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Abstract— This paper deals with real-time prediction of traf-
fic conditions in a setting where the only available information
is floating car data (FCD) sent by probe vehicles. Starting
from the Ising model of statistical physics, we use a discretized
space-time traffic description, on which we define and study
an inference method based on the Belief Propagation (BP)
algorithm. The idea is to encode into a graph the a priori
information derived from historical data (marginal probabilities
of pairs of variables), and to use BP to estimate the actual state
from the latest FCD. The behavior of the algorithm is illustrated
by numerical studies on a simple simulated traffic network. The
generalization to the superposition of many traffic patterns is
discussed.

I. INTRODUCTION

With an estimated 1% GDP cost in the European Union
(i.e. more than 100 billions euros), congestion is not only
a time waste for drivers and an environmental challenge,
but also an economic issue. Today, some urban and inter-
urban areas have traffic management and advice systems that
collect data from stationary sensors, analyze them, and post
notices about road conditions ahead and recommended speed
limits on display signs located at various points along specific
routes. However, these systems are not available everywhere
and they are virtually non-existent on rural areas.

In this context, the EU-funded REACT project developed
new traffic prediction models to be used to inform the public
and possibly to regulate the traffic, on all roads. The REACT
project combines a traditional traffic prediction approach on
equipped motorways with an innovative approach on non-
equipped roads. The idea is to obtain floating car data from
a fleet of probe vehicles and reconstruct the traffic conditions
from this partial information. Two types of approaches are
usually distinguished for traffic prediction, namely data
driven (application of statistical models to a large amount
of data, for example regression analysis) and model based
(simulation or mathematical models explaining the traffic
patterns). Models (see e.g. [1], [2] for a review) may range
from microscopic description encoding drivers behaviors,
with many parameters to be calibrated, to macroscopic ones,
based on fluid dynamics, mainly adapted to highway traffic
and subject to controversy [3], [4]. Intermediate kinetic
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description including cellular automata [5] are instrumental
for powerful simulation and prediction systems in equipped
road networks [6]. On the other hand, the statistical approach
mainly focuses on time series analysis on single road links,
with various machine learning techniques [7], [8], while
global prediction systems on a network combine data anal-
ysis and model simulations [6], [9]. For more information
about traffic prediction methods, we refer also the reader
to [10], [11].

We propose here a hybrid approach, by taking full advan-
tage of the statistical nature of the information, in combi-
nation with a stochastic modeling of traffic patterns and a
powerful message-passing inference algorithm. The belief-
propagation algorithm, originally designed for bayesian in-
ference on tree-like graphs [12], is widely used in a variety of
inference problem (e.g. computer vision, coding theory. . . )
but to our knowledge has not yet been applied in the context
of traffic prediction. The purpose of this paper is to give
the first principles of such an approach, able to exploit both
space and time correlation on a traffic network. The main
focus is on finding a good way to encode some coarse
information (typically whether traffic on a segment is fluid
or congested), and to decode it in the form of real-time
traffic reconstruction and prediction. In order to reconstruct
the traffic and make predictions, we propose to use the so-
called Bethe approximation of an underlying disordered Ising
model (see e.g. [13]), to encode the statistical fluctuations
and stochastic evolution of the traffic and the belief prop-
agation (BP) algorithm, to decode the information. Those
concepts are familiar to the computer science and statistical
physics communities since it was shown [14] that the output
of BP is in general the Bethe approximation.

The paper is organized as follows: Section II describes the
model and its relationship to the Ising model and the Bethe
approximation. The inference problem and our strategy to
tackle it using the belief propagation approach are stated in
Section III. Section IV is devoted to a more practical descrip-
tion of the algorithm, and to numerical results illustrating the
method. Finally, some new research directions are outlined
in Section V.

II. TRAFFIC DESCRIPTION AND STATISTICAL PHYSICS

We consider a road network for which we want to both
reconstruct the current traffic conditions and predict future
evolutions. To this end, all we have is partial information in
the form of floating car data arriving every minute or so. The
difficulty is of course that the up-to-date data only covers part
of the network and that the rest has to be inferred from this.



