
Discrete Applied Mathematics 154 (2006) 202–218
www.elsevier.com/locate/dam

Finding nonnormal bent functions

Anne Canteauta, Magnus Daumb, Hans Dobbertinb, Gregor Leanderb

aINRIA-Projet CODES, BP 105, 78153 Le Chesnay Cedex, France
bRuhr-University Bochum, Postfach 102148, 44780 Bochum, Germany

Received 12 September 2003; received in revised form 27 April 2004; accepted 21 March 2005
Available online 21 September 2005

Abstract

The question if there exist nonnormal bent functions was an open question for several years. A Boolean function in n variables
is called normal if there exists an affine subspace of dimension n/2 on which the function is constant. In this paper we give the
first nonnormal bent function and even an example for a nonweakly normal bent function. These examples belong to a class of bent
functions found in [J.F. Dillon, H. Dobbertin, New cyclic difference sets with Singer parameters, in: Finite Fields and Applications,
to appear], namely the Kasami functions. We furthermore give a construction which extends these examples to higher dimensions.
Additionally, we present a very efficient algorithm that was used to verify the nonnormality of these functions.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Algorithm; Boolean function; Bent function; Normal function

1. Introduction

In cryptography, Boolean functions are used in many different areas, the probably most important being the design of
S-Boxes for symmetric encryption. The main complexity characteristics for Boolean functions on Fn

2 which are relevant
to cryptography are the algebraic degree and the nonlinearity. But other criteria have also been studied. One of them
is the question if there exists a space of dimension n/2 such that the restriction of a given function is constant (resp.
affine) on this space. We call the functions for which such a space exists normal (resp. weakly normal). The notion of
normality has been introduced for the first time in [7]. This notion was used to construct balanced functions with high
nonlinearities. This construction relies on the fact that if a bent function f is constant on an (n/2)-dimensional affine
subspace, then f is balanced on each of the other cosets of this affine subspace [2]. Since that time the question if
there exist nonnormal bent functions was open. For arbitrary Boolean functions, an easy counting argument shows that
there must exist nonnormal functions of n variables for n�10. It was even shown in [7] that, for increasing dimension,
nearly all functions are nonnormal. Asymptotically, there exist Boolean functions of n variables which are not affine
on any � log2(n)-dimensional affine subspace for every � > 1 (see [3]). But the question if there exist nonnormal bent
functions was an open problem. For a survey on normal Boolean functions see [4].

The question of normality can be generalized to the following combinatorial problem. Given a set of bent functions
B, determine the maximal dimension d(B) such that for all functions f ∈ B there exists a affine subspace U of
dimension d(B) such that f is constant on U .

E-mail address: gregor.leander@rub.de (G. Leander).

0166-218X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.03.027

http://www.elsevier.com/locate/dam
mailto:gregor.leander@rub.de

A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218 203

Throughout the paper n = 2m be an even number. We recall some definitions:

Definition 1. A flat of dimension t is a t-dimensional affine subspace.

Definition 2. Given a function f : Fn
2 → F2, the function

a ∈ Fn
2 �→ f w(a) =

∑
x∈Fn

2

(−1)f (x)+〈a,x〉

is called the Walsh transform of f . Moreover, the f w(a), a ∈ Fn
2 are called the Walsh coefficients of f .

Definition 3. A function f : Fn
2 → F2 is called bent if for all a ∈ Fn

2 with a �= 0 the following equation holds:∑
x∈Fn

2

(−1)f (x)+f (x+a) = 0.

This property is equivalent to the fact that all the Walsh coefficients are equal to ±2m.

Definition 4. The dual function f̃ of a bent function f of 2m variables is the Boolean function defined by

f w(a) = (−1)f̃ (a)2m.

The dual of a bent function is also bent.

Definition 5. A function f : Fn
2 → F2 is called normal if there exists a flat of dimension m such that f is constant on

this flat.

As bentness is invariant under addition of affine functions it is natural to consider a generalization of Definition 5.

Definition 6. A function f : Fn
2 → F2 is called weakly normal if there exists a flat of dimension m such that the

restriction of f to this flat is affine.

A function f is weakly normal if and only if there exists an element a ∈ Fn
2 such that f (x) + 〈a, x〉 is normal.

The Hamming weight of a bent function f is
∑

x∈Fn
2
f (x)=2n−1 − (−1)f̃ (0)2m−1. It is known that if a bent function

is normal with respect to a flat U then it is balanced on all cosets of U . This implies that, if f is constant on a flat of
dimension m, the value of the corresponding constant is f̃ (0).

The following section investigates all known families of bent functions and their normality. We prove that most
functions in the main classes of bent functions (the Maiorana–McFarland class, the partial spread class and the class
N) are normal. We also prove the normality of some modified Maiorana–McFarland bent functions. In Section 3 we
present the first nonnormal bent function and even a nonweakly normal bent function. As normality is defined via the
existence of a flat fulfilling certain criteria, it is very hard to check this property, both in theory and with an algorithm.
In order to decide normality of Boolean functions, we present in Section 4 an algorithm which is much faster than a
naive approach would be. Finally, Section 5 contains some further applications for this algorithm.

2. Normality of the known families of bent functions

2.1. Direct constructions

Amongst all known constructions for bent functions, there exist three families which can be directly constructed
(i.e., which are not derived from other bent functions): the Maiorana–McFarland class, the partial spread class and the
class N which was introduced by Dobbertin [7].

Maiorana–McFarland functions

204 A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218

Definition 7. Let � : Fm
2 → Fm

2 be a permutation and h : Fm
2 → F2 an arbitrary Boolean function. Then f : Fm

2 ×Fm
2 →

F2 with

f (x, y) = 〈x, �(y)〉 + h(y)

is called a Maiorana–McFarland function. The set of all Maiorana–McFarland functions is denoted by M.

All Maiorana–McFarland functions are bent. Moreover, they are obviously normal, since they are constant on the
m-dimensional subspace Fm

2 × {�−1(0)}.
Partial spreads. The partial spread family, denoted by PS, was introduced by Dillon [5]. It is defined as follows.

