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On Almost Perfect Nonlinear Functions Over FFFn
2

Thierry P. Berger, Anne Canteaut, Pascale Charpin, and Yann Laigle-Chapuy

Abstract—We investigate some open problems on almost perfect
nonlinear (APN) functions over a finite field of characteristic 2. We
provide new characterizations of APN functions and of APN per-
mutations by means of their component functions. We generalize
some results of Nyberg (1994) and strengthen a conjecture on the
upper bound of nonlinearity of APN functions. We also focus on the
case of quadratic functions. We contribute to the current works on
APN quadratic functions by proving that a large class of quadratic
functions cannot be APN.

Index Terms—Almost bent function, almost perfect nonlinear
(APN) function, power function, permutation polynomial.

I. INTRODUCTION

MOST attacks on symmetric cryptographic algorithms
are related to some properties of the Boolean func-

tions describing the system. For iterated block ciphers, the
efficiency of the main cryptanalytic techniques (such as linear
cryptanalysis, differential cryptanalysis ) can be measured
by some quantities related to the confusion part of the round
function, usually named S(ubstitution)-box. This paper focuses
on the S-boxes which guarantee a high resistance to differential
cryptanalysis [4]. This attack successfully applies when two
plaintexts with fixed difference lead after the last-but-one
round to outputs whose difference takes a certain value with a
high probability. Therefore, a necessary security condition is
that the output distributions of all derivatives of the involved
S-box, , must be close to the uniform
distribution. The relevant parameter for an S-box with
inputs is then

which must be as small as possible. When the number of output
bits of the S-box is the same as the number of inputs (this is the
case in most ciphers), we have that , and the functions
achieving this bound are called almost perfect nonlinear (APN)
[27]. Therefore, APN functions are those S-boxes which offer
optimal resistance to differential cryptanalysis.

As optimal objects, APN functions are also used in several
other areas of telecommunications. Most notably, APN func-
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tions correspond to linear codes of length and dimen-
sion which have the best minimal distance [13]. Thus,
APN functions are of great interest in coding theory. Despite
a number of recent works, many problems remain open. Actu-
ally, only a few APN functions are known, and most of them are
affinely equivalent to a power function (see, e.g., [6][7]). The
first infinite class of quadratic APN functions, which are not
equivalent to any power function, was exhibited very recently
(see [5] and [19]). In this paper, we investigate some open prob-
lems on APN functions and we give partial results.

The next section gives some basic definitions related to APN
functions over . Actually, in the whole paper, we identify the
vector space with the finite field of order and such
a function is expressed as a polynomial in . Since
can be represented by the collection of its Boolean coordi-
nates, we also recall some properties on Boolean functions. In
Section III-A, we study the APN functions by means of their
Boolean components. We prove that the necessary condition
for a function to be APN, introduced in [26], is also sufficient
(Theorem 2). Then, we derive a new characterization of APN
functions (Corollary 1). We later characterize APN permuta-
tions of (Proposition 2). This last result is motivated by
the conjecture that there is no APN permutation of when

is even. In this context, and using our characterization, we
prove that there is no APN permutation whose component func-
tions are plateaued (Corollary 3 and Theorem 3). We also give
a new characterization of APN power functions on when

is even and an upper bound on their nonlinearity (Theorem
4). The last section is devoted to quadratic APN functions. It is
well known that the power functions of the form over
with are APN. But, the classification of quadratic
APN functions which are not equivalent to the previous power
functions is still an open problem. Here, we exhibit a whole sub-
class of quadratic functions which does not contain any APN
functions. This result gives us more information about the form
of quadratic APN functions (Proposition 7).

II. DEFINITIONS AND BASIC PROPERTIES

In this section, we introduce notation and some basic proper-
ties which will be used in the paper. The next definition is gen-
eral and suitable for Boolean functions. Actually, in this paper,
we treat the cases and only.

Definition 1: Let and be two nonzero integers. Let
be a function from into . For any , the derivative
of with respect to is the function from into
defined by

If is constant then is said to be a linear structure of .
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The resistance to differential cryptanalysis is related to the
following quantities.

Definition 2: Let be a function from into . For
any and in , we denote

where is the cardinality of any set . Then, we have

and the functions for which equality holds are said to be almost
perfect nonlinear (APN).

The APN property can be equivalently defined as follows.

Proposition 1: Let be any function on . Then,
is APN if and only if, for any nonzero , the set

has cardinality .

