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Abstract. An agorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is
described. It applies sequential quadratic programming techniques to asequence of barrier problems, and uses
trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives.
This framework permits primal and primal-dual steps, but the paper focuses on the primal version of the new
algorithm. An analysis of the convergence properties of this method is presented.
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1. Introduction

Sequential Quadratic Programming (SQP) methods have proved to be very efficient
for solving medium-size nonlinear programming problems [12,11]. They require few
iterations and function evaluations, but since they need to solve a quadratic subprob-
lem at every step, the cost of their iteration is potentially high for problems with large
numbers of variables and constraints. On the other hand, interior-point methods have
proved to be very successful in solving large linear programming problems, and it is
natural to ask whether they can be extended to nonlinear problems. Preliminary com-
putational experience with simple adaptations of primal-dual interior point methods
have given encouraging results on some classes on nonlinear problems (see for ex-
ample[29,14,28,2]).

Inthispaper wedescribeand analyzean algorithm for large-scale nonlinear program-
ming that usesideasfrom interior point methods and sequential quadratic programming.
Oneof itsuniquefeaturesisthe use of atrust region framework that allows for the direct
use of second derivatives and the inaccurate solution of subproblems. The algorithmis
well suited for handling equality constraints (see [4]), but for simplicity of exposition
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we will only consider here inequality constrained problems of the form
min f(X)
X

. (1.2)
subject to g(x) < 0,

where f : R" — Rand g: R" — R™ are smooth functions.
Following the strategy of interior point methods (see for example [13,27,19]) we
associate with (1.1) the following barrier problem in the variables x and s

m
i _ (i)
min f(x) u;lns
i=
subject to g(x) + s =0,

(1.2)

where i« > 0 and where the vector of slack variabless = (sV, ... , s™) T isimplicitly
assumed to be positive.

The main goal of this paper is to propose and analyze an algorithm for finding an
approximate solution to (1.2), for fixed u, that can effectively enforce the positivity
condition s > 0 on the slack variables without incurring in a high cost. This algorithm
can be applied repeatedly to problem (1.2), for decreasing values of w, to approxi-
mate the solution of the original problem (1.1). The key to our approach is to view
interior point methods from the perspective of sequential quadratic programming and
formulate the quadratic subproblem so that the steps are discouraged from violating the
bounds s > 0. This framework suggests how to generate steps with primal or primal-
dual characteristics, and iswell suited for large problems. Numerical experimentswith
an implementation of the new method have been performed by Byrd, Hribar and No-
cedal [4], and show that this approach holds much promise. We should note that in
this paper we do not address the important issue of how fast to decrease the barrier
parameter, which is currently an active area of research.

We begin by introducing some notation and by stating the first-order optimality
conditions for the barrier problem. The Lagrangian of (1.2) is

m
Lix.s ) = f0) =y Ins? +2T(gx0 + 9. (1.3)
i=1
where A € R™ are the Lagrange multipliers. At an optimal solution (x, s) of (1.2) we
have

VxL(X,8, 1) =V X))+ AX)A =0 (12.4)

VsL(x,5, 1) = — uSle+ i1 =0, (1.5)
where

AX) = (VgPx), ..., Vg™ (x) (1.6)

isthe matrix of constraint gradients, and where

1 sb
ez(f), sz( ) (1.7)
1 sm
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To facilitate the derivation of the new agorithm we define

m
7= <)s(> 9(2) = f(x)—,uZIns(i), (1.8)

i=1
c(2) =9(x) +s, (1.9
and rewrite the barrier problem (1.2) as

min ¢(2)

1.10
subject to ¢(z) = (110)

We now apply the sequential quadratic programming method (see for example[12,11])
to this problem. At an iterate z, we generate a displacement

by solving the quadratic program

rrgn Vo(z)'d + 3d"Wd

) (1.12)
subject to A(z) 'd + ¢(2) = 0,

where W is the Hessian of the Lagrangian of the barrier problem (1.10) with respect to
z, and where AT isthe Jacobian of c and is given by

AT=(AXT). (112)

Note that (1.10) isjust arestatement of (1.2), and thus from (1.4)—(1.5) we have that

2
W VZ L(X s, )\.) (Vxxl_(())(, S, )\-) Mg_z) . (113)

To obtain convergence from remote starting points, and to allow for the case when
. - . T . !
W is not positive definite in the null space of A, we introduce atrust region constraint

in (1.11) of theform
[(s%)] =2

where the trust region radius A > 0 is updated at every iteration. The step in the
slack variables is scaled by S1 due to the form 1 S2 of the portion of the Hessian
W corresponding to the slack variables. Since this submatrix is positive definite and
diagonal, it seems to be the best scale at the current point; see also [4] for a discussion
of how this scaling is beneficial when using a conjugate gradient iteration to compute
the step.

(1.14)
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From now on we simplify the notation by writing a vector such as z, which has x
and s-components, asz = (x, s) instead of z = (x ', s") T. Inthisway an expression like
that in (1.14) issimply written as

H(S“ lds)H [ (ce. S~ . (L15)

The trust region constraint (1.14) does not prevent the new slack variable values
s+ ds from becoming negative unless A is sufficiently small. Sinceit isnot desirableto
impede progress of the iteration by employing small trust regions, we explicitly bound
the slack variables away from zero by imposing the well-known fraction to the boundary
rule[27]

S+ds> (1-1s,

where the parameter t € (0, 1) is chosen close to 1. This results in the subprob-
lem
rrgn Vo(z)'d + 3d"Wd
subjectto A(z)Td + c(z) =
[ (d. S7ds) | < A
ds > —1s.

(1.16)

We will assume for simplicity that the trust region is defined using the Euclidean norm,
although our analysis would be essentially the same for any other fixed norm. It is true
that problem (1.16) could be quite difficult to solve exactly, but we intend to only com-
pute approximate solutions using techniques such as a dogleg method or the conjugate
gradient algorithm. Due to the formulation of our subproblem these techniques will
tend to avoid the boundaries of the constraints s > 0 and will locate an approximate
solution with moderate cost. To see that our subproblem (1.16) is appropriate, note
that if the slack variables are scaled by S™1, the feasible region of the transformed
problem has the essential characteristics of a trust region: it is bounded and contains
a ball centered at z whose radius is bounded below by a value that depends on A and
not on z.

Itiswell known[26] that the constraintsin (1.16) can beincompatiblesincethe steps
d satisfying the linear constraints may not lie within the trust region. Several strategies
have been proposed to make the constraints consistent [7,6,24], and in this paper we
follow the approach of Byrd [3] and Omojokun [20], which we have found suitable for
solving large problems[18].

Thestrategy of Byrd and Omojokun consists of first taking anormal (or transversal)
step v that lieswell insidethetrust region and that attemptsto satisfy thelinear constraints
in (1.16) as well as possible. To compute the normal step v, we choose a contraction
parameter 0 < & < 1 (say & = 0.8) that determines a tighter version of the constraints
(1.16), i.e., a smaller trust region radius EA and tighter lower bounds —&z. Then we
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approximately solve the problem

min |A@) "o+ c(@) |

subject to | (vx, S~tus)|| < €A (1.17)
vs > —&TS,
where here, and for the rest of the paper, || - || denotes the Euclidean (or £2) norm.

The normal step v determines how well the linear constraintsin (1.16) will be satisfied.
We now compute the total step d by approximately solving the following modification
of (1.16)

mdin Vo2 'd + 3d"Wd
subject to A(z)Td = A(z) Tv
[ (de. S7Hd)[ < A&

dg > —1s.

(1.18)

The constraintsfor this subproblem are always consistent; for exampled = visfeasible.
Lalee, Nocedal and Plantenga [18] describe direct and iterative methods for approxi-
mately solving (1.18) in the case when the lower bound constraints are not present.

We now need to decide if the trial step d obtained from (1.18) should be accepted,
and for this purposeweintroduceamerit function for the barrier problem (1.10). (Recall
that our objective at this stage is to solve the barrier problem for a fixed value of the
barrier parameter 11.) We follow Byrd and Omojokun and define the merit function to
be

¢z v) = ¢(2) +vlc@)], (1.19)

wherev > 0isapenalty parameter. Since the Euclidean norm in the second term is not
squared, this merit function is non-differentiable. It is also exact in the sense that if v is
greater than a certain threshold value, then a Karush-Kuhn-Tucker point of the barrier
problem (1.2) isastationary point of the merit function ¢ (i.e., thedirectional derivative
of ¢ inany directionisnonnegative). The step d isaccepted if it gives sufficient reduction
in the merit function; otherwiseit is rejected.

We completetheiteration by updating thetrust regionradius A accordingto standard
trust region techniques that will be discussed later on.

We summarize the discussion given so far by presenting a broad outline of the new
algorithm for solving the nonlinear programming problem (1.1).

Algorithm Outline

Choose aninitial barrier parameter 1 > 0 and an initial iterate z = (X, s) and Lagrange
multipliers i.