Definition 8. Let {Ei, i =1, 2, . . . , N}, with N =2m−1 or N =2m−1 +1, be a set of N subspaces of F2m
2 of dimension

m such that Ei ∩ Ej = {0} for all i �= j . The Boolean function f of 2m variables defined by

{x ∈ F2m
2 , f (x) = 1} =

N⋃
i=1

Ei

is called a partial spread. Moreover, f is said to be in the class PS+ if N = 2m−1 + 1 and in the class PS− if
N = 2m−1.

Dillon proved that all partial spreads are bent [5].
By definition, any function in the class PS+ is normal since it takes the value 1 on all m-dimensional subspaces Ei .

The situation is different for the functions in PS−: they are not constant on any Ei since they vanish at 0. Determining
whether there exist nonnormal and nonweakly normal functions in the class PS− is still an open problem. However,
this problem can be solved for a subclass of PS−, called PSap, defined by Dillon [5, p. 97]. This subclass consists
of all the functions of the form

f : F2m × F2m → F2,

(x, y) �→ g(xy2m−2),

where g is any balanced function from F2m into F2 such that g(0)= 0 . It is clear that all functions in PSap are normal
since they vanish on the m-dimensional subspace {0} × Fm

2 .
Class N. A third family, called class N, was exhibited by Dobbertin [7].

Definition 9. Let g be a balanced function from F2m into F2 and let Tg denote the affine subspace spanned by the
support of its Walsh transform. Let � be a mapping from F2m to itself and � be a permutation of F2m such that both �
and � are affine on all sets aT , a ∈ F∗

2m .
The function f defined by

∀(x, y) ∈ F2m × F2m, f (x, �(y)) =
{

g

(
x + �(y)

y

)
if y �= 0

0 if y = 0

is said to be in class N.

It is shown in [7] that all functions in N are bent. Moreover, family N contains both the Maiorana–McFarland class
and the PSap class as extremal cases. It is obvious that any function in family N is normal because it vanishes on the
m-dimensional space Fm

2 × {�(0)}.
Since bentness is invariant under addition of an affine function and under right composition by an affine permutation,

it is natural to consider the completions of the previous classes under these transformations. We denote by B the
completed version of any class B.

Proposition 10. All functions in PS+ ∪ N and their duals are weakly normal.

A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218 205

2.2. Modified Maiorana–McFarland bent functions

Now, we focus on some bent functions derived from the Maiorana–McFarland family by adding an indicator function
of a flat E and we prove their normality. In particular we are interested in functions described in [2] and below. These
functions are all of the following form:

f : Fm
2 × Fm

2 → F2,

f (x, y) = 〈x, �(y)〉 + h(x) + �E(x, y),

where � : Fm
2 → Fm

2 is a permutation, h : Fm
2 → F2 is an arbitrary function and �E is the characteristic function of E:

�E(x, y) : Fm
2 × Fm

2 → F2,

�E(x, y) = 1 if and only if (x, y) ∈ E.

For some of these functions we shall show that they are normal, or at least weakly normal.
Carlet’s construction. In [2] Carlet considers only the special situation, where E is of the form Ẽ ×Fm

2 for a subspace
Ẽ of Fm

2 . We denote the characteristic function �
Ẽ×Fm

2
(x, y) just by �

Ẽ
(x) to simplify the notation.

The bent functions constructed in [2] are described in the following theorem.

Theorem 11 (Carlet [2]). Let E be any linear subspace of Fm
2 , and � be a permutation on Fm

2 such that for any element
� of Fm

2 , the set �−1(� + E⊥) is a flat. Then the function

f (x, y) = 〈x, �(y)〉 + �E(x)

is bent.

It is obvious that these functions are normal, because f restricted to {0} × Fm
2 equals 1. Therefore, in order to find

nonnormal bent one might consider a small appropriate generalization which also involves a function h as the general
form of the Maiorana–McFarland-construction requires. It can be proved that this construction leads to bent functions
in the same way as Carlet’s original result.

Lemma 12. Let E and � be as in Theorem 11, and h be a Boolean function on Fm
2 , such that for any element � of Fm

2 ,
the function h is affine on �−1(� + E⊥). Then

f (x, y) = 〈x, �(y)〉 + h(y) + �E(x)

is bent.

The next lemma shows that all these functions are still normal bent functions.

Lemma 13. All bent functions f defined in Lemma 12 are normal.

Proof. We assume w.l.o.g that �(0) = 0 and h(0) = 0. We first consider the case that h is not constant on �−1(E⊥).
Then, we find an element y0 ∈ �−1(E⊥), with h(y0) = 1. Define the hyperplane

S = {x ∈ Fm
2 : 〈x, �(y0)〉 = 1},

then it is clear that S ∩ E = ∅ since �(y0) ∈ E⊥. Therefore, the restriction of f to the m-dimensional flat

(S × {0}) ∪ (S × {y0})
is constant and equal to 0.

If h is constant on the flat �−1(E⊥) then f (x, y) is constant and equal to 1 + h(y) on the n-dimensional flat
E × �−1(E⊥). �

206 A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218

Note that the first part of the above proof shows that actually every function derived from the Maiorana–McFarland
family by adding an indicator function of the form �E×Fm

2
is weakly normal.

Canteaut’s construction. Another class of bent functions can be derived from the Maiorana–McFarland functions
by adding the indicator function of a linear subspace E of Fm

2 × Fm
2 with codimension 2. This construction is based on

some properties of the derivatives of the dual function. Recall that the derivative of a Boolean function on Fn
2, f , with

respect to any direction a ∈ Fn
2 is the Boolean function Daf : x �→ f (x + a) + f (x).

Proposition 14 (Canteaut [1, Theorem 8]). Let f be a bent function of 2m variables, m�2. Let a and b be two distinct
nonzero elements of F2m

2 and E =〈a, b〉⊥. Then, the function f +�E is bent if and only if the dual function, f̃ , satisfies
DaDbf̃ = 0.

Note that this result can also be deduced from [2, p. 94]. The previous proposition enables us to derive some new
bent functions from the Maiorana–McFarland family. From now on, we use an explicit description of the scalar product
via the trace mapping: Fm

2 is identified with the finite field of order 2m, F2m , and the linear functions are the mappings
y �→ Tr(by) on F2m , where b describes F2m and Tr is the trace function from F2m to F2. The scalar product of two
elements x and y then corresponds to Tr(xy). As an example, the following corollary exhibits a bent function obtained
from the Maiorana–McFarland family by the construction described in Proposition 14.

