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Abstract

The resistance of an iterated block cipher to most classical attacks
can be quantified by some properties of its round function. The in-
volved parameters (nonlinearity, degrees of the derivatives...) for a
function F from Fm

2 into Fm
2 are related to the weight distribution of

a binary linear code CF of length 2m − 1 and dimension 2m. In par-
ticular, the weight divisibility of CF appears as an important criterion
in the context of linear cryptanalysis and of higher-order differential
attacks. When the round function F is a power permutation over F2m ,
the associated code CF is the dual of a primitive cyclic code with two
zeroes. Therefore, McEliece’s theorem provides a powerful tool for
evaluating the resistance of some block ciphers to linear and higher-
order differential attacks.

Keywords: block ciphers, cryptanalysis, Boolean functions, almost bent
functions, cyclic codes.



1 Introduction

This paper focuses on a large class of symmetric block ciphers called iter-
ated block ciphers. In such systems the ciphertext is obtained by iteratively
applying a keyed function, called the round function, to the plaintext. The
underlying idea of this construction is that many iterations of a crypto-
graphically weak round function are expected to lead to a cryptographically
strong encryption function.

A round function can in general be split up into three steps: a key
dependant function (usually a bitwise xor), a non linear part called the
confusion function and a linear permutation.

The design of such ciphers relies on the development of their cryptanal-
ysis. It is particularly true since the publication of two generic attacks: the
differential and the linear cryptanalysis. They are at the origin of a new ap-
proach to define the security of a cipher by some mathematical properties of
the round function. This leads to the concept of provable security [34]. How-
ever those properties imply strong requirements on the algebraic structures
of the round function and it appears that it can weaken the cipher.

In this paper we show how optimal functions in regard to differential and
linear cryptanalysis suffer from weaknesses against higher-order differential
attacks. The explanation has to be found the high weight divisibility of the
code associated to the round function. From this property we have derived
a new upper bound for the degree of some composed function. Then, it has
been used to mount a generic attack on any 5-round Feistel cipher using
an almost bent function as a round function and to explain the origin of
a weakness in a reduced version of MISTY1 presented in [38, 1]. Finally
we sum up the requirements, known up to now, a confusion function must
verify to ensure the security of an iterated block cipher.

2 Cryptanalysis of iterated block ciphers

To define an iterated block cipher more formally, we consider a family
(Fk)k∈K of permutations of the set of m-bit words, Fm

2 , indexed by a value
k ∈ K. In a cryptographic context, the round function F is public; F de-
pends of a parameter k and each value of k provides a permutation Fk. The
set K is called the round key space.

The encryption function of the iterated block cipher with block size m,
with r rounds and with round function F is the keyed permutation of Fm
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defined by
xi = Fki(xi−1) for 1 ≤ i ≤ r ,

where x0 is the plaintext and xr is the ciphertext. The vector (k1, . . . , kr) is
called the key and its components are the round keys. The round keys may
be derived from a unique master key which is shorter than the concatenation
of all round keys.
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Figure 1: Iterated block cipher

2.1 Last-round attacks

Most attacks on iterated block ciphers are divide-and-conquer techniques
which recover the last round key kr from the knowledge of some pairs of
plaintexts and ciphertexts. The other round keys (k1, . . . , kr−1) (or the
entire master key) may then be recovered either directly from kr (e.g. by
exhaustive search) or one after another by successively applying the last
round attack on the cipher obtained by removing the last round.

In a last round attack, we consider the reduced cipher, i.e., the cipher
obtained by removing the final round of the original cipher. The reduced
cipher corresponds to the function

G(k1,...,kr−1) = Fkr−1 ◦ . . . ◦ Fk1 . (1)

The key point in a last-round attack is to be able to distinguish the reduced
cipher from a random permutation for all possible values of the first (r −
1) round keys k1, . . . , kr−1. Some information on kr can be recovered by
applying a discriminator to all functions

Hk : x0 7→ F−1
k (xr) = F−1

k

(
Fkr ◦G(k1,...,kr−1)(x0)

)
, k ∈ K



(k describes here the set of possible values of kr). If the guess k matches the
actual last round key kr, then F−1

k inverts the last encryption round and
Hk corresponds to the reduced cipher. On the contrary, when k is a wrong
guess, we get

Hk = F−1
k ◦ Fkr ◦ Fkr−1 ◦ . . . ◦ Fk1 .

