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Abstract— Fast correlation attacks have been considerably im-
proved recently, based on efficient decoding algorithms dedicated
to very large linear codes in the case of a highly noisy channel.
However, a better adaptation of these techniques to the concrete
involved stream ciphers is still an open issue.

I. I NTRODUCTION

In an additive synchronous stream cipher, the ciphertext is
obtained by adding bitwise the plaintext to a pseudo-random
sequence called the keystream. This keystream is generated
by a finite state automaton whose initial state is derived from
the secret key, and usually from a public initial value, by
a key-loading algorithm. At each time unit, the keystream
digit produced by the generator is obtained by applying a
filtering function to the current internal state. The internal
state is then updated by atransition function. Both filtering
function and transition function must be chosen carefully in
order to make the underlying cipher secure. In particular, the
filtering function must not leak too much information on the
internal state and the transition function must guarantee that,
for (almost) all initial states, the sequence formed by the
successive internal states has a high period.

Stream ciphers are mainly devoted to applications which
require either an exceptional encryption rate in software or an
extremely low implementation cost in hardware (see e.g. [1]).
These implementation constraints influence the design choices,
especially for the transition function. Keystream generators
can be divided into the following main families depending on
the procedure used for updating the internal state:

• generators based on a linear transition function.A linear
transition function seems to be a relevant choice for
hardware implementation as soon as the filtering func-
tion breaks the inherent linearity. Amongst all possible
linear transition functions, those based on linear feedback
shift registers (LFSRs) are very popular because they
are appropriate for low-cost hardware implementations,
produce sequences with good statistical properties and
can be easily analyzed.

• generators based on a nonlinear transition function.The
weaknesses resulting from the linearity of the transi-
tion function, especially the vulnerability to algebraic
attacks [2], can be avoided by choosing a nonlinear transi-
tion mapping. However, for hardware-oriented stream ci-

phers, this function must guarantee that the generated se-
quence has a high period. This condition may be avoided
when the size of the internal state is not limited by
implementation constraints: in that case, the probability
that a short cycle exists is very low because of the large
size of the internal state (e.g. RC4 [3]). But, for hardware
applications, the internal state cannot be much larger
than the bound provided by time-memory-data tradeoff
attacks, i.e., twice the key size. Therefore, theoretical
results on the period of the sequence generated by the
transition function are required. Only a few appropriate
mappings can be used in this context, such as Feedback
with Carry Shift Registers [4], Nonlinear Feedback Shift
Registers, T-functions [5]...

• Hybrid transition functions.In some keystream genera-
tors, the internal state is split into two parts: the first
one is updated linearly and the other one has a nonlinear
behavior. When the nonlinear part is much smaller than
the linear one, it is usually identified with internal mem-
ory; for instance, SNOW 2.0 [6] or E0 [7] are viewed
as LFSR-based stream ciphers with memory. But, some
keystream generators such asPANAMA [8] or MUGI [9]
use linear and nonlinear parts of similar sizes.

From the cryptanalyst’s point of view, the trend towards
splitting the internal state of the keystream generator into
different parts suggests the use of divide-and-conquer at-
tacks. Thecorrelation attack, which was originally proposed
by Siegenthaler against combination generators [10], applies
when a part of the internal state is updated independently from
the other ones and has a reasonable size. This attack has been
greatly improved by Meier and Staffelbach [11], [12] when
the target part of the internal state is updated linearly. In this
case, efficient error-correcting decoding can be used in order
to (partially) recover the initial state of the generator.

II. CORRELATION ATTACK

Here, we focus on binary keystream generators which can
be described as follows. We denote byxt the n-bit internal
state of the generator at timet. The filtering functionf is
assumed to be a Boolean function ofn variables: at timet
the generator outputs a single bit,st = f(xt). In order to
produce an unbiased sequence,f must obviously be balanced,
i.e., it must output0 or 1 with probability 1/2. The transition



function is denoted byΦ : Fn
2 → Fn

2 . Therefore, we have

st = f(Φt(x0)) ,

wherex0 is the initial state. We only consider the case where
both the filtering function and the transition function are
publicly known, i.e., independent from the secret key.