1. If (1.1) is solved to the required accuracy, stop.

2. Compute and approximate solution of the barrier problem (1.10), as follows.
Choose an initial trust region radius A > 0, acontraction parameter £ € (0, 1), and
apenalty parameter v > 0 for the merit function (1.19).
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(a) If the barrier problem (1.10) is solved to the required accuracy, go to 3.
(b) Compute a normal step v = (vx, vs) by approximately solving the normal
subproblem

min |A@) "o+ c@ |
subject to || (vx, S~tus) || < €A (1.20)
vg > —&TS.

(c) Compute the total step d = (dy, ds) by approximately solving the tangential
subproblem

min Ve(2)'d + 3d"wd
subject to A(z)Td = A(2) Tv

(0 S0 =

ds > —18.

(1.21)

(d) If the step d does not give a sufficient reduction in the merit function (1.19),
decrease A and go to (b). Otherwise, set X <— X +dy, S < s+ ds, 2= (X, 9),
compute new Lagrange multipliers A, and go to (a).

3. Decreasethe barrier parameter . and go to 1.

Since the inequality constraints are already being handled as equalities, this algo-
rithm can be easily extended to handle equality constraints. In that case the nonlinear
constraintsin (1.10) have the form

o %X ) _
62 = <g.(X) +S> =0

The Jacobian matrix A then takes the form

AT AE(X)T 0
A= (e 7).

where A and A, denote the matrices of constraint gradients correspondingto g: and g;
see [4] for a detailed discussion on the treatment of equality constraints in our new
method.

In Sect. 2wediscussin more detail whento accept or reject astep, and how to update
the trust region. Thiswill allow us to give a complete description of the algorithm. We
now digress to discuss the relationship between our approach and other interior point
methods. This discussion makes use of the well-known fact that Sequential Quadratic
Programming, in at least one formulation, is equivalent to Newton's method applied to
the optimality conditions of a nonlinear program [11].
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1.1. KKT systems

The KKT conditions for the equality constrained barrier problem (1.2) giverise to the
following system of nonlinear equationsin x, s, A (see (1.4), (1.5))

V(X)) + A(X)A

—uSte+ar | =0 (1.22)
gx) +s
Applying Newton’s method to this system we obtain the iteration
VL 0 A\ [ dx —V f(x)
0 uS?2 | ds | =| wuSle |, (1.23)
AT 1 0 At —g(x) —s

where AT = A + dj, and where we have omitted the argument of V)%XL(X, s, A) for
brevity. Note that the current values of the multipliers A only enter in (1.23) through
V2, L. When the objective function and constraints are linear, we have that V2,L = 0,
and thus the step does not depend on the current values of these multipliers; for this
reason a method based on (1.23) is referred to as aprimal interior point method.

L et us now suppose that the quadratic subproblem (1.11) is strictly conve, i.e., that
W is positive definite on the null space of A@T. Thenitis easy to see that the solution
of (1.11) coincideswith the step generated by (1.23). Thereforethe SQP approach (1.11)
with W given by (1.13) is equivalent to a primal interior point iteration on the barrier
subproblem, under the convexity assumption just stated. Several researchers, including
Yamashita [29] have noted this relationship.

It is also possible to establish a correspondence between primal-dual interior point
methods and the SQP approach. Let us multiply the second row of (1.22) by Sto obtain
the system

V(X)) + A(X)A
S\ — e =0. (1.24)
g(x) +s

This may be viewed as a modified KKT system for the inequality constrained prob-
lem (1.1), since the second row is a relaxation of the complementary slackness con-
dition (which is obtained when © = 0). In the linear programming case, primal-dual
methods are based on iteratively solving (1.24) in X, s, A. Applying Newton's method
to (1.24), and then symmetrizing the coefficient matrix by multiplying the second block
of equationsby S, resultsin the iteration

valL 0 A®X) dy —V f(X)
0 SiA 1 ds | =| wuSle |, (1.25)
AT I 0 AT —g(X) —s

where we have defined

A =diagh P, ..., M), (1.26)
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Now the current value of 2 influencesthe step through the matrix A and through V)%X L.
We refer to (1.25) as the primal-dual iteration.

Consider now the SQP subproblem (1.11) with the Hessian of the Lagrangian W
replaced by

- V2 L(x,s,A) O
W:( XX o S‘lA)' (1.27)

Itiseasy to seethat if the quadratic program (1.11) is strictly convex, the step generated
by the SQP approach coincideswith the solution of (1.25). Comparing (1.13) and (1.27)
we see that the only difference between the primal and primal-dual SQP formulations
is that the matrix ;©S~2 has been replaced by S~1A.

This degree of generality justifies the investigation of SQP as a framework for
designing interior point methods for nonlinear programming. Several choices for the
Hessian matrix W could be considered, but in this study we focus on the (primal) exact
Hessian version (1.13) because of its simplicity. We note, however, that much of our
analysis could be extended to the primal-dual approach based on (1.27) if appropriate
safeguards are applied.

Many authors, among them Panier, Tits, and Herskovits [21], Yamashita [29],
Herskovits [15], Anstreicher and Via [1], Jarre and Saunders [17], ElI-Bakry, Tapia,
Tsuchiya, and Zhang [10], Coleman and Li [8], Dennis, Heinkenschlossand Vicente[9],
have proposed interior point methods for nonlinear programming based on iterations
of the form (1.23) or (1.25). In some of these studies V2, L is either assumed positive
definite on the whole space or a subspace, or is modified to be so. In our approach there
is no such requirement; we can either use the exact Hessian of the Lagrangian with
respect to x in (1.23) and (1.25), or any approximation B to it. For example, B could
be updated by the BFGS or SR1 quasi-Newton formulae. This generality is possible by
the trust region framework described in the previous section.

Plantenga [22] describes an agorithm that has some common features with the
algorithm presented here, but his approach has also important differences. Among these
are the fact that his trust region does not include a scaling, that his iteration produces
affine scaling steps near the solution, and that his approach reverts to an active set
method when progressis slow.

We emphasizethat the equival ence between SQP and Newton’smethod applied tothe
KKT system holdsonly if the subproblem (1.16) is strictly convex, if this subproblemis
solved exactly, and if thetrust region constraint isinactive. Sincethese conditionswill not
hold in most iterations of our algorithm, the approach presented in this paper is distinct
from those based on directly solving the KKT system of the barrier problem. However,
astheiterates convergeto the solution, our algorithm will be very similar to these other
interior point methods. Thisis because near the solution point, the quadrati c subproblem
(1.11) will be convex and the tolerances of the procedure for solving (1.11) subject to
the trust region constraint, will be set so that, asymptotically, it is solved exactly [4].
Moreover, as the iterates converge to the solution we expect the trust region constraint
to becomeinactive, provided a second order correctionisincorporatedin the algorithm.

In summary the local behavior of our method is similar to that of other interior point
methods, but its global behavior is likely to be markedly different. For this reason the
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analysis presented in this paper will focus on the global convergence properties of the
new method.

Notation. Throughout the paper || - || denotes the Euclidean (or £2) norm. The vector of
dlack variables at the k-th iteration is written as &, and itsi-th component is sf<') .

2. Algorithm for the barrier problem

We now give a detailed description of the algorithm for solving the barrier problem
(1.10), that was loosely described in Step 2 of the Algorithm Outline in Sect. 1.

From now on we will let By stand for V2, L (X, S, Ak) Or for a symmetric matrix
approximating this Hessian. At an iterate (xk, S), the step d generated by the algorithm
will be an approximate solution of the tangential problem (1.21). Dueto the definitions
(1.8), (1.12) and (1.13) we can write this tangential problem as

min V f,dy — ue’§  ds + 0 Bk + g S %ds (2.19)
st. A—k'—dx +ds = A;vx + vg (2.1b)
[(eh S ds)| < A (219

ds > —75. (2.1d)

Here, V fx = V f(xk), and v is the approximate solution to (1.20).
Now we focus on the merit function and, in particular, on how much it is expected
to decrease at each iteration. The merit function (1.19) may be expressed as

m
p(x.5:0) = 100 +vgx) +5| — ) _Ins?. (22
i=1

We can construct a model my of ¢(-, -; vk) around an iterate (xk, S) using (2.1a) and
alinear approximation of the constraintsin (1.2),

1
mi(d) = fic + V filde + Ed;erdX + vk Ok + s + Agdx + ds|

—u (Z Ins +e's ds — %d;r $2d5> : (2.3
i=1

We will show in Lemma 4 below that m is a suitable local model of ¢. We define the
predicted reduction in the merit function ¢ to be the change in the model my produced
by astep d,

predy (d) = mg(0) — my(d)
= —Vfldx— %dXTBkdX

v (l1gk + Sl = | 9 + 5+ Al + i)

+u (eTsk—lolS — %d;r S:zds) : (2.4)
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We will always choose the weight v sufficiently large that pred,(d) > 0, as will be
described in Sect. 2.3.

