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Abstract. This paper presents a generalization of the fast correlation
attack presented by Chepyshov, Johansson and Smeets at FSE 2000,
for the particular case of filter generators. By considering not only the
extremal Walsh coefficients of the filtering function but all the nonzero
values in the Walsh spectrum, it is possible to significantly reduce the
number of required running-key bits. Most notably, the properties of the
filtering function, especially its number of variables, have only a minor
influence on the length of the running-key subsequence needed for the
attack.
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1 Introduction

The running-key used in a stream cipher is produced by a pseudo-random gen-
erator whose initialization is the secret key shared by the users. Linear feedback
shift registers (LFSRs) are basic components of most keystream generators be-
cause of their low implementation costs. Therefore, such generators are vulnera-
ble to correlation attacks [19]. These techniques exploit the correlation that may
appear between the observed output sequence (i.e., the running-key in a known
plaintext attack) and the output of a constituent LFSR. The aim is to apply
a divide-and-conquer attack in order to recover the initialization of this LFSR
independently from the other unknown key bits. Meier and Staffelbach [15] for-
mulated this attack as a decoding problem. Any subsequence of the LFSR output
belongs to a binary linear code whose dimension is equal to the linear complexity
of the LFSR. Any running-key subsequence can then be seen as a noisy version
of the corresponding LFSR output subsequence through a particular transmis-
sion channel. In most practical situations the noise is produced by a Boolean
function whose role is to break the linearity properties inherently attached to
the LFSR. Thus, all techniques for fast correlation attacks [15, 5, 6, 16, 12, 11, 10]
consist in decoding the running-key subsequence relatively to the LFSR code.



In this paper, we focus on fast correlation attacks against nonlinear filter
generators. In such a device, the running-key is generated as a nonlinear func-
tion f of the stages of a single LFSR. A classical approach is then to consider
an affine function whose distance to the filtering function is minimal (i.e., equals
to the nonlinearity of f). Some linear relations between the running-key bits
and the LFSR initial state are derived from this approximation. All these rela-
tions hold with probability 1 − NL(f)/2n where n is the number of variables
of the filtering function and NL(f) is its nonlinearity. Therefore, the involved
transmission channel is a binary symmetric channel with cross-over probability
NL(f)/2n. Very recently, Jönsson and Johansson [13] observed that the length
of running-key required for the attack can be reduced by using all affine func-
tions at distance NL(f) from f . The underlying idea is that the number of avail-
able linear relations increase whereas the transmission channel and its cross-over
probability are unchanged. It obviously appear that the attack becomes more
powerful when the number of extremal Walsh coefficients of the filtering func-
tion increases. Here, we present a general attack which makes use of all nonzero
Walsh coefficients of the filtering function. We get a larger number of linear rela-
tions, leading to a more efficient decoding when we use the technique presented
in [6]. The main modification is that the involved transmission channel is now a
non-stationary binary symmetric channel. However, we can derive a theoretical
bound on the running-key length which guarantees a successful attack. Most no-
tably, we show that the required running-key length is almost independent of the
number of variables of the filtering function and of its nonlinearity. Both of these
parameters only influence the running-time of the attack. Note that this paper
does not investigate other cryptanalysis techniques (e.g. inversion attacks [1, 9,
14]).

The paper is organized as follows. Section 2 describes the filter generator fam-
ily and it recalls some basic properties of Boolean functions. Section 3 presents
the generalization of the fast correlation attack, with the complete algorithm.
A theoretical analysis of this attack is provided in Section 4. In particular, it is
proved that contrary to what could be forecast, the results do not depend on the
number of variables of the filtering function. Section 5 focuses on the computa-
tional complexity of the attack and it gives some comparisons with the attack
presented in [13]. Section 6 gives detailed simulation results which confirm the
validity of the theoretical approach.