From now on, we identify the vector space with the finite
field with elements, . Any function from into
can then be expressed as a polynomial in . Recall that the
degree of is the maximal Hamming weight of its exponents

where and the weight is calculated on the -ary ex-
pansion of . We denote by the trace function on , i.e.,

.
The function can also be represented by Boolean func-

tions of variables, its Boolean coordinates. Note that the coor-
dinates are sometimes called the components of , but it is more
convenient for our purpose to use the following definition, like
in [26].

Definition 3: Let be a function from into . The
linear combinations of the coordinates of are the Boolean
functions

where is the null function. The functions are called the
components of .

We denote by the set of Boolean functions on . In our
context, the linear functions of are the functions , defined
by

(1)

The following notation will be extensively used in the paper. For
any , we denote by the following value related to
the Fourier (or Walsh) transform of :

(2)

where is the Hamming weight of , i.e., the number of
such that . The function is said to be bal-

anced if and only if or, equivalently, .

Definition 4: The Walsh spectrum of is the multiset

The nonlinearity of is its Hamming distance to the set of all
affine functions. It is given by

where

The lowest possible value for is and this bound is
achieved for bent functions.

Definition 5: [8], [31] Let . The function is said to
be plateaued if its Walsh coefficients take at most three values,
namely, . Then, with .

If (and even) then is said to be bent and its Walsh
coefficients take two values only, namely, . Moreover, is
said plateaued optimal if for odd and

for even .

These functions belong to a particular class of Boolean func-
tions, which notably includes all quadratic functions and, more
generally, partially bent1 functions.

The nonlinearity of a function from into is now
defined by means of the nonlinearities of its components.

Definition 6: Let be a function from into with
components , . The nonlinearity of is the minimal
value of the nonlinearities of the . It is equal to

where

The nonlinearity of is a measure of its vulnerability to
linear attacks. The functions that have maximal nonlinearity are
called almost bent (AB) functions. They exist for odd only.

Definition 7: [15] Let be a function from into
with components , . Then

The functions which satisfy

are said to be almost bent (AB). They exist when is odd only.
Moreover, if is AB, then for any and for any nonzero

(3)

i.e., all , , are plateaued optimal.

Remark 1: Let be a function from into .
Studying the APN property and the AB property (for odd )
is equivalent to studying the weights of an associated code
and of its dual (see an extensive study in [13]).

The Walsh spectrum of a Boolean function and its derivatives
are related by the so-called sum-of-square indicator introduced

1These functions were introduced in [12]; they can be seen as a generalization
of quadratic functions.
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in [31] and extensively studied in [8], [9], and [32]. The proof
of the following theorem can be found in [8] and [32].

Definition 8: The sum-of-square indicator of is
defined by

Theorem 1: Any satisfies .
Equality occurs if and only if is plateaued, that is,

and (4)

III. ON APN FUNCTIONS

A necessary condition for a function over to be APN
was provided by Nyberg in [26]. This condition involves the
derivatives of the components of . In this section, we prove that
this condition is also a sufficient condition and derive another
characterization by means of the sum-of-square indicators of
the components of . We further discuss some conjectures. We
notably apply our characterization to achieve some new results
on plateaued functions.

A. Characterizations of APN Functions

The next theorem is mainly due to Nyberg [26]. We include
it only to provide a full characterization of APN functions by
means of the derivatives of their component functions.

Theorem 2: Let be a function from into and
let , denote its components. Then, for any nonzero

(5)

Moreover, is APN if and only if for all nonzero

(6)

Proof: Set . Then is equal to

So

Thus (5) is immediately deduced with equality if and only if
is APN (see Definition 2).

The previous theorem is more efficient for proving that is
not APN. For instance, if is such that and are
constant, for and for some , then the sum in
(6) equals at least ; so is not APN. This argument was
widely used for proving more general results [26]. Conversely,
the sufficient condition induced by Theorem 2 leads to a better

understanding of the properties of APN functions, as indicated
in the next example.

Example 1: Let be a polynomial of degree on ,
where is even. Thus, any component of has degree at most

. Any component , , has all its derivatives of degree at
most ( is the null function). This implies that for all and
for all , we have

a congruence which is satisfied by any quadratic nonbent func-
tion. Suppose that for any , equals for ex-
actly nonzero values of and equals for the others. Then,
by applying Theorem 2, is APN, noticing that

. Is it possible to construct such a function ?
It follows from the previous theorem that the APN property

is related to the values of the sum-of-square indicators, ,
of the components of .

