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a b s t r a c t

In the context of inference with expectation constraints, we propose an approach based
on the ‘‘loopy belief propagation’’ algorithm (lpb), as a surrogate to an exact Markov Ran-
dom Field (mrf) modelling. A prior information composed of correlations among a large
set of N variables, is encoded into a graphical model; this encoding is optimized with re-
spect to an approximate decoding procedure (lbp), which is used to infer hidden variables
from an observed subset. We focus on the situation where the underlying data have many
different statistical components, representing a variety of independent patterns. Consid-
ering a single parameter family of models we show how lpb may be used to encode and
decode efficiently such information, without solving the NP-hard inverse problem yielding
the optimalmrf. Contrary to usual practice, we work in the non-convex Bethe free energy
minimization framework, and manage to associate a belief propagation fixed point to each
component of the underlying probabilistic mixture. The mean field limit is considered and
yields an exact connection with the Hopfield model at finite temperature and steady state,
when the number of mixture components is proportional to the number of variables. In
addition, we provide an enhanced learning procedure, based on a straightforward multi-
parameter extension of the model in conjunction with an effective continuous optimiza-
tion procedure. This is performed using the stochastic search heuristic cmaes and yields a
significant improvement with respect to the single parameter basic model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Prediction or recognition methods on systems in a random environment have to exploit somehow regularities or
correlations, possibly both spatial and temporal, to infer a global behaviour from partial observations. For example, on a
road-traffic network, one is interested in extracting, from fixed sensors and floating car data, an estimation of the overall
traffic situation and its evolution [1]. For image recognition or visual event detection, it is in some sense the mutual
information between different pixels or sets of pixels that one wishes to exploit. The natural probabilistic tool to encode
mutual information is the Markov Random Field (mrf), where marginal conditional probabilities have to be computed for
the prediction or recognition process.
The inference problem (with expectation constraints [2]) that we want to address is stated as follows: the system is

composed of discrete variables x = {xi, i ∈ V} ∈ {1, . . . , q}V for which the only known statistical information is in
the form of marginal probabilities, p̂a(xa) on a set F of cliques a ⊂ V . Such marginals are typically the result of some
empirical procedure producing historical data. Based on this historical information, consider then a situation where some
of the variables are observed, say a subset x∗ = {x∗i , i ∈ V∗}, while the other one, the complementary set V \ V∗, remains
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hidden. What prediction can be made concerning this complementary set, and how fast can we make this prediction, if we
think in terms of real time applications, like traffic prediction for example?
Since the variables take their values over a finite set, the marginal probabilities are fully described by a finite set of

correlations and, following the principle of maximum entropy distribution of Jaynes (see e.g. [3]), we expect the historical
data to be best encoded in a mrfwith a joint probability distribution of x of the form

P(x) =
∏
i∈V

φi(xi)
∏
a∈F

ψa(xa). (1)

This representation corresponds to a factor graph [4], where by convenience we associate a function φi(xi) to each variable
i ∈ V in addition to the subsets a ∈ F , that we call ‘‘factors’’. F together with V define the factor graph G, which will be
assumed to be connected.
There are two main issues:

• inverse problem: how to set the parameters of (1) in order to fulfill the constraints imposed by the historical data?
• inference: how to decode (in the sense of computing marginals) in the most efficient manner—typically in real time—this
information, in terms of conditional probabilities P(x|x∗)?

Exact procedures generally face an exponential complexity problem both for the encoding and decoding procedures
and one has to resort to approximate procedures [5]. The Bethe approximation [6], which is used in statistical physics
consists inminimizing an approximate version of the variational free energy associated to (1). In computer science, the belief
propagation bp algorithm [7] is a message passing procedure that allows to compute efficiently exact marginal probabilities
when the underlying graph is a tree. When the graph has cycles, it is still possible to apply the procedure (then referred to
as lbp, for ‘‘loopy belief propagation’’), which converges with a rather good accuracy on sufficiently sparse graphs. However,
there may be several fixed points, either stable or unstable. It has been shown that these points coincide with stationary
points of the Bethe free energy [8] which is defined as follows:

F(b) = −
∑
a∈F

∑
xa

ba(xa) logψa(xa)−
∑
i∈V

∑
xi

bi(xi) logφi(xi)

+

∑
a∈F

∑
xa

ba(xa) log ba(xa)+
∑
i∈V

∑
xi

(1− di)bi(xi) log bi(xi). (2)

In addition, stable fixed points of lbp are local minima of the Bethe free energy [9]. The question of convergence of lbp
has been addressed in a series of works [10–12] establishing conditions and bounds on the mrf coefficients for having
global convergence. In the present work, we reverse the viewpoint. Since the decoding procedure is performed with lbp,
presumably the best encoding of the historical data is the one for which lbp’s output is p̂a in absence of ‘‘real time’’
information, that is when all the variables remain hidden (V∗ = ∅). This has actually been proposed in Ref. [13], where
it is proved in a specific case, that working with the ‘‘wrong’’ model, i.e. the message passing approximate version, yields
better results from the decoding viewpoint. We will come back on this later in Section 6, when we will compare various
possible approximate models within this framework. In this paper, we propose a new approach, based on multiple fixed
points of lbp identification, able to deal bothwith the encoding and decoding procedure in a consistent way, suitable for real
time applications. The paper is organized as follows: our inference strategy is detailed in Section 2; in Section 3, we specify
the problem to the inference of binary variables which distribution follows a mixture of product forms and present some
numerical results; these are analyzed in Section 4 in the light of some scaling limits where mean field equations become
relevant, allowing for a direct connection with the Hopfield model. In Section 5 we propose a multi-parameter extension
of the model well suited to a continuous optimization, which allows to enhance the performance of the model. Finally we
conclude in Section 6 by comparing our approach with other variant of lbp and giving perspective for future developments.

