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Abstract

Contaminant transport in a fractured porous medium can be modeled, under appro-
priate conditions, with a double porosity model. Such a model consists of a parabolic
equation with a coupling term describing contaminant exchange between the fractures,
which have high permeability, and the matrix block, which has low permeability. A lo-
cally conservative method based on mixed finite elements is used to solve the parabolic
problem, and the calculation of the coupling term, which involves the solution of diffusion
equations in the matrix blocks, is based on an analytic expression. Numerical experi-
ments show that this semi-analytic method for the coupling term is accurate and faster
than several other methods but at a small expense of computer memory.

keywords:Porous medium, fractures, double porosity

1 Introduction

The transport in a porous medium of a contaminant dissolved in a single phase fluid is
governed by the transport equation

ω
∂c

∂t
+ div(−D∇c + u c) = qc

c(·, 0) = c0,

where the unknown c is the concentration of the contaminant dissolved in the fluid; the
coefficients ω, D and u are the porosity of the medium, the diffusion coefficient, and the
Darcy velocity of the fluid, respectively; the right hand side qc is the contaminant source
term; and the initial condition c0 is the concentration of the contaminant at time t = 0.
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The Darcy velocity u is given by the flow equation which is Darcy’s law relating the fluid
pressure with the Darcy velocity u

u = −K∇p

together with the law of conservation of mass

divu = q.

Here, in Darcy’s equation, the effects of gravity have been ignored. The coefficient K is
the permeability of the rock; more precisely it is the permeability k divided by the viscosity
µ of the fluid which might be dependent on the concentration. However here we neglect this
dependence so that K is constant in time. The elliptic conservation law states that the fluid
is supposed to be incompressible.

By a fracture in the porous medium is meant a very thin portion of the domain with very
large permeability; very thin in comparison with the size of the domain and very permeable in
comparison with the surrounding medium. Here we do not consider specific known fractures
that might be included individually in the model but a network of small interconnected
fractures. Also, a certain degree of regularity in the fracture network is assumed. Aside from
the fact that we do not have precise information about the form or location of such a network,
the difficulty for numerical modeling is a problem of scale. The scale of the fracture width and
the scale of the distance between fractures in the network are very small compared to the scale
of the domain size. A model that could see this kind of detail would be prohibitively large
for performing calculations. However one can not neglect these fractures. There is again a
difference in scale in the permeability of the fractures and the permeability of the neighboring
domain so that the Darcy velocity is much larger in the fractures and they play a major
role in the flow in the medium: if, for example, the source term is located in the network
of fractures and vanishes after a certain time, in a first stage, the contaminant, in addition
to being convected and diffused in the network of fractures, is dispersed by diffusion into
the blocks of porous media, called matrix blocks, which act as reservoirs. Then in a second
stage, after the concentration of contaminant in the fractures has diminished, the matrix block
acts as a source as the contaminant is rediffused into the fracture system. These exchanges
between matrix blocks and fractures are very significant and modify the propagation time of
the contaminant [18].

These fractures must be taken into account by some sort of averaging process as in a double
porosity (or dual porosity) model. The double porosity model was first described in articles
[7, 22], where the model was described as a phenomenological model deduced experimentally.
The model was later derived via homogenization [16, 5, 12, 17, 9]. Contaminant transport
has been modeled previously using a double porosity model in [3], [4] and [13].

The model is recalled in Section 2. It consists of a transport equation in the homoge-
nized domain coupled with a diffusion equation through a source term representing exchange
between the homogenized medium and the matrix blocks.

In Section 3 standard locally conservative numerical methods based on lowest order mixed
finite elements are presented. However, local conservation is required only in the homogenized
medium, and is not necessary in the matrix blocks. Further, the use of standard numerical
methods for the computation of the source term in the matrix blocks is very expensive. The
core of this paper is then devoted to the development of a semi-analytic method for the
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calculation of the source term in the matrix blocks. Similar techniques were presented in [19]
and [11] but without the use of an equivalent expression for small time; see below.

In Section 4 an analytic expression of the source term describing exchange between the
fractures and the matrix blocks is presented and this source term is expressed in terms of a
coupling operator. This convolution form of the source term has been studied for theoretical
purposes in [2]. However this expression does not lend itself naturally to numerical calculations
because the convolution kernel is an infinite sum that converges very slowly for small time.
A so called equivalent expression is obtained for the kernel at small time and this is used in
numerical calculations for the evaluation of the kernel near the singularity at time 0.

In Section 5 the coupling operator is discretized in time. In Section 6 numerical experi-
ments and some conclusions are given.

