
Cryptogr. Commun.
DOI 10.1007/s12095-012-0069-3

Correlation attacks on combination generators

Anne Canteaut · María Naya-Plasencia

Received: 22 January 2012 / Accepted: 1 August 2012
© Springer Science+Business Media, LLC 2012

Abstract The combination generator is a popular stream cipher construction. It
consists of several independent devices working in parallel whose outputs are
combined by a Boolean function. The output of this function is the keystream.
The security of this generator has been extensively studied in the case where the
devices are LFSRs. Some particular cases where the devices are nonlinear have
also been studied, most notably the different versions of the eSTREAM proposal
named Achterbahn. Several cryptanalysis techniques against these ciphers have been
published, extending the classical correlation attack. But each of these attacks has
been presented mainly in a very particular scenario. Therefore, this paper aims
at generalising these methods to any combination generator in order to be able
to compare their respective advantages and to determine the optimal attack for
each particular generator. Generic formulas for the data-time-space complexities are
then provided, which only depend on the number of devices, their periods and the
number of their internal states and of the Boolean combining function. Some of the
considered improvements can also be used in a much more general context, which
includes linear attacks against some block ciphers.

Keywords Correlation attacks · Stream cipher · NLFSR · Parity-check

Mathematics Subject Classifications (2010) 68P25 · 94A60

A. Canteaut (B)
INRIA project-team SECRET, B.P. 105, 78153 Le Chesnay cedex, France
e-mail: Anne.Canteaut@inria.fr

M. Naya-Plasencia
Laboratoire PRISM, Université de Versailles St-Quentin-en-Yvelines,
45 avenue des Etats-Unis, 78035 Versailles Cedex, France
e-mail: maria.naya.plasencia@gmail.com

Cryptogr. Commun.

1 Introduction

One of the most popular constructions of stream ciphers is the combination genera-
tor. In this model, several independent devices (e.g. feedback shift registers) work
in parallel. Their outputs are taken as inputs by a Boolean combining function,
and the output of this function provides the keystream bits. The case where the
combination generator uses shift registers with a linear feedback function is a very
old and well-studied model which has been shown to be vulnerable to several attacks,
including correlation attacks [5–7, 25–27, 29, 33, 34, 38], algebraic attacks [9, 10]
and distinguishing attacks [3, 22]. Meanwhile, the combination generators composed
of LFSRs with unknown feedback polynomials or of shift registers with nonlinear
feedbacks appear to be less vulnerable to this type of attacks.

Such a combination generator using nonlinear feedback shift registers (NLFSRs)
was submitted in 2005 to the eSTREAM public competition [11], launched by the
ECRYPT European network in order to recommend some secure stream ciphers.
This keystream generator named Achterbahn was designed by Gammel et al. [13–
16]. A version of this algorithm was selected for the second phase of the competition.
It was afterwards eliminated due to several attacks presented on its successive
versions [20, 21, 28, 35, 36].

However, since each of these attacks has been applied to a different scenario and
described in a different paper, it is hard to compare their respective advantages, to
determine precisely the scenarios where each variant applies and to decide which
is the optimal attack in a given context. This paper then aims at reviewing and
generalizing these attacks against combination generators with nonlinear constituent
devices in order to include all these variants in a well-defined family and to provide
generic formulas for the complexities in data, time and memory, depending on the
parameters of the generator. Here, we also want to determine the parameters of the
combination generator which make it resistant to the whole family of attacks. Indeed,
these attacks only require the knowledge of the periods of the sequences produced
by the constituent devices and of the Boolean combining function. The result is that,
once we are given such a generator, we will be able to determine in an automatic
way, the different trade-offs and then the complexities of the different attacks that
can be applied. Therefore, it makes it possible to design such a cipher, with an a
priori knowledge of its security level regarding correlation attacks (which are the
best known applicable attacks up to date). We also show that some of the techniques
used for attacking the combination generator apply to a more general problem which
includes for instance the problem to be solved in linear attacks against iterated block
ciphers with Matsui’s Algorithm 2.

The paper is organised as follows. Section 2 presents the combination generator
which will be analysed in detail, as well as a the basic principle of correlation attacks
against this generator and the more general problem which must be solved for
breaking this type of generator. Then, Section 3 describes a general method for
speeding-up most correlation attacks as soon as the considered biased sequence
can be decomposed as the sum of two sequences with independent initial states.
Section 4 presents another technique introduced by Hell and Johansson [20] which
leads to a better trade-off between time and data complexities for solving the general
correlation problem. Section 5 then shows that, in a correlation attack against the
combination generator, both previous improvements can be applied to detect the

Cryptogr. Commun.

correlation between parity-check relations derived from the generator. It finally
compares the different trade-offs achieved by these attacks and discusses which are
the best ones to be applied depending on the situation.

2 General model and notation

2.1 The general combination generator

The general keystream generator which is studied throughout the paper is a pseudo-
random generator composed of independent binary devices, i.e., each of these
devices is a finite-state automaton producing one bit at each time instant. A com-
bination generator based on n such devices consists in combining the outputs of the
devices by a Boolean function f of n variables. Then, the output of this Boolean
function at each time instant provides the corresponding bit of keystream (Fig. 1).

In the paper, the keystream is denoted by S = (S(t))t≥0. Moreover, Ri denotes
device i and Li denotes the number of bits of its internal state. The sequence
produced by Ri is denoted by xi = (xi(t))t≥0. The important and only fact that the
attacker needs to known about this sequence is that it is a periodic sequence with
period Ti ≤ 2Li . In Section 5, for the sake of simplicity, we consider the periods of
the n sequences to be coprime. The attacks are also valid if it is not the case, though
their complexities could be easily reduced.

The internal states of the devices are usually initialised from the secret key and
a public initialisation vector by an initialisation algorithm. In this paper, we will
focus on state-recovery attacks only, i.e., we will aim at recovering the initial states
of the devices just before starting generating the keystream sequence, leaving the
key-recovery problem which highly depends on the properties of each initialisation
algorithm. The fact that an attacker is able to recover the initial states of the devices
is obviously considered as a major weakness of the cipher on its own, as it implies for
instance that the keystream can be reproduced. Also, in all practical cases that we
have studied, the state-recovery attack could always be turned into a key-recovery
attack.

2.2 Principle of correlation attacks

As for all attacks against synchronous stream ciphers, we will consider the known-
plaintext scenario which equivalently means that we assume that some keystream
bits are known to the attacker.

Fig. 1 Keystream generator
composed of several
independent devices combined
by a Boolean function

Device n

Device 2

Device 1

...

f S keystream

x1

x2

xn

Cryptogr. Commun.

A generic attack which always applies to this type of cipher is the exhaustive
search for the initial states of the n devices. For each possible initial configuration, we
can compute the generated keystream and deduce the correct initial state when the
sequence produced by the combining function is the same as the observed keystream.
Such a generic attack requires at least 2

∑n
i=1 Li trials. In a well-conceived stream

cipher, this time complexity is too large and makes the attack infeasible.
In this context, correlation attacks introduced by Siegenthaler [38] are divide-and-

conquer attacks in the sense that they aim at recovering the initial states of some
of constituent devices only, independently from the other ones. In other words,
they exploit the existence of a smaller generator, composed of a subset of the
constituent devices combined by a Boolean function having fewer input variables
than f , whose output σ = (σ (t))t≥0 is correlated to the keystream produced by the
original generator.

If the n-bit vector corresponding to the outputs of the n devices at each time
instant is uniformly distributed, the existence of such a small generator is equivalent
to the existence of a biased approximation of f depending on fewer variables, in the
sense of the following definition.