Corollary 1: Let be a function from into with
components , . Then

(7)

Moreover, is APN if and only if

(8)

Consequently, if for all nonzero , then is
APN.

Proof: Set

According to (5), we have . Since
for any and for any , then

Thus, , implying (7). Now, if is APN
then satisfies (6) and we get . Conversely,
assume that . Since for any

these inequalities must be equalities. Then is APN. The last
statement is immediately deduced.

Example 2: When is the inverse function
over , it is well known that is APN for odd and not
APN for even . The nonlinearity of is known, due to the
work of Lachaud and Wolfmann [23]. The are calculated
in [16]. As an illustration of our purpose we recall the following
values:
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• Let be odd. Thus,

and, for all , .
• Let be even. Thus, and, for all ,

.
It appears from Corollary 1 that the APN property only depends
on the extended Walsh spectrum of , i.e., on the multiset

Note that consists of all values taken by
and the number of times they occur. In other words, if is APN,
any function such that is APN too. Indeed,

is APN if and only if the satisfy (8). But the values
are obtained by means of the values of the set (see

Definition 8).

There are only a few extended Walsh spectra which are known
to correspond to APN functions. When is odd, three APN
extended Walsh spectra are known

• whose elements lie in . It is the Walsh
spectrum of all AB function;

• whose elements take all values
such that ;

• for [18], which dif-
fers from both previous spectra since it contains a
value which is not divisible by , but all its el-
ements are divisible by (see [11, Propositions 5.3
and 7.13]). For instance, for (i.e., for ),
the values in are

.
When is even, only two APN extended Walsh spectra are
known:

• whose elements lie in ;
• for [18], which differs

from the previous one because it does not have the same
divisibility as previously mentioned.

It is worth noticing that two functions and with different
Walsh spectra may nevertheless be such that their components
have the same sum-of-square indicators. For instance, when is
odd, all known APN functions on are such that their com-
ponents satisfy for all . Conversely,
two functions with the same extended Walsh spectrum may be
such that the sets and
are different, as we will see in Example 4.

Open Problem 1: Find an APN function on , odd,
such that for some nonzero .

Corollary 1 enables us to characterize APN functions when
the corresponding sum-of-square indicators take their
values in a particular set. Such a situation occurs, for instance,
when all the , are plateaued functions, as pointed out
in Corollaries 2 and 3. When is odd, the situation is well
known. To be clear, we summarize it in the next corollary and
give as proof a short explanation. The even case, which we
treat in Corollary 3, is more interesting since we generalize the
result of Nyberg, [26, Theorem 10].

Corollary 2: Let be odd and let be a function from
into with components , . Then, the following
statements are equivalent:

i) is APN and all , are plateaued;
ii) all , , are plateaued and satisfy

;
iii) is AB.

Proof: If is plateaued, then we have
with (see Theorem 1). If is APN, then (8) is
satisfied with for all , implying ii). We deduce
from Corollary 1 that ii) implies that is APN. The equivalence
between ii) and iii) is mentioned in Definition 7.

Corollary 3: Let be even and let be a function from
into such that all , , are plateaued. Let be

the number of which are bent. Then we have the following.
i) If then is not APN.

ii) If is APN, then with equality
if and only if . Conversely, if

and then is APN.
iii) If is APN then it is not a permutation. Moreover, there

is no permutation of the form where is a linear
function on .

Proof:
i) Assume that there is no such that is bent. Since

is even, we then have for all which
contradicts (8). Thus, is not APN.

ii) Suppose now that is APN. Thus, (8) holds implying
that for some we must have , i.e. is
bent. More precisely

and . We must have
with . Hence,
which leads to with equality if and
only if . It is equivalent to saying that
any nonbent component satisfies and

(since it is plateaued). It implies that
. Conversely, assume that

and . Thus, the nonbent
components satisfies and (8) holds.

iii) The functions which are bent cannot be balanced. If
is APN then there exists such that is bent. Thus,
cannot be a permutation. Moreover, for any linear func-
tion , the component is equal to for
some linear Boolean function . Therefore, it is bent, im-
plying that is not a permutation.

Example 3: There exist APN functions as characterized in
the previous corollary. The most famous one is
where is bent if and only if for all . Note
that is APN for any ; it is AB for odd .

