γ1	k.
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Proof. Clearly, ‖(xk+1, sk+1)−(xk, sk)‖ ≤ ‖xk+1−xk‖+‖sk+1−sk‖ and ‖xk+1−xk‖ =
‖dx‖ ≤ ‖d‖ ≤ 	k.

Consider now the step in s. Let γ ′s > 0 be the bound on {sk} given by Lemma 5. For
the components i of s such that s(i)k+1 − s(i)k = d(i)s , one has

∣∣s(i)k+1 − s(i)k

∣∣ ≤ ‖ds‖ ≤ γ ′s
∥∥S−1

k ds
∥∥ ≤ γ ′s	k.

For the other components,

s(i)k − s(i)k+1 ≤ −d(i)s ≤ ‖ds‖ ≤ γ ′s	k

and s(i)k+1 = −g(i)k+1 so that, using the fact that gk + sk ≥ 0 (when k ≥ 1), one has

s(i)k+1 − s(i)k = −g(i)k+1 + g(i)k −
(
g(i)k + s(i)k

) ≤ ‖gk+1 − gk‖ ≤ γ ′‖dx‖ ≤ γ ′	k,

where γ ′ > 0 denotes the Lipschitz constant of g.
��

With the above two lemmas, we can begin to address convergence in the next result.
It deals with the function (x, s) ∈ Rn × Rm+ �→ ‖g(x)+ s‖2, which is another measure
of infeasibility for the original problem (1.1). Note that if the slack variables are scaled
by S−1

k , the gradient of this function with respect to the scaled variables is

2
(

A(x)
S

)
(g(x)+ s).

We now show that the iterates generated by the algorithm approach stationarity for this
infeasibility function ‖g(x)+ s‖2.

Lemma 7. Assume that the sequences {gk}, {Ak}, and {Bk} are bounded, that { fk} is
bounded below, and that g, A, and ∇ f are Lipschitz continuous on an open convex set
X containing all the iterates xk. Then

lim
k→∞

(
Ak

Sk

)
(gk + sk) = 0.

Proof. By the assumptions on A and g, and since Lemma 5 implies that {sk} is contained
in a bounded open set S, we have that the function

θ(x, s) ≡
∥∥∥∥
(

A(x)
S

)
(g(x)+ s)

∥∥∥∥
is Lipschitz continuous on the open set X × S containing all the iterates (xk, sk); i.e.,
there is a constant γ ′L > 0 such that

|θ(x, s)− θ(xl, sl )| ≤ γ ′L‖(x, s)− (xl, sl )‖, (4.7)

for any two points (x, s) and (xl, sl ) in X × S.
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Now consider an arbitrary iterate (xl, sl ) such that θl ≡ θ(xl, sl ) �= 0. We first want
to show that in a neighborhood of this iterate all sufficiently small steps are accepted by
Algorithm I. To do this define the ball

Bl ≡
{
(x, s) : ‖(x, s)− (xl, sl )‖ < θl/

(
2γ ′L

)}
.

By (4.7), for any (x, s) ∈ Bl we have that

θ(x, s) ≥ 1

2
θl,

which implies that g(x)+ s �= 0. We also know that the normal step satisfies (2.21), and
have shown in Lemma 5 that {sk} is bounded. Using this, (2.35) and the boundedness
assumptions on {Ak} and {gk + sk}, we see that there is a constant γ ′1 (independent of k
and l), such that for any such iterate (xl, sl ) and any iterate (xk, sk) ∈ Bl

predk ≥ ρνk vpredk ≥ νkγ
′
1θl min

(
ξτ, 	̃k, θl

)
. (4.8)

Therefore, if 	k is sufficiently small we have

predk ≥ νkγ
′
1θl 	̃k.

Using this together with Lemma 4, and recalling the trust region constraint and the fact
that 	̃k = ξ	k, we obtain

| aredk − predk |
predk

≤ γL
(
(1+ νk)‖dx‖2 +

∥∥S−1
k ds

∥∥2)
νkγ
′
1θl	̃k

≤ γL(1+ νk)	
2
k

νkγ
′
1θlξ	k

.