(a)

(b)

Fig. 1. Traffic network (a) and Ising model (b) on a random graph. Up
(resp. down) arrows correspond to fluid (resp. congested) traffic.

In order to take into account both spatial and temporal
relationships, the graph on which our model is defined is
made of space-time vertices that encode both a location
(road link) and a time (discretized on a few minutes scale).
More precisely, the set of vertices is V = L⊗Z

+, where L
corresponds to the links of the network and Z

+ to the time
discretization. To each point α = (`, t) ∈ V , we attach an
information τα ∈ {0, 1} indicating the state of the traffic (1
if congested, 0 otherwise). On such a model, the problems of
prediction and reconstruction are equivalent, since they both
amount to estimating the value of a subset of the nodes of the
graph. The difference, which is obvious for the practitioner,
lies mainly in the nature (space or time) of the correlations
which are most exploited to perform the two tasks.

Each vertex is correlated to its neighbors (in time and
space) and the evaluation of this local correlation determines
the model. In other words, we assume that the joint proba-
bility distribution of τV

def
= {τα, α ∈ V} ∈ {0, 1}

V is of the
form

p({τα, α ∈ V}) =
∏

α∈V

φα(τα)
∏

(α,β)∈E

ψαβ(τα, τβ) (1)

where E ⊂ V2 is the set of edges, and the local correlations
are encoded in the functions ψ and φ. V together with E
describe the space-time graph G and V(α) ⊂ V denotes the
set of neighbors of vertex α.

The model described by (1) is actually equivalent to an
Ising model on G, with arbitrary coupling between adjacent
spins sα = 2τα − 1 ∈ {−1, 1}, the up or down orientation
of each spin indicating the status of the corresponding link
(Fig. 1). The homogeneous Ising model (uniform coupling
constants) is a well-studied model of ferro (positive cou-
pling) or anti-ferro (negative coupling) material in statistical
physics. It displays a phase transition phenomenon with
respect to the value of the coupling. At weak coupling,
only one disordered state occurs, where spins are randomly
distributed around a mean-zero value. Conversely, when the
coupling is strong, there are two equally probable states
that correspond to the onset of a macroscopic magnetization
either in the up or down direction: each spin has a larger
probability to be oriented in the privileged direction than

in the opposite one. From the point of view of a traffic
network, this means that such a model is able to describe
three possible traffic regimes: fluid (most of the spins up),
congested (most of the spins down) and dense (roughly half
of the links are congested). For real situations, we expect
other types of congestion patterns, and we seek to associate
them to the possible states of an inhomogeneous Ising model
with possibly negative coupling parameters, referred to as
spin glasses in statistical physics [13].

The practical information of interest which one wishes to
extract from (1) is in the form of local marginal distributions
pα(τα), once a certain number of variables have been fixed
by probe vehicles observations. They give the probability for
a given node to be saturated at a given time and in turn can be
the basis of a travel time estimation. From a computational
viewpoint, the extraction cost of such an information from
an Ising model on a multiply connected graph is known to
scale exponentially with the size of the graph, so one has to
resort to some approximate procedure. As we explain now
such an approximation exists for dilute graphs (graphs with
a tree-like local structure).

On a simply connected graph, the knowledge of pα(τα)
the one-vertex and pαβ(τα, τβ) the two-vertices marginal
probabilities is sufficient [12] to describe the measure (1).

p(τV) =

∏

(α,β)∈E pαβ(τα, τβ)
∏

α∈V pα(τα)qα−1

=
∏

α∈V

pα(τα)
∏

(α,β)∈E

pαβ(τα, τβ)

pα(τα)pβ(τβ)
,

(2)

where qα denotes the number of neighbors of α. Since
our space time graph G is multi-connected, this relationship
between local marginals and the full joint probability mea-
sure can only be an approximation, which in the context of
statistical physics is referred to as the Bethe approximation.
This approximation is provided by the minimum of the so-
called Bethe free energy, which, based on the form (2), is an
approximate form of the Kullback-Leibler distance,