The predicted reductionis used as a standard for accepting the step and for updating
the trust region. We choose a parameter n € (0, 1), and if

d(Xk + dx, S+ ds; vk) < d(Xk, Sk; vk) — n predy(d), (2.9)

we accept the step d and possibly increase the trust region radius A; otherwise we de-
crease Ak by aconstant fraction, e.g. Ak <— Ag/2, andrecomputed. Sincepred, (d) > 0
thisimpliesthat the merit function decreases at each step. M ore sophisticated strategies
for updating Ak are useful in practice, but this simple rule will be sufficient for our
purposes.

Next we consider conditions that determine when approximate solutions to the nor-
mal and tangential subproblems are acceptable. Since these conditions require detailed
justification, we consider these subproblems separately.

2.1. Computation of the normal step

At each step of thealgorithm for the barrier problem wefirst solvethe normal subproblem
(1.20), which can be written as

min | g + S+ Agvx + vs|

st. || (vx, Sctvs)|| < Ak (2.6)
vs > —E1%,
where we have defined
Ak = EAx. (2.7)

We now present two conditionsthat an approximate solution vy of (2.6) must satisfy,
in addition to the constraints of (2.6). To do thiswe introduce the change of variables

Ux = vy, Us = S:lvs, (28)
so that problem (2.6) becomes
min [ g+ s+ Adux + Scus|
st. [[(uy, us)|| < A (2.9)
Us > —ér.

If the lower bound constraints are disregarded, it is straightforward to show [18] that
(2.9) has a solution in the range of
Ax
. 2.10
(%) (210
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Even when thelower boundsare present, keeping u in the range of (2.10) will preventu
from being unreasonably long, and in the implementation of the new method described
in[4], u ischosen alwaysin this space. A condition of thistypeisimportant asit allows
us to limit the increase in the objective function due to the normal step, and as we will
see, to limit the magnitude of v. For the analysis in this paper it suffices to impose the
following weaker condition.

Range Space Condition. The approximate solution v of the normal problem (2.6)
must be of the form

vk = (25) Wk, (2.12)

for some vector wyx € R™, whenever (2.6) has an optimal solution of that form.
Thesecond condition onthenormal step requiresthat thereductioninthe objective of
(2.6) be comparableto that obtained by minimizing along the steepest descent direction

inu. Thisdirection is the gradient of the objective in problem (2.9) at u = 0, whichis
amultiple of

U =— (Qj) (O + %) (2.12)

Transforming back to the original variables we obtain the vector

— (’;5) (O + %) (2.13)

which we call the scaled steepest descent direction. We refer to the reduction in the
objective of (2.6) produced by astep v = (v, vs) asthe normal predicted reduction:

vk

vpred(v) = gk + Sl — | gk + S+ Agvx + vs|), (2.14)
and we require that this reduction satisfy the following condition.

Normal Cauchy Decrease Condition. Anapproximate solution vy of thenormal prob-
lem (2.6) must satisfy

vpred, (vk) > y, Vpred, (evg), (2.15)
for some constant y, > 0, where oy, solves the problem

min || gk + s+ a(Ag + vS) |

a>0

st |a(vg, S| < Ax (2.16)

avg > —ET.
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Notethat the normal Cauchy decrease condition and therange spacecondition (2.11) are
satisfied, with y, < 1, by an optimal solution of (2.6). Both conditionsare also satisfied
if the step is computed by truncated conjugate gradient iterations in the variable u on
the objective of (2.9) (see Steihaug [25]), and the results are transformed back into the
original variables. Also, since « = 0 is a feasible solution of (2.16), it is clear from
(2.15) that

vpred, (vk) > 0. (2.17)

In Lemma 2 we give a sharper bound on the normal predicted reduction vpred, (vk)
of an approximate solution that satisfies the normal Cauchy decrease condition. First
we will find it useful to establish this generalization of the one-dimensional version of
aresult by Powell [23].

Lemma 1. Consider the one dimensional problem
; 1
min ¥(z) = 3az® — bz
st.z<t,
whereb > Oandt > 0. Then the optimal value .. satisfies

Yy < b min qt b
T2 “lal |’
Proof. Consider first the case when a > 0. Then g > 0 isthe unconstrained minimizer
of y. If g < t, then the unconstrained minimizer solves the problem and

b b?
— )y =_= 2.18
v (a) 2a ( )
On the other hand, if 2 > t, since y is decreasing on [0, 2] and at < b,
Ve = Y(t) = %at2 —bt < —%. (2.19)

Inthe casea < 0, ¥ is concave everywhere so that
Vi = Y(t) < —Dt. (2.20)
Since one of (2.18), (2.19) or (2.20) must hold, the result follows.

Applying this to the normal problem yields the following result.

Lemma 2. Supposethat s¢ > 0 and that vk = (vx, vs) IS an approximate solution of
(2.6) satisfying the normal Cauchy decrease condition (2.15). Then

ll gk + s«ll vpredy (vk) = gk + &II(Ing + 5l — [ ok + s+ Alox + vs||)

(é‘:) (Ok + ) H (2.21)
l(A¢ 91°

- 2 [\«

<Ak> (Ok + %) H min | Ay, &,

where y, isdefined in (2.15).
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Proof. Inequality (2.21) clearly holds when uy = 0 because (2.12) implies that the
right hand side of the inequality is zero. Therefore, we now assume that uy; # O.

By thenormal Cauchy decrease condition, (2.8) and (2.12), thescalar aﬁ isasolution
of

gﬂzig%zH(AT Su]? - afug)?
st. Ja| < Tl k“ (2.22)

( )(i) foralli suchthat (u )(') 0.
ug

Note that the upper bounds of problem (2.22) are satisfied if

| A T
a < min k &
Tue]” gl

Using thisand Lemma 1 we have,

(”gk + 5+ of (AL +09) |* — llge + 9«||2)

— ) (AT Sl — o7l
_||uk|| min{min{ék,sr} Jug)® }
-2 Judl (AT s)ug]

<—Mmin{~k T “uﬁ” }
=72 MM s

Now, since the normal Cauchy decrease condition holds, by (2.14) and (2.15),

gk + Sl vpredh (o = voligic + sl (l1gk + sl = g+ s + @ (AG + §) | )

= 2 (Igk+ s~ o+ s+ af (Al +29) )

2o ug| min | Ay Ti””k” }
z 1M {A’g’umz STE

wherewe used theinequality 2a(a—b) > a? — b?. Substituting for uy, by itsvaluegiven
by (2.12), we abtain (2.21).

v

O
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2.2. Approximate solution of the tangential problem

Consider now the tangential subproblem (2.1). We will write d = vk + h, where vk
is the approximate solution of the normal subproblem. Substituting this expression in
(2.1) and omitting constant terms involving vy in the objective function, leads to the
following probleminh = (hy, hg),

mhin (V fic + Brvy) Thx + 3h [ Byhy (2.233)
(678 hs — v §%hs — 3hIS%hs) (2.23b)

st. Alhx+hs=0 (2.23¢)
|(hx. Scths) || < Ak (2.23d)

S tus+he) > —t. (2.23¢)

Thisproblemisequivalentto (2.1) if the normal step satisfies the range space condition
(2.11) and we set

1

A= (82— (o 509) 7).

since then the vector (hy, S *hs) is orthogonal to (vx, S tvs).

When orthogonality is not imposed, we will still choose A in (2.23) to have the
property that if (hy, hs) satisfies (2.23d), then dx = vk + hk satisfies (2.1c). For example,
this can be achieved by setting

A= A= [ (o, St

although this choice restricts h more than (2.1c) in some cases. In our analysis, we will
always make the assumption

Ak > Ak > (1—9)A, (2.24)

which is satisfied by the choices mentioned above.

We now describe a decrease condition that an approximate solution of (2.23) must
satisfy. For this purpose we define the tangential predicted reduction produced by a step
h = (hg, hg) asthe change in the objective function of (2.23),

hpredy () = —(V fi + Brvx) Thx — 3h, Behy

(2.25)
+ 11 (€7 Mhs — v § ?hs — 35 2hs)

Next,welet Zy = (Z, ZST)TdenoteanuII space basismatrix for theequality constraints
inproblem (2.23), i.e., Zx isan (n + m) x n full rank matrix satisfying

(Al 1)Zk = Al Zx + Zs = 0. (2.26)
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A simplechoiceof Zyistodefine Zx = (I —Ay) T, but many other choicesare possible,
and some may have advantagesin different contexts. In this paper we will allow Z to
be any null space basis matrix satisfying

IZkll < v, and omin(Z) >y, foralk, (2.27)

where y, is apositive constant and omin(Zk) denotes the smallest singular value of Z.
If {Ax} is bounded this condition is satisfied by Zx = (I — Ax) " and by many other
choices of Z.

Any feasible vector for (2.23) may be expressed as h = Zyp for some p € R".
Thus, writing h = (hy, hs) = (Zxp, Zsp), the tangentia subproblem (2.23) becomes

min (V fic+ Biow) 'Zxp — (S e - S7vs) ' Zsp
+ % P (ZiBkZx + nZIS?Zs)p

st. [(Zxp. S*Zsp) | < Ax
S s+ Zsp) = —.