2 Definitions

The pseudo-random sequence (st)t≥0 produced by a nonlinear filter generator
corresponds to the output of a nonlinear Boolean function whose inputs are
taken from some stages of a given LFSR. The LFSR is defined by its character-
istic polynomial of degree L, P (X) =

∑L
i=0 λiX

i. Recall that the characteristic
polynomial and the feedback polynomial are reciprocal polynomials [18]. Then,



the output (ut)t≥0 of the LFSR satisfies the following recursion:

∀t ≥ L, ut =
L−1∑

i=0

λiut−L+i ,

where (u0, . . . , uL−1) is the LFSR initial state. Let f be a balanced Boolean
function of n variables, i.e., a balanced function from the set of n-bit words, Fn

2 ,
into F2. We consider a decreasing sequence of nonnegative integers (γi)1≤i≤n. It
is recommended that (γ1−γn) be close to its maximum possible value (L−1) [9].
Then, the output of the filter generator (st)t≥0 is given by

∀t ≥ 0, st = f(ut+γ1 , . . . , ut+γn) .

Now, we focus on the Walsh spectrum of the filtering function f . In the
following, for any α ∈ Fn

2 , ϕα is the linear function of n variables: x 7→ α · x =∑n
i=1 αixi. For any Boolean function f of n variables, we denote by F(f) the

following value related to the Walsh (or Fourier) transform of f :

F(f) =
∑

x∈Fn
2

(−1)f(x) = 2n − 2wt(f) ,

where wt(f) is the Hamming weight of f , i.e., the number of x ∈ Fn
2 such that

f(x) = 1. A function f is said to be balanced if F(f) = 0.
Therefore, the Walsh spectrum of f is the multiset

{F(f + ϕα), α ∈ Fn
2} .

A major cryptographic parameter for a Boolean function is its nonlinearity. It
is derived from the Walsh spectrum as follows:

Definition 1. The nonlinearity of an n-variable Boolean function f is the Ham-
ming distance between f and the set of affine functions. It is equal to

2n−1 − 1
2
L(f) with L(f) = max

α∈Fn
2

|F(f + ϕα)| .

Here, we are interested in all nonzero values in the Walsh spectrum and in the
number of times they occur. We denote by W the set of all nonzero magnitudes
appearing in the Walsh spectrum of f . For any integer w, 0 ≤ w ≤ 2n, we set

Fw = #{α ∈ Fn
2 , |F(f + ϕα)| = w} .

Moreover, we denote by F the number of nonzero Walsh coefficients, i.e., F =
2n − F0.

In the context of the previously described filter generator, any nonzero Walsh
coefficient provides a linear approximation of the running key. For any α ∈
Fn

2 \ {0}, for any c ∈ F2, we have for all t ≥ 0

Pr[st 6=
n∑

i=1

αiut+γi + c] = Pr[f(x) 6= ϕα(x) + c]

=
1
2
− (−1)c

2n+1
F(f + ϕα) . (1)



Then, we choose the binary constant c such that (−1)c is equal to the sign of
F(f + ϕα). Therefore, we obtain this way a set of F linear relations between
st and some stages of the LFSR. More precisely, for any w ∈ W, we get Fw

relations which hold with probability 1− pw with

pw =
1
2
− w

2n+1
.

Note that we do not consider the relation corresponding to α = 0 because the
filtering function is assumed to be balanced, i.e., F(f) = 0.

3 A general fast correlation attack

Now, we use the technique proposed by Chepyshov, Johansson and Smeets [6]
for fast correlation attacks. But, we exploit all approximations derived from
the nonzero Walsh coefficients of the filtering function. A similar attack was
presented in [13] on the stream cipher LILI-128 but it only exploits the FL(f)

relations corresponding to the extremal Walsh coefficients.
Any bit ut of the LFSR output can be expressed as a linear combination of

the initial bits, (u0, . . . , uL−1):

∀t ≥ 0, ut =
L−1∑

i=0

λ
(t)
i ui

where the involved coefficients (λ(t)
i )0≤i<L are obtained from the characteristic

polynomial by

∀t ≥ 0,

L−1∑

i=0

λ
(t)
i Xi = Xt mod P (X) .

