Rule-oriented method for

parameterized

computer-aided design.

A Verroust, F Schonek and D Roller*

The paper presents an implementation for computer-aided
design with dimensional parameters. The approach is based
on the use of an expert system to uncouple constraint
equations, and to find a possible sequence for the
computation of the geometric elements for given dimension
values. A set of rules for the expert system is described
that solves the problem for 2D designs. The method is
illustrated with an example design.

dimensioning, geometric constraints, C4p systems, parameterized designs,
geometric-reasoning nethods

Contemporary cAD systems have proven to be effective
for generating technical drawings and modeling 3D
objects. However, in the conception stage of the design
process, most cAD systems still do not have all of the
flexibility required. One particularly important aspect is
design with dimensional parameters.

Variable dimensions provide the means for the designer
to create his or her initial design without defining the
exact dimensions, which, in the early design stages,
are unknown anyway. Morcover, in the design-to-
manufacturing process, a number of iteration cycles are
usually required before the design meets all its functional
and manufacturing-related requirements. In many of
these cycles, the design can undergo dimensional changes.

Work has been carried out to improve the designer
interface as follows. In Reference 1, the authors classified
the different approaches into three families:

e primary approaches that provide a solution in specific
cases, such as those in References 2 and 3, or
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approaches that introduce an aid through macros,
such as that in Reference 4,

e alyebraic approaches®™'° that transform the dimen-
sioning problem into a numerical problem: the
resolution of a system of (nonlinear) equations; these
use a classic method such as the Newton—Raphson
method or an improvement of it to solve the system;
however, these approaches have limited capabilities
with respect to the handling of incompletely specified
drawings; further, nonconsistent constraining schemes
are not rapidly detected (cf. Reference 11 for a
preprocessing method that solves the problem),

o artificial-intelligence-oriented approaches that usc
inference to construct the drawing of a design
progressively; the first approaches'?'? use simple
rules to fix the design gradually, but they do not detect
the inconsistencies in the constraining scheme; more
recently, Briiderlin'*, Aldefeld!® and Sunde'®!7 have
proposed rule-oriented approaches which detect and
provide an explanation when a part of the drawing is
overdetermined, and that are able to give all the
numerical solutions corresponding to the set of
constraints.

The authors’ method follows Aldefeld’s and Sunde’s
most recent work, but their goal is a little different: they
focus on the main rules used to evaluate 2D models and
the scope of the rule-based approaches.

The paper is structured as follows. The next section
precisely states the problem that is to be handled. Then,
the main rules used in the expert system, i.e. the creation,
construction and verification rules, are explained.

The domain of application of the method is then
studied : the class of constraint-based geometric models
that can be evaluated by the system are described.

A description of the implementation follows. The
characteristics of the expert-system shell used are given,
together with the different facts used by the rules and a
list of some rules that are used by the system.
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Finally, the operation of the system is explained using
an example.

RULE-ORIENTED 2D APPROACH

Geometric models that represent 2D computer-aided
design are considered. These models consist of oriented
line segments with their endpoints and geometric
constraints, such as the following:

e two line segments share a common endpoint,
e two points are a given distance apart,
e two line segments make a given angle.

In fact, a mechanical design also includes circles and axes
of symmetry.

e Tangency constraints between circles or between a line
and a circle, as well as constraints on the radius, can
be expressed as follows (see Figure 1):

o A tangency constraint between a line and a circle
is expressed by a right-angle constraint between the
radius (to the circle-line tangency point) of the
circle and the line.

o A tangency constraint between two circles is
expressed by a flat angle constraint between the
radii (to the circle—circle tangency point) of the
circles.

o The diameter is translated in a distance constraint
of the radius of the circle.

e In the presence of an axis of symmetry, a distance or
an angular constraint in one side of the design induces
a similar constraint on the other side. This can be
done in a preprocessing stage.

Therefore, it is assumed in this paper that the translations
from ‘circle constraints’ and ‘distance constraint
perpendicular to a segment’ to ‘distance and angle
constraints’, and the insertion of distance or angular
constraints owing to the presence of axes of symmetry,
has been already performed.

The problems that are to be solved are as follows:

e For a given model and given values for distance and
angle constraints, the coordinates for all the model
points have to be evaluated with respect to an original
figure, to solve ambiguities during the computation.

e During the creation of a model, overconstrained
situations have to be detected as soon as a redundant
constraint is inserted.