We investigate known-plaintext attacks which aim at recov-
ering the initial statex0, which is in that sense identified with
the key of the cipher. However, it must be pointed out that
the initial state is usually computed from a shorter secret key
and from a public initial value. Some additional information
on x0 can therefore be derived, especially in the context of
related IVs attacks.

A correlation attack, as originally described by Siegenthaler
against combination generators, can actually be mounted as
soon as then-bit internal statext of the generator can be
decomposed into two partsyt andzt of respective sizes̀ and
n− `, which are updated independently from each other, i.e.,

(yt+1, zt+1) = (Φ1(yt), Φ2(zt)) .

The attack aims at recovering one of the parts of the initial
state, e.g.y0, called the target state. The attack applies if and
only if there exists a Boolean functiong of ` variables which is
correlated to the filtering functionf . This equivalently means
that there existsg from F`

2 into F2 such that

pg = PY,Z [f(Y, Z) = g(Y )] >
1
2

where Y and Z are two independent random variables uni-
formly distributed inF`

2 andFn−`
2 .

If such a functiong exists, the target sequenceσ = (σt)t≥0

defined byσt = g(Φt
1(y0)) is correlated to the keystream

sequences = (st)t≥0. This correlation can be detected by
computing the correlation betweenN bits of the keystream and
the corresponding bits of the target sequenceσ(y0) generated
from the initial statey0:

C(s, σ(y0)) =
N−1∑
t=0

(−1)st⊕σt(y0) .

The expected value of this quantity is equal to2N(pg −
1
2 ) when y0 is the correct value of the target initial state.
Therefore, the attack consists of an exhaustive search for the
target`-bit part of the initial statey0. For each possible value
of y0, the firstN bits of the corresponding sequenceσ(y0)
are computed and the correlation with the known keystreams
is evaluated. A right guess fory0 can be distinguished from
a wrong one by comparingC(s, σ(y0)) to a given threshold.
For a wrong guess, both sequencess andσ(y0) are actually
expected to be uncorrelated. This procedure can be seen as
a basic statistical test for distinguishing two binary random
sources: one distributed according to the uniform distribution,
the other one according to the distribution off(Y, Z)⊕ g(Y ),
i.e., P [X = 1] = pg [13], [14]. Whenpg is close to 1

2 , the
attack requires the knowledge of

N = O
((

pg − 1
2

)−2
)

keystream bits. The time complexity for recovering the`-bit
target part of the initial state is therefore

O
(

2`

(
pg − 1

2

)−2
)

.

From the cryptanalyst’s point of view, this attack raises
the question of the optimal choice for the functiong. For
the designer, the underlying problem consists in finding the
filtering functionsf which make the attack infeasible. Both
questions can be answered by computing the probability that
an `-variable functiong coincides withf . This probability
involves the distributions of the output off when its first`
inputs are fixed, namelypy = PZ [f(y, Z) = 1]. Actually, we
have

pg =
1
2`


 ∑

y∈g−1(0)

(1− py) +
∑

y∈g−1(1)

py




=
1
2

+
1
2`

∑

y∈F`
2

(−1)g(y)

(
1
2
− py

)
(1)

In the attack,g must then be chosen such thatpg is maximal;
this situation occurs if and only if all terms in the above sum
are positive, i.e., if

{
g(y) = 1 if py > 1

2
g(y) = 0 if py < 1

2

It follows that

max
g

pg =
1
2

+
1
2`

∑

y∈F`
2

∣∣1
2
− py

∣∣ .

Therefore, it clearly appears that the correlation attack can be
prevented if the filtering functionf is such that its output re-
mains uniformly distributed when its first` input variables are
fixed. Such functions are said to beresilient (or correlation-
immune) with respect to its first̀ variables. More generally,
the correlation-immunity order of a function, defined by
Siegenthaler [15], is the highest number of variables` such
that the output distribution of the function is unchanged when
any ` inputs are fixed. In the special case of a combination
generator where the inputs off correspond to the outputs of
m independent LFSRs, the minimum number of LFSRs which
must be considered together in a correlation attack is` + 1
where` is the correlation-immunity order off .