By making	k sufficiently small we can ensure that the last term is less than or equal to
1− η, and therefore for all xk ∈ Bl and all such 	k,

aredk ≥ η predk, (4.9)

implying (by (3.2)) acceptance of the step in Algorithm I.
Next we want to show that the rest of the iterates {xk}k>l cannot remain in Bl . We

proceed by contradiction and assume that for all k > l, xk ∈ Bl and therefore (4.9) holds
for sufficiently small 	k; this implies that there exists 	0 > 0 such that 	k > 	0 for
all k > l. This, together with (4.6) and (4.8) gives

φ̃k+1 ≤ φ̃k − η

νk
predk ≤ φ̃k − ηγ ′1θl min

(
ξτ, ξ	0, θl

)
,

where φ̃k ≡ φ̃(xk, sk; νk). Since the last term in the right hand side is constant, this
relation implies that φ̃k → −∞, contradicting the conclusion of Lemma 5 that {φ̃k} is
bounded below. Therefore the sequence of iterates must leave Bl for some k > l.
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In that case, let (xk+1, sk+1) be the first iterate after (xl, sl ) that is not contained
in Bl. We must consider two possibilities. First, if there exists some j ∈ [l, k] such that
	̃ j > min (ξτ, θl), then we have from (4.6) and (4.8) that

φ̃k+1 ≤ φ̃ j+1

≤ φ̃ j − η

ν j
pred j

≤ φ̃ j − ηγ ′1θl min (ξτ, θl)

≤ φ̃l − ηγ ′1θl min (ξτ, θl) . (4.10)

The other possibility is that for all j ∈ [l, k], 	̃ j ≤ min (ξτ, θl). In that case it follows
from (4.6) and (4.8) that

φ̃k+1 ≤ φ̃l −
k∑

j=l

η

ν j
pred j

≤ φ̃l −
k∑

j=l

ηγ ′1θlξ	 j . (4.11)

Then, using Lemma 6 and the fact that (xk+1, sk+1) has left the ball Bl, whose radius is
θl/(2γ ′L) give

k∑
j=l

	 j ≥ 1

γ1
‖(xk+1, sk+1)− (xl, sl )‖ ≥ θl

2γ ′Lγ1
.

Substituting in (4.11) we obtain

φ̃k+1 ≤ φ̃l − ηγ ′1ξθ2
l /
(
2γ ′Lγ1

)
. (4.12)

To conclude the proof note that since {φ̃k} is decreasing and bounded below, we
have that φ̃l → φ̃∗ for some infimum value φ̃∗. Since l was chosen arbitrarily, the fact
that either (4.10) or (4.12) must hold at (xl, sl ) implies that θl → 0.

��
This result shows that Ak(gk + sk) → 0 and Sk(gk + sk) → 0. This is of course

satisfied when gk+ sk → 0, that is when feasibility is attained asymptotically. However
it can also occur when gk+sk �→ 0 and the matrices Ak and Sk approach rank deficiency,
a possibility we now investigate.

The procedure for updating the slack variables in Step 5 of Algorithm I becomes
important now. It ensures that

gk + sk ≥ g+k ≥ 0 (4.13)

holds at every iteration. Lemma 8 first uses this relation to show that the gradient Akg+k
of the measure of infeasibility x �→ 1

2‖g(x)+‖2 converges to zero. Then Lemma 8
shows that the case g+k �→ 0 implies that the penalty parameters tend to infinity.
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Lemma 8. Under the conditions of Lemma 7, Akg+k → 0. Moreover, if the sequence of
iterates is not asymptotically feasible, i.e., if g+k �→ 0, then the penalty parameters νk

tend to infinity.

Proof. Let Â, ĝ, and ŝ be limit points of the sequences {Ak}, {gk}, and {sk}. Since these
sequences are bounded, we only have to show that Âĝ+ = 0.