2. LBP inference with marginal constraints

2.1. The belief propagation algorithm

The belief propagation algorithm [7] is a message passing procedure, with a joint probability measure like (1) as input,
and which output is a set of estimated marginal probabilities, the beliefs ba(xa) (including single nodes beliefs bi(xi)). The
idea is to factor the marginal probability at a given site as a product of contributions coming from neighboring factor nodes,
which are the messages. With our definition of the joint probability measure, the updates rules read:

ma→i(xi)←
∑
xa\i

ψa(xa)
∏
j∈a\i

nj→a(xj), (3)

ni→a(xi)
def
= φi(xi)

∏
a′3i,a′ 6=a

ma′→i(xi), (4)
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where the notation
∑

xs should be understood as summing all the variables xi, i ∈ s ⊂ V , from 1 to q. When the algorithm
converges, the resulting beliefs are

bi(xi)
def
=
1
Zi
φi(xi)

∏
a3i

ma→i(xi), (5)

ba(xa)
def
=
1
Za
ψa(xa)

∏
i∈a

ni→a(xi), (6)

where Zi and Za are the corresponding normalization constants that make these beliefs sum to 1. These constants reduce to
1 when G is a tree. In practice, the messages are normalized to have

q∑
xi=1

ma→i(xi) = 1. (7)

A simple computation shows that Eqs. (5) and (6) are compatible, since (3)–(4) imply that∑
xa\i

ba(xa) = bi(xi). (8)

We can already address the inference issue of the introduction: inferring the law of all variables from the set V∗ of
variables on which data is known is equivalent to evaluating the conditional probability

P(xi|x∗) =
P(xi, x∗)

P(x∗)
.

lbp is adapted to this case if a specific rule is defined for known variables i ∈ V∗: since the value of x∗i is known, there is no
need to sum over possible values and (4) becomes

ni→a(xi)
def
=

φi(xi)
∏

a′3i,a′ 6=a

ma′→i(xi), if i 6∈ V∗ or x∗i = xi,

0, otherwise.
(9)

2.2. Setting the model with LBP

Fixed points of lbp algorithm yield only approximate marginal probabilities of P(x) when all the functions ψa and φi
are known and considered as an input. Conversely, assume that a set of marginal distributions {p̂} is given such that, for all
a ∈ F and i ∈ a,∑

xa\i

p̂a(xa) = p̂i(xi) and
∑
xi

p̂i(xi) = 1.

Finding the set of {ψa} and {φi} such that the marginals of the joint probability (1) match {p̂} is a difficult inverse problem.
Instead if we impose that the approximation via lbp of these marginals matches {p̂}, we face a much simpler problem:
owing to its reparametrization property [14], lbp can provide good candidates for ψa and φi that admit a fixed point where
ba(xa) = p̂a(xa), ∀a ∈ F , and therefore bi(xi) = p̂i(xi), ∀i ∈ V .
We look for a fixed point that satisfies (3)–(4) in addition to this constraint. Normalization constants introduced in (5)–(6)

play no role in the present discussion so we ignore them here. Using (5)–(6) to rewrite (1), one sees that the knowledge of
one set of beliefs is sufficient to determine the underlying mrf uniquely:

P(x) =
∏
i∈V

φi(xi)
∏
a∈F

ψa(xa) =
∏
i∈V

bi(xi)
∏
a∈F

ba(xa)∏
i∈a
bi(xi)

.

It is therefore tempting to choose the functions appearing in (1) as follows.

φ̂i(xi)
def
= p̂i(xi), ψ̂a(xa)

def
=
p̂a(xa)∏
i∈a
p̂i(xi)

. (10)

This leads to the following formulation for the BP algorithm

ma→i(xi)←
∑
xa\i

p̂a(xa)
p̂i(xi)

[∏
j∈a\i

∏
a′3j,a′ 6=a

ma′→j(xj)

]
, (11)
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which obviously admitsma→i(xi) ≡ 1 as a fixed point, and leads to the beliefs

b(xa) = p̂(xa) ∀a ∈ F and b(xi) = p̂(xi) ∀i ∈ V, (12)

This choice of functions (10) may seem arbitrary at first sight. It has however already been proposed in Ref. [13] and, in
a slightly different problem of ML estimation, in Ref. [15]. Moreover, the following proposition shows that any other choice
of ψ and φ is actually equivalent:

Proposition 2.1. Any given set of functions ψ and φ such that lbp yields the prescribed fixed point (12), provides exactly the
same set of fixed points, including their stability properties, as ψ̂ and φ̂ would.

Proof. Assume that there exists a set of messagesm0 which is a fixed point of lbp and such that

p̂a(xa)
def
= ψa(xa)

∏
i∈a

[
φi(xi)

∏
a′3i,a′ 6=a

m0a′→i(xi)

]
,

p̂i(xi)
def
= φi(xi)

∏
a3i

m0a→i(xi).