D(b‖p)
def
=

∑

τV

b(τV) ln
b(τV)

p(τV )
,

between the reference measure p and an approximate one b.
This rewrites in terms of a free energy as

D(b‖p) = F(b)−F(p),

where
F(b)

def
= U(b)− S(b), (3)

with the respective definitions of the energy U and of the
entropy S

U(b)
def
= −

∑

(α,β)∈E

∑

τα,τβ

bαβ(τα, τβ) logψαβ(τα, τβ)

−
∑

α∈V

∑

τα

bα(τα) log φα(τα),

S(b)
def
= −

∑

(α,β)∈E

∑

τα,τβ

bαβ(τα, τβ) log bαβ(τα, τβ)



+
∑

α∈V

∑

τα

(qα − 1)bα(τα) log bα(τα).

The set of single vertex bα and and two-vertices bαβ

marginal probabilities that minimize (3) form the Bethe
approximation of the Ising model. For reasons that will
become evident in Section III-B, these will also be called
beliefs. It is known that the quality of the approximation
may deteriorate in the presence of short loops. In our case,
the fact that the nodes are replicated along the time axis
alleviates this problem.

In practice, what we retain from an inhomogeneous Ising
description is the possibility to encode a certain number of
traffic patterns in a statistical physics model. This property
is also shared by its Bethe approximation (BA) and it is
actually easier to encode the traffic patterns in this simplified
model rather than the original one. Indeed, it will be shown
in Section III-C that the computation of the BA from the
marginal probabilities is immediate.

The data collected from the probe vehicles is used in two
different ways. The most evident one is that the data of the
current day directly influences the prediction. In parallel, this
data is collected over long periods (weeks or months) in
order to estimate the model (1). Typical historical data that
is accumulated is

• p̂α(τα): the probability that vertex α is congested (τα =
1) or not (τα = 0);

• p̂αβ(τα, τβ): the probability that a probe vehicle going
from α to β ∈ V(α) finds α with state τα and β with
state τβ .

The computation of p̂α and p̂αβ requires a proper congestion
state indicator τα that we assume to be the result of the
practitioner’s pretreatment of the FCD. The definition of
this indicator is a problem of its own and is outside of the
scope of this article. A relevant FCD variable is instantaneous
speed. An empirical threshold may be attached to each link
in order to discriminate (in a binary or in a continuous
manner) between a fluid and a congested situation. Another
approach is to convert the instantaneous speed in a probabil-
ity distribution of the local car density, when an empirical
fundamental diagram is known for a given link. Aggregation
over a long period of these estimators yields then the desired
historical data. The edges (α, β) of the space time graph
G are constructed based on the presence of a measured
mutual information between α and β, which is the case when
p̂αβ(τα, τβ) 6= p̂α(τα)p̂β(τβ).

III. THE RECONSTRUCTION AND PREDICTION

ALGORITHM

A. Statement of the inference problem

We turn now to our present work concerning an inference
problem, which we set in general terms as follows: a set
of observables τV = {τα, α ∈ V}, which are stochastic
variables are attached to the set V of vertices of a graph.
For each edge (α, β) ∈ E of the graph, an accumulation of
repetitive observations allows to build the empirical marginal
probabilities {p̂αβ}. The question is then: given the values

of a subset τV∗ = {τα, α ∈ V
∗}, what prediction can be

made concerning V∗, the complementary set of V∗ in V?
There are two main issues:
• how to encode the historical observations (inverse prob-

lem) in an Ising model, such that its marginal probabil-
ities on the edges coincide with the p̂αβ?

• how to decode in the most efficient manner—typically
in real time—this information, in terms of conditional
probabilities P (τα|τV∗)?

The answer to the second question will somehow give a
hint to the first one.

