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On the Influence of the Algebraic Degree of on
the Algebraic Degree of

Christina Boura and Anne Canteaut

Abstract—We present a study on the algebraic degree of iterated
permutations seen as multivariate polynomials. The main result
shows that this degreedependson thealgebraicdegreeof the inverse
of the permutation which is iterated. This result is also extended
to noninjective balanced vectorial functions where the relevant
quantity is the minimal degree of the inverse of a permutation ex-
panding the function.This property has consequences in symmetric
cryptography since several attacks or distinguishers exploit a low
algebraic degree, like higher order differential attacks, cube at-
tacks, and cube testers, or algebraic attacks. Here, we present some
applications of this improved bound to a higher degree variant of
the block cipher , to the block cipher Rijndael-256 and to the
inner permutations of the hash functions ECHO and JH.

Index Terms—Algebraic degree, block ciphers, hash functions,
higher order differential attacks.

I. INTRODUCTION

M OST of the symmetric cryptographic primitives that are
used nowadays, including block ciphers and hash func-

tions, base their designs on an inner function that is iterated
a high number of times. This transformation, called the round
function, is very often a permutation. The algebraic degree of
this permutation, i.e., the degree of the corresponding multi-
variate polynomial, is a quantity that plays an important role
on the security of the symmetric primitive. Actually, a crypto-
graphic primitive of low algebraic degree is vulnerable to many
attacks, for instance higher order differential attacks [1]–[3], al-
gebraic attacks [4], [5], or cube attacks [6].
Here, we show that, even if the inverse of the round permu-

tation is never used in practice, as it is the case for Feistel ci-
phers or for hash functions, its degree also plays a fundamental
role on the degree of the composition and in consequence
on the overall degree of the primitive. Even if the degree of the
round function is high, if the degree of the inverse is low, the
degree of the cipher will be much lower than expected. This re-
sult helps in general the understanding of the evolution of the
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algebraic degree of iterated permutations. Several earlier works
have established new bounds on the degree of such permuta-
tions: most notably, [7] connects the degree of with the di-
visibility of the Walsh spectrum of by a high power of 2 and a
recent result [8] applies to the families of functions composed of
several smaller balanced functions. Here, we derive some new
bounds on the degree of which involve the degree of .
In the design of some particular ciphers, the nonlinear building
blocks in the round function are not permutations. This is, for
example, the case for the data encryption standard (DES) that
uses a collection of eight 6 4 balanced functions. Obviously,
the notion of inverse does not exist for such functions. How-
ever, we show that the overall degree of the cipher depends on
the minimal degree of the inverse of any permutation expanding
the output of the function. Thus, a result, similar to the one for
permutations, can be derived.
As illustrations, we apply our results to , a variant of
, a cipher proposed by Knudsen and Nyberg in [9]. In this

variant, the quadratic round permutation which was originally
used in is replaced by a function with higher degree but
derived from a permutation whose inverse has algebraic degree
2. Our new bounds are also applied to the cipher Rijndael-256
and to two hash functions accepted for Round 2 in the SHA-3
competition, ECHO and JH.
The rest of this paper is organized as follows. After some pre-

liminaries on the algebraic degree of a vectorial function, dif-
ferent attack techniques that exploit a low algebraic degree are
recalled in Section II. Section III presents the main result on
the influence of the inverse of a permutation on the degree of

and includes some corollaries. A variant of the main result
for noninjective balanced functions is presented in Section IV.
Finally, an attack on a variant of the block cipher [9] is illus-
trated in Section V, together with applications to Rijndael-256
and to some hash functions.

II. EXPLOITING A LOWALGEBRAIC DEGREE IN CRYPTANALYSIS

The whole paper focuses on functions from into .
The coordinates of such a function are the Boolean func-
tions , , such that
for all . The algebraic degree of is defined by the algebraic
degrees of its coordinates as follows.

