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The Density Matrix

I How can we model the quantum state after a measurement ?

ex: |0〉 with prob. 1
2 and |1〉 with prob. 1

2 ?

I How can we describe the quantum state relative to a subsystem?

ex: the first qubit of the EPR pair 1√
2

(|00〉+ |11〉)

What we want is a perfect and concise description of a quantum state

2 6= states can not be distinguished iff they have the same description
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Observable

I An equivalent description of measurements

I Given by a self-adjoint operator M (M∗ = M)

I M is diagonalizable in an orthonormal basis, the orthogonal projections Pλ onto the eigenspaces

Vλ determine the measurement

I Output of the measurement : eigenvalue λ. Measurement = λ with probability pλ
def
= ||Pλ |ψ〉||2

|ψ〉 =
∑
λ

Pλ |ψ〉

M |ψ〉 =
∑
λ

λPλ |ψ〉

〈M〉|ψ〉
def
=

∑
λ

pλλ

=
∑
λ

λ ||Pλ |ψ〉||2

= 〈ψ|M |ψ〉
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Measurements on a probability mixture of quantum states

I Quantum state ρ probabilistic mixture of quantum states |ψj〉: ρ = |ψj〉 with probability pj.

We have for any observable M:

〈M〉ρ =
∑
j

pj〈M〉|ψj〉

=
∑
j

pj 〈ψj|M |ψj〉

=
∑
j

pjTr 〈ψj|M |ψj〉

=
∑
j

pjTr (M |ψj〉 〈ψj|)

= Tr

M
∑
j

pj |ψj〉 〈ψj|


⇒ define ρ

def
=
∑

j pj |ψj〉 〈ψj|
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The density matrix

Définition[density matrix] The density matrix ρ corresponding to a probabilistic mixture of states

|ψj〉, the corresponding quantum state being equal to |ψj〉 with probability pj is given by

ρ
def
=
∑

j pj |ψj〉 〈ψj|
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The density matrix of a qubit

|ψ〉 =

(
α

β

)
〈ψ| =

(
ᾱ β̄

)
|ψ〉 〈ψ| =

(
α

β

)(
α β

)
=

(
αα αβ

αβ ββ

)
=

(
|α|2 αβ

αβ |β|2

)
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Exercise

Compute the density matrix of

1. the probabilistic mixture of |0〉 (prob 1
2) and |1〉 (prob 1

2)

2. the probabilistic mixture of |+〉 def
= |0〉√

2
+ |1〉√

2
(prob 1

2) and |−〉 def
= |0〉√

2
− |1〉√

2

3. What can you conclude ?
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Characterizations of density matrices

Theorem 1. An operator ρ acting on a Hilbert space H is a density operator iff

1. ρ is self-adjoint

2. ρ is positive semidefinite

3. Tr(ρ) = 1
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I Tr(ρ) = 1

Tr

 k∑
j=1

pj |ψj〉 〈ψj|

 =

k∑
j=1

pjTr(|ψj〉 〈ψj|)

=

k∑
j=1

pjTr(〈ψj|ψj〉)

= 1

I ρ is positive semidefinite

If ρ =
k∑
j=1

pj |ψj〉 〈ψj|

then for any |φ〉 〈φ| ρ |φ〉 =

k∑
j=1

pj 〈φ|ψj〉 〈ψj|φ〉

=

k∑
j=1

pj |〈φ|ψj〉|2 ≥ 0
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Pure and mixed states

Définition[pure state] A quantum system whose state |ψ〉 is known exactly is said to be in pure

state.

Définition[mixed state] A quantum system which is not in pure state is said to be in mixed state.

Theorem 2.

Tr(ρ
2
) ≤ 1

Tr(ρ
2
) = 1⇔ ρ is a pure state

Tr(ρ
2
) < 1⇔ ρ is a mixed state
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Exercise

Prove the previous theorem.
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The Bloch ball representation

σx
def
=

(
0 1

1 0

)
σy

def
=

(
0 −i
i 0

)
σz

def
=

(
1 0

0 −1

)
Let a

def
=(ax, ay, az) (Bloch vector) σ

def
=(σx, σy, σz)

Trρ = 1 + Tr(σ∗) = 0⇒ ρ =
1

2
(Id + a · σ)

=
1

2
Id + axσx + ayσy + azσz

=
1

2

(
1 + az ax − iay
ax + iay 1− az

)
det ρ =

1

4
(1− ||a||2)

Trρ
2

=
1

2
(1 + ||a||2)