Since it essentially corresponds to the reduced cipher followed by two more
encryption rounds, this function is supposed to act like a random permu-
tation. This assumption is called the hypothesis of wrong-key randomiza-
tion [14, 24].

Now, we give a more formal description. We refer to [14, 19] for a detailed
presentation of last-round attacks.

Definition 1 Let Pm denotes the set of all permutations of Fm
2 and let F be

a subset of Pm. A discriminator for F with respect to a subset (x1, . . . , xN )
of Fm

2 is a function

D : (Fm
2 )N → F2

(y1, . . . , yN ) 7→ D(y1, . . . , yN )

for which there exists ε > 0 such that

ε < | Prf∈F [D(f(x1), . . . , f(xN )) = 1]
− Prπ∈RPm [D(π(x1), . . . , π(xN )) = 1] | .

Now, the existence of a discriminator D for the family of reduced ciphers,

G = {Gk, k = (k1, . . . , kr−1) ∈ Kr−1}

with respect to a set (x1, . . . , xN ) leads to a last-round attack. The discrim-
inator D should satisfy the hypothesis of fixed-key equivalence, i.e., it should
return the same value for almost all reduced ciphers in G [14, 15, 24]. This
hypothesis obviously holds when the round key is introduced by addition,
i.e., Fk(x) = F (x + k). This situation occurs in many ciphers, like DES,
AES... The last-round attack derived from D is as follows:

Input: (c1, . . . , cN ): the N ciphertexts corresponding to
the plaintexts (x1, . . . , xN ).

Output: A set of candidates for the last-round key kr.

For all k ∈ K
For i from 1 to N do yi ← F−1

k (ci)
If D(y1, . . . , yN ) = 1 then return k.



The attack requires the knowledge of N pairs of plaintexts-ciphertexts.
Its average cost is #K×(NTF−1 +TD), where #K is the size of the round key
space, TD is the average cost of the discriminator and TF−1 is the average
number of operations required for evaluating F−1

k . Notice that the costs of
the most commonly used discriminators are proportional to N . If the attack
returns several round keys, it can be repeated with another discriminator.

2.2 Basic properties of Boolean functions

Several specific properties of the reduced cipher may yield a discrimina-
tor. Now, we define some basic notions related to Boolean functions, which
appear in the most commonly used last-round attacks.

A Boolean function f of m variables is a function from Fm
2 into F2. It

can be expressed as a polynomial in x1, . . . , xm, called its algebraic normal
form. The degree of f , denoted by deg(f), is the degree of its algebraic
normal form.

Differential and higher order differential attacks involve the derivatives
of the reduced cipher.

Definition 2 [26] Let F be a function from Fm
2 into Fm

2 . For any a ∈ Fm
2 ,

the derivative of F with respect to a is the function

DaF (x) = F (x + a) + F (x) .

For any t-dimensional subspace V of Fm
2 , the t-th derivative of F with

respect to V is the function

DV F = Da1Da2 . . . DatF ,

where (a1, . . . , at) is any basis of V .

Linear cryptanalysis has concern with the Walsh spectrum of the reduced
cipher. In the following, the usual dot product between two vectors x and
y is denoted by x · y. For any α ∈ Fm

2 , ϕα denotes the linear function of
m variables: x 7→ α·x. For any Boolean function f of m variables, we denote
by F(f) the following value related to the Walsh (or Fourier) transform of f :

F(f) =
∑

x∈Fm
2

(−1)f(x) = 2m − 2wt(f) ,

where wt(f) is the Hamming weight of f , i.e., the number of x ∈ Fm
2 such

that f(x) = 1.



Definition 3 The Walsh spectrum of a Boolean function f of m variables
f is the multiset

{F(f + ϕα), α ∈ Fm
2 } .

The Walsh spectrum of a vectorial function F from Fm
2 into Fm

2 consists of
the Walsh spectra of all Boolean functions ϕα ◦ F : x 7→ α · F (x), α 6= 0.
Therefore, it corresponds to the multiset

{F(ϕα ◦ F + ϕβ), α ∈ Fm
2 \ {0}, β ∈ Fm

2 } .

Definition 4 The nonlinearity of a function F from Fm
2 into Fm

2 is the
Hamming distance between all ϕα ◦ F, α ∈ Fm

2 , α 6= 0, and the set of affine
functions. It is given by

2m−1 − 1
2
L(F ) where L(F ) = max

α∈Fm
2 \{0}

max
β∈Fm

2

|F(ϕα ◦ F + ϕβ)| .