N

——

Figure 1. Constraints on circles translated into angle and
distance constraints
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The method is based on an expert-system shell, i.e. the
constraints and the points are facts. Rules about these
facts are used to evaluate the location of the model points
and to detect inconsistent constraining schemes. In fact,
to build a real interactive environment, one can follow
Roller'®, Sunde!® or Aldefeld!® as follows:

e permanent evaluation of the model throughout the
session, and maintenance of the design history, for the
following reasons:

o to give immediate explanations to the user when a
part of the design is overconstrained,

o o maintain a part of the construction when a
constraint is edited,

o to handle automatically*families of designs that
have the same constraining scheme but different
numerical values,

e proposal of different solutions to the user when
constraints lead to multiple choices.

The authors have focused on the geometric problem, i.c.
on the rules of the expert system, rather than providing
all the interactive tools for the design to the user; these
tools can be easily added to the system following
References 15, 16 and 18.

RULES

Creation rules

Reference 16 is followed, and the notions of constrained
angle sets and constrained distance sets (in short, CA
and CD sets) are used to build the rules. What these two
sets are is stated in more detail :

e A CAsetisaset of pairs of points whose corresponding
oriented segments are mutually constrained in angle.

e A CD set is a set of points with mutually constrained
distances. A frame of reference is attached to each CD
set, and the location of the points belonging to the
CD set are expressed in it. A model is completely
constrained when all the points belong to the same
CD set.

With these CD sets, the solution can be built using
intermediate frames (which seems not to be the case in
Aldefeld’s method, when his examples are considered).
This distinction is of importance when studying the scope
of the method, as seen below.

Definition: In this paper, two CD sets are said to be
adjacent if they have one point in common. A segment
is said to helong to a CA set if its endpoints form a pair
of this CA set.

Elementary CA and CD sets are created when constraints
are added to the model, as shown in Figure 2:

e When a angle constraint « between two directed
segments is placed, a CA set is created, and the
orientations are noted.

e When a distance constraint d between two points is
given, a CD and a CA set are created. The positions

computer-aided design
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ca0={ (AB), (A,.C) }
orientation((A,B),ca0)=0
orientation((A,C).cal)= o

r0={A B} ca0={(AB)}
B angle_ca(r0,ca0)=0

/ e position(A,r0)=(0,0)
Ayrd

position{B,r0)=(d,0)
orientation((A,B),ca0)=0
Figure 2. Creation of CA and CD sets

of the points in the associated frame of reference are
(0,0)and (d, 0). The angle of the CD set with respect
to the CA set is noted as 0.

These elementary CA and CD sets are merged using the
construction rules.

Construction rules

With the notion of CA and CD sets, Sunde'® also gives
two rules which result in an enlargement of the CA and
CD sets, and a reduction of the number of these sets.

Rule S1: When a segment belongs to two different CA
sets, these two sets are combined into one CA set.

Rule S2. If two CD sets contain a common point, and
the angle between them is constrained, the two CD sets
are combined into one CD set.

Apart from these rules, and what will be called the
‘parallelogram’ rule, the authors’ main construction
rules are based on the special cases of the triangle and
on one case of a quadrilateral. Every time one of these
rules is triggered, several CD sets are merged. This is
explained in more detail below.

Triangle rules
There are three special cases for a triangle:

e Triangle specified by three distance constraints: three
CD sets defining a triangle: The triangle rule TI
computes the intersection of two circles, and the three
CD sets are merged (cf. case T1 of Figure 3)*.

e Triangle specified by two distances and an angle not
constraining the two CD sets: The triangle rule T2 is
activated, computing the intersection of a circle and a
line, and the two CD sets are joined together (cf. case
T2 of Figure 3).

o Triangle specified by one distance and two angles: A
point belongs to two different lines fixed in a CD set.
The triangle rule T3 computes the intersection of these
lines, adding the intersection point to the CD set (cf.
case T3 or Figure 3).

* In the following figures in this paper, the angle constraints between
adjacent segments are shown by a curve, the distance constraints are
shown by an arrow, and the CD scts are shown by a closed tinted
thicker curve around the relevant points.
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Figure 3. Triangle rules T1, T2 and T3

The computation of the intersection of two circles, or of
a circle and a line, may lead to zero, one, two or, when
the circles are identical, an infinite number of solutions.
In the first .and the last case, there is a numerical
impossibility. This is detected during the triggering of the
rules. When there are two solutions, one of them is
chosen, using an angular criterion on an original figure
(cf. Reference 19 for details).