Definition 1 Let h be a Boolean function with n variables. Then, the bias of h is

E(h) = 2Pr[h(x) = 0] − 1 = 1

2n

[
�{x ∈ Fn

2, h(x) = 0} − �{x ∈ Fn
2, h(x) = 1}].

Sometimes, this quantity is called the imbalance of h, since the function is said to
be balanced if E(h) = 0. It also corresponds to the correlation between h and the
all-zero function.

If f and g are two Boolean functions, the correlation between f and g, also named
the bias of the approximation of f by g, equals E(f + g).

In a correlation attack, the lowest number of devices which must be considered
simultaneously in the small generator is the lowest integer m such that there exists
g, a biased approximation of the Boolean function f on n input variables, which
depends on m input variables only. By definition, the smallest m is equal to R + 1
where R is the so-called resiliency order (aka correlation-immunity order when f
is balanced) of the combining function [37]. It is worth noticing that R is upper-
bounded by (n − 1 − deg f) [37], and that the algebraic degree of f cannot be too
low for avoiding algebraic attacks for instance. Then, a precomputational step in the
attack consists in finding an appropriate biased approximation g of f , which depends
on m variables. For m = R + 1, which is usually the best choice for the attacker,
it is known that the approximation of f with m = R + 1 variables which has the
highest bias is the linear function corresponding to the sum of all involved variables
(possibly with a nonzero constant term) [5]. In the case where it is suitable to consider
more than R + 1 devices together, then the approximation with the highest bias
may be nonlinear, but it can be easily computed by the technique described in [39,
Theorem 1]. It is worth noticing that there is no need for maximizing the magnitude
of E(f + g) instead of maximizing E(f + g) when there is no restriction on the
value of g(0). Indeed, for any approximation g, we have E(f + (g ⊕ 1)) = −E(f + g).
It follows that we can assume that E(f + g) is always positive when g is a good
approximation of f .

Cryptogr. Commun.

Once an appropriate approximation has been found, the attack consists in recov-
ering the correct initialisations of the m targeted devices. The simplest method is the
one originally proposed by Siegenthaler [38]: it performs an exhaustive search for the
initial state of the small generator, i.e., for the initial states of the m targeted devices.
For each initialisation, the attacker produces N bits of the output σ and computes
the correlation between these N bits and the corresponding keystream bits, i.e.,

N−1∑

t=0

(−1)S(t)+σ(t) .

The correct initialisation is then expected to be the one maximizing the correlation,
or to lead to a correlation higher than some appropriate threshold.

Therefore, this attack is a particular instance of the following more general prob-
lem, which will be referred to as the general correlation problem. Let z = (z(t))t≥0 be
a binary sequence depending on a secret parameter K (e.g. a part of the initial state)
which can take 2k different values. Assume that, for any t,

Pr[z(t) = 0] =

⎧
⎪⎪⎨

⎪⎪⎩

1

2
(1 + ε) if K = K�

1

2
otherwise

where K� is a given unknown value and ε > 0. The problem is then to recover K�,
i.e., to find the initial state which maximizes

N−1∑

t=0

(−1)z(t) .

It is worth noticing that linear attacks against iterated block ciphers with Matsui’s
Algorithm 2 [32] are faced with the same problem where z consists of several
evaluations of a linear relation between the plaintext and the ciphertext.

In the following, we present two techniques for solving the general correlation
problem when the sequence z can be decomposed as a sum of several sequences
with independent initial states and with periods less than N. Section 3 describes a
general algorithm which reduces the time complexity of the attack with a similar data
complexity. This algorithm has been used in the particular case of the attack against
Achterbahn 80/128 proposed by Naya-Plasencia [35]. The second improvement
described in Section 4 has been first proposed by Hell and Johansson [20]. It consists
in using decimated sequences in order to achieve a better trade-off between time and
data complexity. Finally, Section 5 shows that both improvements can be used for
computing the correlation between so-called parity-check relations in the particular
context of a correlation attack against a combination generator. The obtained attacks
apply to any such generator once the periods of the n constituent sequences are
known, as well as the (possibly strong) Boolean combining function f . In general, we
will see that the main weaknesses of this generator might originate from two possible
facts: the fact that the periods of the sequences produced by the devices are too small
(even though the number of devices, n, is big), and a weak combining function.

Cryptogr. Commun.

3 Speeding-up the general correlation attack

3.1 Basic algorithm

The basic technique for solving the general correlation problem consists in perform-
ing an exhaustive search for the secret initial state of the sequence z and in applying
a hypothesis test to recover the correct initialisation. The optimal hypothesis test is
defined by the Neyman–Pearson lemma which compares the value of the correlation
to an appropriate threshold. All initial state candidates can also be sorted as
specified by the Neyman–Pearson lemma, and then they can be tested in order of
probability [30]. It is known, for instance from [22, Section 4.1], that the number of
samples needed to determine the correct initialisation out of 2k possible values is
then

N � 2k ln 2

ε2
,

where ε denotes the bias of the sequence z. The time complexity is then N2k.
In the particular case where z depends affinely on its k-bit initial state K, i.e., if

there exists a sequence (y(t))t≥0 independent from K such that

z(t) = αt · K ⊕ y(t), ∀t ≥ 0 ,

the time complexity can be reduced by using a FFT technique as proposed for
instance in [7, 31]. Indeed, for any possible initial state K, we have

Z(K) =
N−1∑

t=0

(−1)z(t) =
N−1∑

t=0

(−1)αt ·K⊕y(t) =
∑

x∈Fk
2

F(x)(−1)x·K

where F is a function from Fk
2 into Z defined by

F(x) =
∑

t<N, αt=x

(−1)y(t) ,

where F(x) = 0 when x does not correspond to any αt, 0 ≤ t < N. The set of all Z(K),
K ∈ Fk

2 , can then be obtained by computing the fast Walsh–Hadamard transform of
F with complexity O(k2k).

This technique leads to an attack against the combination generator with m tar-
geted devices, Ri1 , . . . ,Rim . Throughout the paper, we use the same notation as
in Fig. 2: a combination generator with n constituent devices is considered. Its
combining function is denoted by f and depends on n variables. The attack then
uses an approximation g of f , which depends on m variables only. In this context,
the data complexity of the attack is then

2 ln 2
∑m

j=1 Li j

ε2
,

where ε = E(f + g) and the time complexity with the basic algorithm is

2 ln 2
∑m

j=1 Li j

ε2
× 2

∑m
j=1 Li j .

Cryptogr. Commun.

Fig. 2 Principle of correlation
attacks against the
combination generator

Device 1

Device 2

Device n

Device im

Device i1

f

g

correlation

σ

...

...

S

But, the FFT technique may apply, in particular when the targeted devices are LFSRs
and when the best approximation g of f is linear, which is always the case when the
small generator involves the smallest possible number of devices, m = R + 1, where
R is the resiliency order of f . Then, the sequence σ produced by the small generator
can be expressed as

σ(t) =
m⊕

j=1

(
α j,t · Ki j

) = (α1,t, . . . , αm,t) · (Ki1 , . . . , Kim) ,

where Ki j denotes the initial state of register Ri j . The time complexity for recovering
the initial states of these m registers is then reduced to

m∑

j=1

Li j2
∑m

j=1 Li j + 2 ln 2
∑m

j=1 Li j

ε2
,

where the first term corresponds to the FFT computation and the second one to the
computation of the values of F. Therefore, the complexity of the general algorithm
is divided by 2 ln 2

ε2 .