Then it is possible to express φ and ψ as

φi(xi) =
φ̂i(xi)∏

a3i
m0a→i(xi)

, ψa(xa) = ψ̂a(xa)
∏
j∈a

m0a→j(xj),

and relations (3)–(4) rewrite

ma→i(xi)
m0a→i(xi)

←

∑
xa\i

ψ̂a(xa)
∏
j∈a\i

nj→a(xj)m0a→j(xj),

ni→a(xi) =
φ̂i(xi)
m0a→j(xj)

∏
a′3i,a′ 6=a

ma′→i(xi)
m0a′→i(xi)

,

therefore, ma→i(xi)/m0a→i(xi) stands for the set of fixed point messages that would have been obtained with functions ψ̂
and φ̂, and the two versions of the algorithm are equivalent. �

2.3. Controlling the strength of the interaction

The structure of the factor graph on which lbp is supposed to be run is more or less imposed by the data. For example, if
mutual information is given for each pair of variables, we then have a complete pairwise factor graph. In that case, lbp, which
is well adapted to sparse graphs, will overestimate the mutual information between variables. To overcome this flaw, we
introduce a single real parameter α > 0, to be roughly interpreted as an inverse temperature, which purpose is to moderate
(or possibly amplify) the interaction between variables when the connectivity gets large. This is done through a geometric
mean with the independent case, by replacing p̂a with p̂αa (

∏
i∈a p̂i)

(1−α). The model (10) is then rewritten as

φi(xi)
def
= p̂i(xi), ψa(xa)

def
=

 p̂a(xa)∏
i∈a
p̂i(xi)

α

. (13)

This definition allows to interpolate between a situation with strong interaction (α � 1) and a situation with weak
interactions (α ' 0). Note that for α 6= 1, p̂ is not anymore a predefined fixed point of the lbp scheme. However, Section 3
will show that (13) does yield consistent results. In fact a quite similar deformation of the model has been proposed in
Ref. [16], which we discuss later in Section 6.
A related approach would have been to replace p̂a with βp̂a + (1 − β)

∏
i∈a p̂i; this would preserve the single variables

beliefs, without however affecting the results we present in a sensible way. Note that this is actually equivalent to replacing
ψ̂a by βψ̂a + (1− β).
Finally, an optimization with respect to the graph structure could be done afterwards, but we will not explore this

possibility in the present work. Instead we will focus in Section 5 on the possibility to associate various parameter values to
different types of edges, and to perform an optimization procedure with respect to these parameters.
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3. Inferring a hidden mixture of product forms

3.1. Experimental setting

To test the ideas developed in the previous section, we assume a hidden mixture model on a set V of variables with
cardinality N of the form

Pref(x)
def
=
1
C

C∑
c=1

∏
i∈V

pci (xi), (14)

where x = {xi, i ∈ V} is a sequence of binary variables (xi ∈ {0, 1}), C is the number of components of themixturewhich are
superimposed, and pci (·) is the single site marginal corresponding to variable i for model c. Themain virtue of this simplified
testbed is that the performance of the approach we propose can be easily compared with theoretical bounds.
In order to apply our inference method, we assume that the distribution (14) is unknown as well as the number C itself.

The input of the algorithm is the set of 1- and 2-variables frequency statistics p̂i(xi) and p̂ij(xi, xj). Part of the freedom in
choosing a lbp model is in the graph design. While the available data dictates a pairwise factor graph (each factor node is
connected at most to two variables), it is still possible to choose which pairs of variables will be connected. To this end, we
apply a simple pruning procedure, by selecting the links (i, j) for which the quantity (to be interpreted in Section 4)∣∣∣∣log p̂ij(1, 1)p̂ij(0, 0)p̂ij(0, 1)p̂ij(1, 0)

∣∣∣∣ ≥ ε,
where ε is some positive threshold. We denote by K the mean connectivity of the resulting graph.
Although (14) is quite general, the tests are conducted with C � 2N , in the limit were the optimal sequences xc,opt

of each component c (i.e. with highest probability weight in the restricted distribution) have mutual Hamming distance
of order N/2. The single sites probabilities pci = p

c
i (1), corresponding to each component c , are generated randomly as

i.i.d. variables,

pci =
1
2
(1+ tanh hci )

with hci uniformly distributed in some fixed interval [−hmax,+hmax]. The mean of p
c
i is therefore 1/2 and its variance reads

v
def
=
1
4

Eh

(
2
tanh(h)

)
∈ [0, 1/4].

This parameter v implicitly fixed by hmax fixes the average level of ‘‘polarizability’’ of the variables in each cluster: v = 0
corresponds to pci = 1/2 while v = 1/4 corresponds to p

c
i ∈ {0, 1} with equal probability. The optimal configuration for

each component is given by
xc,opti = 1{pci >0.5}.

After fixing N and C , we randomly generate a set {pci , i ∈ V, 1 ≤ c ≤ C} for a given value of v. The pruning of the graph is
performed to reach a prescribed average connectivity K . Then two types of experiments are performed:
• BP fixed points search, with the help of an evanescent guiding field ht→t→∞ 0: if t is the iteration step, we bias the lbp
updates (4) in the direction of one of the patterns by replacing φi(xi) by

φti (xi) = φi(xi)e
ht (2xi−1)(2xci −1),

so that if there is a belief propagation fixed point correlated to the pattern pc , the field ht , which decays geometrically,
helps to find the corresponding attractor. The corresponding set of beliefs bc which is obtained is then compared to pc .
• decimation: Sequences xc are sampled for each component c of (14), and the decoding algorithm is tested successively
(with no guiding field) after gradually revealing the elements of the sequence in a random order, and ρ denotes the
fraction of observed variables. To each xc and ρ, the output is again a set of beliefs bc for the hidden variables to be
compared with the exact conditional marginals extracted from (14).