Definition 2.1: Let be a function from into . Then,
can be uniquely written as a multivariate polynomial in

, named its algebraic
normal form

0018-9448/$31.00 © 2012 IEEE



692 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013

The (algebraic) degree of is then defined as

where denotes the Hamming weight of a binary vector.
For a function from into , , the (algebraic)

degree of is the maximal algebraic degree of its coordinates.
Moreover, the coefficients in the algebraic normal form of

a Boolean function can be easily computed from pairs
of inputs/outputs of as follows [10]:

where means that for all , and the sum is com-
puted modulo 2. It is worth noticing that, when all the values
of are known, the coefficients of the algebraic normal form
can be computed all together by the Moebius transform with
time complexity [11, p. 286].
From the other side, every vectorial function from into
can also be seen as a univariate polynomial over . This

representation is possible because can be identified with an
-dimensional vector space over . Thus, for every such ,
there exists a unique univariate polynomial representation over

, of degree at most

In this case, it can be shown that the algebraic degree of rep-
resented in such a way is given by

where denotes the Hamming weight of the -bit vector
corresponding to the binary expansion of (see, e.g., [12, Defi-
nition 4]).
Many statistical attacks against symmetric cryptosystems ex-

ploit the fact that a family of functions (resp. of permu-
tations), whose inputs and outputs can be computed from plain-
text/ciphertext pairs, is not pseudorandom. Several properties
may be used to distinguish from a randomly chosen function,
including the fact that some given coefficients in its algebraic
normal form are not distributed as it is expected for a family of
randomly chosen functions. The simplest attack exploiting some
property of the coefficients of the algebraic normal form is the
higher order differential attack introduced by Knudsen [2]: this
attack uses that, for all values of , all coordinates of have
degree strictly less than , in general, and strictly less than ,
in the case of a permutation. The algebraic degree of is then
of primary importance since the data complexity of this crypt-
analysis is proportional to [13], [14]. The higher order
differential attack has been generalized to other types of sym-
metric primitives, especially to stream ciphers, under different
names (including cube distinguishers) in [15]–[19]. Cube at-
tacks [6] and algebraic attacks [4], [5] also exploit low-degree
relations between some components of the cryptosystem, but
they mainly aim at reducing the time complexity for recovering
the secret key from a low-degree distinguisher. Finally, even if

both univariate and multivariate degrees are related, all these
attacks must be distinguished from the attacks exploiting a low
univariate degree, like the interpolation attack and its variants
[20]–[22].
In the case of iterated block ciphers, i.e., ciphers consisting

of several iterations of the same round permutation parame-
trized by different round keys, the target function usually
corresponds to the encryption function where the last round
is omitted. Then, the fact that has a low degree can be
used to recover the last-round subkey either by an exhaustive
search [20], or by setting up a low-degree algebraic system in
these subkey bits which can be solved with time complexity
depending on the algebraic degree of the round function [3],
[23]. Predicting the evolution of the degree of the cipher when
the number of rounds varies is then one of the main issues in
higher order differential attacks.

III. ON THE DEGREE OF WHEN IS A PERMUTATION

A. General Problem

We now focus on the following general problem: let be a
function from into and be a function from into
, for some . Then, we aim at exhibiting some particular

classes of functions such that the trivial bound

can be improved.
The following two families corresponding to some common

situations in cryptographic applications have been previously
identified in [7] and [8].

Proposition 3.1: [7] Let be a function from into
and be a function from into . Assume that all Walsh
coefficients of , i.e., all

are divisible by for some integer ; then

When is a permutation, we can deduce the following corollary
which involves the degree of .

Corollary 3.1: Let be a permutation of and let be a
function from into . Then, we have

Proof: Obviously, the sets of all Walsh coefficients of a
permutation and of its inverse are the same since

Moreover, a lower bound of the highest power of 2 which di-
vides allWalsh coefficients of a Boolean function can be derived
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from Katz theorem [24]: for any function and any nonzero
, we have

Since is a permutation, any nonzero linear combination of its
coordinates is balanced, which means that the right-hand side
of the congruence is equal to zero. Then, by applying this result
both to and , we obtain that all Walsh coefficients of
are divisible by with

In particular, if is quadratic, Corollary 3.1 leads to

which may provide some relevant information if
.

It has been recently shown in [8] that the bound given by
Proposition 3.1 can be improved when corresponds to the
parallel applications of smaller balanced functions, i.e.,

. This particular situation is actually very common
in cryptography for obvious implementation reasons.