3.2 Speeding-up the exhaustive search in the general case

The previously described FFT technique only applies to the case where z depends
affinely on its initial state, i.e., in the case of the combination generator, when the
small generator has a linear next-state function. In particular, it cannot be used when
the constituent devices are nonlinear devices as in the case of Achterbahn. However,
we now present a method which leads to a similar speed-up when the combining
function of the small generator can be decomposed as a sum of two functions with dis-
joint input variables, i.e., g(xi1 , . . . , xim) = gu(xi1 , . . . , xim′) + gv(xim′+1

, . . . , xim). This
obviously occurs when the small generator corresponds to the sum of m devices,
which is the practical situation when the combining function of the keystream
generator has an appropriate biased linear approximation, in particular when the
number of targeted devices is minimal. This technique has been introduced by [35]
in the particular context of the cryptanalysis of Achterbahn, and here we provide a
more general description.

Cryptogr. Commun.

More generally, our technique can be used for the general correlation problem, in
order to determine among the 2k initial states the one which maximizes

N−1∑

t=0

(−1)z(t) ,

as soon as this sequence can be expressed as the sum (modulo 2) of two sequences, u
and v with independent initial states and such that the period Tu of u is known and
smaller than N. The main idea of the algorithm is then to gather some computations
which depend on u only, and then to exploit the fact that the period of u is smaller
than N in order to compute those terms Tu times only, instead of N times.

In the case of an attack against the combination generator, the sequence z =
S ⊕ σ has such a decomposition if the approximation g of f can be decomposed
as g(xi1 , . . . , xim) = gu(xi1 , . . . , xim′) + gv(xim′+1

, . . . , xim). Then, u corresponds to the
combination by gu of the outputs of m′ devices among the m targeted devices, e.g.,

u = gu(xi1(t), . . . , xim′ (t)) .

Indeed, it is known that

Tu =
m′
∏

j=1

Ti j

is a period of u. In this case, we have

v = (
S(t) ⊕ gv(xim′+1

(t), . . . , xim(t))
)

t≥0 .

We now compute the correlation between u and v. As previously explained,
detecting this bias requires the knowledge of a number of samples N which exceeds

N0 = 2k ln 2

ε2
. (1)

Then, for each of the 2k possible initial states of z, we compute the sum
∑N−1

t=0 z(t) on
N bits where N is the smallest multiple of Tu which exceeds N0, i.e.,

N = Tu

⌈N0

Tu

⌉
.

We denote c = N
Tu

. Then, the previous sum can be rewritten in the following way:

N−1∑

t=0

z(t) =
N−1∑

t=0

u(t) ⊕ v(t)

=
Tu−1∑

r=0

c−1∑

q=0

u(qTu + r) ⊕ v(qTu + r)

=
Tu−1∑

r=0

c−1∑

q=0

u(r) ⊕ v(qTu + r)

Cryptogr. Commun.

since Tu is a period of u. Now, we use the fact that, for any pair (q, r),

u(r) ⊕ v(qTu + r) =
{

v(qTu + r) if u(r) = 0
1 − v(qTu + r) if u(r) = 1 .

Therefore, we deduce that

N−1∑

t=0

z(t) =
Tu−1∑

r=0

(u(r) ⊕ 1)

⎛

⎝
c−1∑

q=0

v(qTu + r)

⎞

⎠+
Tu−1∑

r=0

u(r)

⎛

⎝c −
c−1∑

q=0

v(qTu + r)

⎞

⎠ .

For any r, 0 ≤ r < Tu, we set

V(r) =
c−1∑

q=0

v(qTu + r) .

The vector (V(0), . . . , V(Tu − 1)) consists of Tu integers which depend on the initial
state of v only (i.e., the initial states of the (m − m′) corresponding devices in the
context of an attack against the combination generator). Then, this vector can be
computed independently from the initial state of u. We now have

N−1∑

t=0

z(t) =
Tu−1∑

r=0

(u(r) ⊕ 1) V(r) +
Tu−1∑

r=0

u(r) (c − V(r))

=
Tu−1∑

r=0

(−1)u(r)
(

V(r) − c
2

)
+ Tuc

2
.

It follows that

N−1∑

t=0

(−1)z(t) = N − 2
N−1∑

t=0

z(t) =
Tu−1∑

r=0

(−1)u(r) (c − 2V(r)) .

Now, we need to compute this sum for each initial state of u and find if there is one
that provides the expected bias. However, starting from a particular initial state U0,
we can find the initial state Uτ of u which maximizes this sum within the same cycle
as U0. Indeed, let Uτ denote the internal state of the generator producing u at time
τ starting from U0, for 0 ≤ τ < Tu. Then, the sequence generated from Uτ is exactly
the sequence derived from the sequence generated from U0 shifted by τ positions,
i.e., (u(t + τ mod Tu))0≤t<Tu . Then, starting from a particular initial state U0 of u, we
want to find the value of τ which maximizes the value of

Tu−1∑

r=0

(−1)u(r+τ mod Tu)
(

V(r) − c
2

)
+ Tuc

2
for 0 ≤ τ < Tu

which corresponds to the cross-correlation between two sequences, u and
(V(0), . . . , V(Tu − 1)), of length Tu. This can be done efficiently with a fast Fourier
transform [2, pages 306–312] with complexity O(Tu log Tu). Once the maximum of
the cross-correlation has been computed for a given initial state of u, we have to

Cryptogr. Commun.

repeat this procedure for another value U0 in a different cycle of u. Once all initial
states for u have been examined, the same algorithm has to be repeated for another
initial state of v. The algorithm is described in Algorithm 1 for the particular case of
a correlation attack against the combination generator where

u(t) = gu(xi1(t), . . . , xim′ (t)) and v(t) = S(t) ⊕ gv(xim′+1
(t), . . . , xim(t)) .

Algorithm 1 Correlation attack against the general combination generator with a
speed-up of the exhaustive search for m targeted devices.

for each initial state of the last (m − m′) devices do
for r from 0 to Tu − 1 do

V(r) ← c − 2
∑c−1

q=0 v(qTu + r)
end for
repeat

choose an initial state for the first m′ devices which does not belong to a
previously examined cycle
for r from 0 to Tu − 1 do

u(r) ← gu(xi1(r), . . . , xim′)(r)
end for
Compute the following cross-correlation with an FFT

S(τ) =
Tu−1∑

r=0

(−1)u(r+τ mod Tu)V(r), 0 ≤ τ < Tu

if S(τ) > threshold for some τ then
return the initial states of the last (m − m′) devices and the internal states
of the first m′ devices after τ clocks.

end if
until all initial states of the first m′ devices have been examined

end for

Let 2ku denote the number of possible initial states for u. In most practical
situations, the number of cycles of u is roughly 2ku/Tu since it is expected that the
constituent devices of the generator do not have any short cycles. For instance, in
the case of LFSRs with primitive feedback polynomials, coprime periods and with
nonzero initial states, the number of possible initial states for u is equal to the period
Tu = ∏m′

j=1 Ti j , since it is assumed that the all-zero initial state is avoided for any of
the LFSRs. The situation is similar in Achterbahn because all constituent devices are
NLFSRs with period Ti = 2Li − 1 for all i. Then, the overall time complexity of the
attack is given by the following formula:

2k−ku

[

Tuc + 2ku

Tu
(Tu log Tu)

]

.

We point out here that even if the cross-correlation is not computed with an FFT,
but for all the possible values of τ , the final time complexity would still be reduced
compared to the classical attack, as this changes the second term in the previous sum

Cryptogr. Commun.

to 2ku Tu, which divides the complexity of the classical attack by a factor c = N/Tu.
In the situations where the generator producing u has only a few cycles, Tu is close
to 2ku as previously explained. The time complexity can then be expressed as

2k
[

N0

Tu
+ log Tu

]

,

where N0 is the data complexity, i.e., the minimal number of samples needed
for the correlation attack as expressed by (1). Then, the optimal choice for the
decomposition of the small generator into u ⊕ v corresponds to the situation where
Tu is close to N0

log N0
. In this case, the time complexity is proportional to

2k log N0 .