The following indicators are used to assess the prediction success rate (R), the belief error (E) and the Kullback–Leibler
error (DKL) of the algorithm when the values {xci , i ∈ V∗} are known

R def=
1
C

1
|V \ V∗|

C∑
c=1

∑
i∈V\V∗

1{bci (1)>0.5}x
c
i + 1{bci (1)≤0.5}(1− x

c
i ),

E def=
1
C

1
|V \ V∗|

C∑
c=1

∑
i∈V\V∗

∑
x∈{0,1}

∣∣bci (x)− Pref(xi = x|xcV∗)
∣∣ ,

DKL
def
=
1
C

1
|V \ V∗|

C∑
c=1

∑
i∈V\V∗

∑
x∈{0,1}

bci (x) log
bci (x)

Pref(xi = x|xcV∗)
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where Pref(xi|x∗) is the conditional distribution of xi once a certain number of variables x∗ have been fixed, computed exactly
from the hidden model (14). R is to be compared with the following expected success rate, which would be obtained by
making use of the hidden underlying model,

R(0) def=
1
C

1
|V \ V∗|

C∑
c=1

∑
i∈V\V∗

1{Pref(xi|xcV∗ )>0.5}
xci + 1{Pref(xi|xcV∗ )≤0.5}

(1− xci ).

4. Mean field analysis

4.1. Connection with the Hopfield model for large C

The connection between the lbp algorithm and statistical physics has been recognized recently. It has been established
that the lbp fixedpoints correspond to localminimaof the Bethe free Energy [8], and that the lbp scheme is actually providing
solutions to the mean field tap equations [17]. Let us consider the asymptotic situation where both C and K are large. Using
spin variables of statistical physics si = 2xi − 1, the measure (13) may be cast in the standard form of the disordered Ising
model

P(s) =
1
Z
e−βH[s],

with β the inverse temperature (which is arbitrary for the moment) and the definition

H[s] def= −
1
2

∑
i,j

Jijsisj −
∑
i

hisi.

The identification with the marginals gives:

βJij =
α

4
log
p̂ij(1, 1)p̂ij(0, 0)
p̂ij(0, 1)p̂ij(1, 0)

,

βhi =
1− αKi
2

log
p̂i(1)
p̂i(0)

+
α

4

∑
j∈i

log
p̂ij(1, 1)p̂ij(1, 0)
p̂ij(0, 1)p̂ij(0, 0)

,

with

p̂i(τ )
def
=
1
2C

C∑
c=1

(
1+ (2τ − 1)(2pci − 1)

)
,

p̂ij(τ , τ ′)
def
=
1
4C

C∑
c=1

(
1+ (2τ − 1)(2pci − 1)

) (
1+ (2τ ′ − 1)(2pcj − 1)

)
for τ and τ ′ in { 0, 1}. Let

ξ ci
def
=
pci (1)−

1
2

√
v

ξi
def
=
1
C

C∑
c=1

ξ ci ξij
def
=
1
C

C∑
c=1

ξ ci ξ
c
j − ξiξj. (15)

For large C , we have, in distribution

lim
C→∞

√
Cξi ∼ N (0, 1), lim

C→∞

√
Cξij ∼ N (0, 1) (16)

whereN (0, 1) denotes a normal variable with unit variance. Using this notation, and assuming C � 1, we have

βJij = 4αvξij + O
(
1
C3/2

)
(17)

βhi = 2
√
vξi − 8αv3/2

∑
j∈i

ξjξij + KO
(
1
C3/2

)
(18)

for fixed connectivity K . Note that, in addition to (16), we have

lim
C→∞
K→∞

C
√
K

K∑
j=1
j6=i

ξjξij ∼ N (0, 1),
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and that the two terms present in hi are uncorrelated at first order (the covariance between ξi and ξijξj is zero). In this form,
the Hamiltonian is similar to the one governing the dynamics of the Hopfield neural network model [18,19]. Considering
the canonical form of the Hamiltonian chosen in Ref. [20],

H[s] = −
1
2N

∑
i,j,c

siξ ci u
(K)
i u

(K)
j ξ

c
j sj −

∑
i,c

hci ξ
c
i si,

adapted to a non-complete graph, the inverse temperature then reads

β =
4αvK
C

and

hci =
C

2αK
√
v
−
2C
√
v

K

∑
j∈i

ξij.

The coefficients u(K)i are the components of the Perron vector normalized to
√
N (so that u(K)i = O(1)), associated to the

largest eigenvalueK of the incidencematrix.1When the graphhas somepermutation symmetrywith a uniform connectivity,
u(K)i reduces to 1 and K to this connectivity. K is considered from now on as an extensive parameter.

4.2. Phase diagram

The mean field theory of the Hopfield model has been solved by Amit, Gutfreund and Sompolinsky in Ref. [20] using
replica’s techniques, results which were soon confirmed with help of the cavity method [19], and put later on even firmer
mathematical grounds in Ref. [21]. In this section, we can simply read off some properties of our model from this mean field
theory. The order parameter introduced in Ref. [20] is

µc
def
=
1
N

N∑
i=1

ES,ξ
(
u(K)i ξ

c
i si
)
, ∀c = 1, . . . , C, (19)

where the expectation comprises both thermal averages and expectation with respect to the quenched disorder variables
ξ ci . This quantity measures the correlation between the spin bias in each components with the local magnetization. The
projection on an arbitrary Perron vector has been taken into account for sake of generality. Two cases are at stake in the
thermodynamic limits.

(i) C is large but fixed when N →∞. In that case, considering that

β
def
=
4v
C
lim
N→∞

α(N)K(N),

is a fixed parameter in the thermodynamic limit, then themean field free energy per variable directly adapted from Ref. [20]
reads,

f (N)[ Eµ, Eξ ] def=
β

2

∑
c

µ2c −
1
N

∑
i

log

[
2 cosh

(
β
∑
c

u(K)i (ξ
c
i − ξi)µc − 2

√
vξi

)]
,

where subdominant terms in the 1/C expansion are implicitly neglected. The stable thermodynamical states are then
obtained by solving the saddle point equation, which reads

µc =
1
N

N∑
i=1

u(K)i (ξ
c
i − ξi) tanh

(
β
∑
c

u(K)i (ξ
c
i − ξi)µc − 2

√
vξi

)
,

=
1
N

N∑
i=1

u(K)i (ξ
c
i − ξi) tanh

(
β
∑
c

ξ ci (u
(K)
i µc − µ̄)

)
, ∀c = 1, . . . , C .