Again, this has the form of a trust region subproblem for unconstrained optimization,
with bounds at some distance from zero (in the scaled variables) and by analogy with
standard practice, we will require that the step hy = Zxpk give as much reduction in
the abjective of (2.28) as a steepest descent step. The steepest descent direction for the
objective function of (2.28) at p = Oisgiven by

PE = —Z(V fic + Brvx) + nZJd (S te — Sc2vs). (2.29)
We are now ready to state the condition we impose on the tangential step.

(2.28)

Tangential Cauchy Decrease Condition. The approximate solution hy of the tangen-
tial problem (2.23) must satisfy

hpredy (hik) > yn hpredy (95 Zk py). (2.30)
for some constant yn > 0, where 6 solves the problem
min — hpredy (0Zkpf)
st |0(Zxpf. §*Zspf) | = A« (231
vs + 0Zspg > —T.
Here Zx isa null space basis matrix satisfying (2.27) and A satisfies (2.24).

The tangential Cauchy decrease condition is clearly satisfied by the optimal solution of
(2.28). It isaso satisfied if the step is chosen by truncated conjugate gradient iterations
in the variable p on the objective of (2.28) (see Steihaug [25]). Note also that since
0 = Oisafeasible solution to (2.31),

hpred, (hx) > 0. (2.32)

Thefollowing result establishes alower bound on the tangential predicted reduction
hpred, (hy) for a step satisfying the tangential Cauchy decrease condition.
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Lemma 3. Supposethat ¢ > 0 and that hy = (hy, hs) satisfies the tangential Cauchy
decrease condition (2.30). Then

in(A — c
nprec o = 22 of| mm( min (A, (- 1) 5] )

1272 + S22 | ZFBkZx + nZ{S°Zs|
233

where py isgiven by (2.29) and yh isused in (2.30).
Proof. Note that the problem (2.31) may be expressed as

. 1
min — hpred (62ipg) = 5(0F) ' (Z{BKZx + n2J S 2 6% — | )6
st. |6] < A
T H(prﬁvlﬁ?l(%sp‘k’) I (2:34)
< —m for al i such that (S;lzspc)(i) <0.
(5 zsm)" ‘

Since the normal problem ensuresthat (S, *vs) ¥ > —¢t, it follows from the defin-
ition of the Euclidean norm that the upper bounds on 6 in the last group of (2.34) are
greater than or equal to

(1-97
[ (Zxpi. S ZsPP)|
Applying Lemma 1 to problem (2.34) we then have
— hpred, (9¢Zkpg)
A 2
1 : min{Ag, (1 — &)t} Pk
L T e B ey
[(ZxPg. S ZsP) | [(PF) (2 BiZx + nZIS2Z8) b
Theresult (2.33) then follows from norm inequalities and (2.30) .

2.3. Detailed description of the algorithm

Now that we have specified how the normal and tangential subproblemsareto be solved,
we can give a precise description of our algorithmfor solving the barrier problem (1.2).

Algorithm |. Choose the initial iterate zp = (Xo, So, Ao) With s > O, the initial trust
regionradius Ag > 0, four constantsé&, », p, and z in (0, 1) and a positive constant v_.
Setk = 0.

1. Compute the normal step vk = (v, vs) by solving approximately (2.6), in such
a way that v satisfies the range space condition (2.11) and the normal Cauchy
decrease condition (2.15).
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2. Compute the tangent step hx = (hy, hs) by solving approximately (2.23), in such
away that hy satisfies the tangential Cauchy decrease condition (2.30), and the total
step dk = (d, ds) = vk + h satisfies [|(dx, S 'ds)| < Ax.

3. Update the penalty parameter of the merit function (2.2) as follows. Let vy be the
smallest value of vk, such that

predy (dk) > pvi vpred (v). (2.35)

If Dk < vk_1, Set vk = vk_1; otherwise set vk = max(vk, 1.5vk_1).
4. If

d(Xk + dx, S + ds; vk) > P(Xk, S vk) — 1 predy (dy)

decrease Ak by a constant factor and go to 1.
5. Set Xky1 = Xk + Ox, Skp1 = Max(s + ds, —Ok+1), compute a new multiplier A1,
update By, choose anew value Axy1 > A, increasek by 1 andgoto 1.

Steps 3 and 5 need some clarification. Writing dy = hy + vx and ds = hs + vs, the
total predicted reduction (2.4) becomes
predy (dv) =

—V o — %UXTBKUX — (V fi + Byoy) Thy — %hIBkhx

+ vk (g + 5l = g+ 56+ Afd + s )

+ (eTS(_lvs - %U;FS(_ZUS> + u (eTS(_lhs — v;rszzhs — %h;—$2hs) .
Recalling the definitions (2.14) and (2.25) of the norma and tangential predicted
reductions, we obtain

pred, (dk) = vk vpred, (vk) + hpredy (hx) + X, (2.36)

where
T 1+ Tel, 1 7o
xk=—Vf vx — va Bkux +u|€e'S Tvs — évs$ vs ). (2.37)

Wehavenotedin (2.17) and (2.32) that vpred, (vk) and hpred, (hy) are both nonnegative,
but xk, which gives the changein (2.1a) due to the normal step vk, can be of any sign.
Condition (2.35) in Step 3 compensates for the possible negativity of this term by
choosing a sufficiently large value of vy, so that pred,(dy) is at least a fraction p of
vk vpred, (vk). More precisely, from (2.36) we see that if vpred, (vk) > 0, (2.35) holds
when

Vg > — Xk .
(1 — p) vpred, (vk)

On the other hand, if vpred, (vk) = 0, then by (2.21) and s¢ > O, it must be the case that
Ok + S = 0. Inthat case v = O isasolution to (2.6) and by the range space condition
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vk isintherangeof (A] 7. Since s > 0 the squared objective of (2.6) is a positive
definite quadratic on that subspace, so v = 0 isthe unique minimizer in that space. This
uniquenessimpliesthat vk = 0. Inthat case xx = 0 and (2.35) is satisfied for any value
of VK.

In Step 5 we do not always set scr1 = S + ds, because when 9121 < 0, the
i-th constraint is feasible and we have more freedom in choosing the corresponding
dack, q(('jrl In this case our rule ensures that the new slack is not unnecessarily small.
Furthermore, it is alwaysthe casethat ¢(Xk + dx, S+1; vk) < ¢ (Xk + dx, & + ds; vk), SO
that this update rule for sc11 does not increase the value of the merit function obtained
after acceptance of the trust region radius.

Finally notethat we haveleft the strategy for computingthe Lagrangemultipliersand
By unspecified. The treatment in this paper allows By to be any bounded approximation
to V)%XL(xk, S, Ak), and alows Ak to be any multiplier estimate consistent with this
boundedness. The important question of what choices of Bk and Ak are most effective
is not addressed here, and we refer the reader to [4] for some possibilities.

3. Well-posedness of Algorithm |

The purpose of this section isto show that, if an iterate (X, Sk) iSnot a stationary point
of the barrier problem, then the trust region radius cannot shrink to zero and prevent
the algorithm from moving away from that point. We begin by showing that mg is an
accurate local model of the merit function ¢. To analyze this accuracy we define the
actual reduction in the merit function ¢ from (Xk, k) to (Xk + dx, S + ds) as

aredy(d) = ¢(Xk, S¢; vk) — $(Xk + Ox, S + ds; k). (3.1

Step 4 of Algorithm | thus states that a step d is acceptable if
aredy(d) > n pred(d). (32
Lemma4. Supposethat Vf and A are Lipschitz continuous on an open convex set
X containing all the iterates {xx} generated by Algorithm I, and assume that {By} is

bounded. Then thereis a positive constant y. such that for any iterate (xk, ) and any
step (dx, ds) such that the segment [xk, Xk + dx] isin X and ds > —1%,

| predy(d) — aredi(d)| < v ((L+ w0 ldkl® + || S ds||).

Proof. Using the Lipschitz continuity of A, we have for some positive constant y,

1900+ cho) + 5 + sl = g+ S + ATk + |

< 9t + do) — g — Adx||

= sup [IAG) — Al lidxll
&€ [Xi, Xic+0lx]

< ¥'lldklI?.
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Similarly, for any scalars o and o’ satisfying o > O and o’ > —10,

/

In(oc +0') —Ino — 7z
o

o o

= sup t o

telo,04+0']

I\ 2 N\ 2
o o 1 o
= J— < JE— .
o+o’<o> _1—r<a>
Using these two inequalities, the definitions (3.1), (2.4) of aredx(d) and pred, (d), the

Lipschitz continuity of V f, and the boundedness of {By}, we have

| predy (d) — aredy(d)|

(3.3)

1
f(xk +dy) — fk—V fkT x — Ed;erdX

+ i (190 + tho) + S+ sl — [lok + s+ Al + )

m . o d 1fdl ’
—u ) | Inc+dg® ~Ing, —WW(W)

i—1 S S

1 1
<y (L +w)lldkll® + 1 (: + E) H $1dsH2,

for some positive constant y”.