Example 4: Let us consider an APN function on
such that all its components , , are plateaued. When

is odd, Corollary 2 implies that, for any function which has
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the same extended Walsh spectrum as , all components ,
, are plateaued optimal. For instance, the function

, and , defined in [6] is
Carlet–Charpin–Zinoviev equivalent to . Therefore,

is AB, implying that, for any , we have .
When is even, the situation is completely different. For in-

stance, the APN function defined in [6]

and , has the same Walsh spectrum as
. But it does not imply that all its components are plateaued.

For instance, for and , , , takes 30
times the value , 24 times the value , and 9 times
the value . Obviously, the for which
are not plateaued.

The preceding example points out that the APN property may
lead to different sets whereas only one con-
figuration is known in the odd case. A natural question is to de-
termine whether the configuration that appears in the odd case
may also occur when is even.

Open Problem 2: Does there exist an APN function of
, even, such that for all ?

B. APN Permutations

The existence of APN permutations of an even number of
variables is a major open problem, especially for the design
of block ciphers since practical cryptosystems act on an even
number of variables due to implementation constraints. In this
subsection, we discuss this open problem.

Open Problem 3: Let be a permutation on , even.
Is it possible for to be APN?

We will first review what is known about this problem.

Theorem 3: Let be any permutation on , .
(o) If then cannot be APN.
(i) If then is not APN.
(ii) If then is not APN.
(iii) If is such that all its components , , are
plateaued then cannot be APN.
Proof: (o) was proved using a computer, for instance in

[22]. (i) is easy to prove, since if then .
Thus, with , we obtain

(ii) was proved by Hou [22].
The following result was proved by Nyberg in [25]: Let be

even. If any permutation is such that all its components
, are partially bent then cannot be APN; in partic-

ular, there is no quadratic APN permutation of . Partially
bent functions are a kind of plateaued functions which have
linear structures and the proof of Nyberg fruitfully used the nec-

essary condition given by Theorem 2. Our Corollary 3 general-
izes this result, proving (iii).

Now, we show that APN permutations are completely char-
acterized by the derivatives of their components. Recall that
is a permutation on if and only if all its components ,

are balanced. It is well known that this is equivalent to

(9)

We can also use another characterization which leads to the
following result.

Proposition 2: Let be a function from into with
components , . Then is a permutation if and only
if, for all , we have

(10)

Consequently is an APN permutation if and only if, for any

and

Proof:

The last sum is clearly equal to if and only if
for all and for all . This means that

is a permutation.

C. APN Power Functions

More results on the APN property are known when we focus
on the family of power functions, i.e., over . For
instance, if there is which divides and for
some and then is not APN [17][13]. Also if is APN then

is known. We present this last result, indicated
by Dobbertin, in a more general context.

Proposition 3: Let be a divisor of . Let be any func-
tion on . Assume that . If satisfies for some

for some such that and , then is
not APN.

Consequently, if is APN with , then
for odd and

for even .
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Proof: Since lies in then the polynomial
is in too. Let such that the

hypotheses are satisfied. Thus,

where . According to Definition 2, cannot
be APN.

Let and set . Note that such
a polynomial is in . Notably, it cannot be an APN per-
mutation for even . Assume that . Choose in
such that the order of equals . Observe that is
a bijection on and set . Then we get

i.e.

So, we have such that . When
is odd, it is impossible to have . So, if is APN,
the hypothesis leads to a contradiction (according to the
first part of the proposition). We then conclude that for
odd .

Assume now that is even and is APN. This is possible
only if , that is, (so ). Then, in
this case, ; hence .

The fact that, for power functions, the APN property has a
deeper relationship with the Walsh spectrum of the function is
due to the following result.

Proposition 4: Let be any function on of the
form . Let denote the components of . Set

and . Let be a primitive ele-
ment of . Then for all .

Moreover

and

Proof: We have, for any nonzero

by replacing . Now,

(11)

since for . Moreover, for any ,
we have

where the last equation is obtained by writing and
. We then deduce from (11) that

The result now comes from the fact that for
.

Now, the situation when is odd is quite clear as pointed out
in the following proposition. Note that this proposition includes
all APN power functions since any APN power function is a
permutation when is odd.

Proposition 5: Let be any function on of the form
. Let denote the components of . Assume that

. Then the , , are equal and

Moreover, these statements, which are possible for odd only,
are equivalent:

i) is an APN permutation;
ii) for some ;

iii) .
Proof: According to the previous proposition, we have for

any
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since and is a permutation on . The second
statement is directly deduced from Theorem 2. Recall that
cannot be APN for even (see Theorem 3 (iii)).