Parallelogram rule

Another rule is introduced to manage angle constraints
between nonadjacent segments as they may appear in
technical drawings®. This rule assembles nonadjacent CD
sets constrained by an angle. In this rule, a parallelogram
is inserted in the model by the addition of a point and
two segments.

In Figure 4at, for example, the segments BC and DE
have fixed directions, and their lengths are known. This
is also the case for AB and CD. Then, the point C’ is
added, with

e BC' parallel to CD and equal in length,
e C'D parallel to BC and equal in length.

The CD sets containing B, C" and A, B can be merged
using rule S2. The same is true for the CD sets containing
D, C’and D, E. Now the problem can be solved, replacing
C by C’ without complicating the model. In fact, when
the positions of B, C' and D are found, the CD sets

" This powerful rule is not mentioned in References 14-17.
! The segments marked with the same number of strokes are fixed
together in direction.
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b

Figure 4. Parallelogram rule, ( a ) one parallelogram, (b )
two parallelogram

corresponding to C, D and B, C are combined using rule
S2, and the value of C is obtained.

There is a second version of the parallelogram rule
that involves two parallelograms. It is shown in Figure
4b.

Quadrilateral rule

Using the triangle rules and the parallelogram rules, a
quadrilateral can be constructed in most cases. One just
adds rule Q for a quadrilateral in one case when a
quadrilateral is fixed in angle, and when two opposite
segments are constrained in distance. The problem is
reduced to a computation of the intersection of two
different lines, as shown in Figure 5.

The introduction of rule Q has been chosen rather
than that of another parallelogram rule when two CD
sets are in translation along two different lines to avoid
unnecessary adjunctions of parallelograms during the
computation.

The fourth section of the paper shows that the set of
construction rules solves the problem for a large class of
geomefric models.

Verification rules

The evaluation of a model under a given set of constraints
may fail for two different reasons:

Figure 5. Quadrilateral rule Q
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e Thereisanumerical impossibility. If a constraint value
leads to a numerical impossibility, i.e. the numerical
values given for the constraint cannot lead to a
solution, then the triangle rules and the quadrilateral
rule detect it. The procedure associated with each rule
checks whether the computation is possible before any
further action is started.

o A part of the model is overdetermined. When a new
constraint is introduced by the user, all the applicable
rules are activated. Then, if the model is computable
by the method, the CA sets at each step contain exactly
the endpoints of the segments fixed in direction, and
the CD sets contain the points fixed in distance. Thus,
adding a redundant constraint to an already
constrained part of the model leads to one of the
following cases:

o The two segments that are constrained in angle
already belong to the same CA set.

o The two points that are constrained in distance
already belong to the same CD set.

These conditions are easy to express as rules in the
expert system. For each insertion of a constraint, these
rules are activated before the construction rules: if a
new constraint is redundant, the system refuses to
insert it, and it sends a warning signal to the user.

Note that, when detecting redundancy, it is presumed
that all the information has been deduced from the
constrainis already given by the user. When the model
cannot be computed by the authors’ set of rules, it cannot
be ensured that all the overdeterminations have been
detected. The same applies in Aldefeld’s and Sunde’s
methods. Thus, it is important to characterize the set of
2D models that the authors’ method can compute.

MODEL COVERAGE

For the 2D problem, it is known that, to fix n points
together, 2n — 3 distance or angle constraints are
necessary, if an origin and a rotation about the origin
are given*. The problem considered here is as follows.

Can any model that is completely constrained by angle
and distance constraints be computed by the authors’
method, or if this is not the case, is there a describable
subset of models with this property?

It is seen in the fourth section that there exist models
that cannot be computed by the method. The goal is
restricted to finding a description for a sufficiently large
class of models that is covered by the method.

First, two classes of models consisting of n constrained
points are distinguished, as follows.

Definition 1: Given a model F that includes n points and
2n — 3 constraints, the graph G = (N, E) is defined as
follows. N is the set of points of F. E is the set of segments

* Two unknowns are associated with each point, and a distance or an
angle constraint gives one equation. As an origin and a rotation are
given, three unknowns are fixed. Thus, 2n — 3 equations are required
to fix the remaining unknowns
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of F on which there is an angle or a distance constraint.
The model is ‘simple” if and only if there exists a simple
cycle G’ covering Gp. It is called ‘nonsimple’ in the other
cases (see Figure 6 for examples).