Throughout we have assumed that the permeability in the matrix block is sufficiently low
that the transport in the matrix block is due only to diffusion.

2 The double porosity model

We consider a naturally fractured medium throughout which exists a system of interconnected
fracture planes. This medium is idealized as a periodic medium as shown in Figure 1.

Homogenization for this idealized medium is carried out with a parameter ε equal to the
ratio of the period to the size of the domain. We obtain a medium which has the average
properties of the initial medium. The scale of heterogeneities is the microscopic scale and the
scale of the homogenized medium is the macroscopic scale. The resulting model is composed
of a concentration equation in a homogenized medium to which has been added a source term
or a coupling term whose value at point x and time t is obtained by solving a diffusion equation
in a matrix block associated with x. The solution acts in turn through a boundary condition
as a source for the microscopic model in the matrix block. This model is the double porosity
model. Two sets of parameters describe the homogenized medium: macroscopic parameters
derived from the microscopic parameters in the fractures and microscopic parameters in the
matrix blocks from which the coupling term is determined.

We denote by x the macroscopic variable in the homogenized medium Ω and by y the
microscopic variable in a matrix block Qm

x associated with the point x (Figure 2). We use

the notation Qx for the matrix block Qm
x together with the surrounding fracture Qf

x (Figure
3).

The calculation of the coupling term involves, at each point x ∈ Ω and for each time t,
the solution of an equation modeling diffusion in a matrix block.

After homogenization, we obtain the following model: for each t and each x ∈ Ω,

ω
∂c

∂t
+ div (−D∇c + u c) = qc −

ωm

|Qx|

∫

Qm
x

∂cm

∂t
(x, y, t) dy

c(·, 0) = c0
(1)

where the unknown c is the concentration in the homogenized medium. The scalar quantities
ω, qc and ωm are respectively the porosity and the given source term in the homogenized
medium and the porosity in the matrix block. The functions ω and qc are related to the
porosity ωf and the source term qf

c in the fractures by

ω(x) =
|Qf

x|
|Qx|

ωf (x) qc(x) =
|Qf

x|
|Qx|

qf
c (x).
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Figure 1: The double porosity model

The vector quantity D in the homogenized medium is related to that in the fractures Df by

D =
1

|Qx|

∫

|Qf
x|

(W (y) + I)dy Df ,

where W (y) is the n by n matrix Wi,j(y) =
∂wi

∂yj
with wi the solution to the homogeneous

Laplace equation inQf
x with a homogeneous Neuman boundary condition on ∂Qx and Neuman

boundary condition equal to −nj, minus the jth component of the normal vector on ∂Qm
x .

The Darcy velocity u in the homogenized medium is obtained from

u = −K∇p

divu = q,
(2)

where the permeability K and the source term q in the homogenized medium are given in
terms of the corresponding quantities in the fractures, K f and qf :

K =
1

|Qx|

∫

|Qf
x|

(W (y) + I)dy Kf , q =
|Qf

x|
|Qx|

qf .

The term
ωm

|Qx|

∫

Qm
x

∂cm

∂t
(x, y, t) dy, (3)
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is the coupling term which represents the exchange between the fractures and the matrix
blocks. The unknown cm(x, y, t) is the concentration at time t and at point y of the matrix
block Qx associated with x in Ω and is the solution of the contaminant transport equation
on the microscopic scale. For x ∈ Ω, cm(x, ·) is the solution of a time dependent diffusion
equation in Qm

x :

∂cm

∂t
(x, y, t)− α(x)∆yc

m(x, y, t) = 0, y ∈ Qm
x , t > 0,

cm(x, y, 0) = 0, y ∈ Qm
x ,

cm(x, y, t) = c(x, t) on ∂Qm
x ,

(4)

where α(x) is the diffusion coefficient in the matrix block Qm
x divided by the porosity ωm in

Qm
x . Here the advection term has been neglected as the permeability is assumed to be very

low in Qm
x .

In a numerical model, equation (4) must be solved at each point x of the discretized
domain Ω and at each time step which makes calculations with a double porosity model very
costly with standard discretization techniques, especially as the low diffusion in the matrix
block renders the problem quite stiff. This led us to calculate the coupling term analytically.