B. Main Result

Wenow show that the upper bound given byCorollary 3.1 can
be improved. This improvement relies on the following theorem
which bounds the maximum degree for the product of any
coordinates of , for all . The following notation
will then be extensively used.

Definition 3.1: Let be a function from into . For any
integer , , denotes the maximal algebraic
degree of the product of any (or fewer) coordinates of

In particular, .

Theorem 3.1: Let be a permutation on . Then, for any
integers and , if and only if .

Proof: We only have to show that if then
. Indeed, the reciprocal relation is obtained by

exchanging the roles of and .
Let , with . For

, with , we denote by the coef-
ficient of the monomial of degree . We will
show that :

where the last equality comes from the fact that is a permu-
tation, implying that there is a one-to-one correspondence be-
tween and . Additionally, for all
if and only if Then

mod (1)

Now, we define the Boolean function

We have

mod

is a function of variables and it has degree at most
. Then, as by hypothesis , is

of even Hamming weight and thus , which means that
.

This theorem explains for instance the observation reported in
[25] on the inverse of the quadratic permutation over used
in the hash function KECCAK [26]. Since ,
we have .
The following (less precise) result can be derived from the

trivial bound on .

Corollary 3.2: Let be a permutation of and let be a
function from into . Then, we have

Proof: Obviously, . But, the pre-
vious theorem shows that for some integer
if and only if . However, we have from
the trivial bound that . It follows that

for any integer satisfying

Indeed, if , we have

Otherwise

Therefore, in all cases, we have

implying that
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We then deduce that

Obviously, the upper bound in the previous theorem gets
better when the degree of decreases. Moreover, if is
balanced, this bound is relevant only if it improves the trivial
bound . It then provides some information if

, while the bound in Corollary 3.1

was relevant only for .

C. Some Corollaries

Some simple corollaries of Theorem 3.1 can be obtained by
setting in the theorem. In this case, we have

if and only if . We then deduce the following
result.

Corollary 3.3: Let be a permutation of . Then

In particular, if and only if .
It is worth noticing that almost all permutations over have

maximal algebraic degree , since this class includes
in particular all permutations with univariate degree ,
which correspond to almost all permutations [27]–[29]. For in-
stance, any transposition is an involution with algebraic degree

.
We can also deduce from Corollary 3.3 that for any integer

such that

we have

It follows that

implying that

We then recover in a different way the bound on
which can be derived from Katz theorem [24] on the divisibility
of the Walsh spectrum of a permutation. Actually, all Walsh co-
efficients of are divisible by and it is well known
that the degree of a function whose Walsh coefficients are divis-
ible by is at most (see, e.g., [7, Proposition 3]).
Corollary 3.3 also implies the following.

Corollary 3.4: Let be a permutation of . Then, the
product of coordinates of has degree if and only
if .
In particular, .

Proof: Corollary 3.3 implies that the smallest such that
is equal to . Moreover, it is

known that if and only if . Finally, since
, we deduce that , for

any permutation of .

The above results can also be used for improving the bound
on found in [8] when is the concatenation of
several smaller permutations.

Theorem 3.2: Let be a permutation from into
corresponding to the concatenation of smaller permutations,

, defined over . Then, for any function from
into , we have

(2)

where

Most notably, we have

Proof: We denote by the quantity

and we will try to compute the maximal for ,
i.e., .
For

For , we get from Corollary 3.4

that , and thus

Finally, for the remaining indexes, i.e., for
, we get that

IV. GENERALIZATION TO BALANCED FUNCTIONS FROM
INTO WITH

In some symmetric primitives, the functions used to provide
confusion are not permutations, but balanced functions

, with . An example of this design is the
first encryption standard cipher, DES [30], whose round func-
tion uses the parallel application of eight different 6 4 Sboxes,
all of them of degree 5 in six variables.
An interesting problem is to be able to predict in somemanner

the evolution of the algebraic degree of the cipher after few
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rounds of encryption. Clearly, as the Sboxes of DES are not per-
mutations, they cannot be inverted. Nevertheless, similar results
as before can be deduced.

