EPJ E

Soft Matter

Eur. Phys. J. E 28, 479-480 (2009)
DOI: 10.1140/epje/i2009-10445-3

Numerical modelling of foam Couette flows

I. Cheddadi, P. Saramito, C. Raufaste, P. Marmottant and F. Graner

Sooleth Italiana
Di FicionSpringer

Erratum

Erratum

Numerical modelling of foam Couette flows

I. Cheddadi ${ }^{1}$, P. Saramito ${ }^{1, \mathrm{a}}$, C. Raufaste ${ }^{2, \mathrm{~b}}$, P. Marmottant ${ }^{2}$, and F. Graner ${ }^{2, \mathrm{c}}$
${ }^{1}$ Laboratoire Jean Kuntzmann, Université J. Fourier, CNRS and INRIA, 51, rue des Mathématiques, 38400 Saint-Martin d'Hères Cedex, France
${ }^{2}$ Laboratoire Spectrométrie Physique, UMR 5588, CNRS and Université J. Fourier, B.P. 87, 38402 Saint-Martin d’Hères Cedex, France

Original article: Eur. Phys. J. E 27, 123 (2008) DOI: 10.1140/epje/i2008-10358-7
Received: 3 February 2009
Published online: 14 March 2009 - © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2009

We have found a technical error in Appendix A of [1] which induced errors in Appendix B and in the figures. However, the text of the paper, including all conclusions drawn, is completly unaffected by the changes. In [1], equations (A.1a), (A.1b), and (A.1c) should read

$$
\begin{gather*}
\lambda \frac{\partial \tau_{r r}}{\partial t}+\max \left(0,1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}\right|}\right) \tau_{r r}=0, \tag{A.1a}\\
\lambda\left(\frac{\partial \tau_{r \theta}}{\partial t}-2 \dot{\epsilon}_{r \theta} \tau_{r r}\right)+\max \left(0,1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}\right|}\right) \tau_{r \theta}=2 \eta \dot{\epsilon}_{r \theta} \tag{A.1b}
\end{gather*}
$$

$$
\begin{equation*}
\lambda\left(\frac{\partial \tau_{\theta \theta}}{\partial t}-4 \dot{\epsilon}_{r \theta} \tau_{r \theta}\right)+\max \left(0,1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}\right|}\right) \tau_{\theta \theta}=0 \tag{A.1c}
\end{equation*}
$$

with $\dot{\epsilon}_{r \theta}=1 / 2\left(\frac{\partial v}{\partial r}-\frac{v}{r}\right)$. Consequently, Appendix B is modified but its conclusion remains the same: if the strain rate is discontinuous, we can predict the critical strain rate

$$
\dot{\varepsilon}_{r \theta}^{c}=\frac{1}{2 \eta}\left[1-\frac{\tau_{Y}}{\sqrt{2}\left|\tau_{r \theta}\left(r_{c}\right)\right|} \frac{1}{\left(1+\frac{\lambda^{2}}{\eta^{2}} \tau_{r \theta}\left(r_{c}\right)^{2}\right)^{1 / 2}}\right] \tau_{r \theta}\left(r_{c}\right) .
$$

All the presented computations have been made again,

[^0]and most figures are unchanged, except Figures 7, 8(b), and $9(\mathrm{~b})$, whose new versions are shown in the following page.

Modified Appendix B

[...] We write the constitutive equation with $\frac{\partial}{\partial t}=0$. We have:

- When $r>r_{c}$: the plasticity term is zero, so (A.1c) leads to $2 \lambda \dot{\epsilon}_{r \theta} \tau_{r \theta}=0$, and $\dot{\epsilon}_{r \theta}=0$ as $\tau_{r \theta} \neq 0$; in addition, we have $v=0$ because of boundary conditions. However, (A.1a) and (A.1b) are then equivalent to $0=0$, and the normal stress components are not determined by the stationary equations only. In the transient problem, their values are determined by the initial conditions. Finally, as $v=0$, (A.2b) yields $\tau_{r \theta}=C / r^{2}$, where C is a constant.
- When $r<r_{c}$: (A.1a, A.1b) lead to

$$
\begin{aligned}
& \left(1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}\right|}\right) \tau_{r r}=0 \\
& -2 \lambda \dot{\epsilon}_{r \theta} \tau_{r r}+\left(1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}\right|}\right) \tau_{r \theta}=2 \eta \dot{\epsilon}_{r \theta} \\
& -4 \lambda \dot{\epsilon}_{r \theta} \tau_{r \theta}+\left(1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}\right|}\right) \tau_{\theta \theta}=0
\end{aligned}
$$