Corollary 15. Let m = gk where g is odd and k > 1. Let

s = 1 +
((g−1)/2)−1∑

i=0

(2k − 1)2(2i+1)k .

Let �, � and � be three nonzero elements in F2m such that � has order (2k −1), Tr(�2(�2 +�))=0 and Tr(�(�2 +�))=0.
Let x, y ∈ F2m , then the 2m-variable function

g(x, y) = Tr(xys) + Tr(�y3s) + Tr(x + �y) Tr(�x + �2k−1
�y)

is bent and does not belong to the completed version of the Maiorana–McFarland family.

Proof. Let f be the 2m-variable bent function in the Maiorana–McFarland family defined by

f (x, y) = Tr(xys) + Tr(�y3s).

Let a=(1, �), b=(�, �2k−1
�) and V =〈a, b〉⊥. From Proposition 14, we deduce that g is bent if and only if DaDbf̃ =0.

Let x �→ xd be the inverse of x �→ xs over F2m , i.e. d = 2m−1 + 2k−1. The dual f̃ of f is given by [5, p. 91]:

f̃ (x, y) = Tr(xdy) + Tr(�(xd)3s) = Tr(xdy) + Tr(�x3).

By hypothesis, we have

DaDb Tr(�x3) = D1D� Tr(�x3) = Tr(�(�2 + �)) = 0.

Hence, we obtain

DaDbf̃ (x, y) = Tr(y((x + � + 1)d + (x + �)d + (x + 1)d + xd))

+ Tr(�((x + � + 1)d + (x + 1)d))

+ Tr(�2k−1
�((x + � + 1)d + (x + �)d)).

The first term in the previous expression vanishes since

(x + � + 1)d + (x + �)d + (x + 1)d + xd = (� + 1)d + �d + 1

= �2m−1 + �2k−1

= (� + �2k

)2m−1 = 0,

A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218 207

because � has order (2k − 1). It follows that

DaDbf̃ (x, y) = Tr(�(�2k−1
x2m−1 + �2m−1

x2k−1 + �2m−1+2k−1 + �2m−1 + �2k−1
))

+ Tr(�2k−1
�(x2m−1 + x2k−1 + �2m−1 + �2k−1 + 1))

= Tr(�(�2m−1+2k−1 + �2k−1
)) = Tr(�(�2k + �2k−1

))

= Tr(�2(�2 + �)) = 0.

Therefore, DaDbf̃ = 0, implying that g is bent.
Now, g belongs to M if and only if there exists an m-dimensional subspace U ⊂ F2m

2 such that DuDvg = 0 for any
u, v ∈ U [5, p. 102]. We can prove that U = Fm

2 × {0} does not satisfy this condition. Thus, if g belongs to M, there
exist two nonzero distinct elements u, v ∈ F2m

2 with u /∈ Fm
2 × {0} such that DuDvg = DuDvf + DuDv�V = 0. This

implies that DuDvf is constant on F2m
2 . By computing DuDvf , we deduce that the function DuDvf is constant only

if there exist �, 	 ∈ F∗
2m , � �= 	, such that

(x + � +)s + (x + �)s + (x +)s + xs = 0, ∀x ∈ F2m ,

or if there exist �, 	 ∈ F∗
2m such that

x �→ Tr(�((x +)s + xs))

is constant on F2m . Using the expression for s, we can then prove that none of these conditions is satisfied (see e.g. [1,
Corollary 6]). �

However, we can prove that any function derived from the Maiorana–McFarland family by adding the indicator
function of a linear subspace of codimension 2, as described in Proposition 14, is normal.

Lemma 16. Let � be a permutation on Fm
2 and
i be arbitrary Boolean functions on Fm

2 . For any nonzero � and � in
F2m , � �= �, the function

g(x, y) = Tr(x�(y)) + Tr(�x) Tr(�x) +
1(y) Tr(�x) +
2(y) Tr(�x) +
3(y)

is normal.

Proof. Let

E = {x ∈ F2m : Tr(x) = Tr(�x) = 0} = 〈1, �〉⊥.

The function g restricted to y ∈ �−1(E⊥) can be represented as

g(x, y)|Fm
2 ×�−1(E⊥) = Tr(�x) Tr(�x) +
1(y) Tr(�x) +
2(y) Tr(�x) +
3(y)

by changing the functions
i appropriately.
For a fixed y ∈ �−1(E⊥) we denote gy(x) := g(x, y). The support of gy is either a coset of E or the complement of

a coset of E. We have

E⊥ = {0, �, �, � + �}.
Thus, there are four possibilities to choose y. At least for two different values y0 and y1 the supports of gy0 and of
gy1 have the same size. W.l.o.g we assume that the size of the support of gy0 and gy1 is #E. Now, it follows that
gy0(x) = gy1(x) = 0 for x in the affine hyperplane (c0 + E) ∪ (c1 + E), where the ci + E, i = 0, 1 are different cosets
of E. Hence g is constant on the m-dimensional flat

{(c0 + E) ∪ (c1 + E)} × {y0, y1}. �

208 A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218

Theorem 17. Let � be a permutation of Fm
2 and h be an arbitrary Boolean function on Fm

2 . Let E be a linear subspace
of Fm

2 × Fm
2 of codimension 2 such that

f (x, y) = Tr(x�(y)) + h(y) + �E(x, y)

is bent. Then f is normal.

Proof. Let E = 〈(�1, �2), (�1, �2)〉⊥. If dim〈�1, �1〉 < 2, then f belongs to the Maiorana–McFarland class, implying
that it is normal. Actually, a bent function f of 2m variables belongs to M if and only if there exists an m-dimensional
subspace V ⊂ F2m

2 such that DaDbf = 0 for any (a, b) ∈ V [5, p. 102]. Here, we obviously have that DaDbf = 0 for
any a, b ∈ Fm

2 × {0}.
Now, if �1 and �1 are two nonzero distinct elements of Fm

2 , f corresponds to the sum of Tr(x�(y))+Tr(�1x) Tr(�1x)+

1(y) Tr(�1x) +
2(y) Tr(�1x) +
3(y) and a linear mapping. From the previous lemma, we deduce that f is
normal. �

3. Nonnormal bent functions

Here, we exhibit some examples of nonnormal and even nonweakly normal bent functions. One set of functions that
turns out to include nonnormal functions is the class of the Kasami functions. This class of bent functions was found
by Dobbertin and Dillon in [6] and some of the functions in this class seemed to be good candidates for nonnormal
bent functions.