Definition 4.1: Let , with ,
, be a balanced function. A permutation of

is called an expansion of if its first output coordinates
correspond to the coordinates of , i.e., for all ,

In other words, is expanded in a permutation with outputs
in the following way: as is balanced, each of the vectors
of is taken by exactly times. We then complete all
of these equal vectors by concatenating to each of them a dif-
ferent element of in order to obtain different vec-
tors of . For instance, if , then
is a vector in the image set of obtained for exactly four in-
puts, namely , , , and in . Then, an expansion of can
be defined by associating with , , , and the four different
vectors of , , , ,
and . These four images are obtained by con-
catenating with all elements of . There are

different expansions of a given .
Theorem 4.1: Let be a balanced function from to ,

with . Let and be two integers with and
. Then, the following three properties are equivalent.

i) There exists a permutation of expanding such
that, in any product of coordinates of , all mono-
mials of degree greater than or equal to have de-
gree strictly less than in the last variables.

ii) For any permutation of expanding , we have
that, in any product of coordinates of , all mono-
mials of degree greater than or equal to have de-
gree strictly less than in the last variables.

iii) .
Proof: Let and . Let
denote the product of the coordinates for . Then,

the coefficient of the monomial in the
algebraic normal form of is given by

where the last equality holds for any expansion of . Then,
as is a permutation, setting leads to

implying that if and only if the Boolean function

has degree strictly less than .

Let us first prove that (i) implies (iii). We deduce from the
previous reasoning that, if Condition (i) holds, any monomial
of degree greater than or equal to in the ANF of the
-variable Boolean function

is not a factor of . Therefore, the restriction of such
a monomial to any set with

has degree strictly less than
. It follows that, for any choice of ,
has degree strictly less than . Then, we have: (ii)

(i) (iii).
Conversely, we can prove that (iii) implies (ii). Suppose that

(ii) does not hold, i.e., there exists some permutation ex-
panding and some set such that the -vari-
able Boolean function

contains a monomial of the form for some
set of size at least . We can sup-
pose that is the smallest such set for inclusion (otherwise,
we choose the smallest satisfying the property). Let
us choose where
is the monomial with the highest degree of this form in the
ANF of . By hypothesis, the size of is at most , and it is
greater than or equal to 1 since cannot have degree when

[8, Prop 1]. Since is minimal for inclusion and

it is clear that has degree if and only if the re-
striction of to the set has degree

. However, the algebraic normal form of contains the
monomial , implying that has de-
gree at least . It follows that, for these particular choices
of and , implying that there exists some product
of or fewer coordinates of which has degree greater than or
equal to . Finally, it follows that all three properties are
equivalent.

A corollary similar to Corollary 3.2 can be deduced now for
the case of noninjective balanced functions.

Corollary 4.1: Let be a balanced function from into
and a function from into . For any permutation
expanding , we have

Proof: Let be a permutation expanding . We have
shown in the proof of Corollary 3.2 that the trivial bound implies
that for any

It follows that, when satisfies this condition, the product of any
coordinates of does not contain any monomial of degree
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. Since Condition (i) in Theorem 4.1 is satisfied, we
deduce that

It is known that the product of coordinates of a balanced
function with input variables has degree if and only if
(see, e.g., [8, Prop 1]). Moreover, when is a permutation, we

have shown in Corollary 3.4 that the degree of determines
whenever the product of some coordinates of has degree
. Here, we provide a similar result in the case where is a

noninjective balanced function.

Corollary 4.2: Let be a balanced function from to ,
with . Then, if and only if, for any

, the preimages of by sum to zero, i.e.,

where the sum corresponds to the addition in .
Proof: From Theorem 4.1 applied with and ,

we know that if and only if there exists some
permutation expanding such that any monomial with de-
gree at least in the ANF of any coordinate of is not
a factor of . Since a monomial of degree less than

cannot be a factor of , this equivalently
means that any monomial in the ANF of any coordinate of
is not a factor of . Let

for some . For any , de-
notes the coefficient in the ANF of of the monomial

. Let denote the all-one
vector in . For any and , we have

where means that for all . Then

where

mod mod

Then, except when is the all-one vector. Therefore

Fig. 1. Round of the -cipher.