3 Numerical Approximation

We have three coupled equations to solve: the flow equation (2) and the transport equation
(1) in the homogenized domain, and the diffusion equation (4) in the matrix blocks. As we
have neglected the transport term in the matrix blocks, there is no need to solve for the Darcy
velocity there so we do not approximate a flow equation in the matrix blocks.
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We discretize the homogenized domain Ω with a structured mesh of rectangles C ∈ Th

and we denote by E ∈ Eh the edges of the mesh.
Let us consider first, the flow equation (2) in the homogenized medium Ω which is an

elliptic equation. Because of our assumption that the fluid viscosity is not a function of the
contaminant concentration, this equation can be solved independently and only has to be
solved once. To obtain a precise approximation to the Darcy velocity and to have a locally
conservative scheme we use a mixed method with the lowest order Raviart-Thomas spaces
[20, 10]. The approximate pressure ph lies in the space Mh of functions constant on each cell
C ∈ Th, and the approximate velocity uh lies in the space Wh of vector functions for which,
on each cell C ∈ Th, the ith component is linear in xi and independent of xj , if i 6= j, and
for which, through each edge E ∈ Eh, the normal component is continuous. The degrees of
freedom of uh are the flow rates through the edges E ∈ Eh. Then the approximation equations
for equation (2) are

∫

C
divuh dx =

∫

∂C
(uh · nC)dx = 0, C ∈ Th,

∫

Ω
K−1uh · v dx−

∫

Ω
ph divv dx +

∫

∂Ω
p̄ v · nΩ ds = 0, v ∈ Wh,

where nC and nΩ are respectively the outward normals to the boundary of C and to that
of Ω. Here p̄ is a pressure given on the boundary of Ω. If a numerical integration formula
is used to evaluate the first integral of the second equation above, the resulting method is a
finite volume method; cf. [21].

The transport equation (1) in the homogenized medium Ω is a diffusion-advection equa-
tion. This is the equation for which local conservation is the most important. We rewrite it
as

ω
∂c

∂t
+ div (w + r) = qc −

ωm

|Qx|

∫

Qm
x

∂cm

∂t
(x, y, t) dy

wd = −D∇c
wa = u c

(5)

to separate the diffusion contribution from the advection contribution in order to treat these
two terms differently. We treat the diffusion term again with a mixed finite element method
and the advective term with a first order upstream scheme. Concerning time discretization
∆t denotes the time step and we use Euler finite differences, the diffusive term being treated
implicitly and the advective term being treated explicitly. On the interval ((n − 1)∆t, n∆t)
the concentration is approximated by a function cn

h ∈ Mh and the vector function wd by
wn

dh ∈ Wh. Then equation (5) is approximated by

∫

C
ω

cn+1
h − cn

h

∆t
dx +

∫

∂C

(

wn+1
dh dx + (c−h )nuh

)

· nC dx

=

(

∫

C

(

qc −
ωm

|Qx|

∫

Qm
x

∂cm

∂t
(x, y, t) dy

)

dx

)n+1

, C ∈ Th,
∫

Ω
D−1wdh · vh dx −

∫

Ω
cn+1
h divvh dx +

∫

∂Ω
c̄n+1 vh · nΩ ds = 0,

vh ∈ Wh,

where c−h denotes the upstream concentration with respect to the velocity uh and cn+1
d a

given concentration on the boundary of Ω. Here the superscript in the right hand side of
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the first equation indicates an approximation to this term at time n + 1. Again the use of a
numerical integration formula for the first integral in the second equation results in a finite
volume method.

Finally the source term (3) must be calculated at each time step and at each point of
discretization. Standard discretization techniques could be used to approximate the solution
of the matrix block equations (4). However, in addition to the fact that equation (4) must be
solved Nt×M times, where Nt is the number of time steps and M the number of discretisation
points, the fact that the coefficient α is in general quite small renders the problem stiff. But,
since we do not need to use a locally conservative scheme in the matrix blocks and because
in each block the coefficient as well as the data is constant in space and the geometry of
the block Qm

x , a rectangle, is simple, we can use a semi-analytical method for calculating an
approximate solution of equation (4). We describe this method below.

4 Analytic expression of the coupling term

We now give an analytic expression of the coupling term in terms of a convolution kernel
written as a series. For simplicity’s sake, we have taken Qm

x to be a square instead of a
general rectangle.

With ĉm(x, y, t) = cm(x, y, t)− c(x, t), ĉm is the solution of

∂ĉm

∂t
(x, y, t)− α(x)∆y ĉ

m(x, y, t) =
∂c

∂t
(x, t), y ∈ Qm

x , t > 0,

ĉm(x, y, 0) = −c(x, 0) in Qm
x

ĉm(x, y, t) = 0 on ∂Qm
x .