If ĝ(i) ≥ 0, the conditions ŝ ≥ 0 and Ŝ(ĝ + ŝ) = 0 (from Lemma 7) imply that
ŝ(i) = 0. If ĝ(i) < 0, then from (4.13), ŝ(i) �= 0, which together with the equation
Ŝ(ĝ+ ŝ) = 0 implies that ŝ(i) = −ĝ(i). This shows that ĝ+ ŝ = ĝ+. Using the equation
Â(ĝ+ ŝ) = 0 (from Lemma 7), we obtain that Âĝ+ = 0, which proves the first part of
the lemma.

If g+k �→ 0, (4.13) implies that there is an index i such that (gk + sk)
(i) �→ 0. Since

Sk(gk + sk)→ 0, there is a subsequence of indices k such that s(i)k → 0 and ln s(i)k →−∞. Since { fk} is bounded below, this is incompatible with the decrease of φ(xk, sk; ν)
for a fixed value of the penalty parameter ν > 0. Therefore νk is increased infinitely
often, and because this is always at least by a constant factor, {νk} is unbounded.

��
This completes our discussion of the case when the sequence {xk} is not asymptoti-

cally feasible (item (i) of Theorem 1).
To continue the analysis we consider from now on only the case when feasibility

is approached asymptotically. We will divide the analysis in two cases depending on
whether the matrices

(
A�k Sk

)
lose rank or not. We use the notation σmin(M) to denote

the smallest singular value of a matrix M, and recall that in Definitions 1 we describe
our notion of linear independence constraint qualification.

Lemma 9. Suppose that the sequences {gk} and {Ak} are bounded, that { fk} is bounded
below, and that gk + sk → 0. Then, either there is some bound σ̂ > 0 such that

σmin
((

A�k Sk
)) ≥ σ̂

for all k, or the sequence {(gk, Ak)} has a limit point (ḡ, Ā) failing the linear inde-
pendence constraint qualification. In the latter case, the penalty parameter νk goes to
infinity.

Proof. If lim inf σmin(
(

A�k Sk
)
) = 0, there is a subsequence of iterates for which

the smallest singular value of
(

A�k Sk
)

converges to 0. Thus, since the sequence
{(Ak, gk, sk)} is bounded (by the assumptions), it has a limit point ( Ā, ḡ, s̄) such that
the matrix ( Ā� S̄) is rank deficient. Now S̄ is diagonal, so that the set I = {i : s̄(i) = 0}
cannot be empty and the columns of Ā with index in I must be linearly dependent.
Since we assume gk + sk → 0, we have that ḡ(i) = 0 if and only if i ∈ I, and it follows
that the set { Ā(i) : ḡ(i) = 0} is rank deficient.

Since for i ∈ I, a subsequence of {s(i)k } tends to zero, a subsequence of {− ln s(i)k }
goes to infinity. Because {sk} is bounded and { fk} is bounded below, this is incompatible
with the decrease of φ(xk, sk; ν), which would occur if νk were eventually constant. By
the update rule for the penalty parameter, if νk is changed infinitely often then {νk} is
unbounded.

��
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For the rest of this section we will focus on the case where σmin(
(

A�k Sk
)
) ≥ σ̂ > 0

for all k, which implies that gk + sk → 0. First we will use this condition to bound the
length of the normal step v = (vx, vs) by a constant multiple of vpredk (Lemma 10);
then we can use this relation to show that the sequence of penalty parameters νk is
bounded (Lemma 11). Finally we will be able to show that the stationarity conditions
for problem (1.2) are asymptotically satisfied (Lemma 12).

Lemma 10. Suppose that Assumptions 1 hold and that for some σ̂ > 0,

σmin
((

A�k Sk
)) ≥ σ̂ > 0, (4.14)

for all k. Then, there are positive constants γ2 and γ3 such that if ‖gk + sk‖ ≤ γ2,

∥∥(vx, S−1
k vs

)∥∥ ≤ γ3 vpredk . (4.15)

Proof. Recall that, by Lemma 2, the normal step must satisfy

‖gk + sk‖ vpredk ≥
γv

2

∥∥∥∥
(

Ak

Sk

)
(gk + sk)

∥∥∥∥ min


ξτ, 	̃k,

∥∥∥∥
(

Ak

Sk

)
(gk + sk)

∥∥∥∥∥∥(A�k Sk
)∥∥2


 .