We then deduce that all for if and only
if

for all . It is worth noticing that this property is similar
to the property used in cube attacks [6, Th. 1].
Since this property holds for any coordinate of , the

required condition equivalently means that, for any

where the sum is an addition in . By definition of , all ele-
ments when correspond to the preimages
of under . The condition can then be written as

V. APPLICATIONS TO SOME SYMMETRIC PRIMITIVES

In this section, we will show how the previous results can be
used in order to predict the evolution of the algebraic degrees of
some chosen permutations that are the main building blocks of
some well-known block ciphers and hash functions.

A. Attacking the -Cipher and Its Variant

One of the first examples in the literature of a concrete attack
exploiting the low algebraic degree of a symmetric primitive is
the higher order differential attack presented by Jakobsen and
Knudsen [20] against the -cipher. This construction, a.k.a
CRADIC [31], has been proposed by Nyberg and Knudsen in
[9]. It is a six-round Feistel cipher over with a 198-bit secret
key. Its round permutation is defined as follows (see Fig. 1):

where is the th round subkey, is a linear expansion from
into , is a linear truncation from into , and
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is the power function over . In this definition, the finite
field is identified with the vector space .
The main motivation behind this design is that the choice of
, which is the only nonlinear part in the cipher, guarantees an
optimal resistance to both linear and differential attacks. Thus,
over , odd, was chosen, since it is an almost bent func-

tion [32]. More precisely, some lower bounds on the probabili-
ties of the best differential and of the best linear approximation
show that six rounds of this cipher are resistant to these attacks.
However, one of the main weaknesses of this cipher, identi-

fied by Jakobsen and Knudsen [20], is that the encryption func-
tion has a low algebraic degree. Indeed, for any -round Feistel
cipher, it can be observed that, when the right half of the input
is a constant, the function which associates the left part of

the output with the left part of the input has degree at
most . Therefore, since the Sbox in the -cipher
is quadratic, there exists a distinguisher for rounds with data
and time complexity . This must be compared to the best
known generic attacks against any four-round and five-round
Feistel ciphers with 64-bit blocks, which have respective data
complexities and [33]. Here, the whole encryption func-
tion can be distinguished from a random permutation with data
complexity . Also, the 33-bit last round key can be recov-
ered with average time complexity and data complexity
pairs of chosen plaintexts-ciphertexts [23]. Therefore, it is now
well known that, in an -round Feistel cipher, the Sbox must
be chosen such that is much higher than half of the
block size. But, there is no condition on the degree of the in-
verse of since is involved neither in the encryption func-
tion nor in the decryption function. The degree of may only
affect the complexity of some algebraic attacks [4]. Therefore,
a variant of this cipher, that we name , suggested by Ny-
berg and Knudsen in the same paper [9] does not present the
same weakness. This variant is obtained by modifying and
using instead the inverse of a quadratic permutation. Actually, it
is known that any permutation and its inverse present the same
resistance to differential and linear cryptanalysis [34]. But, a
major difference is that and may have different algebraic
degrees. For instance, if is a quadratic power permutation over

, odd, i.e., with , then the al-
gebraic degree of is equal to [32]. Since the implemen-
tation complexity of the inverse of over is unacceptable
in most applications, we consider the nonlinear function over

composed of four parallel applications of the same func-
tion defined over like in

where is an affine expansion from into with maximal
rank, is a truncation from into , and is the inverse
of a quadratic power permutation over , e.g.,

which is the inverse of . This function, which
is the only nonlinear part of the cipher, has algebraic degree 5.
It is worth noticing that it has a high univariate degree which
prevents interpolation attacks. The round function of is
depicted in Fig. 2. It is defined by

Fig. 2. Round of the -cipher.

where corresponds to four parallel applications of , is the
th 32-bit subkey, and and are two linear bijections over
which aim at providing diffusion.