If Qm
x is identified with [−k

2
,
k

2
]2, the function ĉm may be expressed in terms of the spectral

basis {ωp,q : p, q = 1, 2, · · ·}, where ωp,q(y) = ωp(y1)ωq(y2) and ωp is the solution on [−k

2
,
k

2
]

of

−ω′′
p =

π2p2

k2
ωp, ωp(−

k

2
) = ωp(

k

2
) = 0,

with coefficients ĉm
p,q solutions of the ordinary differential equation

∂ĉm
p,q

∂t
(x, t) + αp,q ĉ

m
p,q(x, t) = −∂c

∂t
(x, t)µp,q,

with

αp,q =
απ2

k2
(p2 + q2) and µp,q =

∫

Qm
x

ωp,q. (6)

Thus we have
ĉm(x, y, t) =

∑

p,q≥1

ĉm
p,q(x, t)ωp,q(y), (7)

with

ωp(yi) =















√

2

k
sin(

pπyi

k
) if p is even

√

2

k
cos(

pπyi

k
) if p is odd,

i = 1, 2,
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and

ĉm
p,q(x, t) = −µp,q

(
∫ t

0

∂c

∂t
(x, s)e−αp,q(t−s)ds + c(x, 0)e−αp,q t

)

.

A simple calculation then shows that the coupling term is given by

∫

Qm
x

∂cm

∂t
(x, y, t) dy

=
∑

p,q

µ2
p,qαp,q

(
∫ t

0

∂c

∂t
(x, s)e−αp,q(t−s)ds + c(x, 0)e−αp,q t

)

,

or, defining the convolution kernel Kα(t),

Kα(t) =

∑

p,q

µ2
p,qαp,qe

−αp,qt, if t > 0 , (8)

by
∫

Qm
x

∂cm

∂t
(x, y, t) dy =

∫ t

0

∂c

∂t
(x, s)Kα(t− s)ds + c(x, 0)Kα(t). (9)

As in [2] one can express the coupling term (9) in terms of a coupling operator Sα. For α a
function from Ω to R

+, let Sα be the operator

Sα : H1(0, T ;L2(Ω)) −→ L2(0, T ;L2(Ω))

c −→ Sα(c),
(10)

where

Sα(c)(x, t) = ωm

∫ t

0

∂c

∂t
(x, s)Kα(t− s)ds + ωmc(x, 0)Kα(t).

With this notation, problem (1) can be rewritten as follows:

∂c

∂t
+ divx[−D(x)∇xc + u(x)c] + Sα(c) = qc

c(x, 0) = c0(x).
(11)

Even though we have an analytic expression for Sα(c) we do not have a closed form
expression. Thus in addition to deciding whether this term should be treated implicitly or
explicitly we must approximate the time integral in the convolution term, approximate the
time derivative in this term, and approximate the convolution kernel which is given as an
infinite sum. We first investigate some of the properties of the kernel Kα and of the operator
Sα.

Lemma 1 The series Kα converges on (0,+∞) and converges uniformly on the subinterval
[ε,+∞) for each ε > 0. Moreover, for α ∈ R

+ given, Kα has the following behavior as t
decreases toward 0:

Kα(t) = 4

√

|Qm|α
πt

− 16α

π
+ O(t). (12)
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PROOF:
First, calculating that

µp,q =







± 8 k

pqπ2
if p and q are odd

0 otherwise
,

we see that µ2
p,qαp,q ≤

128α

π2
. Thus, for each ε > 0, there is a positive constant Cε such that

Kα(t) ≤ 128α

π2

∑

p,q≥1

e−αp,qt ≤ Cεe
−απ2

k2 t, ∀t ≥ ε,

and we see that Kα(t) is a series that converges on (0,∞) and converges uniformly on [ε,∞)
for each positive ε.

Then a straightforward calculation shows that

Kα(t) = −2ζ(t)ζ ′(t) (13)

with ζ(t) =
∑

p≥1

µ2
pe
−απ2

k2 p2t.

One can now rewrite ζ(t) as follows:

ζ(t) =

∫ k
2

− k
2

z(y, t) dy,

where z(y, t) is the solution of

∂z

∂t
− α

∂2z

∂y2
= 0, −k/2 ≤ y ≤ k/2,

z(y, 0) = −1, −k/2 ≤ y ≤ k/2,

z(±k/2, t) = 0.

Then z(y, t) can be identified with the restriction to the segment [−k/2, k/2] of the solution
z̃(y, t) of

∂z̃

∂t
− α

∂2z̃

∂y2
= 0, y ∈ R, t > 0,

z̃(y, 0) =

l=∞
∑

l=−∞

(−1)l+1 χ(y − lk), y ∈ R,

where χ is the characteristic function of the interval [−k/2, k/2]. One may also write z̃(y, t)
as an infinite sum:

z̃(y, t) =

l=∞
∑

l=−∞

(−1)l+1zl(y, t)

with zl(y, t) the solution of

∂zl

∂t
− α

∂2zl

∂y2
= 0, y ∈ R, t > 0,

zl(y, 0) = χ(y − lk), y ∈ R;
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that is

zl(y, t) =
1

2
√

παt

∫ kl+k/2

kl−k/2
e−

(y−η)2

4tα dη.