Proposition 1: If the model is simple and completely
constrained, and if the numerical values are consistent,
the algorithm computes an evaluated version that
satisfies the constraints.

The proof of this proposition is the subject of the next
section.

Case of simple models

Consider the cycle G’ covering the graph Gp. All the
distance constraints concern adjacent points, and the
angle constraints concern existing edges. G’ contains
exactly n edges and n points. 2n — 3 constraints are
required for the proper definition of the model. This set
of constraints contains at most n distance constraints and
n — 1 angle constraints. Thus, three cases are possible.

Simple models constrained by n — 1 angles and
n — 2 distances

If the model is constrained by n — 1 angles, the segments
are all fixed in direction.

o One set of adfjacent segments: There is only one CD
set for the whole model, containing n — 1 points, as
shown in Figure 7a. Then, rule T3 fixes all the points.

o Two sets of adjacent segments: There are two CD sets
containing the n points, as shown in Figure 7b. Rule
Q computes their union.

Simple models constrained by n — 2 angles and
n — 1 distances

As there are only n — 2 angle constraints, two cases are
possible, as follows:

o

f\ ) ]

Figure 6. Simple and nonsimple models; (a) simple
models, (b ) nonsimple models

[ E—
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Figure 7. n — [ angles and n — 2 distances; (a ) one CD
set containing n — I points, (b) two CD sets for the n
points

e The n— 1 adjacent segments are fixed in their
relative direction (they belong to the same CA set).
Let s be the segment that is not constrained by an
angle, and s’ the segment that is not constrained
by a distance.

o If s = s, all the points belong to the same CD set,
and the whole model can be computed (see Figure
8a).

o If s and s’ are adjacent, the n — 1 points incident
to the remaining segments belong to the same CD
set. The last point is computed using rule T2 (see
Figure 8b).

o If‘s and s’ are not adjacent, the n points are
partitioned into two CD sets. A parallelogram rule
reduces this case to the previous case.

e The n — 1'segments are partitioned into two CA sets.
If all the segments belonging to the same CA set are
connected, there are two adjacent CD sets whose angle
is fixed by a line. Rule T2 yields the result. In the
other case, a sequence of applications of the
‘parallelogram’ rule connects the segments belonging
to a common CA set (see Figure 9). There is then a
model that is similar to the previous one.

Figure 8. n — [ angles constrained together
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Figure 9. Transformation from disconnected CA set into
connected CA set

Figure 10. n — 3 angles and n distances

Simple models constrained by n — 3 angles and n
distances

The distances of the n segments are fixed, and there are
at most three CA sets. Two cases are possible, as follows :

e All the segments belonging to the same CA set are
adjacent (see Figure 10a). Thus, three CD sets cover
the n points, and rule T1 leads to the result.

e The CA set is disconnected, or several CA sets are
mixed together. The application of the parallelogram
rule transforms this case into the previous one (see,
for example, Figures 10a and b).

Nearly simple models

It has been seen that the simple models can be computed
by the method. This class of models is large, but the
condition for the segments to belong to a cycle is still
very restraining. Many practical examples that can also
be solved by the method do not satisfy this condition
(see Figure 11). Therefore, a larger class of models with
the same properties with regard to the algorithm is now
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Figure 11. Nearly simple models

described. The elements of this class are called ‘nearly
simple’ models. Intuitively, nearly simple models are
models that can be ‘decomposed’ into simple models, or
treated sequentially by the algorithm as a union of simple
models. Definition 2 is more formal.

Definition 2: Let F be a model, i.e. a set of points with
distance constraints on some of them, and angle
constraints on segments joining some of the points. F is
said to be ‘nearly simple’ if there exists a sequence of
simple models F,, ..., F, such that the following are
true:

e [ contains F,.

® | Ji<, N;= N,where G, = (N,, E;)and G; = (N, E).

e Let (C;);¢, and C be the sets of constraints of (F;);<,
and F, respectively. Then,

o C= Ufol(CimC’)!
o ifi>1, C; can be decomposed in C;, = (CC,)u
D;u A;, where

B D; is composed of distance constraints on a
couple of points such that there exist N;, with
j < i, containing them,

B A, is composed of angle constraints on a couple
of segments joining points such that there exist
N, with j < i, containing them.