In the following, we focus on three classes of last-round attacks: differ-
ential cryptanalysis, linear cryptanalysis and higher-order differential crypt-
analysis. There exist some other attacks on iterated block cipher. For exam-
ple, a last-round attack can be performed when the reduced cipher, seen as
a univariate polynomial in F2m [X], is close to a low-degree polynomial [18].
But, the mathematical nature of the property exploited by the latter attack
is quite different.

2.3 Differential cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir [2]. It can
be applied when the reduced cipher has a derivative which is not uniformly
distributed. More precisely, assume that there exist two nonzero elements a
and b in Fm

2 such that for any k = (k1, . . . , kr−1) the reduced cipher Gk (as
defined by 1) satisfies:

#{x ∈ Fm
2 , DaGk(x) = b} ' A ,

for a large integer A. This property leads to a discriminator D for the family
G of reduced ciphers with respect to any subset (x2i, x2i +a ; 0 ≤ i < N/2),
where the x2i form a set of N/2 randomly chosen elements in Fm

2 and N ≥
2m+1

A−1 .
Set J = D(y0, y1, . . . , y2i, y2i+1, . . .) with i in the range [0, N/2[, where

y2i and y2i+1 correspond respectively to the unknown values Gk(x2i) and



Gk(x2i + a) for a correct guess of the last-round key. Then

J = 1 if #{i, 0 ≤ i < N/2, y2i + y2i+1 = b} ' AN

2m+1
,

= 0 if #{i, 0 ≤ i < N/2, y2i + y2i+1 = b} ' N

2m+1
.

It follows that a cipher is resistant to differential cryptanalysis if each Gk,
k ∈ Kr−1, is such that for any nonzero a ∈ Fm

2 , the output distribution of
x 7→ DaGk(x) is close to the uniform distribution. A necessary security con-
dition is that the round function satisfies this property; it may be a sufficient
condition for some ciphers, e.g. for Feistel ciphers [34]. Therefore, the round
function F of an iterated cipher should satisfy the following requirement: for
any k ∈ K,

δFk
= max

a6=0, b
#{x ∈ Fm

2 , Fk(x + a) + Fk(x) = b}

should be small. As the number of solutions x ∈ Fm
2 of DaFk(x) = b is even

(because x0 is a solution if and only if x0 + a is a solution), we can deduce

Proposition 1 [34] For any function F from Fm
2 into Fm

2 , we have

δF ≥ 2 .

In case of equality, F is said to be almost perfect nonlinear (APN).

Note that the terminology APN comes from the general bound

δF ≥ 2n−m

for a function from Fn
2 into Fm

2 , where the functions achieving this bound
are called perfect nonlinear functions [31]. Such functions only exist when
n is even and n ≥ 2m [32].

All known APN functions are functions of an odd number of variables.
Actually, it is conjectured that, for any function F from Fm

2 into Fm
2 with

m even, we have
δF ≥ 4 .

This statement is proved for some particular cases, most notably for power
functions [3, 9].



2.4 Linear cryptanalysis

Linear cryptanalysis exploits the existence of a linear combination of the m
output bits of the reduced cipher which is close to an affine function [27, 28].
Let us assume that there exists two nonzero elements a and b in Fm

2 such
that for any k = (k1, . . . , kr−1)

|F(ϕa ◦Gk + ϕb)| ' A ,

for a large integer A. This property leads to a discriminator D for G with
respect to any subset(x1, . . . , xN ) of randomly chosen elements:

D(y1, . . . , yN ) = 1 if |
N∑

i=1

(−1)a·yi+b·xi | ' AN

2m
,

= 0 if |
N∑

i=1

(−1)a·yi+b·xi | ' 0 .

The security criterion corresponding to linear cryptanalysis is that all
functions ϕa ◦Gk, a 6= 0 should be far away from all affine functions. There-
fore, a necessary condition is that all Fk, k ∈ K, have a high nonlinearity,

i.e. a high value for 2m−1 − 1
2
L(F ).

Proposition 2 [37, 8] For any function F : Fm
2 → Fm

2 ,

L(F ) ≥ 2
m+1

2 .

In case of equality F is called almost bent (AB).

For a function F from Fn
2 into Fm

2 , we have

L(F ) ≥ 2
n
2

where the functions achieving this bound were called bent functions in [32],
as a generalization of the famous Boolean bent functions.