This must be compared to 2k N0, which is the time complexity of the classical
correlation attack described in the previous section, while the data complexity is
unchanged. Let us notice here that instead of considering N, which is a multiple of
Tu, we could consider N0 samples only, as done in [36] as N was limited. This case
is similar but the previous sum has to be decomposed into two parts. For the sake of
simplicity, we have presented here the case where N is a multiple of Tu, as it usually
does not increase the complexity and as the extension is quite straightforward.

The memory requirement corresponds to the storage of both sequences u and V
which are composed of Tu bits and of Tu integers respectively.

In the case of an attack against the combination generator as described by
Algorithm 1, the time complexity can then be expressed as

2
∑m

j=m′+1 Li j

⎡

⎣Tuc + 2
∑m′

j=1 Li j

Tu
(Tu log Tu)

⎤

⎦ ,

where Tu = ∏m′
j=1 Ti j .

4 Correlation attacks using decimation

4.1 Basic principle

Another trade-off between the data and time complexity in correlation attacks can
be achieved with a method introduced by Hell and Johansson in [20]. The idea is to
perform the correlation attack on a decimated version of the sequence in order to
reduce the size of the initial state for which we have to perform an exhaustive search.
First, we give a general description of the algorithm presented by Hell and Johansson.
Then, we show in Section 4.2 how it can be improved. The technique proposed in [20]
applies for determining, among 2k different initial states of the sequence z, the one
which maximizes

N−1∑

t=0

(−1)z(t)

Cryptogr. Commun.

as soon as z can be expressed as the sum of two sequences α and γ with independent
initial states and such that a period Td of γ is known and smaller than N. Then, for
any δ, we have

z(tTd + δ) = α(tTd + δ) ⊕ γ (tTd + δ) = α(tTd + δ) ⊕ γ (δ) .

Then, we deduce that

N−1∑

t=0

(−1)z(tTd+δ) = (−1)γ (δ)

N−1∑

t=0

(−1)Dδ (t) ,

where dδ = (Dδ(t))t≥0 denotes the decimated sequence (α(tTd + δ))t≥0. Therefore,
if dδ can be computed by the attacker for some δ (e.g. δ = 0), finding the maximal∑

t(−1)z(t) for N well-chosen values of t boils down to finding the highest magnitude
for

∑N−1
t=0 (−1)Dδ (t). This can be done by an exhaustive search for the initial state of dδ .

Let 2kd denote the number of initial states for α. Then, kd < k as α does not depend
on the initialisation of γ . The attack then requires

N = 2kd ln 2

ε2

evaluations of the decimated sequence, implying that the data complexity is now

2kd ln 2Td

ε2

which is usually higher than the data complexity without decimation given by (1), but
the time complexity is

2kd N = 2kd ln 2

ε2
× 2kd

which improves the usual algorithm in most cases.
This improvement applies in the context of a correlation attack against the

combination generator if the approximation g can be decomposed as a sum of two
functions with disjoint input variables:

g(xi1 , . . . , xim) = gd(xi1 , . . . , xi∂) + g′(xi∂+1 , . . . , xim) .

We then decimate the sequence z = (S ⊕ σ) by the product of the periods of the first
∂ devices among Ri1 , . . . ,Ri∂ :

Td =
∂∏

j=1

Ti j .

Then, for any t ≥ 0 and any δ, we have

σ(tTd + δ) = g′(xi∂+1(tTd + δ), . . . , xim(tTd + δ)) ⊕ gd(xi1(tTd + δ), . . . , xi∂ (tTd + δ))

= g′(xi∂+1(tTd + δ), . . . , xim(tTd + δ)) ⊕ gd(xi1(δ), . . . , xi∂ (δ))

= g′(xi∂+1(tTd + δ), . . . , xim(tTd + δ)) ⊕ γ (δ) .

Since the last term in the sum is a constant, the decimated sequence (S ⊕ σ) can be
computed (up to a constant) from the initial states of (m − ∂) devices only, instead of

Cryptogr. Commun.

m. The correlation attack is then similar as before, except that we compute the corre-
lation between decimated versions of S and α = (g′(xi∂+1(t), . . . , xim(t)))t≥0. Then, the
magnitude of the correlation, instead of its signed value, must be maximized.

The correct initial states of the last (m − ∂) devices can then be recovered with

N � 2 ln 2
∑m

j=∂+1 Li j

ε2
samples ,

leading to the following data complexity

2 ln 2
∑m

j=∂+1 Li j

∏∂
j=1 Ti j

ε2
. (2)

The time complexity is now

N × 2
∑m

j=∂+1 Li j = 2 ln 2
∑m

j=∂+1 Li j

ε2
× 2

∑m
j=∂+1 Li j (3)

for the basic algorithm. When m − ∂ > 1, the technique presented in Section 3.2 for
speeding-up the exhaustive search can be applied if g′ can again be decomposed
as the sum of two functions with disjoint variables, leading to the following time
complexity

2
∑m

j=∂+1 Li j

[
2 ln 2

∑m
j=∂+1 Li j

Tuε2
+ log Tu

]

where Tu = ∏m
j=m−m′+1 Ti j for some m′ ≥ 0.

4.2 Improving data complexity: using several parallel decimated sequences

Decimation usually increases the data complexity of the attack, and this might be a
bottleneck, for instance when the number of keystream bits produced from a single
initial state is limited. Moreover, it clearly appears that the attack does not exploit
this high amount of keystream bits in an optimal way since the data complexity is
usually much higher than the number of keystream bits used in the attack. Therefore,
we may expect to find a different trade-off between data and time complexities when
a decimated sequence is used.

The general problem is to determine the initial state which provides the highest
value of

N−1∑

t=0

(−1)z(tTd+δ) = (−1)γ (δ)

N−1∑

t=0

(−1)Dδ (t) ,

by exploiting the fact that dδ depends on 2kd initial states only. As done in [36],
instead of computing this sum for a single value of δ, we rather compute a vector
of � integers,

(D(δ), 0 ≤ δ < �) where D(δ) =
N′−1∑

t=0

(−1)Dδ (t) ,

but for a smaller number N′ of samples in each component of the vector. We are
now faced with the same situation as in a linear attack using Matsui’s algorithm 2 with

Cryptogr. Commun.

several independent approximations [1, 17, 18, 24]. The attacker computes 2kd vectors
with independent components where each component follows the binomial distribu-
tion with parameters N′ and 1

2 (1 ± ε) for the correct initial state, and with parameters
N′ and 1

2 otherwise. Since the sign of the bias of each D(δ) is unknown, we have to
perform an exhaustive search for this sign and compare the empirical probability
distribution for the vector ((−1)Dδ(t))0≤δ<� with the theoretical distribution

pb (x) = 2−�
∏

0≤δ<�

(
1 + (−1)b δ⊕xδ ε

)
, x ∈ F�

2

for all �-bit vectors b . Several statistical tests have been proposed for comparing
both distributions [1, 23]. For instance, it has been proposed in [1] to sort the possible
initial states depending on the value of

min
b∈F�

2

�−1∑

δ=0

(
D(δ) − (−1)b δ ε

)2
.

Once the values of D(δ) have been computed, the additional time complexity of the
algorithm is then �2� for each of the 2kd initial states. The overall time complexity is
then

2kd(�N′ + �2�) ,

implying that the overhead is usually negligible compared to the algorithm with a
single decimated sequence. This complexity can be improved if the � correlations
D(δ) are computed with the faster algorithm described in Section 3.