Introducing

ζl(t) =

∫ k/2

−k/2
zl(y, t)dy,

one has

ζ(t) =
l=∞
∑

l=−∞

(−1)l+1 ζl(t).

If η ∈ [lk − k/2, lk + k/2] and y ∈ [−k/2, k/2], then k(l − 1) ≤ η − y ≤ k(l + 1), so that

|ζl(t)| ≤
k2

2
√

παt
e−

k2(l−1)2

4tα . (14)

Thus
∑

l≥2

|ζl(t)| ≤ k2

2
√

παt

∑

l≥2

e−
k2(l−1)2

4tα ≤ k2

2
√

παt

∑

l≥1

e−
k2l2

4tα

≤ k2

2
√

παt
e−

k2

4tα

∑

l≥1

e−
k2(l2−1)

4tα .

Since for l ≥ 1 we have l2 − 1 ≥ 2(l − 1) and we obtain

∑

l≥2

|ζl(t)| ≤
k2

2
√

παt
e−

k2

4tα

∑

l≥0

e−
2k2 l
4tα ≤ k2

2
√

παt

e−
k2

4tα

1− e−
k2

2tα

. (15)

One clearly has the same upper bound for
∑

l≤−2

|ζl(t)|. From inequalities (14),(15) one obtains

that the series
∑

|l|≥2

ζl(t) is uniformly convergent on [0,∞) and vanish when t → 0. Similar

calculations show that the series of the derivatives at any order are also uniformly convergent

on [0,∞) and vanish when t → 0. Therefore we can conclude that the series
∑

|l|≥2

ζl(t) is C∞

on [0,∞) with all of its derivatives vanishing at 0.
We next consider ζ1 and ζ−1. The function ζ1 is given by

ζ1(t) =
1

2
√

παt

∫ k/2

−k/2

∫ 3k/2

k/2
e−

(y−η)2

4tα dη dy

or, denoting by u and v respectively, η − y and η + y,

ζ1(t) =
1

4
√

παt

[
∫ k

0

∫ k+u

k−u
e−

u2

4tα dv du +

∫ 2k

k

∫ 3k−u

−k+u
e−

u2

4tα dv du

]

=
1

2
√

παt

[
∫ k

0
e−

u2

4tα udu−
∫ 2k

k
e−

u2

4tα (u− 2k) du

]

.
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Now letting u =
√

tα s one obtains

ζ1(t) =
1

2
√

παt

[

tα

∫ k√
tα

0
e−

s2

4 s ds−
√

tα

∫ 2k√
tα

k√
tα

e−
s2

4 (
√

tαs− 2k) ds

]

.

Thus, as
∫ k√

tα

0
e−

s2

4 s ds = −2(e−
k2

4tα − 1)

and
∣

∣

∣

∣

∣

∫ 2k√
tα

k√
tα

e−
s2

4 (
√

tαs− 2k)ds

∣

∣

∣

∣

∣

≤ e−
k2

4tα

∣

∣

∣

∣

∣

∫ 2k√
tα

k√
tα

(
√

tαs− 2k)ds

∣

∣

∣

∣

∣

≤ e−
k2

4tα
3k2

2
√

tα
,

one can conclude that ζ1(t)−
√

tα

π
is C∞ on [0,∞) with all of its derivatives vanishing at 0.

Similarly one may show that ζ−1(t)−
√

tα

π
is C∞ on [0,∞) with all of its derivatives vanishing

at 0.
There remains to calculate ζ0:

ζ0(t) =
1

2
√

παt

∫ k/2

−k/2

∫ k/2

−k/2
e−

(y−η)2

4tα dη dy.

With u and v as before one has

ζ0(t) =
1√
παt

[
∫ k

0

∫ k−u

0
e−

u2

4tα dv du +

∫ 2k

k

∫ 3k−u

u−k
e−

u2

4tα dv du

]

=
1√
παt

[
∫ k

0
ke−

u2

4tα du−
∫ k

0
e−

u2

4tα u du

]

.

We note that
∫ k

0
e−

u2

4tα u du = 2αt
(

1− e−
1

4tα

)

.

As before letting u =
√

tα s one obtains

∫ k

0
ke−

u2

4tα du = k
√

tα

(

∫ ∞

0
e−

s2

4 ds−
∫ ∞

k√
tα

e−
s2

4 ds

)

.