Then, we deduce that, for any α ∈ Fn
2 \ {0}, we have

∀t ≥ 0,

n∑

i=1

αiut+γi =
n∑

i=1

αi

L−1∑

j=0

λ
(t+γi)
j uj

=
L−1∑

j=0

uj

(
n∑

i=1

αiλ
(t+γi)
j

)

=
L−1∑

j=0

ujqj .

It clearly appears that the coefficients (qj)0≤j<L are obtained by

Qα,t(X) =
L−1∑

j=0

qjX
j =

(
n∑

i=1

αiX
t+γi

)
mod P (X) . (2)



It follows that any sequence whose bits correspond to
∑n

i=1 αiut+γi
for some

α ∈ Fn
2 \ {0} and for some t ≥ 0 is a codeword of a linear binary code C of

dimension L. Any column of a generator matrix G of C is a binary vector qα,t

corresponding to the coefficients of the polynomial Qα,t defined by (2). Since the
dimension of C is usually too large, a maximum-likelihood decoding cannot be
directly applied. It was proposed in [6] to derive from C a new code C′ having
a lower dimension k < L, for which ML-decoding is feasible. Such a code C′
is obtained by computing all linear combinations of d columns of the generator
matrix G which vanish on the last (L−k) positions. Parameter d does usually not
exceed 4 or 5. For the j-th set of d such columns of G, namely (qα1,t1 , . . . , qαd,td

),
we have

d∑

i=1

qαi,ti = (hj , 0 . . . 0) with hj ∈ Fk
2 . (3)

Let zj =
∑d

i=1 sti
+ c where the binary constant c is such that (−1)c equals the

sign of
∏d

i=1 F(f + ϕαi
). We derive from (1):

Pr[zj 6= hj · u] =
1
2
− εj with εj = 2d−1

∏d
i=1 F(f + ϕαi)

2(n+1)d
, (4)

where u = (u0, . . . , uk−1). The above value of εj is obtained by induction from
the following result. Let X and Y be two independent binary random variables
with Pr[X = 1] = 1/2− εX and Pr[Y = 1] = 1/2− εY . Then, we have

Pr[X + Y = 1] = Pr[X = 0]Pr[Y = 1] + Pr[X = 1]Pr[Y = 0]

= (
1
2

+ εX)(
1
2
− εY ) + (

1
2
− εX)(

1
2

+ εY )

=
1
2
− 2εXεY .

Now, we denote by M the number of d-tuples (qα1,t1 , . . . , qαd,td
) satisfying (3).

The k ×M matrix G′ whose columns correspond to all vectors (hj)0≤j<M ob-
tained by (3) is a generator matrix of a linear binary code C′ of length M and
dimension k. The M -bit sequence (zj)0≤j<M can be seen as the result of the
transmission of the codeword (u0, . . . , uk−1)G′ through a non-stationary binary
channel, since the cross-over probability varies with j as pointed out by For-
mula (4). Note that we here make the assumption that the involved channel is
memoryless, i.e., that the M positions in C′ are independent. The validity of
this assumption will be discussed in the next sections. Now, we can recover the
first k bits of the LFSR initialization, (u0, . . . , uk−1) by applying the following
ML-decoding algorithm. For any û ∈ Fk

2 , we compute

M−1∑

j=0

(û · hj + zj)εj (5)



and we choose for (u0, . . . , uk−1) the vector û which minimizes the above quan-
tity.

We now sum up the algorithm used for the fast correlation attack.

Precomputation.

– For all α ∈ Fn
2 \ {0}, compute F(f + ϕα).

– For all α ∈ Fn
2 such that F(f + ϕα) 6= 0

For all t, 0 ≤ t < N , compute

Qα,t(X) = (
n∑

i=1

αiX
γi)Xt mod P (X)

and store all L-bit vectors qα,t corresponding to the coefficients of Qα,t.
– Find all sets of d vectors (qα1,t1 , . . . , qαd,td

) whose sum vanishes on the last
(L− k) positions. For the j-th such set:
Ej ←

∏d
i=1 F(f + ϕαi)

zj ←
∑n

i=1 sti
+ c where (−1)c corresponds to the sign of Ej.