Then, it has been proved in [17, Proposition 3.1] that, if �ε2
 1, the number
of samples N′ required for determining the correct candidate with the same error
probability as for the classical attack is

N′ = 2kd ln 2

�ε2
.

In other words, the number of required samples is divided by the number of
decimated sequences which are considered. The data complexity then decreases to

N′Td + � = 2kd ln 2Td

�ε2
+ �

while the time complexity, equal to

2kd(�N′ + �2�) =
(

2 ln 2kd

ε2
+ �2�

)

× 2kd ,

has a negligible overhead. The general algorithm combining the decimation tech-
nique and the speeding-up method described in Section 3 then applies when z =
u ⊕ v ⊕ γ where these three sequences have independent initial states of respective
sizes ku, kv and kγ and where u and γ are periodic with respective periods Tu and
Td. The algorithm is then described in Algorithm 2 when N′ is the number of needed
samples for each decimated sequence, i.e.

N′ = 2(ku + kv) ln 2

�ε2
.

Cryptogr. Commun.

Algorithm 2 Correlation attack using several decimated sequences.
for each initial state of v do

for δ from 0 to � − 1 do
for r from 0 to Tu − 1 do

Vδ(r) ← N′
Tu

− 2
∑N′/Tu−1

q=0 v((qTu + r)Td + δ)

end for
end for
repeat

choose an initial state of u which does not belong to a previously examined
cycle
for δ from 0 to � − 1 do

Compute the following cross-correlation with an FFT

Dδ(τ) =
Tu−1∑

r=0

(−1)u((r+τ mod Tu)Td+δ)Vδ(r), 0 ≤ τ < Tu

end for
for τ from 0 to Tu − 1 do

Compute

min
b∈F�

2

�−1∑

δ=0

(
Dδ(τ) − (−1)b δ ε

)2

if S(τ) > threshold then
return the initial state of v and the internal state of u after τ clocks.

end if
end for

until all initial states of u have been examined
end for

The corresponding data complexity is then

Td N′ + � = 2(ku + kv)Td ln 2

�ε2
+ �

and the time complexity is

2ku+kv

(
�N′

Tu
+ � log Tu + �2�

)

.

Example In the attack against Achterbahn-80 [14], we have to find the initial state
of a sequence derived from the keystream, of the form

S = f (x1, x2, x6, x8, x9, x10, x11)

where each xi is the output of a nonlinear device of length Li = 21 + i and with
period 2Li − 1. In [36], Naya Plasencia used an approximation of S of the form
σ = x1 ⊕ x6 ⊕ x10 which satisfies E(S ⊕ σ) = 2−24. Then, we need to find the initial
state of z = S ⊕ σ , and we decompose it as z = u ⊕ v ⊕ γ with γ = x1 which has

Cryptogr. Commun.

period Td = 222 − 1, u = x6 which has 2ku = 227 initial states and period Tu = 227 − 1,
and v = S ⊕ x10. Since the keystream length for a given initial state is limited to 252,
we can apply the previous algorithm with � = 4. From the previous formulae, we
have that each of the four decimated sequences needs to be evaluated in N′ = 228.3

positions, implying that the data complexity is 250.3. The time complexity is 265.

5 Correlation attacks with parity-check relations

A correlation attack can be seen as a decoding problem where the initial state of
z is recovered by an ML-decoding algorithm. Since the time complexity of ML-
decoding is usually too high, a well-known strategy for decoding linear codes consists
in exploiting parity-check relations, i.e., linear relations between some bits of the
codewords, especially sparse parity-check relations which usually make the decoding
much faster. The price to pay for this is that the decoding is less efficient in the sense
that more redundancy is needed. In other words, the data complexity increases. This
idea has been introduced by Meier and Staffelbach and is at the origin of the so-called
fast correlation attacks against LFSR-based generators [34]. Actually, in the case of
the combination generator based on LFSRs, when the small generator producing σ

is linear, many sparse parity-check relations for σ can be derived from the LFSR
feedback polynomials or from their sparse multiples. This high number of relations
then allows the attacker to recover its initial state. Many variants of this attack have
been proposed, e.g. [5–7, 25–27, 34]. When the constituent devices are nonlinear,
the number of parity-check relations is much smaller, implying that this type of
attack would require a huge data complexity. A small number of linear relations
can nevertheless be exploited in a distinguishing attack, as proposed by [8, 12]. The
following two sections describe how such an attack can be performed against the
general combination generator, by using some relations derived from the periods
of the devices as first proposed in [28]. It can also be combined with an exhaustive
search for the initial state of some of the devices in order to eliminate the influence
of a part of the constituent devices and then reduce the time complexity. Then, we
show in Section 5.3 that combining those two attacks leads to key-recovery with a
good trade-off between time and data complexities.

5.1 Parity-check relations

A parity-check relation for a binary sequence z = (z(t))t≥0 is a linear relation between
some bits of z at different instants (t + τ) where τ varies in a fixed set T of integers,
and t takes any value:

⊕

τ∈T
z(t + τ) = 0, ∀t ≥ 0.

For instance, the indexes τ corresponding to the nonzero coefficients of the charac-
teristic polynomial of a linear recurring sequence provide a parity-check relation. A
two-term parity-check relation,

z(t) ⊕ z(t + τ) = 0, ∀t ≥ 0,

obviously means that τ is a period of the sequence.

Cryptogr. Commun.

In the case of the combination generator, if σ is produced by combining devices
i1, . . . , im by some function g, a two-term parity-check relation for σ is given by

σ(t) ⊕ σ

⎛

⎝t +
m∏

j=1

Ti j

⎞

⎠ = 0, ∀t ≥ 0,

but it can only be used if the attacker has access to keystream bits at distance∏m
j=1 Ti j from each other, which is usually impossible. Then, Johansson et al. [28]

have suggested to reduce the degree of the relation, i.e., the highest distance between
two involved positions, by increasing the number of terms, as shown by the following
simple proposition.

Proposition 1 Let x1, . . . , xn be n sequences with periods T1, . . . , Tn. We denote

T = 〈T1, . . . , Tn〉 =
{

n∑

i=1

ciTi, ci ∈ {0, 1}
}

.

Then, the binary sequence x def ined by

x(t) =
n⊕

i=1

xi(t)

satisf ies

⊕

τ∈T
x(t + τ) = 0, ∀t ≥ 0.

Proof We can prove that the influence of each sequence x j, 1 ≤ j ≤ n, in the sum
vanishes. Actually, the set T can be decomposed into two halves,

T j =
⎧
⎨

⎩

∑

i∈{1,...,n}\{ j}
ciTi, ci ∈ {0, 1}

⎫
⎬

⎭
and T j + T j ,

such that x j(t + τ) = x j(t + τ + T j) for any t and any τ ∈ T j. Therefore, for any j,
1 ≤ j ≤ n, we have

⊕

τ∈T
x j(t + τ) =

⊕

τ∈T j

(
x j(t + τ) ⊕ x j(t + τ + T j)

) = 0 .

�

Proposition 1, combined with the fact that the product of the periods of two
sequences is a period for their sum, provides several trade-offs between the degree
and the number of terms of a parity-check relation for σ . For instance, if we consider
the sequence σ defined by

σ(t) = x1(t) ⊕ x2(t) ⊕ x3(t) ,

Cryptogr. Commun.

then, the following three relations are examples of parity-check relations for σ with
different numbers of terms:

σ(t) ⊕ σ(t + T1T2T3) = 0

σ(t) ⊕ σ(t + T1) ⊕ σ(t + T2T3) ⊕ σ(t + T1 + T2T3) = 0

σ(t) ⊕ σ(t + T1) ⊕ σ(t + T2) ⊕ σ(t + T1 + T2)⊕
σ(t + T3) ⊕ σ(t + T1 + T3) ⊕ σ(t + T2 + T3) ⊕ σ(t + T1 + T2 + T3) = 0 .