We denote with a^{-}(respectively, a^{+}) the quantities evaluated in $r=r_{c}^{-}$(respectively in $r=r_{c}^{+}$); v and $\tau_{r \theta}$ are continuous, thus $v^{-}=v^{+}=0, \tau_{r \theta}^{-}=\tau_{r \theta}^{+}=\tau_{r \theta}\left(r_{c}\right)$ and we
have

$$
\begin{aligned}
& \left(1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}^{-}\right|}\right) \tau_{r r}^{-}=0 \\
& -2 \lambda \dot{\epsilon}_{r \theta}^{-} \tau_{r r}^{-}+\left(1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}^{-}\right|}\right) \tau_{r \theta}\left(r_{c}\right)=2 \eta \dot{\epsilon}_{r \theta}^{-} \\
& -4 \lambda \dot{\epsilon}_{r \theta}^{-} \tau_{r \theta}\left(r_{c}\right)+\left(1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}^{-}\right|}\right) \tau_{\theta \theta}^{-}=0
\end{aligned}
$$

If $1-\frac{\tau_{Y}}{\left|\tau_{d}^{-}\right|}=0$, we find $\dot{\epsilon}_{r \theta}^{-}=0=\dot{\epsilon}_{r \theta}^{+}$: there is no discontinuity.

If $1-\frac{\tau_{Y}}{\left|\tau_{d}^{-}\right|} \neq 0$, we find

$$
\begin{aligned}
& \tau_{r r}^{-}=0 \\
& \tau_{\theta \theta}^{-}=2 \frac{\lambda}{\eta} \tau_{r \theta}\left(r_{c}\right)^{2} \\
& \dot{\epsilon}_{r \theta}^{-}=\frac{1}{2 \eta}\left(1-\frac{\tau_{Y}}{\left|\boldsymbol{\tau}_{d}^{-}\right|}\right) \tau_{r \theta}\left(r_{c}\right)
\end{aligned}
$$

with now

$$
\left|\boldsymbol{\tau}_{d}^{-}\right|=\left(2 \tau_{r \theta}\left(r_{c}\right)^{2}+2 \frac{\lambda^{2}}{\eta^{2}} \tau_{r \theta}\left(r_{c}\right)^{4}\right)^{1 / 2}
$$

As $\dot{\epsilon}_{r \theta}^{-} \neq \dot{\epsilon}_{r \theta}^{+}$, the strain rate is discontinuous at $r=r_{c}$ and we can define a critical strain rate

$$
\dot{\varepsilon}_{r \theta}^{c}=\frac{1}{2 \eta}\left[1-\frac{\tau_{Y}}{\sqrt{2}\left|\tau_{r \theta}\left(r_{c}\right)\right|} \frac{1}{\left(1+\frac{\lambda^{2}}{\eta^{2}} \tau_{r \theta}\left(r_{c}\right)^{2}\right)^{1 / 2}}\right] \tau_{r \theta}\left(r_{c}\right)
$$

Fig. 7. (Colour online) Transient case: $\left|\varepsilon_{d}^{(e)}\right|$ versus t for r from $r=r_{1}$ to r_{8}. Dashed green lines: former computations; solid red lines: present computations.

Fig. 8. (Colour online) Stationary case: (b) Shear strain rate $\dot{\varepsilon}_{r \theta}$ versus r. There is no experimental data available for the comparison. Dashed green lines: former computations; solid red lines: present computations.

Fig. 9. (Colour online) Stationary case: (b) Difference of normal components. $-\left(\varepsilon_{r r}^{(e)}-\varepsilon_{\theta \theta}^{(e)}\right)$ versus r. Dashed green lines: former computations; solid red lines: present computations; - : experimental data.

References

1. I. Cheddadi, P. Saramito, C. Raufaste, P. Marmottant, F. Graner, Eur. Phys. J. E 27, 123 (2008).

[^0]: ${ }^{a}$ e-mail: pierre.saramito@imag.fr
 b Present address: Physics of Geological Processes, University of Oslo, Sem Selands vei 24, NO-0316 Oslo, Norway.
 ${ }^{\text {c }}$ Present address: CNRS UMR 3215, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.