Then, using the decomposition in simple models and
Proposition 1, Proposition 2 can be stated.

Proposition 2: If the model is nearly simple and
completely constrained, and if the numerical values are
consistent, the algorithm computes an evaluated version
that satisfies the constraints,

Note that methods using only one frame of reference in
the computation, as in Briiderlin’s'*, Aldefeld’s!® and
Sunde’s'® first methods, cannot solve all the simple and
nearly simple models. For example, to solve the case in
Figure 11b, two frames are needed, one where 4, B and
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C are joined, and another to join C, £ and F. Hence,
using several frames during the computation enlarges the
set of models that are resolvable using a rule-based
approach. Moreover, as the parallelogram rule is not
mentioned in the previous models, it cannot be known
whether Sunde’s last method!” computes nearly simple
models.

Models that are not nearly simple

When a model is not nearly simple, it contains a subset
composed of 1 points and segments, with 2n — 3 distance
and/or angle constraints on the segments that cannot be
decomposed into simple models. Typically, such types of
subset are special cases, where the n unknowns are
involved simultaneously. The value of n is not bounded.
In fact, Proposition 3 can be stated.

Proposition 3: For any value of n, there exist an m, with
m > n, and a model I constraining m points with 2m — 3
angle and distance constraints such that F does not
contain a simple model.

This proposition is proved by a way being shown to build
a family of models F,, F,,... such that, for all i, F,
constrains 3 + i points, and F; does not contain a simple
model.

F, is described, and the way is given to build F;,,
from F; when i > 1 (F, F, and F, are shown in Figure
12), as follows:

e F, has a distance constraint on pyp,, and it has the
constraint angles (p,ps, P1P4)s (P1P3> PiP2)s (P1DP2,

p2py) and (paps, paps)-
e Fori> 1, F,,, contains j =3 + i points, and it has
the constraints of F; minus one of the following:

o the angle constraint (p,p;_,, p,p;) if j is even, or
o the angle constraint (p;p;_,, p,p;) if j is odd,

plus the three constraints involving the new point, i.e.

o a distance constraint on p;_, p;,
o two angle constraints (p,p;_,, p,p;) and (p,p;_,

P2p;).

P

"

Figul‘e 12, F;, FZ and .Fj
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The fact that F; does not contain a simple model is
obvious by induction using this construction.

To compute these models numerically, one can use the
fact that the area of the upper triangle is equal to the
sum of the areas of the small ones. This equation involves
all the unknowns of the model.

Thus, the rule-based methods have their intrinsic
limitations : a finite set of rules cannot solve all the 2D
models constrained by angles and distances. In fact, if
the constraints are seen as equations, the rule-based
methods are a way of decomposing the computation of
the set of nonlinear equations into a sequence of
computations of subsystems of bounded size. This
decomposition is impossible when the set must be solved
globally. Nevertheless, this method solves the typical
models of mechanical drawings, and it can be used in
this context.

IMPLEMENTATION

Characteristics of expert system

An existing expert-system shell that was developed by
Benoit Faller?® was used. This was written in ¢, and it
has the following characteristics

e If several rules are applicable at the same time, it
manages the triggering of the rules with respect to the
priority order given by the user

e [t allows actions in the rules that are calls to
procedures written in C.

e It allows variables in the conditions.

Each rule is structured as follows:

e The name of the rule, i.e. R{word or number) and
a priority order for the triggering of the rule.

e A list of conditions for the facts of the system’s base

of facts. These conditions may contain variables (?x

means that x is a variable), and they can be negated.

In this case, it means that the rules can be triggered

when no instantiation of the fact appears in the base

of facts. Comparisons of the values of variables are
allowed conditions.

e Action in the rule, i.c. the call of a procedure which
will give a list of new facts as a result. These procedures
are used here to compute the positions of the points,
the angles between two CA sets etc. They return facts
that are inserted in the base of facts.

e The insertion or deletion of facts.