Thislemmaimplies that
| predi(d) — aredk(d)| < (1 + w)A. (3.4)

In the next proposition, we show that Algorithm | determines an acceptable step with
a finite number of reductions of Ay, i.e., that there can be no infinite cycling between
Steps 1 and 4 of Algorithm I. For thisit isimportant that we ensure that, by decreasing
the trust region radius, we are able to make the displacement in s arbitrarily small.

Proposition 1. Suppose that sx > 0 and that (xk, ) is not a stationary point of the
barrier problem(1.2). Thenthereexists AY > 0, suchthatif A € (0, AD), theinequality
(3.2) holds.

Proof. We proceed by contradiction, supposing that there is a subsequence (indexed
by i, the iteration counter k is fixed here) of trust region radii Ak converging to
zero, and corresponding steps dx i = vki + hk; and penalty parameters vy i, such that
aredy i (dxi) < npredk’i (dg ) fordlli.
The inequality aredy i (dki) < npred;(dki) and the assumption n € (0, 1) imply
that | predy ; (dyi) — aredyi (dki)| > (1 — n) pred ; (dki). This together with the limits
ki 0,d5" — 0, and Lemma4 gives

prec ek = L+ o) + of ) @9)
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Wewill show that this equation leadsto acontradiction, whichwill provethe proposition.
For the rest of the proof y3, 5, . .. , denote positive constants (independent of i but not
of k), and to simplify thenotation, we omit theargumentsin vpred, ; (vk;i), hpred, ; (hk;i),
and predy ; (di)-

Consider first the case when gk + s« = 0. From (2.14) and (2.17), we see that
vpredy ; = 0. Also, since gk + s« = 0, (2.6) hasasolution (v = 0) in the range space of
(Al )T, sothat the range space condition (2.11) impliesthat vy isof theform (2.11),
for some vector wy j. Therefore 0 = vpredy ; = ||(A[A;< + sf)wk,i I, which implies
that wy; = 0 and vxj = 0, because the matrix inside the parenthesis is nonsingular.
Given that vpred, ; and vk both vanish, we have from (2.36), (2.37) and (2.32) that
pred, ; = hpred, ; > 0. Hence, inequality (2.35) holds independently of the value of
vk.i, implying that {v}i>1 is bounded. Therefore, (3.5) gives

predy; = o(||dk" ) -+ o(]| &' |). (36)

On the other hand, from (2.29) and vkj = O we seethat pé = —ZV fi + 12l S te.
This vector is nonzero; otherwise the KKT conditions of the barrier problem (1.2) and
the definition (2.26) of Zy, wouldimply that (xk, k) isastationary point of the problem.
Then, for Ak,i sufficiently small, inequality (2.33), the trust region in (2.23), and the
fact that hy; = di; give

pred; = hpredy; > y1Aki > 1] (', S7HdE) | = va(|d' | + [d&']).

This contradicts (3.6).
Consider now the case when gk + s« # 0. Since the matrix (A'kr S<) has full rank,

andby Axj — 0, we deduce from (2.21) that for i large
vpred; > y4A;. (3.7)

Then, from Step 3 of thealgorithm, (3.7), and thefact that ||d)l§’i |+ ||dsk’i | < (y[l)‘lik,i ,
we obtain

predy; > pvki VPredy;
> puki V4AK

> pvivys (1 + ')

Since, vi > v_1 > Othiscontradicts (3.5), concluding the proof.

4. Global analysisof Algorithm |

We now analyze the global behavior of Algorithm | when applied to the barrier prob-
lem (1.2) for afixed value of w. To establish the main result of this section we make
the following assumptions about the problem and the iterates generated by the algo-
rithm.
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Assumptions 1. (a) The functions f and g are differentiable on an open convex set
X containing al the iterates, and V f, g, and A are Lipschitz continuous on X.
(b) The iterates xx form an infinite sequence, the sequence { fy} is bounded below,
and the sequences {V i}, {gk}, { A} and { By} are bounded.

Note that we have not assumed that the matrices of constraint gradients Ay have full
rank becausewe want to explore how the al gorithm behavesin the presence of dependent
constraint gradients. Our most restrictive assumption is (b), which could be violated if
theiterates are unbounded. The practical value of our analysis, aswe will show, is that
the situations under which Algorithm | can fail represent problem characteristics that
are of interest to a user and that can be characterized in simple mathematical terms. As
we proceed with the analysis, we will point out how it makes specific demands on some
of the more subtle aspects of Algorithm | whose role may not be apparent to the reader
at this point. Therefore the analysis that follows provides a justification for the design
of our algorithm.

We adopt the notation o™ = max(0, ), for a scalar «, while for a vector, u™ is
defined component-wise by (ut)® = u®)*. We also make use of the measure of
infeasibility x — ||g(x)™ ||, which vanishes if and only if x is feasible for the original
problem (1.1). Notethat ||g(-)™ |2 is differentiable and has for gradient

ViIgeo™I1? = 2A00g(0 .
We make use of the following definitions; here A" denotesthei-th column of A.

Definitions 1. A sequence{xx} isasymptotically feasibleif g(x) ™ — 0.Wesay that the
sequence {(gk, Ak)} has alimit point (g, A) failing the linear independence constraint
qualification, if the set {A® : g = 0} isrank deficient.

Note that the concept of constraint qualification usually applies to a point x, but
that we extend it to characterize limit points of the sequence {(gk, Ax)}, and thus our
definition is not standard. The main result we will establish for Algorithm | is the
following.

Theorem 1. Supposethat Algorithm| is applied to the barrier problem (1.2) and that
Assumptions 1 hold. Then,

1) the sequence of slack variables {sc} is bounded,

2) Ax(gk+ ) — Oand S(gk + ) — O.
Furthermore, one of the following three situations occurs.

(i) Thesequence{xx} isnot asymptoticallyfeasible. Inthiscase, theiteratesapproach
stationarity of themeasureof infeasibility x — [|g(x)™ |, meaning that Akg,” — 0,
and the penalty parameters vi tend to infinity.

(i) The sequence {xx} is asymptotically feasible, but the sequence {(gk, Ax)} has
alimit point (g, A) failing thelinear independence constraint qualification. In this
situation also, the penalty parameters vy tend to infinity.

(iii) The sequence {xx} is asymptotically feasible and all limit points of the sequence
{(ok, Ax)} satisfythelinear independence constraint qualification. Inthissituation,
every component of {s¢} is bounded away from zero, the penalty parameter vy is
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constant and g is negative for all large indices k, and stationarity of problem
(1.2) is obtained, i.e.,, V fx + Axik — 0, where the multipliers are defined by
A = pnS teasin (1.4) and (1.5).

Thistheorem isolates two situations where the KK T conditions may not be satisfied
inthelimit, both of which are of interest. Outcome (i) is acase where, in the limit, there
is no direction improving feasibility to first order. Thisindicates that finding afeasible
point isaproblemthat alocal method cannot alway's solve without agood starting point.
In considering outcome (ii) we must keep in mind that in some cases the solution to
problem (1.2) is a point where the linear independence constraint qualification fails,
and whichisnot aKKT point. Thus outcome (ii) may bejust as relevant to the problem
as satisfying the KKT conditions.

The rest of the section is devoted to the proof of this theorem, which will be
presented in asequence of lemmas addressingin order al the statementsin the theorem.
It is convenient to work with the following multiple of the merit function ¢

m
BxS V) = Spx, s ) = = (f(x) - MZ'HS“)> +1g00 +sl - (s> 0.
Vv % i1

Since Step 4 of Algorithm | requiresthat ¢ be reduced sufficiently at every new iterate,
we have that

- - red,
@ (Xk» Sk; Vk—1) < d(Xk—1, S—1; Vk—1) — M,
Vk—1
and therefore
8 s 1 1 m - red,
(XK S V) < P(Xk—1, S-15 k1) + <———> fio—py Ing | - 1P
Vk  Vk—1 ) Vk-1
(4.2

This indicates that the sequence {¢(Xk, S; vk)} iS not necessarily monotone when vy is
updated. To deal with this difficulty, we first establish that, under mild assumptions, the
dlack variables are bounded above.

Lemma5. Assume that {fy} is bounded below and that {gk} is bounded. Then the
sequence {¢} is bounded, which implies that {¢(Xk, S; vk)} is bounded below.

Proof. Let y bean upper bound for — f and for || gk||. Since
m .
> Ins < minfisclec < minjis, (42)
i=1

equation (4.1), the fact that the sequence {vk} is monotone non-decreasing, and the
non-negativity of pred, give

- - 1 1
DXk, S vk) < p(Xo, So; vo) + <— - —) (y +pm max In|s;jl)). (4.3)
Vo Vk 0<j=<k
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On the other hand, from the definition of ¢ and (4.2) we have that for any k,

~ 1
P (Xk, Si; k) = —v—k()f + umin i) + lIsll — gkl (4.4)

Now, consider theindicesl j suchthat ||§; | = maxk<i; || [l. Thencombining (4.3)—(4.4)
for k given by any such | we obtain

1
——(y +pminjis; )+ lIs; I = gl

l)|j

~ 1 1

]

and thus
- 1
I8 I < ¢(Xo, S0; vo)+y+v—0(y+umlnllsj||). (4.5)

Sincetheratio (In||s||)/|Is|| tendsto O when ||s| — oo, relation (4.5) impliesthat {s; }
must be bounded. By definition of theindices|; we conclude that the whole sequence
{s«} is bounded.