III. FAST CORRELATION ATTACKS AS A DECODING

PROBLEM

One major problem in correlation attacks is that they
perform an exhaustive search for an entire part of the initial
state, leading to a huge time-complexity. The fast correlation
attacks introduced by Meier and Staffelbach [12] considerably
reduce the running-time but require a longer segment of known
keystream. They apply when the target sequenceσ generated
by

σt = g(Φt
1(y0))



depends linearly on thè-bit target initial statey0. In this
case, anyN -bit subsequence ofσ can be seen as a codeword
of a linear codeC of length N and dimensioǹ . The attack
aims at recovering the codeword corresponding toσ from the
knowledge ofN consecutive keystream bits where

p = P [σt 6= st] <
1
2
, for all t .

The key idea of fast correlation attacks consists in viewing
the correlation attack as a decoding problem: the keystream
subsequence(st)t<N can be seen as the result of the transmis-
sion of (σt)t<N through a binary symmetric channel (BSC)
with cross-over probabilityp. Thus, recovering the target part
of the initial state,y0, consists in decoding the keystream
subsequence relatively to the linear codeC.

This formulation enables to derive a lower bound on the
keystream length required for a successful attack. Actually, a
linear code of dimensioǹ can be successfully decoded only
if its rate does not exceed the capacity of the transmission
channel [16]. Here, the capacity of the binary symmetric
channel with cross-over probabilityp is given byC(p) = 1 +
p log2 p+(1−p) log2(1−p). As in most practical situations, the
error-probabilityp is very close to1/2, namelyp = 1/2− ε,
the capacity can be approximated byC(1/2−ε) ' 2ε2/ ln(2),
leading to the following required keystream length:

N ≥ `

C(p)
' ln(2)`

2ε2
.

Therefore, fast correlation attacks are based on fast decoding
procedures for the linear codeC of lengthN and dimensioǹ,
whenN must be as close as possible to Shannon’s limit.

IV. CORRELATION ATTACKS ON SOME BASICLFSR-BASED

GENERATORS

(Fast) correlation attacks have been originally described
against LFSR-based generators, which is still a major family
of synchronous stream ciphers. In this case, the target part of
the initial state corresponds to one (or a few) LFSR involved
in the system.

A. Fast correlation attacks on combination generators

In the case of a combination generator, it can be proved
that the best target sequenceσ is the sequence obtained by
adding the outputs of(` + 1) constituent LFSRs, wherè is
the correlation-immunity order of the combining function [17],
[18]. This result directly comes from the fact that the(`+1)-
variable functiong which maximizes (1) is the sum of all
its inputs (up to the addition of a binary constant). Thus, the
target sequenceσ corresponds to the output of a unique LFSR
whose feedback polynomial is the greatest common divisor of
the feedback polynomials of the(`+1) involved LFSRs. Since
the feedback polynomials are usually chosen to be primitive,
the length of the target LFSR is the sum of the lengths of
the (`+1) LFSRs. The keystream corresponds to the received

word as output of the binary symmetric channel with cross-
over probability

p = Pr[st 6= σt] =
1
2
− 1

2m+1
max

u∈Fm
2 ,wt(u)=`+1

|̂f(u)| ,

wherem is the number of variables of the combining function
(i.e., the number of constituent LFSRs),` is its correlation-
immunity order and̂f denotes the Walsh transform off .

B. Fast correlation attacks on filter generators

Since fast correlation attacks avoid an exhaustive search for
the target part of the initial state, they may also be successfully
applied to the entire initial state. They can then be mounted
on filter generators whose internal state consists of a single
LFSR. Here, the keystream corresponds to the output off
when its inputs are some fixed taps of the LFSR, i.e.,

st = f(vt+γ1 , vt+γ2 , . . . , vt+γm
), ∀t ≥ 0 ,

where v is the LFSR-sequence. Thus, the target sequence
σ is produced by an LFSR which has the same feedback
polynomial as the constituent LFSR, but a different initial
state. The optimal target sequenceσ actually corresponds to

σt =
m∑

i=1

αivt+γi

whereα = (α1, . . . , αm) is the vector which maximizes the
magnitude of the Walsh transform of the filtering function.
Thus, the cross-over probability can be estimated by

p = P [st 6= σt] =
NL(f)

2m
,

whereNL(f) is the nonlinearity of the filtering function and
m is the number of its input variables.