1 Here we keep track of the fact that we possibly deal with a non-complete graph with arbitrary topology given by some incidence matrix A: to each
edge (ij) preserved by the pruning procedure is associated the element aij = 1, while other elements are set to 0. Under the hypothesis that the second
eigenvalue is subdominant w.r.t. K (it is generally the case when for example the connectivity is extensive with the size of the system), only the Perron
eigenvector is to be considered in the mean field theory.
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Fig. 1. Top left: phase diagram of the Hopfield model for hext = 0. Points represent results of optimal solutions obtained by cmaes for various size N . Top
right: Order parameters as a function of β if correlated states are correctly detected by the guiding field. Global (bottom left) and partial (bottom right)
fitness values of these solutions.

The last line is obtained after using from the first equation that Eµ is transverse and after defining

µ̄
def
=
2
√
v

Cβ
.

These equations are very similar to the one obtained in Ref. [22] and so are their solutions. For β > βc = 1, 2C
thermodynamically stable states, referred to as Mattis states in Ref. [22], appear. Each one of these states is macroscopically
correlated or anti-correlated to one of the mixture component, i.e. a single component µc acquires a finite value. They are
the only stable states up to some threshold value of β , where mixed stable states do appear.
(ii) The number of components is extensive: C = ηK .
In that case, the terms corresponding to the local field hi becomes irrelevant: their contribution to the energy per variable

is then O(1/N). Hence the mean field limit is directly described by the Hopfield model at inverse temperature

β
def
=
4αv
η
.

Let us simply describe the phase diagram (T , η) (see Fig. 1) obtained in Ref. [20] for binary ξi ∈ {−1, 1}. When C is
macroscopic, the mixture acts in part as a decorrelated random noise on the Jij, so that a spin glass phase, characterized
by the Edwards–Anderson order parameter

q def=
1
N

N∑
i=1

Eξ

(
Es
(
si|{Eξi}

)2)
,

may develop and compete with the pure states encountered at finite C . Except for a finite number of components c =
1, . . . , s, with which a finite overlap may persist in the thermodynamic limit, the order parameter µc is otherwise of order
O(1/
√
N) for c > s and

r = η−1
∑
c>s

Eξ

[(
1
N

N∑
i=1

Es
(
siξ ci |{Eξi}

))( 1
N

N∑
i=1

Es
(
siξ ci |{Eξi}

))]
,

which represents the mean square of the global overlap with these components, also introduced in Ref. [20], may acquire
a finite value. In presence of an external field hexti = Eh � Eξi correlated with the patterns, the mean field equations of Amit,
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Gutfreund and Sompolinsky read

Eµ = Eξ,z
[
Eξ tanh

(
β
(
√
ηrz + Eξ � (Eµ+ Eh)

))]
, (20)

q = Eξ,z

[
2
tanh

(
β
(
√
ηrz + Eξ � (Eµ+ Eh)

))]
, (21)

r = q/(1− β + βq)2, (22)

where z ∼ N (0, 1) and where Eµ, Eξ and Eh are s-components vectors, if one assume the ground state to be a state correlated
to s components of the mixture. For Eh = 0, the phase diagram contains three phases, depending on the value of T = 1/β:

• the paramagnetic phase for T > Tg ,
• the spin glass phase for Tc < T < Tg ,
• the ferromagnetic phase for T < Tc , with spin configurations correlated with one of the mixture component (Mattis
states).

These are separated by two phase transition lines Tg(η) (second order) and Tc(η) (first order). An additional line TM(η)
corresponds to the apparition of the Mattis states as metastable states for Tc < T < TM before they become ground states
for T < Tc .
Coming back to our inverse problem of finding themost accuratemodel for inferring the underlyingmixture distribution,

the parameter α allows us to tune β to the most adequate value. For this simplified formulation (ξ ci ∈ {−1, 1}), from the
definition (19) of the order parameter and the definition (15) of ξ ci , we see that the requirement is basically to tune β such
that the global optimum corresponds to Mattis states with overlap

µ = 2
√
v. (23)

4.3. Mean field decimation curves

When the decimation procedure, described in Section 3.1, is performed, the various indicators R(ρ), E(ρ) orDKL(ρ) taken
as functions ofρ give us a set of decimation curves, whichwewant to analyze in themean field regime.When some variables
are observed, the mean field equations describing the statistical behaviour of the hidden variables are simply obtained
by adding to their local field the field exerted by the observed variables. Let ρ be the fraction of observed variables, and
{s∗i , i = 1, . . . , ρN} the corresponding set. These variables are correlated to one of the underlying component mixture,
which we choose to be c = 1 by convention. The reduced system consists then of the M = (1 − ρ)N hidden variables,
{si, i = 1 . . .M}. To simplify the discussion,we also assume that the connectivity in this set is reduced in the sameproportion
to (1− ρ)K , which is effectively the case on a complete graph. The external local field experienced by any hidden variable i
now reads

hexti (ρ)
def
= hi +

∑
j∗∈i

Jijs∗j

=
2
√
v

β
ξi +

η

2

(∑
j∈i

ξijs∗j − 2
√
v
∑
j∈i

ξjξij

)
+ KO

(
1
C3/2

)
,

with Jij and hi given by (17) and (18). In the thermodynamic limit with C = ηK , a relevant term survives in hi(ρ) because of
the correlations of the s∗i with one of the mixture components (the first one by convention),

Es

(∑
j∈i

ξijs∗j

∣∣∣∣∣ ξ
)
=
2ρ
√
v

η
(ξ 1i − ξ).