Now, as
∫ ∞

0
e−

s2

4 ds =
√

π

and
∫ ∞

k√
tα

e−
s2

4 ds ≥
∫ 2k√

tα

k√
tα

≥ e−
k2

tα
k√
tα

,

one obtains
∫ k

0
ke−

u2

4tα du ≤ k
√

tα

(√
π − e−

k2

tα
k√
tα

)

.
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and ζ0(t)− k + 2
√

tα
π is C∞ on [0,∞) vanishing along with all of its derivatives at 0.

Thus one may conclude that ζ(t) + k− 4

√

tα

π
is C∞ on [0,∞) vanishing along with all of

its derivatives at 0. Then using expression (13) of Kα(t) we finally obtain equality (12).

The following lemma describes the behavior of Kα(t) for large t.

Lemma 2 As t increases away from 0, the kernel Kα decreases rapidly,

Kα(t) ≤ C e
−2απ2t
|Qm| . (16)

This lemma is an immediate consequence of the definition of the kernel (8),(6).

In practice, expression (12) for Kα is very useful for evaluating Kα in a neighborhood of
the singularity at 0 since the series in (8) converges very slowly for small t. Estimate (16)
indicates that, for large t, calculating only a few terms of this series is sufficient.
Remark 1 As in [1], one can show that the operator Sα is pseudo-differential in time of order
1/2, in the sense that, for all s < 1

2 ,

Sα : Hs(R+;L2(Ω)) −→ Hs− 1
2 (R+;L2(Ω));

cf. also theorem 2 of [2].
Remark 2 The operator, Sα, is also semi-positive in the sense that for almost every x ∈ Ω

∫ T

0
Sα(c)(x, s)c(x, s)ds ≥ 0; (17)

this is shown in [2, 19]. Another useful property is that

∫ T

0
Sα(c)(x, s)

∂c(x, s)

∂s
ds ≥ 0. (18)

These two inequalities are useful to establish bounds on the solution that lead to show existence,
uniqueness and regularity results through the use of standard analysis techniques.

5 Numerical approximation of the coupling operator

5.1 Time discretization

Let ∆t =
T

Nt
, T the final time of the experiment, be the length of the time step in the

homogenized medium. The semi-discretization in time of equation (11) is given by

cn+1 − cn

∆t
+ div(−D∇cn+1 + u cn) + (Sαc)n+ 1

2 = qn+1
c , (19)

where the approximation (Sαc)n+ 1
2 of the coupling term, at a point x ∈ Ω, is given by

(Sαc)n+ 1
2 (x) = [

n
∑

j=0

Knj(c
j+1(x)− cj(x)) + Knc0(x)]

1

|Qx|
, (20)

12



and where for all n, n = 0, ..., Nt − 1,

Knj =

∫ (n+1)∆t

n∆t

∫ (j+1)∆t

j∆t

Kα(t− s)

(∆t)2
ds dt, ∀j = 0, ..., n − 1,

Knn =

∫ (n+1)∆t

n∆t

∫ t

n∆t

Kα(t− s)

(∆t)2
ds dt ,

Kn =

∫ (n+1)∆t

n∆t

Kα(t)

∆t
dt.

(21)

This discretization in time is chosen in order to guarantee the stability of the scheme. In fact,
the discretization in time of the coupling term satisfies the stability condition

Nt−1
∑

n=0

(Sαc)n+ 1
2

cn+1(x)− cn(x)

∆t
∆t ≥ 0. (22)

This inequality may be checked by setting

c∆t(x, t) =

Nt
∑

l=0

cl(x)βl(t), (23)

where βl is a hat function; i.e. the piecewise linear function on [0, T ] determined by βl(j∆t) =
δj,l, j = 0, . . . , Nt. and noting that

∂ c∆t

∂t
(x, t) =

Nt−1
∑

l=0

cl+1(x)− cl(x)

∆t
ζl+1/2(t), (24)

where ζl+1/2(t) is the characteristic function

ζl+1/2(t) =

{

1 on [l ∆t, (l + 1)∆t]

0 otherwise.

From (18), we have
∫ T

0
Sα(c∆t)(x, t)

∂c∆t(x, t)

∂t
dt ≥ 0.