Now, if σ is correlated to the keystream S, then any parity-check relation for σ

provides a biased linear relation for the keystream. Actually, for any set T such that⊕
τ∈T σ(t + τ) = 0 for all t ≥ 0, we have

⊕

τ∈T
S(t + τ) =

⊕

τ∈T
S(t + τ) ⊕

⊕

τ∈T
σ(t + τ) =

⊕

τ∈T
(S ⊕ σ)(t + τ) .

Since the sequence (S ⊕ σ) is biased with bias E(f + g) where g is the combining
function of the small generator producing σ , then it can be proved that the corre-
sponding parity-check relation applied to (S ⊕ σ) is also biased but with a smaller
bias. It is worth noticing that the bias of the parity-check relation cannot be directly
derived from the piling-up lemma since the terms in the sum are not statistically
independent [19, 21, 35]. Moreover, there might exist two different approximations
g and g′ of the combining function f such that, for the same T , we have
⊕

τ∈T
g(xi1(t+τ),. . . ,xim(t+τ)) = 0 and

⊕

τ∈T
g′(x j1(t+τ), . . . , x jm′ (t+τ)) = 0, ∀t ≥ 0 .

In this case, the bias of the relation applied to the keystream,
⊕

τ∈T
f (x1(t + τ), . . . , xn(t + τ)) ,

cannot be directly deduced from both biases E(f + g) and E(f + g′). However, the
following lower bound on the bias of the parity-check relation on the keystream has
been exhibited in [4].

Theorem 1 [4, Theorem 5] Let x1, . . . , xn be n sequences with least periods T1, . . . , Tn,
f a Boolean function of n variables and S = f (x1, . . . , xn). Let κ1, . . . , κs+1 be a strictly
increasing sequence of integers with κ1 = 0 and κs+1 = m. Let

T = 〈M1, . . . , Ms〉
where Mi = qilcm(Tκi+1, . . . , Tκi+1) for some integer qi > 0. Assume that each Mi is
coprime with all T j with j �∈ [κi + 1; κi+1]. Let PC f,T be the sequence def ined by

PC f,T (t) =
⊕

τ∈T
s(t + τ), ∀t ≥ 0 .

Then, for any Boolean function g of m variables of the form

g(x1, . . . , xm) =
s⊕

i=1

gi(xκi+1, . . . , xκi+1)

Cryptogr. Commun.

where each gi is a Boolean function of (κi+1 − κi) variables, we have

E(PC f,T) ≥ [
E(f ⊕ g)

]2s

.

In the following, we focus on sets T of the form

T = 〈M1, . . . , Ms〉 (4)

where each Mi equals some Ti j or the product of several Ti j (possibly with a nonzero
multiplicative factor) as defined in Theorem 1, and we will assume for the sake of
simplicity that all Ti j are coprime. If T involves all periods Ti j , 1 ≤ j ≤ m, then we
have that

E(PC f,T) ≥ [
E(f ⊕)

]2s

,

with = ⊕m
j=1 xi j . Moreover, if m = R + 1 where R is the resiliency order of f , which

is the usual case in practice, then this lower bound is tight [4, Theorem 12]:

E(PC f,T) = [
E(f ⊕)

]2s

.

Therefore, this bias can be exploited for distinguishing the keystream from a random
sequence.

5.2 Distinguishing attacks based on parity-check relations

The distinguishing attack consists in computing the biased sequence

PC f,T (t) =
⊕

τ∈T
S(t + τ), ∀t ≥ 0

from the keystream, where T is defined as specified by (4). For instance, for m =
R + 1, a natural choice for T is

T = 〈Ti1 , . . . , Tim〉 .

Then, the attacker applies a hypothesis test in order to determine whether the
computed sequence has the expected bias or not. The number of samples of the
parity-check relation which are needed for detecting the bias is given by

N � 2 ln 2

E(PC f,T)2
≤ 2 ln 2

ε2m+1 (5)

where ε = E(f +) with = ⊕m
j=1 xi j . As previously discussed, this formula provides

an upper bound in the general case, but it is tight for m = R + 1. It is worth noticing
that the lower bound on E(PC f,T) implies that this bias is always positive. Therefore,
the statistical test aims at maximizing the value of

N−1∑

t=0

(−1)PC f,T (t)

or equivalently, at minimizing
∑N−1

t=0 PC f,T (t).

Cryptogr. Commun.

When T = 〈Ti1 , . . . , Tim〉, the number of keystream bits needed for the distin-
guishing attack is equal to

N +
m∑

j=1

Ti j ≤ 2 ln 2

ε2m+1 +
m∑

j=1

Ti j .

The corresponding time complexity is then

2m N ≤ 2m+1 ln 2

ε2m+1

where equality holds in both formulae when m = R + 1. The attack may then be
faster than the classical correlation attack, but it has a higher data complexity.

Moreover, it does not allow the initial state of the keystream generator to be
recovered.

5.3 Combining both techniques

Much more appropriate trade-offs between time and data complexity can therefore
be obtained by combining both attacks. Let us consider m1 constituent devices,
namely Ri1 , . . . ,Rim1

, whose influences will be cancelled by the computation of a
parity-check relation. Let denote the linear function = ⊕m1

j=1 xi j . Then, this set
of m1 devices must be chosen such that there exists a biased approximation g of
(f +), depending only on the (m − m1) input variables with indexes im1+1, . . . , im.
The most appropriate set of parameters in many situations is given by m = R + 1 and
g = ⊕m

j=m1+1 xi j .
The first step of the attack consists in computing the following parity-check

relation on the keystream sequence:

PC f,T (t) =
⊕

τ∈T
S(t + τ), ∀t ≥ 0

with T = 〈Ti1 , . . . , Tim1
〉.

Then, for each possible initial state of the (m − m1) devices Rim1+1 , . . . ,Rim , a
sequence σ is computed by

σ(t) = g(xim1+1(t), . . . , xim(t)) .

The parity-check relation

PCg,T (t) =
⊕

τ∈T
σ(t + τ)

is then evaluated. If the guessed initial state is correct, then the sequences PC f,T and
PCg,T are correlated. Actually, we have

PC f,T (t) ⊕ PCg,T (t) = PC f,T (t) ⊕ PCg,T (t) ⊕ PC,T (t) = PC f+g+,T (t) .

The corresponding bias is E(PC f+g+�,T) which is greater than or equal to ε2m1 with
ε = E(f + g +). Then, a correlation attack can be performed in order to detect a
correlation between PC f,T , which is derived from the keystream, and PCg,T which
is computed for each possible initial state of the (m − m1) targeted devices.

Cryptogr. Commun.

Recovering the correct initial state among the (2
∑m

j=m1+1 Li j − 1) sequences then
requires

N � 2 ln 2
∑m

j=m1+1 Li j

ε2m1+1 samples ,

leading to the following data complexity

2 ln 2
∑m

j=m1+1 Li j

ε2m1+1 +
m1∑

j=1

Ti j . (6)

The time complexity is now

2m1 N × 2
∑m

j=m1+1 Li j = 2m1+1 ln 2
∑m

j=m1+1 Li j

ε2m1+1 × 2
∑m

j=m1+1 Li j (7)

for the basic algorithm described by Algorithm 3. It must be noticed that the time
complexity is independent from the periods and the lengths of devices Ri1 , . . . , Rim1

.
Obviously, for a given value of m, increasing the number (m − m1) of devices for
which we perform an exhaustive search allows the data complexity to be reduced.
It may increase the time complexity, but this is not always the case since the
expression (7) for the time complexity consists of the product of two terms, one
increasing with (m − m1) and the second one depending on N, which decreases when
m1 decreases. Therefore, the optimal choice for the parameters highly depends on
the size of the devices and on the bias of the approximation. Finding the best trade-
off between both terms is then an important task.