The Kasami functions are defined as follows:

Definition 18. Let d=22k−2k+1 with gcd(k, n)=1 and � ∈ F2n . Then, we call f�,k : F2n → F2 with f�,k(x)=Tr(�xd)

a Kasami function.

Under some conditions these functions are bent.

Theorem 19 (Dillon and Dobbertin [6]). Let k and f�,k be as in Definition 18. If n is not divisible by 3 and � /∈ {x3 | x ∈
F2n} then f�,k is bent.

For some values of n it is possible to show that the Kasami functions are always normal.

Lemma 20. Let n = 2m with m even. The Kasami power functions

f : F2n → F2

x �→ Tr(�xd)

are normal.

Proof. First note that gcd(d, 2n − 1) = 3, i.e.,

U = {xd | x ∈ F∗
2n} = {x3 | x ∈ F∗

2n}
and there exist �1, �2 /∈ U such that

F∗
2n = U ∪ �1U ∪ �2U .

In the case where 4 |n, we will show that �1, �2 can be chosen in F2m . It is sufficient to show that there exists x ∈ F2m

such that x /∈ U . Let g be a generator of F2m . g is in U if and only if g(2n−1)/3 = 1. But

g(2n−1)/3 = g(2m−1)(2m+1)/3

= g(2m+1)((2m−1)/3) �= 1

A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218 209

as 2m + 1 is not divisible by 3 if m is even. So we can choose �1 =g and �2 =g2. Note that if �′ =�cd for some c ∈ F∗
2n

then f�,k(cx) = f�′,k(x) for all x ∈ F2n . Thus, we can assume that � is in {1, g, g2} ⊂ F2m . So for x ∈ F2m we get

f�,k(x) = Tr(�xd)

= TrF2m/F2(TrF2n/F2m (�xd))

= TrF2m/F2(�xd TrF2n/F2m (1))

= 0.

This proves the lemma. �

So we can only hope to get nonnormal Kasami functions for m odd. Furthermore, as all quadratic bent functions are
normal, only the case k �= 1 is interesting. As it is known that all bent functions on F6

2 are normal, the first possibility
for a Kasami function to be nonnormal is n = 10.

We found out that for n = 10 all the Kasami functions are normal but by addition of a linear function they can be
modified into nonnormal functions.

Fact 21. Let � ∈ F4\F2 ⊂ F210 . Then there exists � ∈ F210 such that the function f : F210 → F2 with

f (x) = Tr(�x57 + �x)

is nonnormal.

Verification. This can be verified using the algorithm described in Section 4. �

Furthermore, we found that for n = 14 and k = 3 the corresponding Kasami functions are nonweakly normal.

Fact 22. Let � ∈ F4\F2 ⊂ F214 . The function f : F214 → F2 with

f (x) = Tr(�x57)

is nonweakly normal.

Verification. By using the algorithm described in Section 4. �

These results are verified with a computer algorithm, proving these results theoretically is still an open problem. We
state the following conjecture.

Conjecture 23. All nonquadratic Kasami functions on F22m with m odd and m�7 are nonweakly normal.

Corollary 24. The Kasami bent function f : F214 → F2 defined by

f (x) = Tr(�x57)

with � ∈ F4\F2 ⊂ F214 and its dual do not belong to

PS ∪ N.

Proof. We know from Proposition 10 that all functions in PS+ ∪N are weakly normal. Thus, the only remaining case
is family PS−. But, any function in PS− of 2m variables has degree m since its restrictions to some m-dimensional
subspaces have an odd weight. It follows that f does not belong to the completed class PS− because its algebraic
degree is equal to 4. The same argument is valid for the dual function since the dual of a bent function of 2m variables
of degree m has degree m [5, p. 80]. �

Now, we show how to construct nonweakly normal bent functions of n variables for all even n�14. The following
lemma is a generalization of Theorem 4.5 of [8].

210 A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218

Lemma 25. Let f : Fn
2 → F2 be a Boolean function. The following properties are equivalent:

(1) f is (weakly) normal.
(2) The function

g : Fn
2 × F2 × F2 → F2

(x, y, z) �→ f (x) + yz

is (weakly) normal.

Proof. (1) ⇒ (2): We assume that f is normal, i.e., there exists a n/2 dimensional flat E, such that f |E is constant.
We define

E′ = (E × {0} × {0}) ∪ (E × {1} × {0})
which is a (n + 2)/2 dimensional flat. It is easy to see that g|E′ is constant, i.e., g is normal. Furthermore, if f is affine
on E then g is affine on E′.

(1) ⇐ (2): Now, we assume that g is weakly normal, i.e., there exists a (n + 2)/2 dimensional flat E, � ∈ Fn
2 and

�, � ∈ F2 such that

h(x, y, z) = g(x, y, z) + �y + �z + 〈�, x〉
takes the same value, c, on E. We claim that f (x) + 〈�, x〉 is normal.

For a, b ∈ F2 we define Eab = {x ∈ Fn
2 | (x, a, b) ∈ E}. Then f (x) + 〈�, x〉 is constant on all flats Eab. If one of the

flats Eab has dimension �n/2 we are done. If this is not true, all the flats Eab have dimension (n/2)− 1. Furthermore,
since the union of all Eab is a flat, all Eab are cosets of the same subspace U : Eab = U + xab. Moreover, x��̄ �= x�̄�.