While the trivial bound does not provide any relevant in-
formation on the degree of the left part of the output for five
rounds or more, Theorem 3.1 shows that -cipher can also
be broken by the attack proposed by Jakobsen and Knudsen. At
this aim, we study the algebraic degree of the function which
maps , the left half of the plaintext, to which is the left
half of the output of the cipher after rounds. In the following,
we denote by the function over defined by

Then, we have

Let us now denote by the element of defined by

where is the linear expansion from into composed
of four applications of the smaller expansion . Then, can be
computed from by

where is the function from into defined by
and if . Such a function

exists since has maximum rank. Then, can be written as a
function of

where is the permutation of corresponding to four par-
allel applications of , and is the function from into
defined by four applications of the truncation . Now, since

we deduce that
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The degree of as a function of is at most the maximum
between the degree of , which is at most 5, and the degree
of , seen as a function of . We then focus on this last
quantity. We write

with

Degree of : Since has degree 5, can be decomposed
as a sum of terms, each consisting of the product of coordinates
of multiplied by the product of at most coordinates
of . Since has degree 2, we get that

From Theorem 3.1, it is known that , im-
plying that . Therefore, we deduce that

.
Degree of : We now apply Corollary 3.2 for upper

bounding the degree of , exploiting the fact that has
degree 2. Then, we get

or equivalently

and we finally find that is a function of degree at most 29
of . This leads to a distinguisher on five rounds of with
data complexity that improves the generic distinguisher. It
is worth noticing that the same upper bound can be derived from
Theorem 3.2 which additionally exploits the fact that cor-
responds to the concatenation of four permutations defined
over .
Variant with nonbijective Sboxes: The nonlinear function in
can also be seen as the concatenation of four balanced

Sboxes from into . Instead of applying Corollary 3.2
based on the degree of the inverse of the nonlinear function ,
we can then rely on the existence of a permutation expanding
the 36 32 Sbox, with . Then, Corollary 4.2
applies and also shows that is a function of degree at most
29 of .
It is worth noticing that, if we consider another variant of

the -cipher using the inverse of over as an Sbox,
Corollary 3.2 leads to a distinguisher on four rounds exploiting
that has degree at most 25. But, finding a relevant bound on
the degree of remains an open problem.

B. On the Algebraic Degree of Rijndael-256

Rijndael-128 [35] is the algorithm selected by the Na-
tional Institute of Standards and Technology (NIST) in 2000
as the winner of the advanced encryption standard (AES)
competition in order to replace the DES. Rijndael- , with

has the form of a substitu-
tion-permutation-network. The key size varies between
128, 192, and 256 bits. Its round transformation applies to

Fig. 3. States of Rijndael-256 and Rijndael-128.

TABLE I
NUMBER OF ROUNDS FOR THE RIJNDAEL BLOCK CIPHER

an -bit state, that is represented by a -byte matrix
, with . For instance, the states for

Rijndael-128 and Rijndael-256 are depicted in Fig. 3.
Four basic layers are composing a round of the Rijndael-

transformation.
1) : The only nonlinear transformation of the ci-
pher. Every byte is updated by an 8 8 Sbox of degree 7.
The inverse transformation has the same degree.

2) : Linear transformation that rotates to the left
the bytes in each row by a certain offset. This offset de-
pends on the block size . The offset is for example

for Rijndael-128 and for Rijndael-
256.

3) : Linear transformation that applies in parallel
to every column of the state.

4) : The combination of the state with the round
subkey using bitwise XOR.

A round of the transformation applied to a state corre-
sponds thus to

The number of rounds depends on the block size and on the key
size. These values can be found in Table I.
As seen from the description, the only source of nonlinearity

for Rijndael- is the transformation. This transfor-
mation has algebraic degree 7. By using the trivial bound as
an estimation for the degree, we can see that the degree after
two rounds is at most and after three rounds it is
bounded by . Thus, it may be believed that
only three rounds of encryption are enough for achieving the
maximal degree.
We will show, using the results of Section III, that the above

estimates of the required number of rounds are way too small.
We will see in particular that for Rijndael-256, at least seven
rounds are needed to achieve the maximal degree.
We start by giving a bound for the degree of two rounds of

Rijndael-256. By using the superSbox view [36], we can see
these two rounds as the parallel application of eight copies of
a function operating on 32-bit words, followed by a linear
transformation. corresponds to the so-called SDS transfor-
mation: it consists of two layers of four 8 8 balanced Sboxes
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TABLE II
UPPER BOUNDS FOR ITERATIONS OF THE RIJNDAEL-256 ROUND