We may assume that gk + sk �= 0, for otherwise vpredk = 0, vk = 0 (by the same
argument as in the proof of Proposition 1), and (4.15) is trivially satisfied.

Using (4.14) and letting σ̄1 = supk ‖
(
A�k Sk

)‖, this implies

vpredk ≥
γvσ̂

2
min

(
ξτ, 	̃k,

σ̂‖gk + sk‖
σ̄2

1

)
. (4.16)

Let us now assume that ‖gk+ sk‖ is strictly smaller than the constant ξτσ̄2
1 /σ̂ . Then the

minimum in (4.16) cannot occur at ξτ , and (4.16) becomes

vpredk ≥
γvσ̂

2
min

(
	̃k,

σ̂‖gk + sk‖
σ̄2

1

)
. (4.17)

We now consider two cases:

Case 1. Suppose ‖gk+sk‖ ≥ 1
2 σ̂ 	̃k. Then, using σ̂ ≤ σ̄1 and the trust region constraint,

vpredk ≥
γvσ̂

2
min

(
1,
σ̂2

2σ̄2
1

)
	̃k ≥ γvσ̂

3

4σ̄2
1

∥∥(vx, S−1
k vs

)∥∥.
From this inequality, (4.15) follows immediately.
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Case 2. Suppose

‖gk + sk‖ ≤ 1

2
σ̂ 	̃k. (4.18)

Consider an arbitrary vector v̄ ∈ Rn+m in the range of (A�k S2
k )
� that gives a lower

objective in the normal subproblem (2.6) than v = 0. We claim such a vector satisfies
the constraints of (2.6) if ‖gk + sk‖ is sufficiently small. Since v̄ = (A�k S2

k )
�w for

some vector w ∈ Rm ,

‖gk + sk‖2 ≥
∥∥∥∥gk + sk +

(
A�k Sk

)(Ak
Sk

)
w

∥∥∥∥
2

or ∥∥(A�k Ak + S2
k

)
w
∥∥2 ≤ −2(gk + sk)

�(A�k Ak + S2
k

)
w.

Using the Cauchy-Schwarz inequality, this implies that∥∥(A�k Ak + S2
k

)
w
∥∥ ≤ 2‖gk + sk‖

and by (4.14), it follows that

∥∥(v̄x, S−1
k v̄s

)∥∥ = ∥∥∥∥
(

Ak
Sk

)
w

∥∥∥∥ ≤ 2

σ̂
‖gk + sk‖. (4.19)

Together, (4.18) and (4.19) imply v̄ is within the trust region. In addition, for each slack
variable s(i) , (4.19) implies

(
S−1

k v̄s
)(i) ≥ −∥∥(v̄x, S−1

k v̄s
)∥∥ ≥ − 2

σ̂
‖gk + sk‖ ≥ −ξτ, (4.20)

provided that ‖gk + sk‖ ≤ (ξτσ̂)/2. Thus v̄ is feasible for (2.6).

Now consider the problem (2.6) and its transformed equivalent (2.9). Since
(
A�k Sk

)
is of full rank there is a solution ū to the equation gk+sk+A�k ux+Skus = 0, of minimum

Euclidean norm, which is known to lie in the range of
(

A�k Sk
)�. Thus v̄ = (ūx, Skūs)

lies in the range of (A�k S2
k )
�, and gives a value of zero for the objective of (2.6). By

the above argument, if ‖gk + sk‖ is sufficiently small, v̄ is feasible for problem (2.6),
and is therefore a solution to (2.6). Since v̄ is a solution to (2.6) lying in the range of
(A�k S2

k )
�, the range space condition (2.11) implies that the normal step vk must also lie

in the range of (A�k S2
k )
�. This implies that, since vpredk(vk) ≥ 0, vk satisfies (4.19),

so that ∥∥(vx, S−1
k vs

)∥∥ ≤ 2

σ̂
‖gk + sk‖. (4.21)