If we substitute for c∆t and
∂c∆t

∂t
their expressions given in (23) and (24), we obtain inequality

(22).
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5.2 Implementation considerations

To calculate the integrals in equations (21) we first note that using a change of variables one
may write

Knj =

∫ (n−j)∆t

(n−(j+1))∆t

Kα(r)

(∆t)2
(r − (n− (j + 1))∆t) dr+

∫ ((n+1)−j)∆t

(n−j)∆t

Kα(r)

(∆t)2
(−r + ((n + 1)− j))∆t) dr, 0 ≤ j < n,

Knn =

∫ ∆t

0

Kα(r)

(∆t)2
(∆t− r) dr,

and that Knj can actually be indexed by a single index m = n− j > 0.
Close to 0, the convolution kernel Kα is actually replaced by its equivalent form given in

(12) for which the integrals can be computed exactly.
Away from 0, the integrals can be calculated by truncating the series (8) and calculating

exactly the integrals corresponding to the remaining terms of the sum. These terms are
actually very few since they vanish very quickly when p and q increase.

Truncating the series (8) means also that we have set Kα = 0 for t large which implies

Knj = 0 for j not close to n. Therefore we replace the sum
n
∑

j=0

by
n
∑

j=n−M

in (20):

(Sαc)
n+ 1

2
M (x) =





n
∑

j=n−M

Knj(c
j+1(x)− cj(x)) + Knc0(x)





1

|Qx|
, (25)

and M becomes a parameter of approximation.
The choice of the time interval on which Kα is actually replaced by its equivalent form and

the choice of the number of terms left in the truncated series, which corresponds to a choice
of M , are adjusted by trial and error to the problem under consideration. Automatic deter-
mination of these parameters would require more numerical analysis. Some considerations on
the choice of M can be found in [19].

We also point out that calculating with (25) requires the storage in memory of the con-
centration at only M time steps.

We conjecture that the discretized coupling term expressed with the truncated kernel
satisfies as well the stability condition

Nt−1
∑

n=0

(Sαc)
n+ 1

2
M

cn+1(x)− cn(x)

∆t
∆t ≥ 0.

6 Numerical experiments

We present two numerical experiments. The first numerical experiment validates the numer-
ical model by comparison with the Grisak laboratory experiment. In the second numerical
experiment we compare the semi-analytic method presented above with standard space-time
discretization methods for the calculation in the matrix blocks.
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6.1 The Grisak experiment

This experiment consists in injecting a chloride tracer into a cylinder of quasi-regular fractured
porous rock [15]. The fractures are distributed along two orthogonal directions, one parallel to
the axis of revolution of the cylinder. The cylinder is saturated with water and the velocity
of the fluid is maintained constant and parallel to the axis of revolution of the cylinder.
The tracers are injected into the network of fractures at one end of the cylinder, the relative
concentration depending on time is measured at the other end of the cylinder. The microscopic
parameters, characterizing the rock and the network of fractures are given in Table 1. The

Parameters Matrix block Fracture network

Darcy velocity (cm s−1) 0 3.4375 10−2

Longitudinal dispersion (cm) - 4

Transversal dispersion (cm) - 0

Molecular diffusion 5 10−7 5 10−7

(cm2 s−1)

Porosity 0.35 -

Fracture aperture (cm) - 8 10−3

Space between fractures (cm) - 4

Table 1: Parameter values for Grisak’s experiment

period of simulation is 4 days discretized with 4500 time steps. Figure 4 shows the calculated
relative concentration at the outflow end of the cylinder and compares it with an analytical
solution given in [15] and with experimental measurements. One can observe that there is
good agreement of the three curves, especially that calculated with the double porosity model
and that calculated from an analytic expression. Discrepancies between these two curves and
the experimental one are due to the mathematical model itself.

To illustrate the importance of the coupling term, we simulate the transport of tracers
in two cases, when neglecting the coupling term, that is without matrix diffusion, and when
taking it into account, that is with matrix diffusion. The results are shown in Figure 5,
where the calculated concentrations are shown at a given time, and in Figure 6, where the
concentrations at a given point are shown as functions of time. These figures show that for
the given data the effect of matrix diffusion is significant. The double porosity model actually
smears the contaminant front which would be too sharp if a single porosity model were used.
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Figure 4: Relative concentrations at the outflow end of the cylinder as functions of time in
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Figure 5: Concentration at 4 days, on a cross-section of the homogenized medium for data
given in Table 1
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Figure 6: Relative concentration at a point of the homogenized medium for data given in
Table 1
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6.2 A comparison of different methods for calculating the coupling term

To compare different methods for calculating the coupling term, we consider a simple exper-
iment where a contaminant is transported in a square domain only by diffusion. Initially, we
have a positive concentration at the center of the domain. The data for this experiment are
given in Table 2. They correspond to a stiff problem, the ratio of the diffusion coefficient in
the fracture network to that in the matrix blocks being equal to 100.