The minimum value of L(F ) where F is a function from Fm
2 into Fm

2 can
only be achieved when m is odd. For even m, some functions with L(F ) =
2

m
2

+1 are known and it is conjectured that this value is the minimum [12, 36].

2.5 Higher-order differential cryptanalysis

Higher-order differential cryptanalysis was introduced by Knudsen in [23]. It
exploits the fact that the reduced cipher Gk, defined by (1), has a constant



t-th derivative. Assume that there exists a t-dimensional subspace V ⊂ Fm
2

such that for any k = (k1, . . . , kr−1) we have

DV Gk = c

where c ∈ Fm
2 is a constant which does not depend on k. In accordance with

Definition 2, we have:

DV Gk(x) =
∑

v∈V

Gk(x + v) for all x ∈ Fm
2 ,

where the sum is an addition over Fm
2 . So we derive the following discrimi-

nator for G with respect to the set (x1, . . . , x2t) of elements of any coset of
V , a + V with a ∈ Fm

2 (here yi corresponds to Gk(xi) for a correct guess of
the last-round key):

D(y1, . . . , y2t) = 1 if and only if
2t∑

i=1

yi = c .

A natural candidate for V arises when the degree of the reduced cipher is
known; this comes from the next proposition whose proof can be found in
[26].

Definition 5 The degree of a function F from Fm
2 into Fm

2 is the maximum
degree of its Boolean components:

deg(F ) = max
1≤i≤m

deg(ϕei ◦ F )

where (e1, . . . , em) denotes the canonical basis of Fm
2 .

Actually, we have

Proposition 3 Let F be a function from Fm
2 into Fm

2 of degree d. Then,
for any (d + 1)-dimensional subspace V ⊂ Fm

2 , we have

DV F (x) = 0 for all x ∈ Fm
2 .

Note that the dimension of the smallest subspace V satisfying DV F = 0
may be smaller than deg(F ) + 1. Since

max
k∈Kr−1

deg(Gk) ≤
(

max
k∈K

deg(Fk)
)r−1

,



it obviously follows that a cipher is vulnerable to higher-order differential
cryptanalysis when its round function has a low degree. This property was
used by Jakobsen and Knudsen [20] for breaking a cipher example proposed
in [34], whose round function is a quadratic permutation. However, this
condition is not sufficient and a stronger requirement on the round function
will be exhibited in Section 4.2.

All three properties involved in differential, linear and higher-order dif-
ferential attacks are invariant under both right and left composition by a
linear permutation of Fm

2 [33]. Then, they only concern the confusion part
of the round function.

3 Optimal cryptographic functions over Fm
2 and

weight distributions of some [2m − 1, 2m] binary
codes

Carlet, Charpin and Zinoviev have pointed out that both APN and AB
properties can be expressed in terms of error-correcting codes [7]. In the
following, F denotes a function from Fm

2 into Fm
2 . Since both APN and

AB properties are invariant under translation, we here only consider the
functions F such that F (0, . . . , 0) = 0. We consider Fm

2 as the ordered set

{ 0, α1, . . . , α2m−1 } .

Now, the linear binary code CF of length (2m − 1) and dimension 2m is
defined by its generator matrix:

GF =

(
α1 α2 α3 . . . α2m−1

F (α1) F (α2) F (α3) . . . F (α2m−1)

)
, (2)

where each entry in Fm
2 is viewed as a binary column vector of length m. It

clearly appears that any codeword in CF corresponds to a vector (a ·αi + b ·
F (αi), 1 ≤ i < 2m). Therefore, its Hamming weight is given by

#{i, 1 ≤ i < 2m, a · αi + b · F (αi) = 1} = 2m−1 − 1
2
F(ϕb ◦ F + ϕa) .

Moreover, a vector (c1, . . . , c2m−1) belongs to the dual code C⊥F if and only
if it satisfies:

2m−1∑

i=1

ciαi = 0 and
2m−1∑

i=1

ciF (αi) = 0 .



Then, we have that the minimum distance of C⊥F is at least 3. Moreover,
there exist three different indexes i1, i2, i3 such that

F (αi1) + F (αi2) + F (αi3) + F (αi1 + αi2 + αi3) = 0

if and only if C⊥F contains a codeword of Hamming weight 4 (or 3 if αi1 +
αi2 + αi3 = 0). Therefore, we obtain the following correspondence:

Theorem 1 [7] Let F be a function from Fm
2 into Fm

2 with F (0) = 0. Let
CF be the linear binary code of length 2m − 1 with generator matrix GF

described by (2). Then,

(i) L(F ) = max
c∈CF ,c 6=0

|2m − 2wt(c)| .
In particular, for odd m, F is AB if and only if for any non-zero
codeword c ∈ CF ,

2m−1 − 2
m−1

2 ≤ wt(c) ≤ 2m−1 + 2
m−1

2 .