Otherwise, for any element (x, �̄, �) in E, (x, �, �̄) belongs to E. Then, if we consider two elements (x, �̄, �) and
(x′, �, �) in E, we obtain that

(x, �̄, �) + (x, �, �̄) + (x′, �, �) = (x′, �̄, �̄)

belongs to E. Thus, both (x′, �, �) and (x′, �̄, �̄) lie in E, implying that h(x′, �, �) = h(x′, �̄, �̄). But,

h(x′, �̄, �̄) = f (x′) + �̄�̄ + ��̄ + ��̄ + 〈�, x′〉
= f (x′) + �� + � + � + 1 + 〈�, x′〉 = h(x′, �, �) + 1,

which leads to a contradiction. Therefore, since x��̄ �= x�̄�, the set E��̄ ∪ E�̄� is a flat of dimension n/2. Moreover, we
have

∀x ∈ E��̄, f (x) + 〈�, x〉 = c + ��̄ + � + ��̄ = c + ��,

∀x ∈ E�̄�, f (x) + 〈�, x〉 = c + �̄� + ��̄ + � = c + ��,

implying that f (x) + 〈�, x〉 is constant on E��̄ ∪ E�̄�. The special case � = 0 and � = � = 0 shows that if g is normal
then f is normal as well. �

Thus, given a nonnormal function f with n variables Lemma 25 can be used to construct a nonnormal function with
n + 2 variables.

According to this procedure applied recursively, if f is a Boolean function on Fn
2 and if f ′ is a quadratic bent function

on Fn′
2 , then f is (weakly) normal if and only if g(x, y) = f (x) + f ′(y) is (weakly) normal. The question if this is true

for any normal bent function f ′ is still open. An important observation from our point of view is that, if the function
f in the above lemma is bent, then g is also bent.

With Facts 21 and 22 we get:

Fact 26. There exist nonnormal bent functions of n variables for all even n�10 and nonweakly normal bent functions
for all even n�14.

A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218 211

From Corollary 24, we deduce that for any even n�14, the bent functions of n variables obtained by recursively
applying Lemma 25 to the Kasami function of 14 variables (and their duals) do not belong to PS ∪ N.

4. Checking normality efficiently

Checking (weak) normality of a function usually needs one to take into account all flats of dimension m to check
whether f is constant (affine) on one of them. One possible but rather complex way of doing this would be to do an
exhaustive search on all flats of dimension m.

In this section we present an algorithm, which, given a Boolean function f : Fn
2 → F2, is able to compute a list of

all flats of dimension m of Fn
2 on which f is affine in much less time than needed for an exhaustive search.

Additionally, besides checking normality this algorithm can also be used to check whether a given bent function is
a Maiorana–McFarland or a partial-spread bent function, as it is described in Section 5.

4.1. General idea

The main idea of the algorithm presented here is to make use of the fact that a Boolean function which is affine on a
flat A is also affine on all flats contained in A.

Even more the function is either constant on A and hence constant on all flats contained in A or we can find two flats
A0, A1 ⊂ A with dim(A0) = dim(A1) = dim(A) − 1 and A = A0 ∪ A1 such that the function is 0 on A0 and 1 on A1.
In the latter case, of course, the function is also constant on all flats of A0 and A1, respectively.

Hence, it suffices for a given Boolean function, first to determine the flats of a “small” dimension t0 on which the
function is constant and then to combine these spaces to get those flats of dimension m on which the function is affine.

Therefore, the general structure of the algorithm can be described as follows:

Algorithm 1.

Input: a Boolean function f : Fn
2 → F2, a starting dimension t0

Output: a list of all flats of dimension m on which f is affine
For all subspaces U of Fn

2 with dim(U) = t0 do

Determine all flats a + U with f |a+U = 0 and f |a+U = 1 resp.
Combine pairs (a1 + U, a2 + U)

with f |a1+U = f |a2+U = 0 (resp. with f |a1+U = f |a2+U = 1)
to get flats a1 + Ũ = a1 + 〈U, a1 + a2〉 of dimension t0 + 1
such that f |

a1+Ũ
= 0 (resp. f |

a1+Ũ
= 1)

Repeat the last step for new flats with equal Ũ up to dimension m − 1
Combine pairs of flats (a1 + Û , a2 + Û) with dim(Û) = m − 1

(independent of whether f |
ai+Û

is 0 or 1)
to get those flats of dimension m on which f is affine

Output these flats of dimension m

To implement this algorithm efficiently and prove the correctness of the optimized version, we first have to make
some definitions.

4.2. Definitions and notation

In this section we represent vectors u ∈ Fn
2 as n-tuples u= (u1, . . . , un), ui ∈ F2, we denote the index of the leftmost

1 in this representation by

	(u) := max{i ∈ {1, . . . , n + 1} |uj = 0 for 1�j < i}
and for a vector space U ⊆ Fn

2 we define Υ (U) := {	(u) |u ∈ U\{0}}.

212 A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218

By using the standard lexicographical ordering < on Fn
2, i.e.

u > v ⇔ 	(u) < 	(v) or
((u) = 	(v) and ((u	(u)+1, . . . , un) > (v	(v)+1, . . . , vn))

we can define a unique representation of subspaces U ⊆ Fn
2:

Definition 27. An ordered basis u1, . . . , uk ∈ Fn
2 of U is called a Gauss–Jordan basis (GJB) if

u1 > · · · > uk and (uj)	(ui) = 0 ∀i �= j .

Lemma 28. For each vector space U ⊆ Fn
2 there is one unique GJB.

Using the lexicographical ordering is also very efficient for implementations as it corresponds directly to the natural
ordering on the integers that we get by considering (u1, . . . , un) as the binary representation of

∑n
i=1 ui · 2n−i .

With the notation of 	(u) we can also define the complement Ū of a vector space U as

Ū := {a ∈ Fn
2 | ai = 0 ∀i ∈ Υ (U)}

and it is obvious that U ∩ Ū = {0} and thus U ⊕ Ū = Fn
2 because of dimensional reasons. So all flats of the form a + U

can be uniquely represented as ā + U with ā ∈ Ū .

4.3. Details of the algorithm

The main data structure of the presented algorithm is the list of all flats of the form a + U (for a given U) on which
the given function f is constant:

Definition 29. Let f : Fn
2 → F2, u1, . . . , uk ∈ Fn

2 and c ∈ {0, 1}. If (u1, . . . , uk) is a GJB of U then let

Cu1,...,uk
c (f) := {a ∈ Ū |f |a+U = c}

and Cu1,...,uk
c (f) := ∅ otherwise.