As a result, keeping only the relevant term yields

hexti (ρ) = 2ρ
√
vξ 1i + O

(
1
√
C

)
.

For ρ = 1: the single variable marginals (called the beliefs) are directly obtained from hext in this limit. To evaluate the
prediction error, we have then simply to compare

p̂1i (si = s) =
1
2
+ s
√
vξ 1i

with the corresponding limit belief,

pi(si = s) =
1
2

(
1+ s tanh(βhexti (1))

)
. (24)
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After some algebra, we find (for C � 1 and when the ξ ∈ {−1, 1} are binary) the following expression of the DKL error,

DKL(pi, p̂1i ) =
(
1
2
+
√
w

)
log
1+ 2

√
w

1+ 2
√
v
+

(
1
2
−
√
w

)
log
1− 2

√
w

1− 2
√
v
+ O

(
1
√
C

)
, (25)

with 2
√
w = tanh(β

√
v), so that the error vanishes when

2
√
v = tanh(β

√
v).

For intermediate values of ρ: the mean field equations are still valid after replacing β by (1−ρ)β , η by η/(1−ρ). The belief
may be parametrized as in (24) by a local field, which statistical ensemble is now represented by the following stochastic
variable

h(ρ) = hext(ρ)+ ξ(1− ρ)µ+
√
(1− ρ)rηz,

= ξ
(
(1− ρ)µ+ 2ρ

√
v
)
+
√
(1− ρ)rηz,

where ξ has variance 1, z ∼ N (0, 1), and r is such that Eξ,z[tanh2(βhi)] = q. The mean Kullback–Leibler distance with the
reference belief p̂ then reads,

DKL(p, p̂) = Eξ,z

(
β(h− ĥ) tanh(βh)+ log

coshβĥ
coshβh

)
,

= βµ[(1− ρ)µ+ 2ρ
√
v] + β2rη(1− ρ)(1− q)+ Eξ,z

log 1− 2
tanh(βh)
1− 4vξ 2

− a tanh(2ξv) tanh(βh)

 . (26)

For binary variables ξ ∈ {−1, 1}, we recover (25) when ρ = 1 with µ = 2
√
w. In this special case it is in fact tempting to

tune α such that the (23) is fulfilled for any ρ. Tuning the function α(ρ) amounts to find β such that

2
√
v = Ez

[
tanh

(
β
(√
(1− ρ)ηrz + 2

√
v
))]

q = Ez

[
2
tanh

(
β
(√
(1− ρ)ηrz + 2

√
v
))]

,

r =
q

(1− β(1− ρ)(1− q))2
,

altogether with Eq. (22), when
√
v and η are fixed parameters. Instead, when ξ is continuously distributed, the resulting DKL

error is then a superposition of elementary distances, and has a strictly positive lower bound.

4.4. Comparison with experimental results

The numerical results presented in Figs. 1–4 are obtained by running lpb on the experimental setting explained in
Section 3.1, performedwith a fixed intermediate value of v = 0.15, alongwith the inferencemodel presented in Sections 2.2
and 2.3.
Consider first what is expected to happen, for small enough value of C/N , when correlated states are searched with the

help of a guiding field (see Section 3.1), while T is decreased along a vertical line on the phase diagram (see top left of Fig. 1):
the spin glass transition line Tg is first encountered, materialized by a sudden increase of r and q as well as DKL (see top right
Fig. 1). The small amount of information contained in the paramagnetic phase get simply screened by the proliferation of
spurious states, none of them being correlated with theMattis states (µ = 0). Then the line TM is passed through, correlated
states appears, which are expected to be detected by the guiding field, so thatµ acquire a non-zero value, while r decreases.
In practice, as seen from the top left Fig. 2, the spin glass phase renders the guiding field ineffective when N increases. The
pruning procedure cure partially this problem, but a trade-off has to be found, as can be see from the bottom right Fig. 2: the
density of spurious states decreases when the pruning increases, but phase transition lines get shifted in a way that allows
only highly polarized states to be present; as a result, the lower bound of DKL increases. Intermediate pruning threshold
have been actually found by the optimization procedure (see next section) and the phase diagram remains approximately
valid, as seen by looking at the top right and bottom left of Fig. 2.2We observe that the solutions remain close to the TM line
in Fig. 1. Concerning the decimation plots (Fig. 3), comparison with the mean field limit differs at low density ρ because of
finite size effects (top) and because of the spin glass phase (bottom), which prevents the lbp to converge faithfully to the
ground states. The saturation phenomena of the decimation curves, which occurs when ρ tends to 1, is reproduced correctly

2 The true phase diagram after pruning is actually unknown to us, because the links are not chosen randomly. N seems to be more appropriate than K
to define the temperature for intermediate values of the pruning (e.g. K/N = 0.3).
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expectation (26). The top left plot shows the limitation due to the spin glass phase. Effects of the pruning procedure is shown in the other plots.
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by the mean field analysis. One would expect the DKL error to vanish as the number of observed variables increases, but, as
indicated by (26), we have a superposition of DKL errors, due to the dispersion in the polarization of variables, which by
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definition cannot bemade arbitrarily small. Still, Fig. 3 is an instance where an efficient prediction is obtained with less than
five percent of observed variables, which could be is useful for real applications.