(h0,j , . . . , hk−1,j)←
∑d

i=1 qαi,ti .

Decoding step.
For all û ∈ Fk

2 , compute

M−1∑

j=0

(û · hj + zj)Ej .

Return the vector û which minimizes this quantity.

Note that the attack can be slightly improved by using the modification
proposed in [12].

4 Theoretical analysis

Here, we want to determine the average number N of consecutive bits of the
running-key (st)t≥0 required by the attack. Since any α ∈ Fn

2 such that F(f +
ϕα) 6= 0 provides N vectors qα,t, 0 ≤ t < N , the average number of d-tuples
(qα1,t1 , . . . , qαd,td

) whose sum vanishes on the last (L− k) positions is roughly

M ' (NF )d

d! 2L−k
(6)

where F is the number of nonzero Walsh coefficients. Thus the ML-decoding
procedure for the obtained code of length M and dimension k succeeds as soon
as M satisfies k/M ≤ C where C is the capacity of the transmission channel.
In the following, we assume that the M positions in C′ are independent (oth-
erwise the transmission channel is not memoryless). It means that any bit of
the running-key is involved in at most one position of (zj)j<M . This condition



notably holds when M ¿ N . Under this assumption, the transmission channel is
a non-stationary binary symmetric channel whose cross-over probability is given
by p = 1/2− ε, where ε varies in a set E . If µε is the proportion of transmitted
bits for which the cross-over probability equals 1/2− ε, we have

C =
∑

ε∈E
µεC

(
1
2
− ε

)
(7)

where C(p) denotes the capacity of the stationary binary symmetric channel
with cross-over probability p, i.e., C(p) = 1 + p log2(p) + (1− p) log2(1− p). We
use the following expression for any ε < 1/2:

C

(
1
2
− ε

)
=

1
ln(2)

∑

i>0

22i

(2i− 1)2i
ε2i . (8)

We first compute the capacity of the channel involved in our attack when
d = 2. The M obtained equations can be split as follows: for any w1, w2 ∈ W,
w1 ≤ w2, we find Mw1w2 equations derived from two vectors α1 and α2 such
that |F(f + ϕα1)| = w1 and |F(f + ϕα2)| = w2. Thus,

Mw1w2 =
N2Fw1Fw2

2L−k
for w1 < w2

and

Mw2 =
N2F 2

w

2L−k+1
for w ∈ W .

The corresponding proportions are then

µw1w2 =
2Fw1Fw2

F 2
if w1 < w2 and µw2 =

F 2
w

F 2
.

Moreover, we deduce from (4) that, for any w1, w2 ∈ W, we have

Pr[zj 6= hj · u] =
1
2
− w1w2

22n+1

for a proportion µw1w2 of the values of j. Formula (7) applied with the above
proportions leads to the following capacity

C =
∑

w1≤w2

µw1w2 C

(
1
2
− w1w2

22n+1

)

=
∑

w∈W

F 2
w

F 2
C

(
1
2
− w2

22n+1

)
+

∑
w1<w2

2Fw1Fw2

F 2
C

(
1
2
− w1w2

22n+1

)
. (9)

Expression (8) for the capacity of the binary symmetric channel leads to

C=
1

ln(2)F 2

[ ∑

w∈W
F 2

w

(∑

i>0

1
(2i−1)2i

w4i

24ni

)
+2

∑
w1<w2

Fw1Fw2

(∑

i>0

1
(2i−1)2i

w2i
1 w2i

2

24ni

)]

=
1

ln(2)F 2

∑

i>0

1
(2i− 1)2i

(∑
w∈W Fww2i

22ni

)2

.



Now, we have for any i > 0
∑

w∈W
Fww2i =

∑

α∈Fn
2

F2i(f + ϕα) .

Note that we here use the fact that the filtering function is balanced. For i = 1,
Parseval’s relation which holds for any Boolean function leads to

∑

w∈W
Fww2 = 22n .