However, the binary symmetric channel model which was
originally described for combination generator does not hold
anymore. The reason is that the inputs of the filtering function
at different times are not independent, even if these depen-
dences are usually reduced by an appropriate choice of the
input taps(γi)1≤i≤m [19]. In the case of filter generators, the
underlying transmission channel is not memoryless. Actually,
simulations show that the performance of fast correlation
attacks against practical filter generators is usually worse
than expected from the BSC model [20]. But, finding the
appropriate channel model and dedicated efficient decoding
procedures is still an open problem.

The dependences between the successive inputs of the filter-
ing function can be exploited by applying more sophisticated
correlation attacks. A first improvement consists in consider-
ing correlations involving several consecutive keystream bits.
Instead of studying the properties off , the attack relies on the
so-called augmented function defined by

Fk: F`
2 → Fk

2

y 7→ (f(y), f(Φ(y)), . . . , f(Φk−1
1 (y)))

As pointed out by Anderson [21], the augmented function
may present much larger correlations than the original filtering



function. However, the complexity for finding the optimal
correlations between thèinputs andk outputs ofFk highly
increases withk. It is an open problem to find either an
efficient algorithm or new theoretical results for computing
these correlations. A related issue is the existence of some rela-
tionships between the correlation properties of the augmented
function and those off . Another technique for increasing the
involved correlation consists in conditioning the correlation by
the observed value of some keystream bits. Combining both
methods leads to block-oriented conditional correlation attacks
as described in [22]–[24].

A completely different improvement of fast correlation
attacks on filter generators consists in exploiting several lin-
ear approximations of the keystream together [25], even all
linear functions which are correlated tof [26]. Then, we
get a larger number of linear relations, leading to a more
efficient decoding. The main modification is that the involved
transmission channel is now a non-stationary channel, since
the different linear approximations off do not correspond to
the same error-probability. However, it can be proved that the
capacity of this channel is much larger than the capacity of
the channel corresponding to the best linear approximation.
Moreover, it only depends on the number of nonzero Walsh
coefficients of the filtering function [26] and it is not related
to its nonlinearity.

C. LFSR-based generators with memory

Most recent proposals of LFSR-based generators include
some memory bits, i.e., a small part of the internal state which
is not linearly updated. Similar attacks can be mounted for
instance against combiners with memory, as shown in [27]. A
nice example of such attacks is the recent cryptanalysis of E0
presented by Lu and Vaudenay [28], [29].

In most previous cases, the target sequenceσ is a linear
recurring sequence; it can be generated by a LFSR of length`
whose feedback polynomial is known to the attacker. In this
situation, the linear codeC associated toσ has a very particular
algebraic structure. A generator matrix for this code is the
`×N -matrix G = (gi,j) whoset-th column is given by

`−1∑

i=0

gi,tX
i = Xt mod P ?(X) ,

where P ? is the characteristic polynomial of the involved
LFSR, i.e., the reciprocal polynomial of its feedback polyno-
mial. This structure is extensively exploited by some decoding
procedures, especially by iterative decoding algorithms.

V. DECODING TECHNIQUES FOR FAST CORRELATION

ATTACKS

A. Maximum-likelihood decoding

When it is seen as a decoding problem, the original corre-
lation attack proposed by Siegenthaler consists in applying
a maximum-likelihood decoding algorithm to the codeC
associated toσ. The numberN of required keystream bits
is equal to Shannon’s bound.