B. The belief propagation algorithm

BP is a message passing procedure [12], which output
is a set of estimated marginal probabilities (the beliefs bαβ

and bα) for the measure (1). The name “belief” reflects the
artificial intelligence roots of the algorithm. The idea is to
factor the marginal probability at a given site in a product
of contributions coming from neighboring sites, which are
the messages. The messages sent by a vertex α to β ∈ V(α)
depends on the messages it received previously from other
vertices:

mα→β(τβ)←
∑

τα∈{0,1}

nα→β(τα)φα(τα)ψαβ(τα, τβ), (4)

where
nα→β(τα)

def
=

∏

γ∈V(α)\{β}

mγ→α(τα). (5)

The messages are iteratvely propagated into the network
with a parallel, sequential or random policy. If they con-
verge to a fixed point, the beliefs bα are then reconstructed
according to

bα(τα) ∝ φα(τα)
∏

β∈V(α)

mβ→α(τα), (6)

and, similarly, the belief bαβ of the joint probability of
(τα, τβ) is given by

bαβ(τα, τβ) ∝ nα→β(τα)nβ→α(τβ)

× φα(τα)φβ(τβ)ψαβ(τα, τβ).
(7)

In the formulas above and in the remainder of this paper,
the symbol ∝ indicates that one must normalize the beliefs
so that they sum to 1. A simple computation shows that
equations (6) and (7) are compatible, since (4)–(5) imply
that

∑

τα∈{0,1}

bαβ(τα, τβ) = bβ(τβ).

In most studies, it is assumed that the messages are
normalized so that

∑

τβ∈{0,1}

mα→β(τβ) = 1.

holds. The update rule (4) indeed indicates that there is an
important risk to see the messages converge to 0 or diverge
to infinity. It is however not immediate to check that the
normalized version of the algorithm has the same fixed points



as the original one (and therefore the Bethe approximation).
This point has been analyzed in [15] and the conclusion
is that the fixed points of both version of the algorithm
coincide, except possibly when the graph has a unique cycle.
We can safely expect that it is not the case in practical
situations.

It has been realized a few years ago [16] that the fixed
points of the BP algorithm coincide with stable points of the
Bethe free energy (3), and that moreover stable fixed points
correspond to local minima of (3) [17]. BP is therefore a
simple and efficient way to compute the Bethe approximation
of our inhomogeneous Ising model. We propose to use the
BP algorithm for two purposes: estimation of the model
parameters (the functions ψαβ and φα) from historical data
and reconstruction of traffic from current data.

C. Setting the model with belief propagation

The fixed points of the BP algorithm (and therefore
the Bethe approximation) allow to approximate the joint
marginal probability pαβ when the functions ψαβ and φα

are known. Conversely, it can provide good candidates for
ψαβ and φα from the historical values p̂αβ and p̂α.

To set up our model, we are looking for a fixed point of the
BP algorithm satisfying (4)–(5) and such that bαβ(τα, τβ) =
p̂αβ(τα, τβ) and therefore bα(τα) = p̂α(τα).

It is easy to check that the following choice of φ and ψ,

ψαβ(τα, τβ) =
p̂αβ(τα, τβ)

p̂α(τα)p̂β(τβ)
, (8)

φα(τα) = p̂α(τα), (9)

leads (1) to coincide with (2). They correspond to a normal-
ized BP fixed point for which all messages are equal to 1/2.
It has been shown in [15] that this form of φ and ψ is in some
sense canonical: any other set of functions yielding the same
beliefs is equal to (8)–(9), up to a change of variable. This
equivalence holds for the beliefs at the other fixed points of
the algorithm and their stability properties.