]

Given that the slack variables are bounded above and that fi is bounded below, it is
clear that we may redefine the objective function f — by adding a constant to it — so that
m .
fk—uZIng((') >0
i=1
at all iterates, and that this change does not affect the problem or the algorithm in any
way. This positivity, the fact that vk is nondecreasing and (4.1) imply that

npred,_q
Vk—1

DXk, S V) < (X1, Sk15 k1) — (4.6)
for al k.
We can now show that our rulein Step 5 of Algorithm | for determining the new slack

variables, scy1 = max(sc + ds, —0k+1), is such that the step between two successive
iteratesis still controlled by the trust radius A.

Lemma 6. Assume that { fx} is bounded below, that {gk} is bounded, and that g is

Lipschitz continuous on an open set X' containing all the iterates xx. Then there exists
a positive constant y1 such that for all k > 1,

| (X1, Skr1) — Xk, SO < 1Ak
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Proof. Clearly, |(Xi+1, Sc+1) — %k, SOl = 1Xk1 —Xicll + I Sc1 — Sl @nd ([ X1 — Xkl =
lldx|l < lld]l = Ak.
Consider now thestepin s. Let ¥ > 0 be the bound on {sk} given by Lemma5. For

the componentsi of s such that sf('ll — sf(i) = déi), one has

sty — s | < lldsll < ¥4 Scds| < vA.
For the other components,
s’ — s = —dd < ldsll < Ak
and gi'il = —gl((ijrl so that, using the fact that gk + s« > 0 (whenk > 1), one has

s -5 =—g0 + 00 — (o +5) < llgkrs — okll < ¥/lidkll < ¥/ Ax,

where y’ > 0 denotes the Lipschitz constant of g.
i

With the above two lemmas, we can begin to address convergencein the next result.
It deals with the function (x, s) € R" x RT' — [g(x) + s||2, which is another measure
of infeasibility for the original problem (1.1). Notethat if the slack variables are scaled
by S ! the gradient of this function with respect to the scaled variablesis

2 (Ag?) (9X) +9).

We now show that the iterates generated by the algorithm approach stationarity for this
infeasibility function | g(x) + s||%.

Lemma 7. Assume that the sequences {gk}, {Ak}, and {By} are bounded, that { fx} is
bounded below, and that g, A, and V f are Lipschitz continuous on an open convex set
X containing all the iterates xx. Then

lim (g:) (G+30 = 0.

Proof. By theassumptionson A and g, and sinceLemmab impliesthat {sx} iscontained
in a bounded open set S, we have that the function

0(x,s) = H (Ag)) ax)+9)

is Lipschitz continuous on the open set X x S containing al the iterates (xk, %); i.e.,
thereisaconstant y| > 0 such that

16(X, ) — O(x, DI < Y (%9 — (X1, ), (4.7)

for any two points (x, s) and (x;,§) in X x S.
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Now consider an arbitrary iterate (x|, §) such that 6, = 6(x, §) # 0. We first want
to show that in aneighborhood of thisiterate all sufficiently small steps are accepted by
Algorithm |. To do this define the ball

Bi={(x9:1x9—x.9l<b/2n)}

By (4.7), for any (x, s) € BB) we have that
6(x,s) > 19
el pu— 2 |’

whichimpliesthat g(x) + s # 0. We also know that the normal step satisfies (2.21), and
have shown in Lemma 5 that {sx} is bounded. Using this, (2.35) and the boundedness
assumptions on { Ac} and {gk + sk}, we see that thereis a constant y; (independent of k
and ), such that for any such iterate (x|, §) and any iterate (xx, &) € B

pred, > pvvpred, > viy;6 min (&z, Ak, ). (4.8)
Therefore, if Ay issufficiently small we have

pred, > vyi6) Ax.

Using this together with Lemma 4, and recalling the trust region constraint and the fact
that Ax = EAk, weobtain

|aved — predy | _ y (L4 molldll® + | S0 [?) _ @+ w0Ag
predy B vk)/19|Ak a Vk)’i'glfAk '

By making Ay sufficiently small we can ensurethat the last term isless than or equal to
1 — n, andthereforefor al xx € B and al such Ag,

aredy > npred,, (4.9

implying (by (3.2)) acceptance of the step in Algorithm 1.

Next we want to show that the rest of the iterates {Xk}k=| cannot remainin 5;. We
proceed by contradiction and assumethat for all k > |, xx € BB and therefore (4.9) holds
for sufficiently small Ay; thisimplies that there exists A% > 0 such that Ak > A9 for
all k > |. This, together with (4.6) and (4.8) gives

Pkl < Pk — vik predy < ¢k — ny 6 min (Et, A, 9|) ,

where ¢ = ¢(xx, S; k). Since the last term in the right hand side is constant, this
relation implies that g — —oo, contradicting the conclusion of Lemma5 that {¢y} is
bounded below. Therefore the sequence of iterates must leave 5| for somek > I.
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In that case, let (Xk+1, k+1) be the first iterate after (x, §) that is not contained
i nB. We must consider two possibilities. First, if there exists some | € [l, k] such that
Aj > min(&t, 6)), then we have from (4.6) and (4.8) that

$k+1 =< ¢~5j+1
< ¢j - l pred,
Vi
< ¢j — 16 min(t, )
<@ — i min(, 6) . (4.10)
The other possibility isthat for al j e [l, k], Aj < min(&t, 6)). In that case it follows
from (4.6) and (4.8) that
~ ~ k 7”
ki1 < 1 — 12—; v pred;
. k
<d - urhiEA;. (4.11)
j=I
Then, using Lemma 6 and the fact that (Xk+1, Sk+1) hasleft theball 5, whoseradiusis
61/(2y|) give

k
6
Z E —||(Xk+l Sr) = 00, 9)] 2 57
=l YLt
Substituting in (4.11) we obtain
b1 < ¢ — nyigo?/ (v v). (4.12)

To conclude the proof note that since {¢k} is decreasing and bounded below, we
have that ¢ — ¢, for some infimum value ¢... Since| was chosen arbitrarily, the fact
that either (4.10) or (4.12) must hold at (x|, §) impliesthat 6, — O.

i

This result shows that Ax(gk + ) — 0 and Sc(gk + ) — 0. Thisis of course
satisfied when gk + s« — 0, that iswhen feasibility is attained asymptotically. However
it can also occur when g+ 4 0andthe matrices Ay and S approach rank deficiency,
apossibility we now investigate.

The procedure for updating the slack variables in Step 5 of Algorithm | becomes
important now. It ensures that

Kk+sx=0gf =0 (4.13)

holds at every iteration. Lemma 8 first uses this relation to show that the gradient Akg@F
of the measure of infeasibility X %||g(x)+||2 converges to zero. Then Lemma 8
shows that the case g, /> 0 impliesthat the penalty parameters tend to infinity.
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Lemma 8. Under the conditionsof Lemma 7, AkgkF — 0. Moreover, if the sequence of
iterates is not asymptotically feasible, i.e., if g;r - 0, then the penalty parameters vy
tend to infinity.

Proof. Let A, 0, and § be limit points of thesequences{Ak} {ok}, and {sc}. Since these
sequences are bounded, we only have to show that Ag™ =

If §© > 0, the conditions$ > 0 and §g+ % = 0 (from Lemma 7) imply that
80 = 0.1f §© < 0, then from (4.13), 81 £ 0, which together with the equation
Sg+8) = Oimpliesthat 8 = —g®. Thisshowsthat §+ & = §*. Using the equation
A+ 8) = 0 (from Lemma7), we obtain that Ag™ = 0, which provesthefirst part of
the lemma. .

If gf # 0, (4.13) impliesthat thereis an index i such that (gk + s » 0. Since
S(gk + ) — O, thereiis a subsequence of indices k such that s\’ — 0 and Ins.” —
—o0. Since { fx} is bounded below, thisisincompatiblewith the decrease of ¢(Xk, S; v)
for a fixed value of the penalty parameter v > 0. Therefore vk is increased infinitely
often, and because thisis always at least by a constant factor, {vk} is unbounded.

i

This completes our discussion of the case when the sequence {x} is not asymptoti-
caly feasible (item (i) of Theorem 1).

To continue the analysis we consider from now on only the case when feasibility
is approached asymptotically. We will divide the analysis in two cases depending on
whether the matrices (AkT Sk) lose rank or not. We use the notation omin(M) to denote
the smallest singular value of a matrix M, and recall that in Definitions 1 we describe
our notion of linear independence constraint qualification.

Lemma 9. Supposethat the sequences{gx} and { A} are bounded, that { fx} is bounded
below, and that gk + sk — 0. Then, either there is some bound 6 > 0 such that

omin((A¢ ) =6

for all k, or the sequence {(gk, Ax)} has a limit point (g, A) failing the linear inde-
pendence constraint qualification. In the latter case, the penalty parameter vy goesto
infinity.