(ii) F is APN if and only if the code C⊥F has minimum distance 5.

When the vector space Fm
2 is identified with the finite field F2m , the

function F can be expressed as a unique polynomial of F2m [X]. Now, we
focus on power functions F , i.e., F (x) = xs over F2m . Let α be a primitive
element of F2m . Any cyclic code C of length (2m − 1) can be defined by
its generator polynomial whose roots are called the zeros of the code. The
defining set of C is then the set

I(C) = {i ∈ {0, · · · , 2m − 2}| αi is a zero of C} .

Since C is a binary code, its defining set is a union of 2-cyclotomic cosets
modulo (2m − 1), Cl(a), where Cl(a) = {2ja mod (2m − 1)}. From now on
the defining set of a binary cyclic code of length (2m−1) is identified with the
representatives of the corresponding 2-cyclotomic cosets modulo (2m − 1).
Then, when F is a power function x 7→ xs over F2m , the code C⊥F is the
cyclic code of length (2m − 1) with defining set {1, s} [7].

In the following, we investigate the weight divisibility of the code CF
associated to a function F from Fm

2 to Fm
2 .

Definition 6 A binary code C is said 2`-divisible if the weight of any of
its codewords is divisible by 2`. Moreover C is said exactly 2`-divisible if,
additionally, it contains at least one codeword whose weight is not divisible
by 2`+1.



The following theorem due to McEliece reduces the determination of the
exact weight divisibility of binary cyclic codes to a combinatorial problem:

Theorem 2 [30] A binary cyclic code is exactly 2`-divisible if and only if
` is the smallest number such that (` + 1) nonzeros of C (with repetitions
allowed) have product 1.

For a cyclic code with two nonzeros, McEliece’s theorem can be reformulated
as follows [5].

Corollary 1 The dual of the cyclic code of length (2m − 1) with defining
set {1, s} is exactly 2`-divisible if and only if for all u such that 0 ≤ u ≤
2m − 1,

w2(A(u)) ≤ w2(u) + m− 1− `

where A(u) = us mod (2m − 1) and w2(u) corresponds to the number of 1s
in the 2-adic expansion of u.

4 Optimal cryptographic functions and weight di-
visibility of some [2m − 1, 2m] binary codes

We have pointed out that the cryptographic properties of a round function
over Fm

2 which guarantee a high resistance to linear and differential attacks
have concern with the weight distributions of some [2m−1, 2m] linear binary
codes. Now, we show that the weight divisibility of the associated code
plays a major role in the context of linear cryptanalysis and of higher order
differential attacks.

4.1 Characterization of almost bent functions

First, we give some general results on the weight distributions of linear bi-
nary codes with parameters [2m−1, 2m] . These properties are derived from
Pless power moment identities [35] and from some ideas due to Kasami [21,
th. 13]. The proofs of the results given in this section can be found in [5, 7].

Theorem 3 Let C be a [2m − 1, 2m] linear code which does not contain the
all-one vector 1 = (1, · · · , 1). Assume that the minimum distance of the dual
code C⊥ is at least 3. Let A = (A0, · · · , A2m−1) (resp. B = (B0, · · · , B2m−1))
be the weight enumerator of C (resp. C⊥). Then, we have



(i) If w0 is such that for all 0 < w < w0

Aw = A2m−w = 0,

then
6(B3 + B4) ≤ (2m − 1)

[
(2m−1 − w0)2 − 2m−1

]

where equality holds if and only if

Aw = 0 for all w 6∈ {0, w0, 2m−1, 2m − w0} .

(ii) If w1 is such that for all w1 < w < 2m−1

Aw = A2m−w = 0,

then
6(B3 + B4) ≥ (2m − 1)

[
(2m−1 − w1)2 − 2m−1

]

where equality holds if and only if

Aw = 0 for all w 6∈ {0, w1, 2m−1, 2m − w1} .