PERMUTATION OBTAINED BY USING THE TRIVIAL BOUND, THE TRIVIAL
BOUND TOGETHER WITH THE SUPERSBOX VIEW (OR THE BOUND FROM [7])

AND THE NEW RESULTS, RESPECTIVELY

of degree 7, separated by a linear layer. Therefore, we can use
[8, Th. 2] and get that

As the state of Rijndael-256 is wide, after two rounds of the
permutation, not all the parts of the state have been mixed to-
gether. Thus, we can apply a similar approach as before and see
three rounds of the permutation as the parallel application of
two copies of a function , operating now on 128-bit words,
followed again by a linear layer. Theorem 2 of [8] gives now

Let . is a permutation of degree at most 28 and its
inverse has degree at most 28 too. Using that ,
we get a bound for the degree of Rijndael-256 after five rounds.
From Theorem 3.2, we get that the constant associated with

is at most 28 and we deduce finally that

We get a similar result for six rounds, by considering ,
which has degree at most 113. Since , the cor-
responding constant is at most 113, leading to

Therefore, at least seven rounds are needed to achieve the
maximal degree 255.
In order tomake a comparison with previously known bounds

and to see at what extension they are improved, we present in
Table II upper bounds for Rijndael-256 coming from four dif-
ferent sources. The first column presents the results obtained by
using the trivial bound, and the second column combines it with
the superSbox view. Since theWalsh spectrum of the AES Sbox
is divisible by 4 only, the bound from [7] provides the same re-
sults as the superSbox view. The last column illustrates the new
results. A in the table means that the obtained bound corre-
sponds to the maximal degree of a permutation, and thus pro-
vides no information.

C. Application to the ECHO Hash Function

The ECHO [37] hash function has been designed by Benad-
jila et al. for the NIST SHA-3 competition. It uses the HAIFA
mode of operation. Its compression function has a 2048-bit
input (corresponding to the chaining value and a message block

whose respective lengths depend on the size of the message
digest), and it outputs a 512-bit or a 1024-bit value. It relies on
a 2048-bit AES-based permutation .
The permutation updates a 2048-bit state, which can be

seen as a 4 4 AES state, composed of 128-bit words. In
every round , three operations modify the state. These are
the , , and
transformations. These transformations can be seen as gen-
eralizations of the three classical AES transformations. In
particular,
1) is a nonlinear transformation applied in-
dependently to every 128-bit cell. It consists of two AES
rounds.

2) The and transforma-
tions are exact analogues of the AES and

transformations, respectively, with the only
difference that they do not operate on bytes but on 128-bit
words.

The number of rounds is specified to be 8 for the 256-bit candi-
date. Finally, each bit in the output of the compression function
is defined as a linear combination of some output bits of and
some input bits.
We will see how the algebraic degree of the permutation

varies with the number of rounds. We will show that the degree
does not increase as predicted and reaches its maximum value
much later than expected. The algebraic degree of the permuta-
tion was believed to be high, as in every round the input has
to pass twice through the Sbox layer, of degree 7. As ,
two rounds seemed to be enough to achieve the highest possible
degree.

is the only source of nonlinearity in the round
permutation. It is a 128-bit transformation corresponding to two
rounds of AES. Its degree thus matches the degree of the
transformation of Rijndael-256 and is hence at most 28. The
two-round permutation is a permutation of the set of 2048-bit
states, but it can be decomposed as four parallel applications
of a permutation operating on 512-bit words, followed by
a linear layer. We will determine the degree of any of these
four applications. After the first round of the permutation ,
every bit of the state consists of polynomials of degree at most
28. By applying to this state, the first layer of Sboxes in every

, the degree gets at most . We can
apply now the bound of [8, Th. 2] to get the following bound on
the degree of :

Let . is then a permutation of degree at most 466.
From Theorem 3.2, the constant associated with this permu-
tation is at most 466, as the degrees of and of its inverse are
both upper bounded by 466, therefore

As for Rijndael, these results compared with the previously
known bounds are summarized in Table III.
The same bounds hold for the inverse round transformation.