Now recall that by (4.17) and (4.18),

vpredk ≥
γvσ̂

2
min

(
2

σ̂
,
σ̂

σ̄2
1

)
‖gk + sk‖,

which together with (4.21) implies (4.15).
��
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For future reference we note that in the case when (4.14) holds, so that gk+ sk → 0,
(4.15) implies that

vk → 0 as k→∞.
Note also that if the Lagrange multipliers λk are defined as the least squares solution to(∇ fk + Akλ

Skλ− µe

)
= 0,

then the boundedness of {∇ fk}, {Ak}, {sk}, and (4.14) imply that the sequence {λk}
is bounded. The boundedness assumption on Bk is now easy to enforce in this case,
particularly if Bk is defined as ∇2

xx L(xk, sk, λk).
With the bound (4.15) on the normal step, in the case where gk + sk → 0, we can

show that the parameter νk eventually becomes fixed.

Lemma 11. Suppose that Assumptions 1 are satisfied, and that (4.15) holds for k
sufficiently large. Then, the sequence of penalty parameters {νk} is bounded. In addition,
there exists an index k1 and positive scalars ν̄ and γ4, such that for all k ≥ k1,

νk = ν̄
and

predk(dk) ≥ γ4 hpredk . (4.22)

Proof. In Step 3 of Algorithm I, νk is chosen to be sufficiently large such that

predk(dk) ≥ ρνk vpredk, (4.23)

where, as in (2.36)–(2.37)

predk(dk) = νk vpredk + hpredk

−∇ f�k vx − 1

2
v�x Bkvx + µ

(
e�S−1

k vs − 1

2
v�s S−2

k vs

)
.

(4.24)

We consider the terms in the second line of the above equation. By Assumptions 1, {∇ f k},
{Ak}, and {Bk} are all bounded. Note also that {vpredk} is bounded, since by (2.14),
vpredk ≤ ‖gk + sk‖, and this quantity is bounded as a consequence of Assumption 1
and Lemma 5. Therefore, using (4.15), there is a constant γ ′1 > 0 such that

−∇ f �k vx − 1

2
v�x Bkvx + µ

(
e�S−1

k vs − 1

2
v�s S−2

k vs

)
≥ − γ ′1 vpredk .

Hence from (4.24) the predicted decrease satisfies

predk(dk) ≥ νk vpredk + hpredk −γ ′1 vpredk . (4.25)

Since vpredk and hpredk are nonnegative, we deduce from this inequality that condi-
tion (4.23) is satisfied if νk ≥ γ ′1/(1−ρ). Therefore, if νk becomes larger than γ ′1/(1−ρ),
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it will never be increased. This, together with the fact that whenever Algorithm I in-
creases νk it does so by a constant factor, implies that after some iterate, k1 say, νk will
remain unchanged at some value ν̄.

Now (4.25) and (4.23) imply

predk(dk) ≥ hpredk −γ ′1 vpredk ≥ hpredk −
γ ′1
ρνk

predk(dk),

so that (4.22) holds with 1/γ4 = 1+ γ ′1/(ρν̄). ��
Lemma 12. Suppose that Assumptions 1 hold and that the singular values of the ma-
trices

(
A�k Sk

)
are bounded away from zero. Then,

(i) {sk} is bounded away from zero and gk is negative for all large k,
(ii) ∇ fk + µAkS−1

k e→ 0.

Proof. By Lemma 7, gk + sk → 0, and thus (4.15) eventually holds at all iterates. So,
by Lemma 11, we have that νk = ν̄ for all k ≥ k1. Since Algorithm I decreases the merit
function at every iteration we have

φ(xk, sk; ν̄) ≤ φ(xk1 , sk1 ; ν̄), for k ≥ k1.

Thus

−µ
m∑

i=1

ln s(i)k ≤ φ(xk1 , sk1 ; ν̄)− fk − ν̄‖gk + sk‖.