This crucial result means that it is not needed to learn the
parameters of the Ising model, but that they can be readily
recovered from the Bethe approximation. The message up-
date scheme (4) of previous section can therefore be recast
as

mα→β(τβ)←
∑

τα∈{0,1}

nα→β(τα)p̂αβ(τα|τβ) (10)

and the beliefs are now expressed as

bα(τα) ∝ p̂α(τα)
∏

γ∈V(α)

mγ→α(τα), (11)

bαβ(τα, τβ) ∝ p̂αβ(τα, τβ)nα→β(τα)nβ→α(τβ). (12)

There is no guarantee that the trivial constant fixed point
is stable. However, the following theorem, proved in [15],
shows that this can be decided from the mere knowledge of
the marginal which we want to model.

Theorem 1: The fixed point {p̂} is stable if, and only if,
the matrix defined, for any pair of oriented edges (α, β) ∈ E ,

(α′, β′) ∈ E , by the elements

Jα′β′

αβ =
(

p̂αβ(1|1)− p̂αβ(1|0)
)

11{α′∈V(α)\{β}, β′=α},

has a spectral radius (largest eigenvalue in norm) smaller
than 1.

A sufficient condition for this stability is therefore

∣

∣p̂αβ(1|1)− p̂αβ(1|0)
∣

∣ <
1

qα − 1
, for all α ∈ V , β ∈ V(α).

In addition, on a dilute graph, the knowledge of the Jaco-
bian coefficient distribution and the connectivity distribution
of the graph is enough to determine the stability property by
a mean field argument [15].

D. Traffic reconstruction and prediction

Let V∗ be the set of vertices that have been visited by
probe vehicles. Reconstructing traffic from the data gathered
by those vehicles is equivalent to evaluating the conditional
probability

pα(τα|τV∗) =
pα,V∗(τα, τV∗)

pV∗(τV∗)
, (13)

where τV∗ is a shorthand notation for the set {τα}α∈V∗ .
The BP algorithm applies to this case if a specific rule

is defined for vertices α ∈ V∗: since the value of τα is
known, there is no need to sum over possible values and (10)
becomes

mα→β(τβ)← nα→β(τα)p̂αβ(τα|τβ). (14)

IV. PRACTICAL CONSIDERATIONS AND SIMULATION

The algorithm outlined in Section III can be summarized
by the flowchart of Fig. 2. It is supposed to be run in real
time, over a graph which corresponds to a time window
(typically a few hours) centered around present time, with
probe vehicle data added as it is available. In this perspec-
tive, the reconstruction and prediction operations are done
simultaneously on an equal footing, the distinction being
simply the time-stamp (past for reconstruction or future for
prediction) of a given computed belief. The output of the
previous run can be used as initial messages for a new run, in
order to speedup convergence. Full re-initialization (typically
a random set of initial messages) has to be performed within
a time interval of the order but smaller than the time-scale of
typical traffic fluctuations. We have tested the algorithm on
the artificial traffic network shown on the program’s screen-
shot of Fig. 3. To this end, we used a simulated traffic
system which has the advantage to yield exact empirical data
correlations. For real data, problems may arise because of
noise in the historical information used to build the model;
this additional difficulty will be treated in a separate work.
The simulator implements a queueing network, where each
queue represents a link of the traffic network (a single-way
lane) and has a finite capacity. To each link, we attach a
variable ρ ∈ [0, 1], the car density, which is represented by
a color code on the user interface snapshot.

As already stated in Section II, the physical traffic network
is replicated, to form a space time graph, in which each
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Fig. 2. The traffic reconstruction algorithm. The parameters, besides those
that have already been defined elsewhere, are the total number of iterations
itmax, the maximal error ε > 0 and a norm ‖·‖ on the set of messages, which
choice is up to the implementer. Likewise, the update policy described here
is “random”, but parallel or sequential updates can also be used.

vertex α = (`, t) corresponds to a link ` at a given time t of
the traffic graph. To any space-time vertex α, we associate
a binary congestion variable τα ∈ {0, 1}. The statistical
physics description amounts to relating the probability of
saturation P (τα = 1) to the density ρα. For the sake
of simplicity, we consider a linear relation and build our
historical p̂ according to some time averaging procedure. In
practice, the car density would not be available from the
FCD and a preprocessing of information would be necessary.
In our oversimplified setting, the single-vertex beliefs yield
directly an estimation of the car density. Nevertheless, more
realistic data collection and modeling would be completely
transparent w.r.t. the algorithm.