5. Continuous parameter optimization

The definition (13) sets up a single parameter model which, combined with the pruning procedure, is in fact a two
parameter model ω = (α, r) where r ∈ [0, 1] is the fractions of edges which are conserved. The model could be
straightforwardly extended by associating a coefficient αa to each factor node a. The determination of the set {αa, a ∈ F }
for optimizing the model, would lead to a difficult continuous and combinatorial optimization problem. Instead, assuming
we have at hand ameaningful criteria to sort the factor nodes, wemay divide the distribution in a certain number of parts q,
delimited by an increasing set of quantiles {ri, i = 0, . . . , q}, with r0 = 0 and rq ≤ 1, each part associated to a parameter αi.
As a result, given the number of parts q, we have a 2q parameter model,ω(q) = (α1, . . . , αq, r1, . . . , rq), which is well suited
to continuous optimization, if q is not too large (typically less than 100). This requires the definition of a fitness function.
We have conducted this program on the pairwise model. The natural fitness function for this problem is obtained from the
decimation procedure explained in Section 3.1,

F(ω(q)) ∝
∫ 1

0
dρ(1− ρ)DKL(ρ),

where ρ is the fraction of observed variables. This fitness function is however quite costly, so we use a surrogate fitness
function based on the identifications of the fixed points:

F̃(ω(q)q ) ∝
C∑
c=1

D(c)KL (0),

whereD(c)KL (0) represents the Kullback–Leiblermarginal distance of a driven fixed point (with help of the evanescent guiding
field introduced in Section 3.1) to the corresponding mixture component c when all variable are hidden. This surrogate
fitness appears to be much less noisy and costly than the original one, but still well correlated to it as can be seen in Fig. 4
(right). One can get an idea of the ruggedness of the fitness landscape by simply looking at Fig. 2. As a consequence, we
used a stochastic optimization algorithm, usually well suited choice for rugged fitness landscapes. The optimizer chosen
is the Covariance-Matrix-Adaptation Evolution-Strategies (CMA-ES) [23], where a population of candidate solutions are
sampled according to amultivariate normal distribution,whose parameters (mean value and covariancematrix) are adapted
according to the feedback gathered along the optimization procedure. The underlying idea for the adaptation mechanism is
to increase the probability of sampling better solutions. In the end of the search procedure, the sampling distribution gives
an estimate of the local curvature of the objective function.
We have compared different ways of sorting the edges based on the set of coupling Jij (see preceding section), which

somehow figure the amount of information transmitted fromone variable node to another one. Based on the electric network
analogy (see e.g. Ref. [24]), we consider the following different sorting criteria:

• simple sorting,
• absolute conductance sorting,
• relative conductance sorting.

We expect these to capture different properties of the underlying factor graph. The simple sort is based on the value
of |Jij| for each edge (i, j) ∈ E. The absolute conductance sorting amounts to reweight these couplings Jij by the fraction
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of weighted spanning tree (WST) containing the edge (i, j), while the relative conductance sorting take into account this
fraction solely (the spanning trees are weighted with these |Jij|). Deceptively, the simple sorting procedure yields the better
results. So if there exists a smarter way of sorting the links, we might find it hopefully by analyzing the mean field equation
on a pruned graph, which are not established yet. Anyway, the example shown on Fig. 4 indicates that the optimization
works when using this simple sorting procedure. In this example, the global error is decreased by 40% with a 13 quantiles
parameters model with respect to the single parameter model (Fig. 4, right). In addition, the improvements occur in the
region of interest, that is when ρ < 0.2 (Fig. 4, left).

6. Comparison with other approaches and perspectives

The model we propose shares some common points with the tree reweighted belief propagation algorithm described in
Ref. [13] andwith the fractional belief propagation scheme [16]. The Bethe approximation (2) is a particular case of a general
set of variational region based free energy approximations [25]. Introducing for each variable and factor node the energies
and entropies,

Ei
def
= −

∑
xi

bi(xi) logφi(xi) Ea
def
= −

∑
xa

ba(xa) logψa(xa),

Hi
def
= −

∑
xi

bi(xi) log bi(xi) Ha
def
= −

∑
xa

ba(xa) log ba(xa),

and considering only the region associated to the factors, a general approximation is obtained by introducing different
counting numbers for the average energy and entropy,

F(b) =
∑
a

(eaEa − haHa)+
∑
i

(eiEi − hiHi). (27)

The coefficients corresponding to the fractional belief propagation approach in Ref. [16] are

ea = 1 ei = 1 hi = 1−
∑
a3i

ha,

where the ha are arbitrary real coefficients.
Concerning the tree reweighted free energy in Ref. [13], which is defined for a pairwise factor graph, as noted in Ref. [26]

the coefficients read

eij = 1 ei = 1 hi = 1−
∑
j

hij,

where hij ∈ [0, 1] represents the probability that edge (i, j) appears in a spanning tree of G, chosen randomly under some
given measure on the set of spanning trees. It is too a sub-case of fractional belief propagation.
Our choice instead amounts to consider the parametrization

ei = 1 hi = 1− di ha = 1,

while ea are arbitrary positive coefficients, noted αij, with the convention (13) for φ and ψ .
It is however not this slight modification of the search space of approximate variational free energy that characterizes