Due to this observation, we are able to distinguish the inner per-
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TABLE III
UPPER BOUNDS FOR ITERATIONS OF THE ROUND PERMUTATION OF ECHO
OBTAINED BY USING THE TRIVIAL BOUND, THE TRIVIAL BOUND TOGETHER
WITH THE SUPERSBOX VIEW (OR THE BOUND FROM [7]) AND THE NEW

RESULTS, RESPECTIVELY

mutation in ECHO from a random one. This can be done for in-
stance by constructing many zero-sum partitions of size ,
i.e., partitions of the input set into eight sets
of size such that all elements in each sum to zero and
the corresponding images sum to zero too [38],
[39]. Such a partition can be constructed by the method intro-
duced in [39] and detailed in [38, Proposition 2]. Let be any
subspace of with codimension 3 and be its comple-
ment. Then, the eight sets

form a zero-sum partition of for of size .

D. Application to the JH Hash Function

JH [40] is a hash function family, having some members
submitted to the NIST hash function competition. It has been
chosen in late 2010 to be one of the five finalists of the contest.
The compression function in JH is constructed from a block

cipher with constant key. This compression function is based on
an inner permutation, named and is composed of 42 steps of
a round function , where for the SHA-3 candidate.

applies to a state of bits, divided into 4-bit words. It
consists of three different layers: an Sbox layer, a linear layer,
and a permutation layer .
1) The Sbox layer corresponds to the parallel application of

Sboxes to the state. Two different Sboxes, and ,
are used in JH. Both of them, as also their inverses, are of
degree 3. The selection of the Sbox to use is made by the
bits of the round constant, which are not xored to the state
as done in other constructions.

2) The linear layer mixes the words two by two.
3) The permutation permutes the words of the state.
Two rounds of , for , can be seen in Fig. 4.
A round of the permutation is of algebraic degree 3, as the

only source of nonlinearity of the cipher comes from the 4-bit
Sboxes. Thus, if we try to estimate the evolution of the degree
by using the trivial bound, we can see that the degree of the
permutation after six rounds is at most
and consequently the maximal degree seems to be reached just
seven rounds of encryption only. We will show by applying the
results of Section III that the algebraic degree of JH does not
increase as expected.
An important observation on the structure of the permu-

tation is that for , rounds of , denoted by , can be
seen as the concatenation of permutations over .

Fig. 4. Two rounds of .

TABLE IV
UPPER BOUNDS ON THE DEGREE OF UP TO EIGHT ROUNDS OF THE JH

PERMUTATION

Thus, for , a bound on the degree of can be ob-
tained with [8, Th. 2]

The bounds on the degree up to eight rounds of the permuta-
tion, given by the above formula can be seen in Table IV. The
same bounds hold for the inverse permutation.
Using now Theorem 3.2, we get that the constant of the

permutation over is at most 409. Thus, we have that

The same technique applied to 9 to 16 rounds leads to the re-
sults presented in Table V, with a comparison with the previous
best results.

VI. CONCLUSION

Our study points out that, in many situations, the algebraic
degree of an iterated function does not grow as fast as expected
with the number of rounds. In particular, the degree of the in-
verse of the iterated permutation or, in the case of a noninjec-
tive function, the minimal degree of the inverse of a permuta-
tion expanding the function, has some influence on the degree
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TABLE V
UPPER BOUNDS FOR ITERATIONS OF THE ROUND PERMUTATION OF JH,
OBTAINED BY USING THE TRIVIAL BOUND, THE SUPERSBOX VIEW (OR THE

BOUND FROM [7]) AND THE NEW RESULTS, RESPECTIVELY

of the iterated function. This observation can be used for ex-
hibiting nonideal behaviors in some cryptographic primitives,
like block ciphers or hash functions. However, turning such dis-
tinguishers into real attacks, like a key-recovery attack on a ci-
pher or a (second)-preimage attack on a hash function, is a dif-
ficult problem. The most promising approach consists in com-
bining some properties of the algebraic normal form of an inner
function (e.g., its low degree) and the solving of some algebraic
system, as proposed in [3] and [41]. Another open problem is
to determine the impact of our result on some stream ciphers
which appear to be vulnerable to several attacks exploiting the
existence of some function with a low degree [6], [42].
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