I ρ is a density matrix iff ||a|| ≤ 1, ρ is a pure state iff ||a|| = 1

Bloch ball representation : ρ is represented by a
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The Bloch ball

|ψ〉 = cos θ/2 |0〉+ e
iφ

sin θ/2 |1〉
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Projective measurement

M =
∑
λ

λPλ

I Initial state |ψ〉. We measure λ with probability

pλ = ||Pλ |ψ〉||2

= 〈ψ|P2
λ |ψ〉

= Tr(P
2
λ |ψ〉 〈ψ|)

and the output is |ψλ〉
def
=

Pλ|ψ〉
||Pλ|ψ〉||

=
Pλ|ψ〉√
pλ

I Output is a probabilistic mixtures of states ψλ with prob. pλ.

ρ =
∑
λ

pλ |ψλ〉 〈ψλ|

=
∑
λ

pλ
1

pλ
Pλ |ψ〉 〈ψ|Pλ

=
∑
λ

Pλ |ψ〉 〈ψ|Pλ
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Measurement for a density operator ρ

M =
∑
λ

λPλ

P
2
λ = Pλ

P
∗
λ = Pλ∑

λ

Pλ = Id

ρ
′

=
∑
λ

Pλ ρ Pλ
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Unitary Evolution

|ψ〉 → U |ψ〉

ρ = |ψ〉 〈ψ| 7→ U |ψ〉 〈ψ|U∗

U
∗
U = Id

In general

ρ′ = UρU∗
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CPTP operation

I Most general quantum operation = Completely positive trace preserving (CPTP) operation

Définition A CPTP map Φ is defined from a collection of matrices A1, · · · ,Ak such that

k∑
j=1

A
∗
jAj = Id

and

Φ(ρ)
def
=
∑k

j=1 AjρA
∗
j
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Exercise

Let

A0 = Id⊗ |0〉 A1 = Id⊗ |1〉

1. Show that they define a CPTP map as Φ(ρ) = A0ρA
∗
0 + A1ρA

∗
1

2. What is the effect of this map on σ1 ⊗ σ2 ?
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Partial trace = reduction to a subsystem

Problem 1. ρAB ∈ A⊗ B, what is the quantum state with respect to A ?

Answer:

ρA
def
= TrB(ρAB) where

TrB(X ⊗ Y ) = Tr(Y )X
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This is a CPTP map

TrB(ρ) =
∑
a

Id⊗ 〈a| ρ Id⊗ |a〉

=
∑
a

AaρA
∗
a

Aa = Id⊗ 〈a|∑
a

A
∗
aAa = Id
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Where does this expression come from ?

I M an observable on system A and M̃ the corresponding observable for the composite system

AB

M̃ =
∑
λ

λ(Pλ ⊗ Id)

Physical consistency

〈M〉ρA = 〈M̃〉ρAB

〈M〉ρA = Tr(MρA)

〈M̃〉ρA = Tr(M⊗ IdρAB)
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Exercise

Consider the EPR pair
1
√

2
(|00〉+ |11〉)

1. Compute the density matrix ρAB of the EPR pair.

2. Compute the reduced density matrices ρA and ρB with respect to the first and second qubit

respectively

3. Is ρAB = ρA ⊗ ρB ?
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Exercise : teleportation

1. Compute the reduced density operator of Bob’s system once Alice has performed her

measurement but before he has learned ab

2. What can you conclude ?
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Schmidt decomposition

Theorem 3. ∀ |ψ〉 ∈ A⊗B, ∃!d, an orthonormal set |a1〉 , · · · , |ad〉 ∈ A and an orthornormal

set |b1〉 , · · · , |bd〉 ∈ A and positive λ1, · · · , λd such that

|ψ〉 =

d∑
i=1

λi |ai〉 |bi〉 (1)
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Exercise

Consider|ψ〉 ∈ A ⊗ B

1. Consider ρA = TrB |ψ〉 〈ψ|. Show that we can write

ρA =

n∑
j=1

pj |ψj〉 〈ψj|

for a certain orthonormal set {|ψ1〉 , · · · , |ψk〉} and a certain probability vector (p1, . . . , pk)

2. Show that we can write |ψ〉 as

|ψ〉 =
n∑
j=1

|µj〉 |νj〉

for some choice of vectors ν1, · · · , νn.
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The Schmidt number

Définition[Schmidt number] The number of non zero λi’s is called the Schmidt number of the

decomposition. This number does not depend on the decomposition and it depends only on |ψ〉.