The fact that APN, with over ( odd),
implies that when , was
proved by Helleseth [20] in another context (see also [10]).

Here again, the situation is very different when is even,
as pointed out in the following theorem. Recall that is
defined by Definition 6. Note that it is conjectured that
cannot be less than for even . We prove here that this
is true for APN power functions.

Theorem 4: Let be an even integer and let be
any function on of the form . Let denote the
components of . Then, is APN if and only if

where is a primitive element of .
Moreover, if is APN, then equals

if
if

implying that

i.e., the nonlinearity of such satisfies .
Proof: Assume that . Thus, from Propo-

sition 4, we have for any

where is a primitive element of . This comes from the
fact that because both functions are linearly
equivalent.

Recall that if is APN, we have
(see Proposition 3). Hence, according to Theorem 2, is APN
if and only if

Let , , denote the components of over
. If is APN then , , with

. Thus, we have

This is because is -to- from to the set
, since if and only if , that is,

where .

Now we have with . The
values of were determined by Carlitz ([14, Theorem 1])

according as is or is not a cube in . We deduce that

and

for even and

and

for odd . Moreover, we have for any

Example 5: For APN power functions over , even,
two different situations are known.

• For Gold exponents, , , ,
we have

and

This corresponds to the situation described in Corollary 3.
These functions achieve the highest possible nonlinearity
for an APN power function as shown in the previous the-
orem.

• For Dobbertin’s exponent,
when , we have for

and

Here, we have .

D. Functions With

We previously focused on APN functions, i.e., the functions
for which with

Now, we point out that some results on the sum-of-square in-
dicators of the components of can be derived from Nyberg’s
result [26], when .

Proposition 6: Let be a function from into with
components , . Then, there exists such that

Proof: We use the same notation as in Definition 2. Let
be such that there exists with . Let
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denote the number of such that . Recall
the following formula due to Nyberg [26]: for any

We deduce the following:

(12)

with equality if and only if for all
. Moreover, we have

(13)

Thus,

with equality if and only if and for all
.

Corollary 4: Let be a power permutation on , even,
i.e.,

with

Let denote the components of . Then, all , ,
are equal and satisfy

Moreover, if equality holds, then .
Proof: When is a power permutation, we have from

Proposition 5 that, for all

Moreover, we know from Proposition 4 that, for any

From the previous proposition, we deduce that, for all

When is even, cannot be APN, i.e., . Thus, it
implies that

for all (14)

Conversely, any power permutation which satisfies (14) with
equality is such that . Indeed, we clearly have that

from Corollary 1. Moreover, for , we would
have

for all

Example 6: When is even, the inverse function
over , which is used in the AES S-boxes, satisfies

for all

(see Example 2). Then, the sum-of-square indicators of its com-
ponents achieve the lowest possible value for a power permuta-
tion of when is even.

Since it is still unknown whether APN permutations of
exist when is even, the use of permutations with
is suitable in cryptographic applications. When is not a power
function, the values

may differ when varies. We know from (12) and (13) that any
function with satisfies

where is the number of such that .
Therefore, we have

(15)

where . Note that, if the sum-of-square
indicators are such that (15) is satisfied for , then

. Indeed, implies that

from Corollary 1. Moreover, if , we deduce from
Proposition 6 and Theorem 2 that

The case in (15) is achieved by the inverse function
which is such that for any nonzero . However, we
can wonder whether some functions with achieve
a lower value for . Thus, the following open problem arises.

Open Problem 4: Find a permutation on , even,
with components , such that and

for some integer .

IV. QUADRATIC APN FUNCTIONS

An infinite class of quadratic APN functions, which are not
equivalent to any power function, was characterized very re-
cently (see [5] and [19]). This disproves a conjecture on APN
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functions of degree , saying that such functions are equivalent
to the power functions over with
and . Here, we contribute to the classification
of APN quadratic functions. We prove that there are no APN
quadratic functions on of the form

(16)

except the previously mentioned power functions. We will use
the Hermite’s criterion. A proof of the next theorem can be
found in ([24, Theorem 7.4]).

Theorem 5: [Hermite’s criterion] Let be any finite field
of characteristic . Then a polynomial is a permuta-
tion polynomial of if and only if both of the following con-
ditions hold:

i) has exactly one root in ;
ii) for each integer with such that

, the degree of is less than
or equal to .

In order to specify our purpose, we first discuss some open
problems.