our approach, but rather the variational framework. In our case, we purposefully choose a non-convex framework, because
we want to allow many belief propagation fixed points to be present. Conversely, Refs. [16] and [13] strive at finding a
convex variational free energy approximation. Also, the recent approach based on susceptibility propagation [27] seems
also mostly adapted to this convex situation. Further work is needed, possibly by extending the search to the full variational
space corresponding to the set of coefficients (ea, ei, ha, hi), to see which type of parametrization is best adapted to our
problem. Let us simply note for the moment that counting coefficients ha 6= 1 and hi 6= 1 − di yield some feedback in the
definition of the messages (see Appendix), which is precisely what this message passing procedure is supposed to avoid for
obtaining fast convergence. Nevertheless, it would be interesting to see whether the measure on weighted spanning trees
deduced from the strength of the coupling constants may be used to define a well suited tree reweighted approximation.
Themain observation of thiswork, namely that amixture ofwell separated probabilistic statesmay be efficiently encoded

and decoded in a multiple set of lbp fixed points, deserves further developments, both from the practical and theoretical
point of view. The analysis of the mean field theory could be extended to understand better how graph pruning affects the
equations. More generally, understanding better the influence of the graph structure on the mean field equation could yield
as a byproduct an optimal way of sorting the edges for the optimization procedure. Further work is also needed regarding
the effect of the factor graph on the storage capacity, when not restricting ourselves, as in the present study, to a pairwise
factor graph. While trying to optimize the number of probabilistic patterns that may be encoded, we have at the same time
to restrain the connectivity of the graph, so that the advantage of using a fast message procedure is preserved: a proper
trade-off has to be found. In addition, the connection with the Hopfield model helps us to assess the limitation due to spin
glass effects, and developments in the field of neural networks should help us to limit this drawback.
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Appendix. Generalizations to belief propagation algorithm

We adapt here the reasoning in Ref. [25] to the free energy of Section 6. The function that has to be studied to minimize
the generalized Bethe free energy (27) reads

Fλγ (b) = −
∑
a,xa

ba(xa) log
ψa(xa)ea

ba(xa)ha
−

∑
i,xi

bi(xi) log
φi(xi)ei

bi(xi)hi

+

∑
i,a3i
xi

λai(xi)

bi(xi)−∑
xa\i

ba(xa)

−∑
i

γi

(∑
xi

bi(xi)− 1

)
, (28)

with {λai} a set of Lagrange multipliers attached to each link, to insure compatibility conditions between joint beliefs and
single beliefs, and {γi} a set destined to enforce single beliefs normalization. The stationary points read

ba(xa) = ψa(xa)ea/ha exp

(
1
ha

∑
i∈a

λai(xi)− 1

)
,

bi(xi) = φi(xi)ei/hi exp

(
1
hi

(
γi −

∑
a3i

λai(xi)

)
− 1

)
.

At this stationary point, the generalized Bethe free energy reads

F (b) = −
∑
a,xa

ba(xa)

[
ha −

∑
i∈a

λai(xi)

]
−

∑
i,xi

bi(xi)

[
hi +

∑
a3i

λai(xi)− γi

]
=

∑
i

γi −
∑
a

ha −
∑
i

hi

and one can write∏
a

ψa(xa)ea
∏
i

φi(xi)ei =
∏
a

ba(xa)ha
∏
i

bi(xi)hie−F (b),

the compatibility constraint between the single variable beliefs bi and factor beliefs ba yields for i ∈ a∑
xa\i

ψa(xa)ea/ha
∏
j∈a

nj→a(xj)1/ha ∝
φi(xi)ei/hi∏

a′3i
ni→a′(xi)1/hi

(29)

with the usual definition, although slightly different from (4),

ni→a(xi)
def
= exp(λai(xi)). (30)

A simple way of getting a mapping suitable for an iterative algorithm is to isolate the term ni→a(xi) to the left of the
equation

ni→a(xi)−(1/ha+1/hi) ∝
∑
xa\i

[
ψa(xa)ea

∏
j∈a\i

nj→a(xj)

]1/ha φi(xi)−ei ∏
a′3i
a′ 6=a

ni→a′(xi)


1/hi

.

This relation yields a new message passing algorithm that would be a close cousin of the lbp algorithm; the properties of
this new algorithm have not been investigated yet.
In order to obtain something that is closer to the original algorithm, we define a new set {m} of messages by the relation

ma→i(xi)
def
= ni→a(xi)−1/ha

∏
a′3i

ni→a′(xi)−1/hi ,

and rewrite (29) as

ma→i(xi) ∝
∑
xa\i

[
ψa(xa)ea

∏
j∈a\i

nj→a(xj)

]1/ha
× φi(xi)−ei/hi . (31)
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This relation will produce a lbp-like algorithm if we invert the definition of {m}. To this end, we write the identity

∑
a′3i

ha′ log (ma′→i(xi)) = −
∑
a′3i

hi +
∑
b3i
hb

hi
log (ni→a′(xi)) ,

from which the following relation can be obtained

log (ni→a(xi)) = −ha log (ma→i(xi))+
ha

hi +
∑
b3i
hb

∑
a′3i

ha′ log (ma′→i(xi)) . (32)

Eqs. (31)–(32) yield the updates rules in this generalized setting. In the case of fractional belief propagation, (32) reduces
to

log (ni→a(xi)) = −ha log (ma→i(xi))+ ha
∑
a′3i

ha′ log (ma′→i(xi)) .

The ordinary lbp scheme corresponds to ha = 1 and hi = 1 − di. Note that, contrary to the fractional belief propagation
algorithm and to the tree reweighted algorithm, there is no feedback term apparent in the r.h.s. of (31). This property ensures
the independence of the messages in absence of loops.
However, the definition in (31) contains a feedback at second order since ma→i depends of ma→j for j 6= i, which

themselves have been computed from the former value ofma→i. This can be avoided only when

−ha

1− ha
hi +

∑
b3i
hb

 = 0,
that is, ha = h and hi = (1− di)h for some value of h. This setting is equivalent to normal lbp.
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