Example:

(orientation ?segl ?cal Talpha)
(orientation 7segl ?ca2 ?beta)
-(equiveca ?cal ?ca2 ?delta)
et si (¢) Tcal 2ca2)

essayer (directe 7cal ?ca2 ?alpha ?beta)
alors -(orientation ?segl ?ca2 7beta)*

RuleS1 priorite 0 si
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If the base of facts contains

e (orientation sl ca 2 0.)
e (orientation sl cal 90.)
e (orientation s2 ca2 180.)

as cal and ca2 are different, the RuleSI is applicable.
Then, the procedure directe(cal, ca2, 90., 0.) is called,
and the fact (orientation sl s2 0.) is deleted.

The relative order for the triggering of the rules is as
follows:

e the verification rules, to detect overdeterminations as
soon as a new constraint is inserted,

e the ‘cleaning’ rules, to delete facts after the union of
CA or CD sets,

e the ‘intermediate’ rules, such as rules S1 and S2,

e the triangle rules T1, T2, T3, and the quadrilateral
rule Q,

e the parallelogram rule.

Facts used in rules

The facts used in the rules can be classified into three
families :

e cntrance facts,
e facts involving CA sets,
e facts involving CD sets.

These facts are described further below.

Entrance facts

Entrance facts are generated when the user inserts a new
constraint or enters the geometry of the model. Thus,
there is a type of fact that corresponds to each type of
constraint. As segments and points are dealt with,
another type of fact denotes the topology of the model.
Thus, there are the following facts:

e (adjacent p seg): The point p is one of the extremities
of the segment seg.

e (original p x y): x and y are the coordinates of the
point p in the model originally entered.

e (distance pI p2 d): the distance between p, and p, is
equal to d.

e (angle segl seg? alpha): the angle taken in the
counterclockwise direction between the directed
segments segl and seg2 is equal to alpha.

Facts involving CA sets
All the facts involving CA sets denote the angular position
of objects with respect to a CA set:

e (orientation seg ca alpha): for a segment seg,
e (angle_cari ca alpha): for a CD set r,
e (equivcacal ca? alpha): for two CA setscal and ca2.

Facts involving CD sets

A frame of reference is associated with each CD set. In
these facts, the same name is used for the CD set and for
its frame of reference.
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(position p rl a b): The point p, element of the CD

set ry, has the coordinates (a, b) in r,.

e (on_lineplri A BC p2): The point p; belongs to the
line that satisfies the equation Ax + By + C =0 in
the CD set r;, and passes through the point p, whose
position is known in r,.

o (rotation ri r2 al bl a2 b2 p): The CD sets r, and r,
have the point p in common. Its coordinates are
(a,,by)inr, and (a,, b,) in r,.

e (transi_Rrl r2 al bl A B C alpha pl p2). The CD
sets r, and r, are fixed in direction by the angle o,
which is the angle between r, and r,. r, is free to move
on a line that satisfies the equation Ax + By + C =0
inry, and passes through the point p,, which is known
in »;. More precisely, the point p, belongs to this line,
and (a,, b,) are its coordinates in r,. -

o (transi_Crl r2r3 al bl a2 b2 a3 b3 a4 b4 alpha pl
p2): The CD sets r, and r, are fixed in direction by
the angle o, which is the angle between r, and r,. r,
is free to move on a circle whose center is p,, which
is known in r,, and whose radius is the distance
between p, and p,. More precisely, p, has the
coordinates (a,, b,) in r, and (a,,b,) in ry, and p,
has the coordinates (as, b3) in r, and (a,, b, ) in r;.

e (equiv ri r2 mll mil2 ml3 m23): The two CD

sets are fixed in translation and in rotation, and the

transformation from r, to r, has the matrix

My My,
—My, My, My,

0 0 1

EXAMPLE OF WORKING OF SYSTEM

The following example is shown in Figure 13. The user’s
insertion of facts is preceded by ‘«’, and the insertions
caused by the rules are preceded by *=". A ‘—’ preceding
the face denotes the deletion of the fact from the basc of
facts.

The user first enters the topology of the model and the
coordinates of the points in the original model (see Figure
13a):

« (‘original p2 306 —259)
« (original p1 143 —255)
« (original p4 119 —209)
« (original p3 265 —141)
« (adjacent p4 p3p4)...