Using the ideas of Section 4.1 and the notation of a GJB in order to get each flat only once, we obtain the following
relation between lists belonging to different dimensional spaces:

Lemma 30. For f, u1, . . . , uk, c as in Definition 29 and for all a, b ∈ Fn
2 the following equivalence holds:

a, b ∈ Cu1,...,uk
c (f)

a < b, a + b < uk

ui,	(a+b) = 0 for 1� i�k

}
⇐⇒ a ∈ Cu1,...,uk,a+b

c (f).

As for every a ∈ C
u1,...,uk+1
c (f) we can write b = a + uk+1 with a ∈ Cu1,...,uk,a+b

c (f), this lemma gives a criterion
on how to determine all Cu1,...,uk+1

c (f) for different uk+1 if we know Cu1,...,uk
c (f).

This can be done even more efficiently by using the following two ideas.
We can avoid the a < b checks and many a + b < uk checks by storing the elements of C in a sorted list. Checking

ui,	(a+b) = 0 can be done more efficiently if we once evaluate û := ∨k
i=1 ui (where ∨ means the componentwise OR

of the vectors ui , i.e. ûj = maxk
i=1 ((ui)j)) and then only check if û	(a+b) = 0.

Another useful criterion to make the computation more efficient is given by the following corollary:

Corollary 31. For f : Fn
2 → F2, u1, . . . , uk ∈ Fn

2, c ∈ {0, 1} and l ∈ {1, . . . , k − 1} it holds that

|Cu1,...,uk−l
c (f)|�2l · |Cu1,...,uk

c (f)|.

Proof. We show that |Cu1,...,uk−1
c (f)|�2·|Cu1,...,uk

c (f)| (then the claim follows at once). LetCu1,...,uk
c (f)={a1, . . . , ar}.

A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218 213

Define bi := ai + uk and by Lemma 30 it follows that ai, bi ∈ C
u1,...,uk−1
c (f) and that all a1, . . . , ar , b1, . . . , br are

distinct as otherwise we get one of the following contradictions:

bi = bj ⇒ ai = bi + uk = bj + uk = aj

ai = bj ⇒ uk = aj + bj = aj + ai ∈ Ū . �

Similarly to Lemma 30 we get the following relations between the flats of dimension m on which f is affine and the
lists Cu1,...,um−1

c (f) corresponding to dimension m − 1:

Lemma 32. Let a + U ⊂ Fn
2 be a flat of dimension m. Then the following statements are equivalent:

(1) f |a+U is affine
(2) f |a+U is constant or

∃ subspace U ′ ⊂ U : dim(U ′) = m − 1
∃ ũ ∈ U\U ′ : U = U ′∪̇(ũ + U ′)
∃ c ∈ {0, 1}

}
such that

{
f |a+U ′ = c

f |a+ũ+U ′ = 1 − c

(3) ∃subspace U ′ ⊂ U : dim(U ′) = m − 1 with GJB u1, . . . , um−1

∃a′ ∈ a + U ′, b′ ∈ (a + U)\(a + U ′)

such that a′, b′ ∈ ∪c∈{0,1}Cu1,...,um−1
c (f)

Proof. “(1) ⇒ (2)” Assume that f |a+U is not constant. Then with a basis u1, . . . , um of U we have f (a +∑
i �iui)=∑

i �i�i + c with some � ∈ Fm
2 \{0} and c ∈ F2 and (2) is fulfilled with U ′ := {∑i �iui | � · � = 0}.

“(2) ⇒ (3)” If f |a+U is constant and equal to c, choose U ′ ⊂ U with dimension m − 1 and ũ ∈ U\U ′. Then we
have U = U ′ ∪̇ (ũ + U ′) and f |a+U ′ = f |a+ũ+U ′ = c.

In any case (3) follows by choosing a′ := a +∑
a	(ui)ui and b′ := a + ũ+∑

(a + ũ)	(ui)ui where (u1, . . . , um−1)

is the GJB of U ′.
“(3) ⇒ (1)” Let a′ ∈ C

u1,...,um−1
ca

(f) and b′ ∈ C
u1,...,um−1
cb

(f). Then U = 〈u1, . . . , um−1, a
′ + b′〉 and with x = a +∑

i �iui + �m(a′ + b′) if follows that

f (x) =
{

ca if �m = 0
cb if �m = 1

}
= (1 − �m) · ca + �m · cb = �m · (cb − ca) + 1

is affine. �

This lemma shows that, in order to find all flats on which f is affine, it suffices to compute the lists Cu1,...,um−1
c for

GJBes of all subspaces of dimension m − 1.
Together with Corollary 31 we can conclude that having computed Cu1,...,uk

c (f), c ∈ {0, 1}, we only have to consider
pairs of elements of these lists if

|Cu1,...,uk
c (f)|�2m−k

or

(|Cu1,...,uk
c (f)|�2m−k−1 and |Cu1,...,uk

1−c (f)|�2m−k−1),

otherwise there is no chance to find a flat on which f is affine by considering lists of the form C
u1,...,uk,ũk+1,...,ũm−1
c (f).

As described in Section 4.1 the main idea of the algorithm is to begin with a starting dimension t0 and to compute
the lists C

u1,...,ut0
c (f) which we need just by enumerating all corresponding flats and checking directly. Then the lists

corresponding to higher dimensions can be generated recursively as described in Lemma 30.
So what we need to complete the algorithm is an efficient way to enumerate all initial parts u1, . . . , ut0 of GJBes of

subspaces of dimension m − 1.

214 A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218

Table 1
Enumerating all GJBes

1 . . . 	1 . . . 	2 . . . 	3 . . . 	t0 . . . n

u1 = 0 . . . 1 〈z1,1〉2 0 〈z1,2〉2 0 . . . 0 〈z1,t0 〉2
u2 = 0 1 〈z2,2〉2 0 . . . 0 〈z2,t0 〉2
u3 = 0 1 . . . 0 〈z3,t0 〉2

. . .
.
.
.

.

.