Theorem 4. A pure state |ψ〉 is entangled iff its Schmidt number is > 1.
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Exercise

Find the Schmidt decomposition of the states

1. |00〉+|11〉√
2

2. |00〉+|01〉+|10〉+|11〉
2

3. |00〉+|01〉+|10〉√
3
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Bit commitment

I Alice and Bob do not trust each other

I Alice has chosen a bit b

I Right now she does not want to reveal b to Bob, but wants to convince him that indeed she

chose b and not 1− b

I Much later Alice reveals b to Bob and Bob is convinced that this is indeed the value she chose

in the past

The protocol must be

• Binding : Alice should not be able to change the b she committed

• Concealing : Bob should not be able to identify b until Alice reveals it
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Very useful tool in cryptography

• coin flipping

• zero knowledge proofs

• secure multiparty computation...

Can be done classically under computational security assumptions
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Bit commitment with a safe

Commit phase

• Alice writes x on a piece of paper

• She puts the paper in a safe. She is the only one to have the code of the safe

• she hands the safe to Bob

x ∈ {0, 1} −→ −→

Reveal phase

• Alice reveals x and the code to unlock the safe

• Bob opens the safe to check x
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Unconditionally secure bit quantum commitment protocol ?
S0

def
= {|0〉 , |1〉}

S1
def
= {|+〉 , |−〉}, with

|+〉 def
=
|0〉+ |1〉
√

2

|−〉 def
=
|0〉 − |1〉
√

2

When Alice wants to commit to b
1. Commit phase : Alice choose |ψ〉 uniformly at random in Sb and sends |ψ〉 to Bob

2. Reveal phase : Alice reveals ab to Bob where ab is a classical description of |ψ〉:

00 ↔ |0〉

10 ↔ |1〉

01 ↔ |+〉

11 ↔ |−〉

3. Verification phase : Bob measures |ψ〉 in the basis Sb
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Exercise (warm up)

Suppose that |φ〉 and |φ〉 ∈ A ⊗ B satsify

TrB |φ〉 〈φ| = TrB |ψ〉 〈ψ| .

Show that there exists a unitary U such that

(Id⊗U) |φ〉 = |ψ〉 .
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Exercise

1. Verify that the protocol is concealing

2. Find a cheating strategy for Alice

3. Use the previous exercise to show that there is always a cheating strategy for Alice, irrespective

of the protocol whenever the protocol is concealing
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The EPR paradox

Alice

Q = ±1

R = ±1

←→
Bob

S = ±1

T = ±1
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Exercise: the Bell inequality

1. Show that QS + RS + RT − QT = ±2. You may use that QS + RS + RT − QT =

(Q+ R)S + (R−Q)T

2. Deduce the Bell inequality 〈QS〉+〈RS〉+〈RT 〉−〈QT 〉≤2
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The quantum experiment

|ψ〉 def
=
|01〉 − |10〉
√

2

Alice : first qubit

Bob : second qubit

Q
def
= meas. according to σZ

R
def
= meas. according to σX

S
def
= meas. according to

−σZ − σX√
2

T
def
= meas. according to

σZ − σX√
2

What is 〈QS〉+〈RS〉+〈RT 〉−〈QT 〉?
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realism and locality

(1) realism assumption: the physical properties have definite values Q, R, S and T which exist

independent of observation.

(2) locality assumption Alice measurement does not influence Bob’s measurement.

One of these assumptions is violated by these quantum experiments.
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Exercise : a maximal violation of Bell’s inequality

Let A0, A1, B0, B1 be observables with eigenvalues in [−1, 1] and |ψ〉 be a quantum state upon

which the Ai ⊗ Bj’s act. Let

M
def
=A0 ⊗ B0 + A0 ⊗ B1 + A1 ⊗ B0 − A1 ⊗ B1

1. Show that 〈ψ|M |ψ〉 ≤ ||M |ψ〉||

2. Show that ||M |ψ〉|| ≤ |||φ0〉+ |φ1〉||+ |||φ0〉 − |φ1〉|| for |φb〉
def
=(Id⊗ Bb) |ψ〉.

3. Deduce from this Tsirelson’s inequality, namely

〈A0 ⊗ B0〉|ψ〉 + 〈A0 ⊗ B1〉|ψ〉 + 〈A1 ⊗ B0〉|ψ〉 − 〈A1 ⊗ B1〉|ψ〉 ≤ 2
√

2 (2)
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