The basic algorithm for maximum-likelihood decoding con-
sists in computing the Hamming distance between theN -
bit received word (i.e., the keystream subsequence) and all
codewords. Its complexity is thenN2`. But, when C is a
linear code, this algorithm is equivalent to the computation
of the Fourier transform of the ternary functionF from F`

2

into {−1, 0, 1} defined by{
F (gt) = (−1)st for all 0 ≤ t < N
F (x) = 0 for all x 6∈ {gt, 0 ≤ t < N}

where gt is the t-th column of the generator matrix ofC.
Actually, the correlation between the keystream and the tar-
get sequenceσ(y0) generated from a given initial statey0

corresponds to the Fourier coefficient ofF at pointy0:

C(s, σ(y0)) =
N−1∑
t=0

(−1)st⊕y0·gt

=
∑

x∈F`
2

F (x)(−1)y0·x = F̂ (y0) .

For large values ofN , the time complexity of the algorithm
can then be reduced tò2` by using a fast Fourier transform
algorithm [30]. However, decoding becomes infeasible for
practical LFSR lengths, namelỳ≥ 80. For this reason, the
attacker needs to use much faster decoding algorithms. But,
no efficient general decoding algorithm is known for achieving
the channel capacity. This means that practical fast correlation
attacks require that the known running-key sequence be much
longer than Shannon’s lower bound.

The fast decoding algorithms used in correlation attacks can
be divided into two families. The first one consists of decoding
procedures which make use of the inherent structure of the
code, especially when it corresponds to a LFSR. The second
family contains general algorithms that can be applied to any
linear code.

B. Decoding based on low-weight parity-check equations

Most decoding algorithms which exploit the structure of
the generator matrix use the existence of sparse parity-check
equations for the linear codeC. This technique was first
proposed by Meier and Staffelbach in their original paper [12]
and later improved [17]. It especially applies when the target
sequenceσ corresponds to the output of a LFSR with feedback
polynomialP . Actually, any sparse multiple1 + Xa1 + . . . +
Xad−1 of the feedback polynomialP exactly corresponds to
a linear relation involvingd bits of the LFSR sequence:

∀t, σt ⊕ σt−a1 ⊕ · · · ⊕ σt−ad−1 = 0 .

When a collection of such sparse equations is available, the
LFSR code can be viewed as a low-density parity-check
(LDPC) code. Then, some efficient iterative decoding tech-
niques [31] can be applied to those codes. The starting point
of these procedures is the information onσt derived from the
keystream, namely

Obs(σt) = Pr[σt = 1|s] =
{

p if st = 0
1− p if st = 1



Then, the algorithm computes the extrinsic information on
eachσt in its m-th parity-check equation,σt =

⊕
j∈Jm

σj :

Extm(σt) = P [
⊕

j∈Jm

σj = 1|s] .

We can then derive an a posteriori probability (APP) onσt by

APP (σt) ∝ Obs(σt)
md∏

m=1

Extm(σt) .

Iterative algorithms consist in updating the extrinsic informa-
tion Extm(σt) by using the partial APPs (i.e., APPs excluding
the extrinsic information given by them-th equation). In
the context of fast correlation attacks, the original belief
propagation algorithm cannot be applied because of its high
complexity, both in time and memory. In practice, the extrinsic
information is updated from the values of the total APPs
(instead of the partial APPs). Some additional approximations
for computing these values are usually used, leading to faster
algorithms, even if they may be less efficient in terms of error-
correcting capability.

When parity-check equations withd terms are used, the
required keystream length is given by

N ∝
(

1
2ε

) 2(d−2)
d−1

2
`

d−1 ,

wherep = 1
2 − ε is the cross-over probability of the channel.

The precomputation step (i.e., the search for the parity-check
equations) requiresO (

Nd−2/(d− 2)!
)

operations, but this
complexity can be reduced by using a time-memory trade-
off technique or the algorithm proposed in [30]. However, this
complexity implies that the weight of the equations cannot
increase very much. Finally, the complexity of the decoding
step is roughly (

1
2ε

) 2d(d−2)
d−1

2
`

d−1 .

Other decoding algorithms based on low-density parity-check
equations are described in [32]–[34].