A. Some Open Problems

Let be a quadratic function on . Then, for any , the
function is affine or constant. Thus, it is obviously deduced
from Proposition 1:

Corollary 5: Any quadratic function on is APN if
and only if for all nonzero , the set is a
flat of codimension .

Recall that when is odd then any quadratic function is
APN if and only if it is AB, that is, all coordinate functions of

are plateaued optimal. Note that we proved this property for
nonquadratic functions by Corollary 2.

More generally, Bending et al. introduced crooked functions
in [1], [30]. Such a function is defined on with odd and
is such that for all nonzero , the set is an
affine hyperplane. Note that Nyberg and Knudsen, in an earlier
paper, have already described the quadratic functions (for odd

) which satisfy this last property [28]. Crooked functions are
AB and the only known crooked functions are quadratic.

Open Problem: Construct crooked functions which are not
quadratic.

Another problem is about the characterization of APN
quadratic functions which are not affinely equivalent to a
power function. Note that in [6], [7], Budaghyan, Carlet, and
Pott exhibited the first known APN functions which are not
affinely equivalent to a power function, but these are of degree
greater than . The first class of APN quadratic functions, not
equivalent to a power function, was recently shown in [5] and
[19]. It is composed of binomials of with and

. So, the existence of a similar class for
remains an open problem.

Clearly, the classification of APN quadratic functions is not
yet achieved. In the next section, we prove that the class of
quadratic functions defined by (16) is APN only when it is an
APN power function. Notably, our next Theorem 6 has the fol-
lowing consequence.

Proposition 7: Let be any quadratic function which is
not a power function. Then if is APN its expression contains
at least one term of the form , where
and .

B. On A Class of Quadratic Functions

Note that (16) is not the general expression of quadratic func-
tions on since it does not include any term of the form

, with . On the other hand, note that if is APN
then is APN too, where is any affine polynomial. We
first prove a useful lemma in order to characterize the APN prop-
erty for the class of quadratic functions defined by (16).

Lemma 1: Let be a polynomial on such that
and satisfying

and for a unique . Then the degree of is
exactly .

Proof: Since , then is not a permu-
tation. The image of , i.e., the set ,
contains exactly elements, including , which appears
twice. Thus, there is only one nonzero element, say ,
which is not in . Let us define the polynomial on by

for
for

Then the image of has cardinality , meaning that is a
permutation. Now we are going to express the polynomial

. Note that, from the definition of unless
and . We claim that the unique

representation of modulo is

This is simply because the right-hand polynomial above has de-
gree and is equal to for each . Thus, we proved that

Since is a permutation, its degree is at most (from
Theorem 5). This implies that must have the term ;
its degree is .

Proposition 8: Let be defined by (16). Then, is APN
if and only if the polynomial , i.e.,

(17)

is a permutation polynomial on .
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Proof: For any , we have

Then, the set has cardinality if and
only if the affine polynomial has a kernel of dimension ,
i.e.,

for all

or, equivalently, for all (by dividing
by the polynomial above). Therefore, is APN if and only if
for any two distinct and in . Moreover, if
there exists such that , this element is
unique. In this case, we know from Lemma 1 that has degree

, which is impossible. Therefore, the previous condition
is equivalent to the fact that is a permutation polynomial.

Now, using Hermite’s criterion, the permutation polynomials
of the form (17) are completely characterized. The first part of
the next theorem was actually proved by Payne [29] in another
context, the general problem of the complete determination of
all ovoids in the projective plane PG . For a detailed proof,
in our context, see [2] and [3].

Theorem 6: A polynomial of of the form

(18)

cannot be a permutation polynomial unless
with and .

Consequently, a quadratic function over of the form
(16) is APN if and only if with
and .

Proof: It was proved by Payne [29] that any polynomial of
the form (18), with at least two terms, cannot be a permutation
(see also [21, Lemma 8.40]). When then
is a permutation if and only if . The proof is
completed by applying Proposition 8 to the functions defined
by (16).

V. CONCLUSION

During this work, our main purpose was to tackle several
open problems on APN functions. Our main results deal with
nonlinearity, APN permutations, and quadratic APN functions.
Despite these results, we point out that a number of interesting
problems remain open and that these are difficult problems.
Among those open issues, one of the most important ones from
a cryptographic point of view is the existence of APN permu-
tations depending on an even number of variables. We want to
mention also (in the even case) that our result on the nonlinearity
of APN power functions is conjectured to be true for any power
function, for a long time. In the last part of this paper, we em-
phasize that the theoretical study of quadratic functions remains
of great interest.
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