To estimate the quality of the traffic restoration we use the

Fig. 3. Traffic network as produced by the simulator. The continuous color
code represents the traffic index from 0 (green/light) to 1 (red/dark). There
are 35 physical nodes and 122 physical links (road segments), simulated
on 40 time steps, which yields a time-space graph G with 4880 nodes.
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Fig. 4. traffic level and reconstruction rate as a function of time (10 probe
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following estimator:

reconstruction rate
def
=

1

|V|

∑

α∈V

11{|bα−ρα|<0.2},

which computes the fraction of space-time nodes α for which
the belief bα does not differ by more than an arbitrary
threshold of 0.2 from ρα.

A typical prediction time series is shown in Fig. 4. The
overall traffic level, characterized by some real number
comprised between 0 and 1, oscillates between dense and
fluid conditions with a certain amount of noise superimposed.
In this setting, we observe first that BP has three fixed points,
among which the reference b = p̂ (see Section III-C), which
is is in fact unstable because it is a superposition of distinct
measures. The two additional fixed points represent actually
the dense and fluid traffic conditions. These additional states
appear spontaneously and some fine tuning is required to
control saturation effects [15]. This is reflected in the sudden
drops of the reconstruction rate when the algorithm jumps
from one state to the other during transient phases. A
selection criteria based on free energy measurements may
be used to choose the most relevant fixed point [15].

Concerning the dependence of the reconstruction rate with
respect to the number of probe vehicles, Fig. 5 indicates that
the knowledge on less than 10% of the links (10 vehicles
for 122 links) is sufficient in this setting to identify most
of the time correctly the traffic regime. However, when the
number of probes is increased, the reconstruction rate given
by our algorithm saturates around 80%. In addition to the
fact that time correlations are not incorporated in our model,
the main reason for this saturation is that in our practical
implementation [15] correlations between probe vehicles are
neglected when imposing (13).

V. CONCLUSION AND PERSPECTIVES

We have presented a novel methodology for reconstruc-
tion and prediction of traffic using the belief propagation
algorithm on floating car data. We have shown how the un-
derlying Ising model can be determined in a straightforward
manner and that it is unique up to some change of variables.
The algorithm has been implemented and illustrated using an
artificial traffic model. While our main focus is currently on
testing on more realistic simulations, several generalizations
are considered for future work, using the extension of the
results of Section III to a more general factor graph setting
done in [18]:

Firstly, the binary description corresponding to the un-
derlying Ising model is arbitrary. Traffic patterns could
be represented in terms of s different inference states. A
Potts model with s-states variables would leave the belief
propagation algorithm and its stability properties structurally
unchanged. However, since the number of correlations to
evaluate for each link is s2−1, this number of states should
be subject to an optimization procedure.

Secondly, our way of encoding traffic network information
might need to be augmented to cope with real world situa-
tions. This would simply amount to use a factor-graph used

to propagate this information. In particular it is likely that
a great deal of information is contained in the correlations
of local congestion with aggregate traffic indexes, corre-
sponding to sub-regions of the traffic network. Taking these
correlations into account would result in the introduction
of specific variables and function nodes associated to these
aggregate traffic indexes. These aggregate variables would
naturally lead to a hierarchical representation of the factor
graph, which is necessary for inferring the traffic on large
scale network. Additionally, time dependent correlations
which are needed for the description of traffic, which by
essence is an out of equilibrium phenomenon, could be
conveniently encoded in these traffic index variables.

Ultimately, for the elaboration of a powerful prediction
system, the structure of the information content of a traffic-
road network has to be elucidated through a specific statis-
tical analysis. The use of probe vehicles, based on modern
communications devices, combined with a belief propagation
approach, is in this respect a very promising approach.
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