Since we assume that { fk} is bounded below and because {sk} is bounded (Lemma 5),
this implies that there is a vector s̄ > 0 such that

sk ≥ s̄, for k ≥ 1.

Thus, because gk + sk → 0, we have that gk < 0 for large k, proving (i).
Next, recall that, by Lemma 3, (hx, hs) satisfies

hpredk ≥
γh

2

∥∥pc
k

∥∥ min

(
min(	̂k, (1− ξ)τ)∥∥Z�x Zx + Z�s S−2

k Zs
∥∥1/2 ,

∥∥pc
k

∥∥∥∥Z�x Bk Zx + µZ�s S−2
k Zs

∥∥
)
,

(4.26)

where

pc
k = −Z�x (∇ fk + Bkvx)+ µZ�s

(
S−1

k e− S−2
k vs

)
, (4.27)

and where the null space basis matrix Zk = (Z�x Z�s )�is assumed to have singular values
that are both bounded above and bounded away from zero. Since we have shown that
all components of sk are bounded away from zero, it follows that {Z�x Zx + Z�s S−2

k Zs}
is bounded. In addition since {Bk} is bounded, {Z�x Bk Zx + µZ�s S−2

k Zs} is bounded.
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Hence, inequality (4.26) becomes

hpredk ≥ γ ′1
∥∥pc

k

∥∥min
(

1, 	̂k,
∥∥pc

k

∥∥) , (4.28)

for some positive constant γ ′1.
To show that ∇ fk +µAk S−1

k e tends to zero, we relate this quantity to pc
k. Note that

the matrix (I −Ak)
� is a null space basis (see (2.26)), and that using the equivalence

of null space bases we get

qk ≡ ∇ fk + µAkS−1
k e = (I −Ak)

(
∇ f(xk)

−µS−1
k e

)

= (I −Ak)Zk
(
Z�k Zk

)−1
Z�k

(
∇ f(xk)

−µS−1
k e

)
, (4.29)

for the chosen null space basis Zk. By the boundedness of Ak and of the singular
values of Zk it follows from (4.29) that {qk} is bounded by a constant multiple of
‖Z�x∇ fk − µZ�s S−1

k e‖. Hence, by (4.27), for some positive constants γ ′2 and γ ′3∥∥pc
k

∥∥ ≥ γ ′2‖qk‖ − γ ′3‖vk‖, for all k.

We use a similar argument to that used in the proof of Lemma 7. To obtain a contra-
diction, suppose that θ = 1

4 lim supk→∞ ‖qk‖ is nonzero. Since vk → 0, we can find an
iterate (xl, sl ) with arbitrarily large l such that ‖ql‖ > 3θ and such that γ ′3‖vk‖ < γ ′2θ
for all k ≥ l. Let γ̄L be the Lipschitz constant for q(x, s) = ∇ f(x)+µA(x)S−1e. Then
any iterate (xk, sk), with k ≥ l, in the ball Bl = {(x, s) : ‖(x, s) − (xl, sl )‖ < θ/γ̄L},
satisfies ∥∥pc

k

∥∥ ≥ γ ′2 (‖ql‖ − ‖ql − qk‖)− γ ′3‖vk‖ ≥ γ ′2(3θ − θ − θ) = γ ′2θ.
By Lemma 11 and (4.28), we have with γ ′4 = γ4γ

′
1 γ
′
2

predk ≥ γ4 hpredk ≥ γ ′4 θmin
(
1, 	̂k, γ

′
2 θ
)
. (4.30)

Now since {φk} is bounded below, predk → 0, and thus by (4.30), 	̂k → 0 for the
subsequence of k for which (4.30) holds, Therefore, we can take l sufficiently large that
for any k ≥ l with (xk, sk) ∈ Bl , we have 	̂k ≤ min

(
1, γ ′2 θ

)
, and thus

predk ≥ γ ′4θ	̂k. (4.31)

Now by (3.4), if (xk, sk) ∈ Bl

| aredk − predk |
predk

≤ γL(1+ ν̄)	2
k

γ ′4θ	̂k
≤ 1− η (4.32)

for	k sufficiently small, implying acceptance of the step. This implies that if (xk, sk) ∈
Bl for all k > l, 	k would eventually stop decreasing. This is impossible since we
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have shown above that 	̂k → 0. Thus the sequence must eventually leave Bl for
some k > l.