Therefore, we deduce that

C ≥ 1
2 ln(2)F 2

.

Moreover, for any i ≥ 2, we have
∑

α∈Fn
2

F2i(f + ϕα) ≤ L(f)2(i−1)
∑

α∈Fn
2

F2(f + ϕα)

≤ 22nL(f)2(i−1) ,

where L(f) = maxα∈Fn
2
|F(f + ϕα)|. It follows that, for any i ≥ 2,

1
22ni

∑

w∈W
Fww2i ≤

(L(f)
2n

)2(i−1)

≤ 1

where equality holds if and only if L(f) = ±2n, i.e., if and only if f is an affine
function. It implies that, if deg(f) > 1, we have

C =
1

ln(2)F 2

∑

i>0

1
(2i− 1)2i

(∑
w∈W Fww2i

22ni

)2

<
1

ln(2)F 2

∑

i>0

1
(2i− 1)2i

=
1

F 2
.

Therefore, the capacity of the transmission channel satisfies

1
2 ln(2)F 2

≤ C <
1

F 2

when deg(f) > 1. Using Relation (6) for d = 2, we deduce that the minimum
number Nminof known running-key bits required for the attack satisfies

M =
N2

minF 2

2L−k+1
=

k

C
.

This implies that
√

2k 2
L−k

2 < Nmin ≤ 2
√

k ln(2) 2
L−k

2 . (10)

Similarly, we obtain the following result for all values of parameter d in the
attack.



Theorem 1. For any balanced filtering function f such that deg(f) > 1, the
capacity of the non-stationary binary symmetric channel involved in the general
fast correlation attack with parameter d satisfies

1
2 ln(2)F d

≤ C <
1

F d
. (11)

Therefore, the minimum number of bits of the running-key required by the attack
satisfies

(d!k)
1
d 2

L−k
d < Nmin ≤ (2 ln(2)d!k)

1
d 2

L−k
d ,

assuming that the M positions in C′ are independent.

Proof. For any d-tuple (qα1,t1 , . . . , qαd,td
), we denote by dw, w ∈ W the number

of αi, 1 ≤ i ≤ d such that |F(f + ϕαi)| = w. Then, we have
∑

w∈W dw = d. For
a given vector (dw)w∈W , the number of corresponding d-tuples which vanish on
the last (L− k) positions is

MQ
wdw =

Nd
∏

w∈W F dw
w

2L−k
∏

w∈W(dw)!

and the corresponding proportion of such d-tuples is

µQ
wdw =

d!
∏

w∈W F dw
w

F d
∏

w∈W(dw)!
.

Moreover, we get from (4) that any such d-tuple corresponds to the cross-over
probability

1
2
− 2d−1

∏
w∈W wdw

2(n+1)d
.

Thus, assuming that all positions in C′ are independent, we obtain the following
expression for the capacity of the transmission channel

C =
∑

(dw)

µQ
wdw C

(
1
2
− 2d−1

∏
w∈W wdw

2(n+1)d

)

where the summation takes place over all vectors (dw)w∈W of positive or zero
integers such that

∑
w∈W dw = d. Then, Expression (8) and the multinomial

identity lead to

C =
1

ln(2)F d


∑

(dw)

d!∏
w∈W dw!

∏

w∈W
F dw

w

(∑

i>0

1
(2i− 1)2i

∏
w∈W w2idw

22ndi

)


=
1

ln(2)F d

[∑

i>0

1
(2i− 1)2i

(∑
w∈W Fww2i

22ni

)d
]



Now, we use that
∑

w∈W
Fww2 = 22n

and that, for any i ≥ 2 and any balanced Boolean function of degree at least 2,
∑

w∈W
Fww2i < 22ni .

Therefore, we deduce that

1
2 ln(2)F d

≤ C <
1

F d
.

Finally, we derive the minimum length required for the running-key by combining
the previous inequalities and Formula (6).