.

ut0 = 0 1 〈zt0,t0 〉2

If we take a look at the definition of a GJB it is obvious that this can easily be done by looping over all increasing
sequences

1�	1 < 	2 < · · · < 	t0 �m + 1 + t0

and all integers zi,j ∈ {0, . . . , 2	j+1−	j −1 − 1} with 1� i� t0, i�j � t0 and defining

(ui)j =
{

0 if j < 	i or j ∈ {	i+1, . . . , 	t0}
1 if j = 	i

and filling in the gaps with the binary representations 〈zi,j 〉2 of the integers zi,j as shown in Table 1 .
Additionally, we only have to consider such sets u1, . . . , ut0 for which∣∣∣∣{j > 	t0

∣∣∣∣ t0
max
i=1

(ui)j = 1

}∣∣∣∣ �m − 	t0 + 1 + t0,

as otherwise it cannot be completed to a GJB of dimension m − 1.
Finally, we just have to enumerate all a ∈ Ū for U =〈u1, . . . , ut0〉. This can be done similarly to the enumeration of

the ui themselves just by setting a	i
= 0 for i = 1, . . . , t0 and filling in the gaps with all possible binary representations

of integers.
So the whole algorithm can be described as follows (some of the ideas described above to make the algorithm even

more efficient—e.g. storing the Cs in sorted order—are omitted in order to make this description more readable, but
they are easily implemented into this algorithm):

Algorithm 2.

Input: a Boolean function f : Fn
2 → F2, a starting dimension t0

Output: a list of all flats on which f is affine
For all GJBes u1, . . . , ut0

with |{j > 	t0 |maxt0
i=1(ui)j = 1}|�m − 	t0 + 1 + t0 do

For all a ∈ 〈u1, . . . , ut0〉 do
If f (a + ∑

�i · ui) = c∀ � ∈ F
t0
2 Then append a to C

u1,...,ut0
c

Combine(C
u1,...,ut0
0 ,C

u1,...,ut0
1 , (u1, . . . , ut0), t0)

using the recursive subroutine

Combine(C0,C1, (u1, . . . , uk), k):

If (k < m − 1)

Then
If (|C0| < 2m−k−1 or (|C0| < 2m−k and |C1| < 2m−k−1)) Then C0 := ∅

A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218 215

If (|C1| < 2m−k−1 or (|C1| < 2m−k and |C0| < 2m−k−1)) Then C1 := ∅
If (C0 = ∅ and C1 = ∅) Then exit combine
û := ∨k

i=1ui

For all c ∈ {0, 1}, a, b ∈ Cc : a < b do
If (û	(a+b) = 0 and a + b < uk) Then append a to Cu1,...,uk,a+b

c

For all uk+1 ∈ Fn
2 : uk+1 < uk do

Combine (C
u1,...,uk+1
0 ,C

u1,...,uk+1
1 , (u1, . . . , uk+1), k + 1)

Else
For all a, b ∈ C0 ∪ C1 : a < b do
Output “f is affine on a + 〈u1, . . . , uk, a + b〉”

In order to choose an optimal starting dimension t0 we have to take a closer look at some complexity evaluations.

4.4. Complexity evaluations

In this section we will evaluate the complexity of the described algorithm, and, in particular, its dependence on the
chosen starting dimension t0. This will then lead to a suggestion on how to optimally choose t0.

In order to be able to make a proper complexity evaluation we have to assume that f is a random Boolean function.
We will then evaluate the expected complexity of the algorithm.

The time complexity evaluations will be split into two parts, the complexity of the “exhaustive search” part in the
main loop and the recursive “combining” part:

Exhaustive search. The number of subspaces of dimension t0 in Fn
2 is

t0−1∏
i=0

2n−i − 1

2t0−i − 1
≈ 2(n−t0)t0+1,

and thus the number of flats of this dimension is about

2(n−t0)t0+1 · 2n−t0 = 2(n−t0)(t0+1)+1.

As checking whether a function is constant on a given subset needs at most two comparisons and three evaluations of
f on average, we expect a complexity of about 2(n−t0)(t0+1)+2 steps in the “exhaustive search” part.

For example, for n = 14 and n = 16 this estimation gives the following concrete complexities:

n = 14 : t0 1 2 3 4 5 6 7

log2(compl.) 28 38 46 52 56 58 58

n = 16 : t0 1 2 3 4 5 6 7 8

log2(compl.) 32 44 54 62 68 72 74 74

From these tables we can see that it is not feasible to check normality by pure “exhaustive search” for these choices of
n as this obviously corresponds to using the above described algorithm with t0 =m and that has an expected complexity
of about 258 and 274 steps, respectively.

Combining. LetTt be the combined expected complexity of all calls of Combine(. . . , t) concerning some dimension
t. Then for t < m − 1 this complexity Tt mainly depends—besides the complexity Tt+1 of further recursive calls of
Combine—on the average size S of the input lists C0 and C1. As the main part of Combine is a loop over all unordered
pairs of C0 and C1, respectively, in which mainly two comparisons are performed, the complexity can be estimated as

2 ·
(
S

2

)
· 2 ≈ 2 · S2.

216 A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218

As f is supposed to be random, the expected sizeSt ofCu1,...,ut
c (f) (i.e. a list corresponding to a subspace of dimension

t) is St = 2−2t · 2n−t , since the probability that f (x) = c for all 2t elements x in one of the corresponding flats is 2−2t

for a random function f and there are 2n−t flats corresponding to the subspace 〈u1, . . . , ut 〉.
As described in the previous sections due to the extra conditions the subroutine Combine(. . . , (u1, . . . , ut), t) is

only called once for each subspace 〈u1, . . . , ut 〉 and as we have a number of
∏t−1

i=0 (2n−i − 1)/(2t−i − 1) subspaces
of dimension t the expected total complexity for all calls of Combine(. . . , t) concerning some dimension t < m − 1 is
about

Tt = Tt+1 + 2 · S2
t ·

t−1∏
i=0

2n−i − 1

2t−i − 1

⇒ Tt − Tt+1 ≈ S2
t 2(n−t)t+2 = 2−2t+1+(n−t)(t+2)+2.

The expected complexity of one call of Combine(. . . , m − 1) should also be about 2 ·S2, as in this case we loop over
all unordered pairs of C0 ∪C1, which is a set of size 2S, but we perform only 1 operation per pair. Thus, for dimension
m − 1 we get

Tm−1 ≈ 2−2m+(n−m+1)(m+1)+2.