C. General decoding algorithms

The other class of algorithms can be applied to any lin-
ear code. The key-idea due to Chepyshov, Johansson and
Smeets [35] is the following: when the code dimension` is
too large for ML-decoding, it is possible to derive from the
original code a new code with smaller dimension on which
ML-decoding can be applied. Obviously, a code of dimension
k < ` is obtained from the columns of the generator matrix
which vanish of the last̀ − k positions. However, since the
number of such columns (i.e., the new code length) is very
small, ML-decoding requires a huge keystream length. In order
to increase the code length, we then include in the generator
matrix of the new code every linear combination ofw columns
of the original matrix which vanishes of the last(` − k)
positions. Now, the new code has dimensionk and length

Nw

w! 2`−k
.

For reasonable values ofk, it can be decoded with ML-
decoding if

N ≥
(

1
2ε

)2

2
`−k

w .

The precomputation step (construction of the new generator
matrix), when linear combinations ofw columns are used,
is very similar to the computation of parity-check equations
of weight w + 1 for LDPC decoding. But, the decoding
complexity is now very different. Here, the firstk bits of
the target initial statey0 are recovered withk2k operations
(with a FFT). The other ones can be recovered by successively
applying the same technique but for the nextk bits of y0.

Some improvements of the previous algorithm are presented
in [36]. The first one considers all linear combinations ofw
columns of the generator matrix whose(`− k) last positions
lie in a given subset (the original algorithm proposed in [35]
corresponds to the case where this subset is reduced to the zero
vector). This refined version is very similar to the extended
version of linear cryptanalysis on block ciphers based on mul-
tiple approximations [37]. A second improvement is derived
from an algorithm due to Goldreich, Rubinfeld and Sudan [38]
for polynomial reconstruction in the multivariate case. Instead
of repeating the procedure for several independentk-bit blocks
of the `-bit target initial state, it uses a sequential procedure
for recovering the other(`− k) bits one after the other.

In practice, the most efficient fast correlation attacks enable
to recover a target initial state of length60 for an error-
probabilityp = 0.4 in a few hours on a PC from the knowledge
of 106 keystream bits [39]. However, it is worth noticing
that the number of known keystream bits required by all
these decoding methods is still exponential in the size of the
target part of the initial state, even if the gain compared to
Siegenthaler’s attack is very high in practice.

VI. A DAPTING THE DECODING ALGORITHMS TO

PRACTICAL SITUATIONS

The main promising research directions for improving fast
correlation attacks consist in adapting the usual decoding
algorithms to the practical context of a given stream cipher.
Even if the underlying problem corresponds to a classical
decoding problem, the involved parameters do not fit in with
the common situation. Fast correlation attacks could then be
significantly improved by using some decoding methods which
suits better to the involved cipher than to the BSC model.

A first approach would be to make a better use of soft-
decoding algorithms. Besides the observation of the keystream,
some additional soft input information may be derived from
the structure of the cipher, especially from the key-loading
and the IV-loading procedures. It is worth noticing that the
entropy of the initial state does not exceed the size of the
key, which is at least twice smaller than the internal state. As
previously noted, considering several keystream bits together
by means of the augmented function may also provide such
a soft information on the target sequence. A soft output may
also be of interest when the decoding step does not succeed,



since it could be given as input to another type of attack.
The sequential use of several decoding techniques may also
be considered in this context.

Another important open issue is the decoding of linear
codes over a large binary alphabet. In order to increase
the performance of software implementations, most recent
keystream generators use LFSRs over an extension fieldF2m

and the associated filtering function is usually a mapping from
Fn

2m into F2m . The typical alphabet size is then232 for word-
oriented stream ciphers (e.g. [6]). The attacks corresponding
to direct adaptations of the usual decoding algorithms become
then infeasible for such a huge alphabet. Moreover, finding the
appropriate target sequence is still a very hard problem in this
case. Attacking such word-oriented ciphers then requires much
more efficient algorithms both for decoding and for computing
the correlations induced by the filtering function.
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