Most notably, this result points out that the Walsh spectrum of the filtering
function and its number of variables has only a minor influence on the length
of the running-key required by the attack. Note that the upper bound on Nmin

given in Theorem 1 provides a good approximation of Nmin in most practical
situations since the nonlinearity of the filtering function is usually high.

But, it may happen that the M positions in C′ are not independent. In that
case, the transmission channel is not a memoryless channel anymore and the
previous result on its capacity does not hold. However, simulations show that
the attack still performs well and that the value of Nmin given in Theorem 1
still provides a good approximation of the required running-key length (see Sec-
tion 6).

5 Computational complexity of the attack

In this section, we focus on the computational complexity of the attack. In the
precomputation part, we have to find all d-tuples (qα1,t1 , . . . , qαd,td

) whose sum
vanishes on the last (L − k) positions. We usually use the following technique:
we store all qα,t in a hash table indexed by their values on the last (L− k) po-
sitions. In this case, the number of operations required by the precomputation
corresponds to the number of (d− 1)-tuples of vectors qα,t, i.e.,

Tp =
(NF )d−1

(d− 1)!
.

We may also obtain a better time-memory trade-off if we use an algorithm based
on a “birthday technique” as suggested in [15, Section 5]. This consists in storing
in a table the values of all linear combinations of d′ vectors qα,t where d′ < d. The
time complexity of the precomputation is now of order

(
NF
d−d′

)
but the required

memory is of order
(
NF
d′

)
.



In the decoding part of the attack, we need to compute Expression (5) for
all û ∈ Fk

2 . Thus, the decoding complexity is of order M 2k. Here, we suppose
as in [13] that the filtering function has a high nonlinearity. Therefore, we have
that the capacity of the transmission channel is roughly C ' 1

2 ln(2)F d . Since
M/k ' 1/C, we derive that the number of operations performed by the ML-
decoding procedure is of order

Td = 2 ln(2)k2kF d .

For fixed values of d and k, the only influence of the filtering function on the
computational complexity of the attack is that the running-times of both pre-
computation and decoding parts increase with the number of nonzero Walsh
coefficients. Parseval’s relation implies that

22n =
∑

α∈Fn
2

F2(f + ϕα) ≤ FL(f)2 .

It follows that the computation time increases with the number of variables and
with the nonlinearity of the filtering function.

We can now compare the performance of our attack with the attack proposed
in [13]. Both attacks are obviously similar when the filtering function has a three-
valued extended Walsh spectrum [4], i.e., when all nonzero Walsh coefficients of f
are equal to ±L(f). When we use the extremal Walsh coefficients only as in [13],
the attack requires the following number of bits of the running-key [13]:

N (JJ) =
1

FL(f)
(2 ln(2)d!k)

1
d 2

L−k
d

(
22n

L(f)2

)
.

Therefore, we deduce that

N (JJ)

N
=

22n

L(f)2FL(f)
≥ 1 ,

because Parseval’s relation implies that

22n =
∑

α∈Fn
2

F2(f + ϕα) ≥ FL(f)L(f)2 .

The running-time of the decoding step in [13] is given by

T
(JJ)
d = 2 ln(2)k2k

(
2n

L(f)

)2d

.

Therefore, we have

T
(JJ)
d

Td
=

(
22n

L(f)2F

)d

≤ 1 .



We similarly obtain for the complexity of the precomputation step

T
(JJ)
p

Tp
=

(
N (JJ)FL(f)

NF

)d−1

=
(

22n

L(f)2F

)d−1

≤ 1 .

Then, our attack needs a smaller subsequence of the running-key than the at-
tack proposed in [13], but its running-time is higher. For the keystream generator
LILI-128 [7], both attacks are very similar since most nonzero Walsh coefficients
of the filtering function f are equal to ±L(f). But, our attack provides a signifi-
cant improvement especially when the proportion of extremal Walsh coefficients
amongst all nonzero values is small. For example, let us consider the following
filtering function of n variables, n odd

f(x1, . . . , xn) = x1x2x3 + x2x3x4 + x2x3x5 + x1 + x2 + x3 +

n−1
2∑

i=3

x2ix2i+1 .