This theorem gives an upper bound on the value of w0 for which all
nonzero weights of C lie between w0 and 2m − w0:

Corollary 2 Let C be a [2m− 1, 2m] linear code which does not contain the
all-one vector 1 = (1, · · · , 1). Assume that the minimum distance of the dual
code C⊥ is at least 3. Let w0 be the smallest w such that 0 < w < 2m−1 and

Aw + A2m−w 6= 0

Then
w0 ≤ 2m−1 − 2

m−1
2

and equality holds if and only if the weight of every codeword in C belongs to
{0, 2m−1, 2m−1±2

m−1
2 }. In this case the weight distribution of C is the same

as the weight distribution of the dual of the 2-error-correcting BCH code, i.e.

Weight: w Number of words: Aw

0 1
2m−1 − 2(m−1)/2 (2m − 1)(2m−2 + 2(m−3)/2)

2m−1 (2m − 1)(2m−1 + 1)
2m−1 + 2(m−1)/2 (2m − 1)(2m−2 − 2(m−3)/2)



Then we can deduce a fundamental result for characterizing AB functions
by using divisibility properties. Assume that m is odd and consider a code
C which satisfies the hypothesis of Theorem 3. Suppose that the minimum
distance of the dual code C⊥ is 5 and C is 2

m−1
2 -divisible. Then, with notation

of Theorem 3, we have B3 = B4 = 0 and Aw = A2m−w = 0 for all w in
the range [2m−1 − 2

m−1
2 , 2m−1]. It follows from (ii) of Theorem 3 that the

nonzero weights of C are 2m−1 and 2m−1 ± 2
m−1

2 only. According to the
previous corollary, we obtain:

Corollary 3 The equality w0 = 2m−1 − 2
m−1

2 holds in Corollary 2 if and
only if C is 2

m−1
2 -divisible and its dual has minimum distance 5.

Corollary 4 Let m be odd. Let F be a function from Fm
2 into Fm

2 and let
CF be the code defined in Theorem 1. Assume that CF does not contain the
all-one vector.

Then F is AB if and only if F is APN and the code CF is 2
m−1

2 -divisible.

Note that the divisibility condition on CF equivalently means that all Walsh
coefficients of F are divisible by 2

m+1
2 . Moreover, CF does not contain the

all-one vector means L(F ) 6= 2m.
When F is a power function, F : x 7→ xs, the corresponding code CF is

the dual of a binary cyclic code of length (2m−1) with defining set {1, s}. Its
weight divisibility can therefore be obtained by applying McEliece’s theorem,
as expressed in Corollary 1. This leads to the following characterization of
AB power functions:

Corollary 5 Let m = 2t + 1. Assume that the power function F : x 7→ xs

on F2m satisfies L(F ) 6= 2m. Then F is AB on F2m if and only if F is APN
on F2m and

∀u, 1 ≤ u ≤ 2m − 1, w2(A(u)) ≤ t + w2(u) (3)

where A(u) = us mod (2m − 1).

This result provides a fast algorithm for checking whether an APN power
function is AB, and then for finding all AB power functions on F2m . There
are roughly 2m−1/m cyclotomic representatives u such that w2(u) ≤ (m −
1)/2 and each test requires one modular multiplication on m-bit integers and
two weight computations. Condition (3) can then be checked with around
2m elementary operations and at no memory cost.



Moreover, the determination of the values of s such that x 7→ xs is
almost bent on F2m is now reduced to a combinatorial problem, and this
technique was directly used to prove that some power functions are AB [4,
17]. Moreover, it leads to a very efficient method for proving that a given
power function is not AB. For example, the APN power function x 7→ xs

over F25g with s = 24g + 23g + 22g + 2g − 1 does not satisfy the condition of
Corollary 5 [5].

These recent results lead to the following list (up to equivalence) of
known AB permutations (Table 1).

Table 1: Known AB power permutations xs on F2m , m odd

exponents s m

2j + 1, gcd(j,m) = 1, 1 ≤ j ≤ m−1
2 [13, 33]

22j − 2j + 1, gcd(j, m) = 1, 2 ≤ j ≤ m−1
2 [22]

2
m−1

2 + 3 [4]
2

m−1
2 + 2

m−1
4 − 1 m ≡ 1 mod 4 [17]

2
m−1

2 + 2
3m−1

4 − 1 m ≡ 3 mod 4 [17]

4.2 Weight divisibility and resistance to higher-order differ-
ential attacks

Now, we show that the weight divisibility of the codes CFk
associated to the

round function F of an iterated block cipher has concern with its resistance
to higher-order differential attacks. Recall that a higher-order differential
attack can be performed when the reduced cipher has a low degree. The
degree of the round function (i.e., of the functions Fk) provides a trivial
bound on the degree of the reduced cipher

max
k∈Kr−1

deg(Gk) ≤
(

max
k∈K

deg(Fk)
)r−1

,

but this bound can be exploited only when the degree of the round function
is very low. Indeed another approach has to be used when the degree of the
round function exceeds

√
m, since (deg(F ))r−1 > m for any r ≥ 3.