Proof. If liminfomin((A; S)) = O, there is a subsequence of iterates for which
the smallest singular value of ( Sk) converges to 0. Thus, since the sequence
{(Ax, Ok, Sk)} is bounded (by the assumpt|ons) it has a limit point (A, g, 5) such that
thematrix (AT S) isrank deficient. Now Sisdiagonal, so that theset Z = {i : 3 = 0}
cannot be empty and the columns of A with i index in Z must be linearly dependent.
Since we assume gk + sk — 0, we havethat g = Oif andonly if i € Z, and it follows
that the set {AD) : g = 0} isrank deficient.

Sincefori € Z, a subsequence of {s‘((')} tends to zero, a subsequence of {— sf(')}
goesto infinity. Because {s} isbounded and { fx} is bounded below, thisisincompatible
with the decrease of ¢(xk, S; v), which would occur if vk were eventually constant. By
the update rule for the penalty parameter, if vy is changed infinitely often then {vy} is
unbounded.

i
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For the rest of this section we will focus on the case where amin((A—kr S<)) >0>0
for al k, which implies that gk + s« — 0. First we will use this condition to bound the
length of the normal step v = (vx, vs) by a constant multiple of vpred, (Lemma 10);
then we can use this relation to show that the sequence of penalty parameters vk is
bounded (Lemma 11). Finally we will be able to show that the stationarity conditions
for problem (1.2) are asymptotically satisfied (Lemma 12).

Lemma 10. Suppose that Assumptions 1 hold and that for some > 0,
omin((A¢ &)) =6 >0, (4.14)
for all k. Then, there are positive constants y» and y3 such that if |gk + || < y2,

[ (vx: Scvs) | < 3 vpred. (4.15)

(5)asa)

(Al s01°

Proof. Recall that, by Lemma 2, the normal step must satisfy

gk + el vpredy > 2

</§(k> (Ok + %) H min | £z, Ay,

We may assume that gk + s« # O, for otherwise vpred, = 0, vk = 0 (by the same
argument as in the proof of Proposition 1), and (4.15) is trivially satisfied.
Using (4.14) and letting 51 = supy |(A; S« lI, thisimplies

2
07

vpred, > VUTG min (gr, A, M) ) (4.16)

Let usnow assume that || gk + S|l isstrictly smaller than the constant £752/6. Then the
minimum in (4.16) cannot occur at £z, and (4.16) becomes

. 6||gk+sk||> @17

vpred, > P9 min (Ak, —
2 &7

We now consider two cases:

Case 1. Suppose||gk+s| > %6&k.Then, usingé < o1 andthetrust region constraint,

S A2 /\3
Yo . o 3 Yo 1
vpred, > UT min (1, Ef) Ay > :&12 I(vx, S tvs) |-

From thisinequality, (4.15) follows immediately.
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Case 2. Suppose

1. .
lgk+ sl < 56Ak. (4.18)

Consider an arbitrary vector v € R™™ in the range of (A] )T that gives a lower
objective in the normal subproblem (2.6) than v = 0. We claim such a vector satisfies
the constraints of (2.6) if |gk + S| is sufficiently small. Since v = (A] ) Tw for
some vector w € R™,

2
ok + sl1? >

O+ %+ (A0 &) <éf)w

or
[(AdA+ S)w]® < —2(a+ 30T (AL A+ F)w.
Using the Cauchy-Schwarz inequality, this implies that
[ (AcAK+S)w] < 2ligk+ s
and by (4.14), it follows that

5. 559 = | (5) v

Together, (4.18) and (4.19) imply v iswithin thetrust region. In addition, for each slack
variables”, (4.19) implies

2
= =M%+ - (4.19)

NG _ _ 2
(S99 = = (Bx. SH99) | = — g + sl = ¢, (4.20)
provided that ||gk + || < (§t0)/2. Thus v isfeasible for (2.6).

Now consider the problem (2.6) and itstransformed equivalent (2.9). Since (A] )
isof full rank thereisasolution d to the equation gk +s«+ A'krux+S<us = 0, of minimum
Euclidean norm, which is known to lie in the range of (AkT Sk)T. Thusv = (Ox, Sis)
liesin the range of (A} )T, and gives a value of zero for the objective of (2.6). By
the above argument, if ||gk + || is sufficiently small, v is feasible for problem (2.6),
and is therefore a solution to (2.6). Since v is a solution to (2.6) lying in the range of
(Al S, the range space condition (2.11) impliesthat the normal step vk must also lie
in the range of (A ). Thisimplies that, since vpred, (v) > 0, vk satisfies (4.19),
so that

2
(e §vs) | = < gk + sl (4.21)
Now recall that by (4.17) and (4.18),

vpred, > VUTG min (

SHN)

6
s =5 ) 19 + I,
01

which together with (4.21) implies (4.15).
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For future reference we note that in the case when (4.14) holds, so that gk +s — O,
(4.15) impliesthat

w—>0 a k— oc.

Note also that if the Lagrange multipliers A are defined as the least squares solution to

V fk + AkA _0
Sh—pe )7

then the boundedness of {V fy}, {Ak}, {}, and (4.14) imply that the sequence {ik}
is bounded. The boundedness assumption on By is now easy to enforce in this case,
particularly if By is defined as V2, L (X, S, Ak).-

With the bound (4.15) on the normal step, in the case where gk + s« — 0, we can
show that the parameter vk eventually becomes fixed.

Lemma 11. Suppose that Assumptions 1 are satisfied, and that (4.15) holds for k
sufficiently large. Then, the sequence of penalty parameters {vk} isbounded. In addition,
there exists an index kq and positive scalars v and y4, such that for all k > kj,

VK=V

and

predy (dk) > y4 hpred . (4.22)
Proof. In Step 3 of Algorithm I, v is chosen to be sufficiently large such that

pred, (dg) > pvk vpred,, (4.23)
where, asin (2.36)—(2.37)

pred, (dy) = vk vpred, + hpred,
-V fkTvX — %vIBkvx + u (eTSK_lvs — %USTSZZUS) . (4.24)

We consider thetermsinthe second line of theabove equation. By Assumptionsd, {V i},
{Ax}, and {By} are al bounded. Note also that {vpred,} is bounded, since by (2.14),
vpred, < ||gk + sll, and this quantity is bounded as a consequence of Assumption 1
and Lemmab. Therefore, using (4.15), thereis a constant y; > 0 such that

1 1
-V fkTvX — ivIBkvx +u <eTSK_1v5 — EU;—SK_ZU5> > —y; vpred, .
Hence from (4.24) the predicted decrease satisfies

pred, (dk) > vk vpred, + hpred, —y; vpred, . (4.25)

Since vpred, and hpred, are nonnegative, we deduce from thisinequality that condi-
tion (4.23) issatisfiedif vk > y;/(1—p). Therefore, if vk becomeslarger thany; /(1—p),
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it will never be increased. This, together with the fact that whenever Algorithm | in-
creases v it does so by a constant factor, implies that after someiterate, k1 say, vk will
remain unchanged at some value v.

Now (4.25) and (4.23) imply

/
pred, (dy) > hpred, —y; vpred, > hpred, —ﬁ pred, (dy),

so that (4.22) holdswith 1/y4 = 1+ y; /(pV).
O

Lemma 12. Suppose that Assumptions 1 hold and that the singular values of the ma-
trices (A S) are bounded away from zero. Then,

(i) {s}isbounded away from zero and g is negative for all largek,
(i) V i+ uAS e 0.

Proof. By Lemma7, gk + sk — 0, and thus (4.15) eventually holds at all iterates. So,
by Lemmall, we havethat v = v for all k > ki. Since Algorithm | decreases the merit
function at every iteration we have

O(Xk, S V) < P(Xiy» Seg3 V), fork > Ky

Thus
m .
—1 Y Ins < p(Xig. Sq: D) — fic — Dllgk + -
i=1
Since we assume that { fx} is bounded below and because {sx} is bounded (Lemma5),
thisimplies that thereis avector S > 0 such that
&% >5, fork>1

Thus, because gk + s« — 0, we havethat gk < O for largek, proving (i).
Next, recall that, by Lemma 3, (hy, hs) satisfies

oo [ MiN(Ak, (L= 8)D) | pl
hpred, > — | pi| min ) )
k 2 H k” ( H ZIZX + Z;FSK—ZZSH 1/2 H Z;l(—Bka + MZ;—S(_ZZS”
(4.26)
where
PE = —ZJ(V fic + Brvx) + nZd (S e — Sc%vs), (4.27)

andwherethenull spacebasismatrix Zy = (Z, ZJ)Tisassumedtohavesingular values
that are both bounded above and bounded away from zero. Since we have shown that
all components of s are bounded away from zero, it follows that (Z] Zx + ZJS *Zs}

is bounded. In addition since {By} is bounded, {ZBkZx + 11ZJ S ?Zs} is bounded.
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Hence, inequality (4.26) becomes
hprech = v | P min (L Ax. [[p] ). (4.28)

for some positive constant y; .