Finally, we can say that the expected total complexity Tt0 of all calls of Combine in the main loop of the algorithm
can be written as

Tt0 =
m−2∑
t=t0

(Tt − Tt+1) + Tm−1 ≈
m−1∑
t=t0

2−2t+1+(n−t)(t+2)+2.

As before for the “exhaustive search” part, for the “combining” part we get the following exemplary complexities for
n = 14, n = 16:

n = 14 : t0 1 2 3 4 5

log2(Tt0) 43 43 41 30 1

n = 16 : t0 1 2 3 4 5

log2(Tt0) 52 52 51 42 15

Combined with the table of the complexities for the “exhaustive search” part this table shows that for n = 14 and
n = 16 a proper choice for the starting dimension seems to be t0 = 2 or t0 = 3.

Obviously, in the complexity evaluation described so far, we have not taken into account the restrictions on the
Hamming weights of the vectors in the GJBes in the main loop and the if-statements concerning |Cc|, which are very
hard to analyze exactly. But these tweaks on the algorithm should have not much influence on the choice of t0 and, of
course, they only decrease the complexity of the algorithm such that the above described complexities can be seen as
estimations of “upper bounds” on the complexity of the algorithm.

An actual implementation of the algorithm which we made on a Pentium IV with 1.5 GHz in C + +, needed about
50 h for n = 14 and t0 = 3.

5. Further applications

Besides the application of checking (weak) normality, which is quite straightforward with the above described
algorithm, there are some other applications for this algorithm.

A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218 217

5.1. Maiorana–McFarland functions

The second application of the algorithm we want to describe here is the problem to decide whether a given bent
function is a Maiorana–McFarland bent function. Recall that we denote the class of all functions which are equivalent
to a Maiorana–McFarland function under affine transformations by M.

Due to the following lemma it is possible to use the above described algorithm to determine whether a function is in
M or not.

Lemma 33. Let f : Fn
2 → F2 be a bent function. The following properties are equivalent:

(i) f is in M.
(ii) There exists a subspace U of dimension m such that the function f is affine on every coset of U .

The proof of this Lemma is obvious since the second property is invariant under addition of an affine function and
under right composition by an affine permutation. As the algorithm described in this paper outputs every coset of
dimension m on which f is affine, this property can be checked easily.

In practice this means that for n = 8 we can decide whether a bent function is in M in less than a second, for n = 10
in less than a minute and even for n = 14 in a few days.

The possibility to determine if a given function is in M can be used to compute an experimental bound on the number
of bent functions for n = 8 as follows.

By generating “random” bent functions and checking whether they are in M as previously described, the ratio q of
the number of bent functions in M to the number of all bent functions can be estimated. Then, if �8 is the number of
functions in M in eight variables, the number of all bent functions can be estimated as (1/q)�8.

But we are unable to estimate this number until we have solved the following two problems.
First the number �8 of functions in M for n = 8 is not known exactly. The functions in M are all affinely equivalent

to 〈x, �(y)〉 + h(y), where � is a permutation and h an arbitrary Boolean function. The number of functions of this
form is 22m

(2m!). The problem is to determine the length of the orbit under the action of the group AL(n) of all
affine transformations. This length is equal to #AL(n) if and only if there are no A ∈ AL(n) such that f ◦ A = f .
We computed the length of the orbit for randomly chosen functions in M and all of them had orbit length #AL(n),
but it would be much more satisfying to have a theoretical result, so it remains an open problem to determine #M
for n�8.

The second problem is that the generation of bent functions for n = 8 usually uses hill-climbing algorithms
and these algorithms mightt find functions in M more or less often than they should. A first step to check this
can be to determine the above ratio for n = 6 and compare it with the proper ratio, which in this case is known
(see [10]).

5.2. Other classes of bent functions

For some other classes of bent function it is also possible to use the algorithm presented in Section 4 to de-
cide if a given bent function is in a specific class of bent functions. Examples are the classes PS+ and PS−
introduced in [5]. As the support of bent functions in these classes is defined via the union of subspaces of
dimension n/2, the algorithm can be used easily to check if a function belongs to one of these
classes.

References

[1] A. Canteaut, P. Charpin, Decomposing bent functions, IEEE Trans. Inform. Theory 49 (8) (2003) 2004–2019.
[2] C. Carlet, Two new classes of bent functions, in: Advances in Cryptology—EUROCRYPT’93, Lecture Notes in Computer Science, vol. 765,

Springer, Berlin, 1994, pp. 77–101.
[3] C. Carlet, On cryptographic complexity of Boolean functions, in: Finite Fields with Applications to Coding Theory, Cryptography and Related

Areas (Proceedings of Fq6), Springer, Berlin, 2002, pp. 53–69.
[4] P. Charpin, Normal Boolean functions, J. Complexity 20 (2004) 245–265 (special issue) (“Complexity Issues in Cryptography and Coding

Theory”, dedicated to Prof. Harald Niederreiter on the occasion of his 60th birthday.)
[5] J.F. Dillon, Elementary hadamard difference sets, Ph.D. Thesis, University of Maryland, USA, 1974.

218 A. Canteaut et al. / Discrete Applied Mathematics 154 (2006) 202–218

[6] J.F. Dillon, H. Dobbertin, New cyclic difference sets with Singer parameters, Finite Fields Appl. 10 (2004) 342–389.
[7] H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, in: Fast Software Encryption—FSE’94,

Lecture Notes in Computer Science, vol. 1008, Springer, Berlin, 1995, pp. 61–74.
[8] S. Dubuc-Camus, Etude des fonctions booléennes dégénérées et sans corrélation, Ph.D. Thesis, Université de Caen, France, 1998.
[10] B. Preneel, Analysis and design of cryptographic hash functions, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium, 1993.

	Finding nonnormal bent functions
	Introduction
	Normality of the known families of bent functions
	Direct constructions
	Modified Maiorana--McFarland bent functions

	Nonnormal bent functions
	Checking normality efficiently
	General idea
	Definitions and notation
	Details of the algorithm
	Complexity evaluations

	Further applications
	Maiorana--McFarland functions
	Other classes of bent functions

	References