Here, we focus on the degree of the function obtained by composing two
permutations F and F ′. We show that the trivial bound

deg(F ′ ◦ F ) ≤ deg(F ′)deg(F )



can be improved when the weight divisibility of the code CF associated with
F is high.

First, we assume that F is a power function F : x 7→ xs over F2m . Now,
any function F ′ from Fm

2 into Fm
2 can be written as a univariate polynomial

in F2m [X]:

F ′(X) =
2m−1∑

u=0

auXu ,

where the degree of F ′ is: max{w2(u), au 6= 0}. Thus, we deduce that
F ′ ◦ F (x) =

∑2m−1
u=0 auXus mod (2m−1) . Therefore,

deg(F ′ ◦ F ) ≤ max
u,au 6=0

w2(us mod (2m − 1)) ,

and McEliece’s theorem directly provides a new bound on the degree of
F ′ ◦ F (see Corollary 1).

Theorem 4 Let F : x 7→ xs be a power function over F2m such that the as-
sociated code CF defined in Theorem 1 is 2`-divisible. Then, for any function
F ′ from Fm

2 into Fm
2 , we have

deg(F ′ ◦ F ) ≤ m− 1− ` + deg(F ′) .

In particular, when F is an almost bent power function over F2m , we obtain

deg(F ′ ◦ F ) ≤ m− 1
2

+ deg(F ′) .

The previous theorem leads to a general explanation for the weakness
in the cipher MISTY1 [29] reported in [38] and [1]. The proposed attack
relies on the fact that for any quadratic function Q from F7

2 into F7
2 we have

deg(Q ◦ S7) ≤ 5, where S7 is the almost bent power permutation x 7→ x81

over F27 . Theorem 4 provides a generalization of this property to any AB
power function over F27 .

We can prove that Theorem 4 is not specific to power functions: it is also
valid for any function F from Fm

2 into Fm
2 . The proof of the next theorem,

very technical, has to be found in [6].

Theorem 5 Let F be a function from Fm
2 into Fm

2 such that the associated
code CF is 2`-divisible. Then, for any function F ′ from Fm

2 into Fm
2 , we

have
deg(F ′ ◦ F ) ≤ m− 1− ` + deg(F ′) .



Now, we show how the weight divisibility of the code associated with the
round function can be exploited in a practical situation. As an example, we
consider a 5-round Feistel cipher. In a Feistel cipher with block size 2m, the
round function is defined by

Fk: Fm
2 × Fm

2 → Fm
2 × Fm

2

(L,R) 7→ (R, L + Sk(R))

where Sk is a function from Fm
2 into Fm

2 called the confusion function. In
the following, Li (resp. Ri) denotes the left part (resp. right part) of the
output of the i-th round. In a 5-round Feistel cipher, the right part of the
output of the third round, R3, can be derived from the ciphertext (L5, R5)
and the last-round key:

R3 = R5 + Sk5(L5) .

Moreover, when we consider any plaintext (x, c0) whose right part is a given
constant c0, R3 can be computed from x by only two iterations of the con-
fusion function :

R3(x) = x + c1 + Sk3(c0 + Sk2(x + c1))

where x stands for the left half of the plaintext, c0 and c1 being some con-
stants.

When the confusion function Sk is such that all codes CSk
are 2`-divisible,

we can apply Theorem 5. Then, we obtain the following upper bound for
the degree of R3:

deg(R3) ≤ m− 1− ` + max
k∈K

deg(Sk).

Let δ = min(max
k∈K

deg(Sk)2 + 1,m− ` + max
k∈K

deg(Sk)) . We have exhibited a

higher-order differential attack on any 5-round Feistel cipher using a confu-
sion function Sk which satisfies δ ≤ m:

Input: (Li, Ri)1≤i≤2δ : the ciphertexts corresponding to the plain-
texts (xi, c0)1≤i≤2δ , where c0 is any fixed element of Fm

2 and
(xi)1≤i≤2δ is a δ-dimensional subspace of Fm

2 :

Output: A set of candidates for the last-round key k5.