In that case, let (xk+1, sk+1) be the first iterate after (xl, sl ) that is not contained
in Bl . It follows from (4.31) and (2.24) that

φk+1 ≤ φl − η
k∑

j=l

pred j

≤ φl − ηγ ′4θ(1− ξ)
k∑

j=l

	 j

≤ φl − ηγ ′4(1− ξ)θ2/γ̄L . (4.33)

The last inequality follows from the fact that (xk+1, sk+1) has left the ball Bl , whose
radius is θ/γ̄L , so that, as at the end of Lemma 7,

∑k
j=l 	 j ≥ θ/γ̄L .

Since the sequence {φk} is decreasing and bounded below, it converges. This is in
contradiction with the fact that l may be chosen arbitrarily large in (4.33), and the fact
that θ �= 0. Therefore qk → 0.

��

Now we have established all points of our main convergence result, Theorem 1,
which we restate and whose proof we now summarize.

Theorem 2. Suppose that Algorithm I is applied to the barrier problem (1.2) and that
Assumptions 1 hold. Then,

1) the sequence of slack variables {sk} is bounded,

2) Ak(gk + sk)→ 0 and Sk(gk + sk)→ 0.
Furthermore, one of the following three situations occurs.
(i) The sequence {xk} is not asymptotically feasible. In this situation, the iterates

approach stationarity of the measure of infeasibility x �→ ‖g(x)+‖, meaning that
Akg+k → 0, and the penalty parameters νk tend to infinity.

(ii) The sequence {xk} is asymptotically feasible, but the sequence {(gk, Ak)} has
a limit point (ḡ, Ā) failing the linear independence constraint qualification. In this
situation also, the penalty parameters νk tend to infinity.

(iii) The sequence {xk} is asymptotically feasible and all limit points of the sequence
{(gk, Ak)} satisfy the linear independence constraint qualification. In this situation,
{sk} is bounded away from zero, the penalty parameter νk is constant and gk is
negative for all large indices k, and stationarity of problem (1.2) is obtained, i.e.,
∇ fk + Akλk → 0, where the multipliers are defined by λk = µS−1

k e.

Proof. Conclusion (1) was established in Lemma 5, and conclusion (2) in Lemma 7. In
the case that {xk} is not asymptotically feasible (g+k �→ 0), it was shown in Lemma 8 that
situation (i) occurs. If g+k → 0, it was shown in Lemma 9, Lemma 11, and Lemma 12
that either (ii) or (iii)must hold.

��
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5. Overall algorithm

In this section we consider the overall algorithm, in which Algorithm I is run for
decreasing values of the barrier parameterµ. We are not concerned here with conditions
assuring a good rate of convergence,but consider only the global convergence properties
of this algorithm.

Algorithm II. Choose an initial value µ1 > 0 for the barrier parameter, a reduction
factor a ∈ (0, 1), and a sequence of stopping tolerances {εl}l≥1 that tends to zero. Choose
an initial iterate (x0, s0) and set l = 1 and k0 = 0.

1. Apply Algorithm I from the point (xkl−1 , skl−1 ) until it finds a point (xkl , skl ) satis-
fying

‖gkl + skl‖ ≤ εl, (5.1)

‖∇ fkl + Aklλkl‖ ≤ εl, (5.2)

where λkl = µl S
−1
kl

e.
2. Choose µl+1 ∈ (0, aµl).
3. Increase l by 1, and go to Step 1.

All the iterates generated by this algorithm form a single sequence {(xk, sk)}k≥0.
The index kl−1 (l ≥ 1) labels the starting point of the lth outer iteration, which ends at
the point (xkl , skl ).