Parameters Matrix block Fracture network

Molecular diffusion 10−6 10−4

(cm2 s−1)

Porosity 1 1

Fracture aperture (cm) - 0.1

Space between fractures (cm) - 10

Table 2: Parameter values for experiments comparing methods of calculating the coupling
term

The period of simulation is 4.5 107 seconds discretized with 900 time steps. We compare
the run time and the memory space using four methods to calculate the coupling term:
mixed finite elements with the lowest order Raviart-Thomas spaces [20, 10], cell-centered
finite volumes [14] also called the integral form of the finite difference method [6], both
with a uniform grid, a spectral method (cf. [8]) and the semi-analytic method described
above. The first two methods are locally conservative while the latter two are only globally
conservative. However local conservation is important only for the transport equation in the
homogenized medium but not for the calculations in the matrix block which need be only
globally conservative, so the last two methods are also appropriate for the matrix blocks.

One difficulty in this experiment is that in the matrix blocks located where the contam-
inant front propagates we have to solve a parabolic problem with a large jump between the
boundary concentration values and the concentration values inside the matrix block, giving
rise to stiff boundary layers (see a sketch in Figure 7). For such problems, the mixed finite
element method is not appropriate since it does not satisfy the maximum principle and gives
oscillations in the neighborhood of the boundary layer, unless a large number of discretization

Space

C
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nt

ra
tio

n

Figure 7: A stiff boundary layer problem arising in some matrix block calculations
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points is put in the boundary layer. With the coarse discretizations that we used it was not
possible to get a reasonable answer, and this method was dropped from the comparison.

In Figure 8 we show a comparison between the semi-analytic method, the cell-centered
finite volume method with a uniform grid and the spectral method. This comparison shows
that the finite volume method is slow to converge which makes it very expensive. On the
contrary the spectral method converges quickly since it naturally puts more degrees of freedom
close to the boundary. One could of course improve the performance of the finite volume
method by using a nonuniform grid. This we have not done however, as in this setting,
homogeneous data with a simple geometry and constant boundary data, the spectral method
should outperform the finite volume method even when a nonuniform grid is used for the
latter.
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Figure 8: Values of the coupling term as functions of time at some point of the domain Ω for
various methods of calculating the coupling term

Table 3 gives a comparison in terms of costs, computing time (measured in hours, minutes
and seconds) and memory (measured in Megabytes). The last column gives a quantitative
expression of what is shown in Figure 8. It gives the relative L2 error over time in the coupling
term at a given point, where the semi-analytic solution is used as the reference. As we can
see, the semi-analytical method presented above is much cheaper in terms of computing time.
It is somewhat more expensive in terms of memory space since for this stiff problem it is
necessary to store the concentration at a large number of time steps (1/3 of 900 time steps).

Method Run time Memory space Coupling term error

Finite volumes (10*10) 11’07” 16 Mb 0.28

Finite volumes (20*20) 1h47’ 19 Mb 0.1

Finite volumes (30*30) 8h26’ 25 Mb 5 10−2

Spectral method (9*9) 6’31” 16 Mb 3.46 10−2

Semi-analytical method 2’23” 28 Mb -

Table 3: Comparison of different methods for calculating the coupling term (stiff case)

We also looked at a smoother case where the diffusion coefficient in the matrix blocks is
now only 10−5 (instead of 10−6 before) so the ratio of the diffusion coefficients in the fracture
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network to that in the matrix blocks is now equal to 10 (instead of 100). Results are shown
in table 4. The calculation with the semi-analytic method is now cheaper in terms of memory
cost than in the stiff case since the number of terms in the sum (25) required to calculate the
coupling term is smaller (70 out of 900). One should note that in this case a much coarser
grid can be used for the finite volume method.

Method Run time Memory space Coupling term error

Finite volumes (10*10) 12’49” 16 Mb 2.8 10−2

Spectral method (9*9) 8’16” 16 Mb 1.6 10−2

Semi-analytical method 1’04” 19 Mb -

Table 4: Comparison of different methods for calculating the coupling term (smooth case)

We mention that no extraordinary measures have been taken for the optimization of the
performance of any of the codes used in these tests so the results can only be taken as
indicative.

7 Conclusion

In a fractured porous medium with numerous interconnected fractures, the contaminant trans-
fer between matrix blocks and fractures may be very significant. This transfer is taken into
account in a double porosity model with a term coupling the homogenized medium with
matrix blocks. We have shown how to calculate this term with the semi-analytical method.
Numerical experiments have shown the efficiency of this new numerical procedure in compar-
ison with standard discretizations which could be used in the matrix blocks .
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