For all k ∈ K
For i from 1 to 2δ do yi ← Ri + Sk(Li)
If

∑2δ

i=1 yi = 0 then return k.



For example, if all Sk are almost bent, the previous higher order differ-
ential attack can be performed except when maxk deg(Sk) = (m+1)/2, i.e.,
when Sk is an almost bent function of maximum degree.

4.3 Highly nonlinear round functions having a low divisibil-
ity

The previous results point out that the use of an almost bent round func-
tion (or confusion function) is not suitable, even if the corresponding iterated
block cipher is provably-secure against differential and linear cryptanalysis.
An almost bent function may make the cipher vulnerable to higher-order
differential cryptanalysis because of the high weight-divisibility of the asso-
ciated code.

When m is even, the smallest known value of L(F ) for a function F from
Fm

2 into Fm
2 is L(F ) = 2m/2+1. The only known functions (up to equiva-

lence) achieving this bound are power functions. Since power permutations
cannot be APN when m is even, that the security criteria corresponding
to differential cryptanalysis and to linear cryptanalysis are not so strongly
related. Moreover, the divisibility of the codes associated with these highly
nonlinear functions varies. In particular, the degree of such a function is not
upper-bounded since there is no requirement on the weight divisibility. All
known functions satisfying this property are equivalent to one of the power
functions given in Table 2 (or to one of their inverses) [12].

Table 2: Known power permutations xs on F2m , m even, with the highest
nonlinearity and exact weight divisibility of the associated code

exponents s m divisibility
2m−1 − 1 m ≡ 0 mod 2 2 [25]
2j + 1, gcd(j,m) = 2, j < m

2 m ≡ 2 mod 4 2
m
2 [13]

22j − 2j + 1, gcd(j, m) = 2, j < m
2 m ≡ 2 mod 4 2

m
2 [22]

2
m
2 + 2

m+2
4 + 1 m ≡ 2 mod 4 2

m
2 [10]

2
m
2 + 2

m
2
−1 + 1 m ≡ 2 mod 4 2

m
2 [10]∑m/2

i=0 2ij , gcd(j, m) = 1, j < m
2 m ≡ 0 mod 4 2

m
2
−1 [12]

2
m
2 + 2

m
4 + 1 m ≡ 4 mod 8 2

m
2
−1 [12]

It appears that all known optimal functions for m even are such that
the associated codes are either 2

m
2
−1-divisible or 2

m
2 -divisible, except the



inverse function. The inverse function is very specific in this context. The
corresponding code CF is the dual of the Melas code. Its weights are all even
integers w such that |w − 2m−1

2 | ≤ 2
m
2 [25]. Therefore, it has the smallest

possible weight divisibility when F is a permutation.
Moreover, x 7→ x2m−1−1 is the only power permutation F of F2m (up to

equivalence) which corresponds to an exactly 2-divisible code.

Proposition 4 [16] Let m and s be two positive integers such that gcd(s, 2m−
1) = 1. Let Cs be the dual of binary cyclic code of length (2m−1) with defin-
ing set {1, s}. Then, Cs is exactly 2-divisible if and only if w2(s) = m− 1.

Thus, the inverse function is the only confusion function which is op-
timal with respect to all resistance criteria; it opposes the best resistance
to differential, linear and higher-order differential attacks. This function is
used in the new block cipher standard AES [11].

The search for other confusion functions which are “almost optimal”
with respect to these criteria leads to the following open problem.

Open problem 1 Find all permutations F of Fm
2 such that the associated

code CF defined in Theorem 1 satisfies:

(i) max
c∈CF ,c 6=0

|2m − 2wt(c)| is close to 2
m−1

2 ;

(ii) The number of codewords of weight 3 and 4 in the dual code C⊥F is small;

(iii) The exact weight divisibility of CF is low.

For power functions, McEliece theorem provides a useful tool for finding
such functions. For instance, the exponents s such that the code associated
with x 7→ xs is exactly 4-divisible are known.

Proposition 5 [5, Prop. 5.3] Let m and s be two positive integers such
that gcd(s, 2m − 1) = 1. Let Cs be the dual of the binary cyclic code of
length (2m − 1) with defining set {1, s}. Then, Cs is exactly 4-divisible if
and only if either w2(s) = m− 2 or w2(s−1) = m− 2 where s−1 is the only
integer in {0, . . . , 2m − 1} such that s−1s ≡ 1 mod (2m − 1).

A necessary condition on s for obtaining an exactly 8-divisible code can also
be found in [5, Prop. 5.4].
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