Theorem 3. Suppose that {(xk, sk)} is generated by Algorithm II and that, for each
barrier problem, Assumptions 1 hold. Then, one of the following two possible outcomes
can occur.
(A) For some parameter µl , either inequality (5.1) is never satisfied, in which case

the stationarity condition for minimizing x �→ ‖g(x)+‖ is satisfied in the limit,
i.e., A(xk)g(xk)

+ → 0, or else gk + sk → 0 but inequality (5.2) is never satisfied,
in which case the sequence {(gk, Ak)} has a limit point (ḡ, Ā) failing the linear
independence constraint qualification.

(B) At each outer iteration l of Algorithm II, the inner algorithm succeeds in finding
a pair (xkl , skl ) satisfying (5.1)–(5.2). All limit points x̂ of {xkl } are feasible. Fur-
thermore, if any limit point x̂ of {xkl } satisfies the linear independence constraint
qualification, then the first order optimality conditions of the problem

min
x

f(x)

s.t. g(x) ≤ 0

hold at x̂: there exists λ̂ ∈ Rm such that

∇ f̂ + Âλ̂ = 0, ĝ ≤ 0, λ̂ ≥ 0, ĝ�λ̂ = 0.
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Proof. Suppose that, for some value of µl , Algorithm II fails to find a point satisfy-
ing (5.1) and (5.2). This implies that Algorithm I generates an infinite sequence for
problem (1.2) with µ = µl , but that outcome (iii) of Theorem 2 does not occur. Since
Assumptions 1 hold this implies that, for that value of µ, either outcome (i) or (ii) of
Theorem 2 occurs, which leads to conclusion (A).

The only other possibility is that Algorithm II satisfies (5.1)–(5.2) for all l ≥ 1.
Let L be a subsequence of indices l, such that xkl → x̂ when l → ∞ in L. Since
0 ≤ g+kl

≤ gkl + skl and gkl + skl → 0, one has ĝ = g(x̂) ≤ 0 (x̂ is feasible) and
skl → ŝ = −ĝ when l→∞ in L.

Now suppose that the linear independence constraint qualification holds at x̂ and
consider the set of indices

I = {i : ĝ(i) = 0}.
For i �∈ I, ĝ(i) < 0 and ŝ(i) > 0, so that λ(i)kl

= µl/s
(i)
kl
→ 0 when l →∞ in L. From

this and ∇ fkl + Aklλkl → 0, we deduce that

∇ fkl +
∑
i∈I

λ
(i)
kl
∇g(i)kl

→ 0. (5.3)

By the constraint qualification hypothesis, the vectors {∇ ĝ(i) : i ∈ I} are linearly
independent, so that, by (5.3), the positive sequence {λkl }l∈L converges to some value
λ̂ ≥ 0. Now, it remains to take the limit in ∇ fkl + Aklλkl when l → ∞ in L and to
observe that ĝ�λ̂ = 0. Therefore conclusion (B) holds.

��

6. Final remarks

In this paper we have presented and analyzed a trust region method for solving the barrier
problem (1.2). This is an optimization problem with nonlinear equality constraints, plus
the implicit constraint s > 0. Our strategy has been to use a well-developed algorithm
for equality constrained optimization and enforce the constraint s > 0 by means of the
trust region and the barrier term. Another benefit of using a trust region is the ability of
the method to deal with indefiniteness of the Hessian and near rank deficiency of the
constraints.

The algorithmic framework given in Sect. 1 can be used to implement primal or
primal-dual interior point methods. In this paper we have focused on primal methods
because they are easier to analyze and we have devoted much attention to their global
convergence properties because the analysis provides important clues on how to design
the algorithms. Computational experience with the primal interior point method is given
in [16,4]; those papers also provide computational results with primal-dual methods.

Another question to be dealt with is how to ensure that a good rate of convergence is
obtained. This requires, among other things, a careful strategy for updating the barrier
parameter µ and deciding how accurately to solve the barrier subproblems [5]. We
should also mention that since our merit function is non-differentiable, getting fast
convergence may necessitate use of a second-order correction or a watch-dog strategy
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to avoid the Maratos effect. Our computational experience [18,4] indicates that use of
a second-order correction can be an efficient strategy for this purpose.
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