The user inserts a distance constraint. A CD set r0
associated with the CA set ca0 is created, as shown in
Figure 13b:

« (distance p3 p4 161.000)

= (position p3 r0 0.00 0.00)

= (position p4 r0 161.000 0.00)
= (angle ca r0 ca0 0.00)

= — (distance p3 p4 161.000)
= (orientation p3p4 ca0 0.000)
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Figure 13. Example; (a) entry of topology and
coordinates, (b ) insertion of distance constraint, (c¢)
insertion of three distance constraints, (d) computation
of union, (e ) all points belong to CD set r0

The insertion of three distance constraints follows (see
Figure 13c):

« (distance p2 p3 106.000)

= (position p2 r1 0.00 0.00)

= (position p3 r1 106.000 0.00)
=(angle_ca r1 cal 0.00)

= (orientation p2p3 cal 0.000)

= — (distance p2 p3 106.000)

= (rotation 0 »1 0.00 0.00 106.00 0.00 p3)
« (distance pl p4 51.000)

= (position p1 2 0.00 0.00)

= (position p4 r2 51.000 0.00)
=(angle_ca r2 ca2 0.00)

= (orientation plp4 ca2 0.000)

= —(distance pl p4 51.000)

= (rotation +0 2 161.00 0.00 51.00 0.00 p4)
« (distance p1 p2 163.000)

= (position pl r3 0.00 0.00)

= (position p2 r3 163.000 0.00)

= (angle_ca 3 ca3 0.00)

= (orientation plp2 ca3 0.000)

= —(distance p1 p2 163.000)

= (rotation r2 r3 0.00 0.00 0.00 0.00 p1)
= (rotation rl r3 0.00 0.00 163.00 0.00 p2)
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Then, the user inserts an angle constraint which induces
the triggering of rule S1:

« (angle plp2 p2p3 —249)

= (orientation plp2 cal 111.000)
= —(angle p1p2 p2p3 —249)

= (equivca cal ca3 —111.000)
= — (orientation plp2 ca3 0.000)

The two CD sets r, and r4 have the point p, in common,
and they are fixed in direction. Rule S2 computes their
union (see Figure 13d):

= (equiv rl r3 —0.358368 0.933580 58.414 152.174)
= —(position p2 r3 163.00 0.00)

= (position pl r1 58410 152.170)

= —(position pl +3 0.00 0.00)

= —(rotation r1 ¥3 0.00 0.00 163.00°0.00 p2)

= (rotation r1 »2 58.410 152.170 0.00 0.00 pl)

= — (rotation r2 r3 0.00 0.00 0.00 0.00 p1)

The CD sets r0, rl and 13 are in rotation, and rule T1
is actioned:

= (equiv 0 r2 0.188861 0.982004 151.36807 50.08219)
= —(position p3 r1 106.00 0.00)

= —(position p2 r1 0.00 0.00)

= (position p2 r0 —1.740 105.990)

= —(position p1 r1 58.410 152.170)

= (position pl r0 151.598 50.623)

All the’points belong to the CD set r0 (see Figure 13¢).
The model satisfying the constraints is displayed, and the
session is finished.

This model is computed in 0.9 s by the authors” expert
system on a SparcStation 1+. Note the following:

e The computing time depends on the size of the model,
and also on the number of CD or CA sets used in the
resolution. For example, the CPU time needed for
models involving eight points can vary over 1.5-2.2 s,

e The computation time can differ for the same model
when the insertion order of the constraints is changed,
but the resulting figure is the same.

e When the model is underconstrained, the figure is
partially fixed. The user can only have the list of the
CD and CA sets present in the base of facts, and the
position of the points and the angles of the segments
with respect to these sets. Numerical methods could

" be used to compute a solution using these sets instead
ol the set of equations induced by the constraints.

CONCLUSIONS

It has been shown that using rules to compute
parameterized mechanical designs is feasible. The set
of models that the proposed system can solve is
sufficiently general, and it essentially comprises the
models that are of relevance to 2D mechanical designs.

Experiments with an implementation of this approach
have indicated that the computation of constrained
models is fast.

The amount of memory used during the session is
not negligible. As the rules contain variables, the
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system maintains the possible instantiations of the
premises of the rules during all the session to accelerate
the deduction process. An improvement would be to
structure the drawings to reduce the number of
variables during the execution process.

The scope of the method has been studied, and the
intrinsic limitations of rule-oriented approaches have
been shown. An idea for improving the resolution
would be to mix numerical and rule-oriented methods.

A detailed description of this approach and an
extension to 3D models can be found in Reference 19.
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