This function is derived from a 5-variable function described in [2] by adding a
bent function. We have L(f) = 3 · 2(n+1)/2 and FL(f) = 2n−5. Then, we deduce
that

N (JJ)

N
=

22n

L(f)2FL(f)
=

16
9

.

For a LFSR of length 40, our attack with d = 2 and k = 20 requires the
knowledge of 7, 625 bits of the running-key, whereas the attack presented in [13]
needs 13, 556 bits.

6 Simulation results

We present some simulation results for a LFSR of length 40. We use the following
parameters: d = 2 and k = 20. By applying Formula (10) with these values,
we obtain that the minimum length of the running-key required for the attack
satisfies

6476 < Nmin ≤ 7625 ,

where the upper bound is tight when the filtering function has a high nonlinear-
ity. Then, we try to recover the first 20 bits of the initialization of this generator
for different balanced filtering functions of 5, 6 and 7 variables. We choose for
γ a full positive difference set with γ1 = L as recommended in [9]. All success
rates presented below have been computed over 500 trials. The running-times
are given for a DEC workstation with an alpha EV6 processor at 500 MHz.

All considered filtering functions are balanced. Functions (I) to (VII) in the
following table depend on 5 variables. Their Walsh spectra are given in [2]. The



7-variable function (IX) is a 2-resilient function with maximal nonlinearity. Its
algebraic normal form is

x1 + x2 + x1x4 + x3x4 + x5 + x2x5 + x3x5 + x1x4x5 + x2x4x5 + x3x4x5

+x6 + x4x6 + x1x4x6 + x2x7 + x1x2x7 + x2x3x7 + x1x2x3x7 + x4x7

+x1x2x4x7 + x3x4x7 + x1x3x4x7 + x5x7 + x1x5x7 + x1x2x5x7 + x1x3x5x7

+x1x4x5x7 + x2x4x5x7 + x3x4x5x7 + x6x7 + x2x6x7 + x1x2x6x7 + x3x6x7

+x1x3x6x7 + x1x4x6x7 + x2x4x6x7 + x3x4x6x7 + x5x6x7 + x2x5x6x7

+x3x5x6x7 .

This function was obtained by the technique described in [17].

N M expected M precomp. time decoding time success rate
n = 5, f = x1x2x3 + x1x4 + x2x5 + x3

NL(f) = 12 and F = 16
(I) F0 = 16, F8 = 16

7625 6995 7097 1 s 24 s 67.4 %
7000 5929 5981 1 s 20 s 51.6 %

n = 5, f = x1x2x3 + x1x2x4 + x1x2x5 + x1x4 + x2x5 + x3 + x4 + x5

NL(f) = 12 and F = 16, 1-resilient
(II) F0 = 16, F8 = 16

7625 7163 7097 1 s 24 s 66.8 %
7000 6011 5981 1 s 20 s 50.4 %

n = 5, f = x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x4 + x5

NL(f) = 12 and F = 28
(III) F0 = 4, F4 = 16, F8 = 12

7625 22, 197 21, 735 2 s 1.3 min 66.4 %
7000 18, 730 18, 318 2 s 1.1 min 49.8 %

n = 5, f = x1x2x3 + x1x4x5 + x2x3 + x1

NL(f) = 8 and F = 13
(IV) F0 = 19, F8 = 12, F16 = 1

7625 5665 4687 1 s 20 s 55.5 %
7000 4972 3949 1 s 17 s 46.2 %

n = 5, f = x2x3x4x5 + x2x3 + x1

NL(f) = 6 and F = 16
(V) F0 = 16, F4 = 12, F12 = 3, F20 = 1

7625 7049 7097 1 s 25 s 82.2 %
7000 5893 5981 1 s 21 s 75.2 %



N M expected M precomp. time decoding time success rate
n = 5, f = x1x2x3x5 + x2x3 + x4