To show that V fx + n AcS, letendsto zero, we relate this quantity to py- Note that
the matrix (I —Ay) " isanull space basis (see (2.26)), and that using the equivalence
of null space bases we get

qk=ka+uAk§<_le—(l —A v 100
= —MS{le
_ V f(xk)
= (I —AYZ(ZTzZi) 2]

( WZk(Z Z) Zy (—u$1e
for the chosen null space basis Z. By the boundedness of Ay and of the singular
values of Zy it follows from (4.29) that {qx} is bounded by a constant multiple of
1Z3V fk — nZJd Sc tell. Hence, by (4.27), for some positive constants y5 and 4

) . (429)

IS = valiall — v4llull,  forall k.

We use asimilar argument to that used in the proof of Lemma7. To obtain a contra-
diction, supposethat 6 = %Iimsupmoo llgk|l is nonzero. Since vk — 0, we can find an
iterate (x|, §) with arbitrarily large| such that ||qi|| > 36 and such that y3|lvk|| < y56
forall k > I. Let . bethe Lipschitz constant for q(x, s) = V f(x) + wA(X)S te. Then
any iterate (X, k), withk > |, inthe ball B = {(x,s) : [|(X,9) — (X, )| < 6/yL},
satisfies

IPE] = ¥4 Alanll = o — al) — Vlloll = 7536 — 6 — 6) = 46
By Lemma 11 and (4.28), we have with y, = yay; v5
predy > yahpred, > y,6 min (1, A, 56). (4.30)

Now since {¢x} is bounded below, pred, — 0, and thus by (4.30), Ak — 0 for the
subsequence of k for which (4.30) holds, '[herefore, we can takel sufficiently large that
forany k > | with (xx, ) € B, wehave Ay < min(1, y56), and thus

pred, > y40 A. (4.31)
Now by (3.4), if (Xk, %) € B

SVA2
|aredk —pred| _ nA+04_, (4.32)
pred, Y40 Ak

for Ak sufficiently small, implying acceptance of the step. Thisimpliesthat if (xk, S) €
B for al k > |, Ax would eventually stop decreasing. This is impossible since we
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have shown above that Ay — 0. Thus the sequence must eventualy leave B) for
somek > .

In that case, let (Xk+1, k+1) be the first iterate after (x, §) that is not contained
in Bj. It follows from (4.31) and (2.24) that

k
$k1 < ¢ —n ) _ pred,

=

k
< ¢ —mabl—9 Y A

j=l
< ¢ — a1 —)6%/7L. (4.33)

The last inequality follows from the fact that (Xk+1, S+1) has left the ball 5, whose
radiusis6/y, so that, as at the end of Lemma 7, Z'j‘:l Aj=0/yL.

Since the sequence {¢k} is decreasing and bounded below, it converges. Thisisin
contradiction with the fact that | may be chosen arbitrarily largein (4.33), and the fact
that 6 # 0. Thereforeqyx — 0.

|

Now we have established all points of our main convergence result, Theorem 1,
which we restate and whose proof we now summarize.

Theorem 2. Supposethat Algorithm| is applied to the barrier problem (1.2) and that
Assumptions 1 hold. Then,

1) the sequence of slack variables {sc} is bounded,

2) Ax(gk+ ) — Oand S(gk + ) — O.
Furthermore, one of the following three situations occurs.

(i) The seguence {xx} is not asymptotically feasible. In this situation, the iterates
approach stationarity of the measure of infeasibility x — ||g(x) ™|, meaning that
AkgkF — 0, and the penalty parameters vk tend to infinity.

(ii) The sequence {xx} is asymptatically feasible, but the sequence {(gk, Ax)} has
alimit point (g, A) failing thelinear independence constraint qualification. In this
situation also, the penalty parameters vy tend to infinity.

(iii) The sequence {xk} is asymptotically feasible and all limit points of the sequence
{(ok, Ax)} satisfythelinear independence constraint qualification. Inthissituation,
{s} is bounded away from zero, the penalty parameter vk is constant and g is
negative for all large indices k, and stationarity of problem (1.2) is obtained, i.e.,
V fi + Axik — O, where the multipliers are defined by Ak = uS; *e.

Proof. Conclusion (1) was established in Lemmab, and conclusion (2) inLemma7. In
the casethat {xx} isnot as/mptoticalnyeasible(gkF -4 0),itwasshowninLemma8that
situation (i) occurs. If g;r — 0, itwasshownin Lemma9, Lemmall, and Lemma 12
that either (ii) or (iii) must hold.

]
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5. Overall algorithm

In this section we consider the overall algorithm, in which Algorithm | is run for
decreasing values of the barrier parameter ... We are not concerned here with conditions
assuring agood rate of convergence, but consider only the global convergenceproperties
of this agorithm.

Algorithm I1. Choose an initial value 1 > O for the barrier parameter, a reduction
factora € (0, 1), and asegquenceof stoppingtolerances{e| }|>1 that tendsto zero. Choose
aninitial iterate (X, o) and setl = 1 and kg = 0.

1. Apply Algorithm | from the point (xy_,, S_,) until it finds a point (Xy, S¢) Satis-
fying

9k +sqll <e, (5.2)
IV fig + Agrigll < e, (5.2)

where i, = 1 Sgle.
2. Choose i11+1 € (0, auy).
3. Increasel by 1, and go to Step 1.

All the iterates generated by this algorithm form a single sequence {(Xk, S) }k=0-
Theindex ki—1 (I > 1) labels the starting point of the Ith outer iteration, which ends at
the point (X, Sq)-

Theorem 3. Suppose that {(xk, )} is generated by Algorithm Il and that, for each
barrier problem, Assumptions 1 hold. Then, one of the following two possible outcomes
can occur.

(A) For some parameter p, either inequality (5.1) is never satisfied, in which case
the stationarity condition for minimizing x — ||g(x)™|| is satisfied in the limit,
i.e, Axgxt — 0, or else gk + sk — 0 but inequality (5.2) is never satisfied,
in which case the sequence {(gk, Ax)} has a limit point (g, A) failing the linear
independence constraint qualification.

(B) At each outer iteration | of Algorithm I, the inner algorithm succeeds in finding
apair (xy, Sq) satisfying (5.1)—(5.2). All limit points X of {xy} arefeasible. Fur-
thermore, if any limit point X of {x } satisfies the linear independence constraint
qualification, then the first order optimality conditions of the problem

min f(X)
X

st.gx) <0

hold at %: there exists A € R™ such that
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Proof. Suppose that, for some value of |, Algorithm 1 fails to find a point satisfy-
ing (5.1) and (5.2). This implies that Algorithm | generates an infinite sequence for
problem (1.2) with . = p, but that outcome (iii) of Theorem 2 does not occur. Since
Assumptions 1 hold this implies that, for that value of w, either outcome (i) or (ii) of
Theorem 2 occurs, which leads to conclusion (A).

The only other possibility is that Algorithm Il satisfies (5.1)—(5.2) for al | > 1.
Let £ be a subsequence of indices |, such that x, — X whenl — oo in L. Since
0<g <0+ adgq+s — 0,0onehasd = g(®) < 0 (% is feasible) and
8¢ = §=—-gwhenl - coin L.

Now suppose that the linear independence constraint qualification holds at X and
consider the set of indices

I={(i:¢V =0

Fori ¢ 7,8V < 0and8® > 0, so that A(k:) = m/qzi) — Owhenl| — oo in £. From
thisand V fi, + A A — 0, we deduce that

Vi + Y a0val — 0. (5.3)
iel

By the constraint qualification hypothesis, the vectors {Vg" : i e I} are linearly
independent, so that, by (5.3), the positive sequence {Ay }jc convergesto some value
A > 0. Now, it remains to take the limit in V fi, + A A Whenl — oo in £ and to
observe that QTX = 0. Therefore conclusion (B) holds.

|

6. Final remarks

Inthispaper we have presented and analyzed atrust region method for solving the barrier
problem (1.2). Thisisan optimization problem with nonlinear equality constraints, plus
the implicit constraint s > 0. Our strategy has been to use a well-devel oped algorithm
for equality constrained optimization and enforce the constraint s > 0 by means of the
trust region and the barrier term. Another benefit of using atrust region is the ability of
the method to deal with indefiniteness of the Hessian and near rank deficiency of the
constraints.

The algorithmic framework given in Sect. 1 can be used to implement primal or
primal-dual interior point methods. In this paper we have focused on primal methods
because they are easier to analyze and we have devoted much attention to their global
convergence properties because the analysis provides important clues on how to design
the algorithms. Computational experiencewith the primal interior point method is given
in[16,4]; those papers also provide computational results with primal-dual methods.

Another question to be dealt with is how to ensure that a good rate of convergenceis
obtained. This requires, among other things, a careful strategy for updating the barrier
parameter 1 and deciding how accurately to solve the barrier subproblems [5]. We
should also mention that since our merit function is non-differentiable, getting fast
convergence may necessitate use of a second-order correction or a watch-dog strategy
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to avoid the Maratos effect. Our computational experience [18,4] indicates that use of
a second-order correction can be an efficient strategy for this purpose.
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