Algorithm 3 Correlation attack combining exhaustive search and parity-check rela-
tions.

for each t from 0 to (N − 1) do
PC f,T (t) ← ⊕

τ∈T S(t + τ)

end for
for each initial state of the devices im1+1, . . . , im do

c ← 0
for each t from 0 to (N − 1) do

PCg,T (t) ← ⊕
τ∈T g(xim1 +1(t + τ), . . . , xim(t + τ))

c ← c + (PC f,T (t) ⊕ PCg,T (t))
end for
if c > threshold then

return the initial states of the (m − m1) targeted devices.
end if

end for

Obviously, when m − m1 > 1, the highest value of the correlation between PC f,T
and PCg,T can be identified faster with Algorithm 2.

The general technique then consists in identifying m1 devices for building the
parity-check relations. Then, we search for an approximation g of f + with bias ε

where is the sum of the m1 variables involved in the parity-check relations. We
decompose g into three functions with disjoint input variables:

g(xim1 +1, . . . , xim) = gd(xim1+1 , . . . , xim1+∂
) + gu(xim1+∂+1 , . . . , xim′) + gv(xim′+1

, . . . , xim) .

(8)

Cryptogr. Commun.

T
ab

le
1

D
at

a
an

d
ti

m
e

co
m

pl
ex

it
ie

s
of

al
lv

ar
ia

nt
s

of
th

e
co

rr
el

at
io

n
at

ta
ck

.

m
1

∂
m

′
g

T
d

T
u

k
D

at
a

co
m

pl
ex

it
y

T
im

e
co

m
pl

ex
it

y

B
as

ic
0

0
0

ap
pr

ox
.o

f
f

of
m

va
r.

1
1

m ∑ j=
1

L
i j

2k
ln

2

ε
2

2k
×

2k
ln

2

ε
2

A
lg

o
1

0
0

m
′

ap
pr

ox
.o

f
f

of
m

va
r.

1
m

′
∏ j=

1

T
i j

m ∑ j=
1

L
i j

2k
ln

2

ε
2

2k
×
(

2k
ln

2

T
u
ε

2
+

lo
g

T
u

)

A
lg

o
2

0
∂

m
′

ap
pr

ox
.o

f
f

of
m

va
r.

∂ ∏ j=
1

T
i j

m
′

∏ j=
∂
+1

T
i j

m ∑ j=
∂
+1

L
i j

2k
T

d
ln

2

�
ε

2
+

�
2k

×
(

2k
ln

2

T
u
ε

2
+

�
lo

g
T

u
+

�
2�

)

Se
ct

io
n

5.
2

m
0

0
m ∑ j=

1

x i
j

1
1

0
2

ln
2

ε
2m

+1
+

m ∑ j=
1

T
i j

2m
×

2
ln

2

ε
2m

+1

A
lg

o
3

m
1

0
0

ap
pr

ox
.o

f⎛ ⎝
f

⊕
m

1
∑ j=

1

x i
j⎞ ⎠

1
1

m ∑

j=
m

1
+1

L
i j

2k
ln

2

ε
2m

1
+1

+
m

1
∑ j=

1

T
i j

2k+
m

1
×

2k
ln

2

ε
2m

1
+1

of
(m

−
m

1
)

va
r.

A
lg

os
3

+
1

m
1

0
m

′
ap

pr
ox

.o
f⎛ ⎝

f
⊕

m
1

∑ j=
1

x i
j⎞ ⎠

1
m

′
∏

j=
m

1
+1

T
i j

m ∑

j=
m

1
+1

L
i j

2k
ln

2

ε
2m

1
+1

+
m

1
∑ j=

1

T
i j

2k+
m

1
×
(

2k
ln

2

T
u
ε

2m
1
+1

+
lo

g
T

u

)

of
(m

−
m

1
)

va
r.

G
en

er
al

m
1

∂
m

′
ap

pr
ox

.o
f⎛ ⎝

f
⊕

m
1

∑ j=
1

x i
j⎞ ⎠

m
1
+∂
∏

j=
m

1
+1

T
i j

m
′

∏

j=
m

1
+∂

+1
T

i j

m ∑

j=
m

1
+∂

+1
L

i j
2k

T
d

ln
2

�
ε

2m
1
+1

+
m

1
∑ j=

1

T
i j

2k+
m

1
×(

2k
ln

2

T
u
ε

2m
1
+1

+�
lo

g
T

u
+�

2�

)

of
(m

−
m

1
)

va
r.

+
�

Cryptogr. Commun.

Let

Td =
m1+∂∏

j=m1+1

Ti j, Tu =
m′
∏

j=m1+∂+1

Ti j and k =
m∑

j=m1+∂+1

Li j,

where 2k is the number of initial states for the devices involved in both approxima-
tions gu and gv . Then, we need to evaluate the correlation for each of the � decimated
sequences from

N′ = 2k ln 2

�ε2m1+1 samples.

The corresponding data complexity is then

Td N′ +
m1∑

j=1

Ti j + � = 2Tdk ln 2

�ε2m1+1 +
m1∑

j=1

Ti j + � keystream bits.

The time complexity is

2k2m1

(
�N′

Tu
+ � log Tu + �2�

)

.

As extremal cases, we recover the time and data complexities of the correlation at-
tacks presented in the previous sections. More precisely, Table 1 describes all variants
of the attack. The number of variables m can take any value between 1 and (n − 1),
while the only requirement on (m1, ∂, m′) is that the involved approximation g can
be decomposed as (8).

6 Conclusions

In this paper we have successfully generalised the five correlation attacks [20,
21, 28, 35, 36] presented to analyse the successive versions of the combination
generator based on NLFSRs, Achterbahn. We have also showed that some of these
improvements apply to a more general problem which is encountered in some other
contexts in cryptography. In the context of the general combination generator, we
have defined a whole family of correlation attacks using several additional ideas
against this type of cipher that provides different time-data-memory trade-offs.
These are the best known attacks for the considered construction. We have provided
general formulas for computing accurate complexity estimates in each case. This
allows to find the optimal attack in each particular case. We hope that this work will
help future designers to know a priori how the parameters of the ciphers need to be
chosen for being resistant to such attacks, as well as will permit the cryptanalysts
to apply in an automatic way these attacks. We believe that this generalisation
of the attacks proposed against Achterbahn will provide a better understanding,
which is very important for some other possible uses and for finding potential future
improvements.

Cryptogr. Commun.