NL(f) = 6 and F = 16
(VI) F0 = 16, F4 = 12, F12 = 3, F20 = 1

7625 7041 7097 1 s 25 s 77.8 %
7000 5939 5981 1 s 21 s 64.2 %

n = 5, f = x1x2x3 + x2x3x4 + x2x3x5 + x1 + x2 + x3

NL(f) = 4 and F = 8
(VII) F0 = 24, F8 = 7, F24 = 1

7625 1964 1774 1 s 7 s 78.2 %
7000 1661 1495 1 s 6 s 51.8 %

n = 6, f = x1x2x3 + x2x3x6 + x1x2 + x3x4 + x5x6 + x4 + x5

NL(f) = 24 and F = 40
(VIII) F0 = 24, F8 = 32, F16 = 8

7625 45, 006 44, 358 4 s 2.6 min 67.3 %
7000 38, 031 37, 384 4 s 2.2 min 52.8 %

n = 7, f

NL(f) = 56 and F = 64, 2-resilient
(IX) F0 = 64, F16 = 64

7625 114, 846 113, 556 8 s 6.5 min 66.8 %
7000 96, 750 95, 703 7 s 5.5 min 48.8 %

n = 7, f = x1x2x3 + x2x3x4 + x2x3x5 + x1 + x2 + x3 + x6x7

NL(f) = 40 and F = 32
(X) F0 = 96, F16 = 28, F48 = 4

7625 28, 526 28, 389 3 s 1.6 min 64.6 %
7000 23, 954 23, 926 3 s 1.3 min 52.6 %

All results presented in the above table confirm the validity of the previous
approach. First, we observe that the approximation of Nmin derived from the as-
sumption that the transmission channel is memoryless seems to be still accurate
when the positions in C′ are not independent.

Moreover, when the attacker knows N consecutive bits of the running-key,
where N is given by the upper bound in Formula (10), then the success rate of the
attack is around 65 %. It clearly appears that the required running-key length is
almost independent of the number of variables of the filtering function. However,
we observe that the success rate increases when the nonlinearity of the function
is very small, especially for 5-variable functions (see Functions (V)-(VII)). The
reason is that the upper bound in (10) uses the following approximation for the
capacity of the binary symmetric channel



C

(
1
2
− ε

)
' 2ε2

ln(2)
, (12)

which is not accurate for large values of ε. If we consider e.g. the 5-variable func-
tion (VII) with NL(f) = 4, computing Formula (9) with the exact expressions
of the capacities of all involved binary symmetric channels leads to

C = 0.1152 ,

instead of 0.1127 obtained by the upper bound in Formula (11). With this mod-
ified value for C, we now get a slightly lower value for N : N = 7542 instead
of 7625. This minor influence of the nonlinearity of the filtering function tends
to vanish for a higher number of variables. Let us consider two filtering functions,
f of n variables and g of (n + 2i) variables, with “similar” Walsh spectra, e.g.

g(x1, . . . , xn+2i) = f(x1, . . . , xn) + h(xn+1, . . . , xn+2i)

where h is a bent function of (2i) variables. Then, the Walsh spectrum of g can
be easily deduced from the Walsh spectrum of f [3, 8]. Most notably, we have
L(g) = 2iL(f). Therefore, the lowest value of the cross-over probability of the
transmission channel when g is used is

1
2
− L(g)2

22n+4i+1
=

1
2
− L(f)2

22n+2i+1
.

Thus, Approximation (12) of the capacity is more accurate for g than for f ,
especially when i is large. This can be observed by comparing the success rates
obtained for the 5-variable function (VII) and for the 7-variable function (X)
which have similar Walsh spectra.

7 Conclusions

This study points out that the performance of fast correlation attacks on any
filter generator can be improved by using all nonzero Walsh coefficients of the
filtering function. Our main result is that the running-key length which guar-
antees a successful attack does not depend on the filtering function, except for
functions which are very close to an affine function. The only influence of the fil-
tering function is that the computational complexity of the attack increases with
the number of nonzero Walsh coefficients. Therefore, the choice of the Boolean
function in the design of a filter generator should be mostly conditioned by other
types of attacks as inversion attacks.
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