References

1. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approximations. In: Ad-
vances in Cryptology—CRYPTO 2004. Lecture Notes in Computer Science, vol. 3152, pp. 1–22.
Springer, Heidelberg (2004)

2. Blahut, R.E.: Fast Algorithms for Digital Signal Processing. Addison Wesley (1985)
3. Canteaut, A., Filiol, E.: Ciphertext only reconstruction of stream ciphers based on combina-

tion generators. In: Fast Software Encryption—FSE 2000. Lecture Notes in Computer Science,
vol. 1978, pp. 165–180. Springer-Verlag (2001)

4. Canteaut, A., Naya-Plasencia, M.: Parity-check relations on combination generators. IEEE
Trans. Inf. Theory 58(6), 3900–3911 (2012)

5. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check equations of
weight 4 and 5. In: Advances in Cryptology—EUROCRYPT 2000. Lecture Notes in Computer
Science, vol. 1807, pp. 573–588. Springer-Verlag (2000)

6. Chepyshov, V., Johansson, T., Smeets, B.: A simple algorithm for fast correlation attacks on
stream ciphers. In: Fast Software Encryption—FSE 2000, Lecture Notes in Computer Science,
vol. 1978, pp. 124–135. Springer-Verlag (2000)

7. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: an algorithmic point of view. In:
Advances in Cryptology—EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332,
pp. 209–221. Springer-Verlag (2002)

8. Coppersmith, D., Halevi, S., Jutla, C.: Cryptanalysis of stream ciphers with linear masking.
In: Advances in Cryptology—CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442.
Springer-Verlag (2002)

9. Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In: Advances
in Cryptology—CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 176–194.
Springer-Verlag (2003)

10. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Advances
in Cryptology—EUROCRYPT 2003. Lecture Notes in Computer Science, vol. 2656, pp. 345–359.
Springer-Verlag (2003)

11. ECRYPT—European Network of Excellence in Cryptology: The eSTREAM Stream Cipher
Project. http://www.ecrypt.eu.org/stream/ (2004)

12. Ekdahl, P., Johansson, T.: Distinguishing attacks on SOBER-t16 and t32. In: Fast Software
Encryption—FSE 2002. LNCS, vol. 2365, pp. 210–224. Springer (2002)

13. Gammel, B., Göttfert, R., Kniffler, O.: The Achterbahn stream cipher. Submission to eS-
TREAM. http://www.ecrypt.eu.org/stream/ (2005)

14. Gammel, B., Göttfert, R., Kniffler, O.: Achterbahn-128/80. Submission to eSTREAM.
http://www.ecrypt.eu.org/stream/ (2006)

15. Gammel, B., Göttfert, R., Kniffler, O.: Status of Achterbahn and Tweaks. In: Proceedings of
SASC 2006—Stream Ciphers Revisited. http://www.ecrypt.eu.org/stream/papersdir/2006/027.pdf
(2006)

16. Gammel, B., Göttfert, R., Kniffler, O.: Achterbahn-128/80: design and analysis. In:
Proceedings of SASC 2007—Stream Ciphers Revisited. http://www.ecrypt.eu.org/stream/
papersdir/2007/020.pdf (2007)

17. Gérard, B., Tillich, J.P.: On linear cryptanalysis with many linear approximations. In: IMA
International Conference, Cryptography and Coding. Lecture Notes in Computer Science, vol.
5921, pp. 112–132. Springer (2009)

18. Gérard, B., Tillich, J.P.: Advanced Linear Cryptanalysis of Block and Stream Ciphers, vol. 7,
chap. Using Tools from Error Correcting Theory in Linear Cryptanalysis, pp. 87–114. IOS Press
(2011)

19. Göttfert, R., Gammel, B.: On the frame length of Achterbahn-128/80. In: Proceedings of the
2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks, pp.
1–5. IEEE (2007)

20. Hell, M., Johansson, T.: Cryptanalysis of Achterbahn-Version 2. In: Selected Areas in
Cryptography—SAC 2006. Lecture Notes in Computer Science, vol. 4356, pp. 45–55. Springer
(2006)

21. Hell, M., Johansson, T.: Cryptanalysis of Achterbahn-128/80. IET Inf. Secur. 1(2), 47–52
(2007)

22. Hell, M., Johansson, T., Brynielsson, L.: An overview of distinguishing attacks on stream ciphers.
Cryptogr. Commun. 1(1), 71–94 (2009)

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/papersdir/2006/027.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/020.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/020.pdf

Cryptogr. Commun.

23. Hermelin, M., Cho, J., Nyberg, K.: Multidimensional extension of Matsui’s Algorithm 2. In: Fast
Software Encryption—FSE 2009. Lecture Notes in Computer Science, vol. 5665, pp. 209–227.
Springer (2009)

24. Hermelin, M., Nyberg, K.: Advanced Linear Cryptanalysis of Block and Stream Ciphers, vol. 7,
chap. Linear Cryptanalysis Using Multiple Linear Approximations, pp. 25–54. IOS Press (2011)

25. Johansson, T., Jönsson, F.: Fast correlation attacks based on turbo code techniques. In: Ad-
vances in Cryptology—CRYPTO’99. Lecture Notes in Computer Science, vol. 1666, pp. 181–197.
Springer-Verlag (1999)

26. Johansson, T., Jönsson, F.: Improved fast correlation attack on stream ciphers via convolutional
codes. In: Advances in Cryptology—EUROCRYPT’99. Lecture Notes in Computer Science, vol.
1592, pp. 347–362. Springer-Verlag (1999)

27. Johansson, T., Jönsson, F.: Fast correlation attacks through reconstruction of linear polynomials.
In: Advances in Cryptology—CRYPTO’00. Lecture Notes in Computer Science, vol. 1880, pp.
300–315. Springer-Verlag (2000)

28. Johansson, T., Meier, W., Muller, F.: Cryptanalysis of Achterbahn. In: Fast Software
Encryption—FSE 2006, Lecture Notes in Computer Science, vol. 4047, pp. 1–14. Springer (2006)

29. Joux, A.: Algorithmic Cryptanalysis. Chapman & Hall/CRC (2009)
30. Junod, P., Vaudenay, S.: Optimal key ranking procedures in a statistical cryptanalysis. In: Fast

Software Encryption—FSE 2003. Lecture Notes in Computer Science, vol. 2887, pp. 235–246.
Springer-Verlag (2003)

31. Lu, Y., Vaudenay, S.: Faster correlation attack on Bluetooth keystream generator E0. In:
Advances in Cryptology—CRYPTO 2004. Lecture Notes in Computer Science, vol. 3152,
pp. 407–425. Springer-Verlag (2004)

32. Matsui, M.: The first experimental cryptanalysis of the data encryption standard. In: Advances in
Cryptology—CRYPTO’94. Lecture Notes in Computer Science, vol. 839. Springer-Verlag (1995)

33. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Advances in
Cryptology—EUROCRYPT’88. Lecture Notes in Computer Science, vol. 330, pp. 301–314.
Springer-Verlag (1988)

34. Meier, W., Staffelbach, O.: Fast correlation attack on certain stream ciphers. J. Cryptol. 1(3),
159–176 (1989)

35. Naya-Plasencia, M.: Cryptanalysis of Achterbahn-128/80. In: Fast Software Encryption—FSE
2007. Lecture Notes in Computer Science, vol. 4593, pp. 73–86. Springer (2007)

36. Naya-Plasencia, M.: Cryptanalysis of Achterbahn-128/80 with a new keystream limitation. In:
WEWoRC 2007—Second Western European Workshop in Research in Cryptology. Lecture
Notes in Computer Science, vol. 4945, pp. 142–152. Springer (2008)

37. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic ap-
plications. IEEE Trans. Inf. Theory 30(5), 776–780 (1984)

38. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. Com-
put. C-34(1), 81–84 (1985)

39. Zhang, M.: Maximum correlation analysis of nonlinear combining functions in stream ciphers. J.
Cryptol. 13(3), 301–313 (2000)

	Correlation attacks on combination generators
	Abstract
	Introduction
	General model and notation
	The general combination generator
	Principle of correlation attacks

	Speeding-up the general correlation attack
	Basic algorithm
	Speeding-up the exhaustive search in the general case

	Correlation attacks using decimation
	Basic principle
	Improving data complexity: using several parallel decimated sequences

	Correlation attacks with parity-check relations
	Parity-check relations
	Distinguishing attacks based on parity-check relations
	Combining both techniques

	Conclusions
	References

