Lecture 2
 Fundamentals of quantum information

January 14, 2020

The Density Matrix

- How can we model the quantum state after a measurement ?
ex: $|0\rangle$ with prob. $\frac{1}{2}$ and $|1\rangle$ with prob. $\frac{1}{2}$?
- How can we describe the quantum state relative to a subsystem?
ex: the first qubit of the EPR pair $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

What we want is a perfect and concise description of a quantum state
$2 \neq$ states can not be distinguished iff they have the same description

Observable

- An equivalent description of measurements
- Given by a self-adjoint operator $\mathrm{M}\left(\mathbf{M}^{*}=\mathbf{M}\right)$
- \mathbf{M} is diagonalizable in an orthonormal basis, the orthogonal projections \mathbf{P}_{λ} onto the eigenspaces V_{λ} determine the measurement
- Output of the measurement: eigenvalue λ. Measurement $=\lambda$ with probability $p_{\lambda} \stackrel{\text { def }}{=} \| \mathbf{P}_{\lambda}|\psi\rangle \|^{2}$

$$
\begin{aligned}
|\psi\rangle & =\sum_{\lambda} \mathbf{P}_{\lambda}|\psi\rangle \\
\mathbf{M}|\psi\rangle & =\sum_{\lambda} \lambda \mathbf{P}_{\lambda}|\psi\rangle \\
\langle M\rangle|\psi\rangle & \stackrel{\text { def }}{=} \sum_{\lambda} p_{\lambda} \lambda \\
& =\sum_{\lambda} \lambda \| \mathbf{P}_{\lambda}|\psi\rangle \|^{2} \\
& =\langle\psi| \mathbf{M}|\psi\rangle
\end{aligned}
$$

Measurements on a probability mixture of quantum states

- Quantum state ρ probabilistic mixture of quantum states $\left|\psi_{j}\right\rangle: \rho=\left|\psi_{j}\right\rangle$ with probability p_{j}. We have for any observable M:

$$
\begin{aligned}
&\langle\mathbf{M}\rangle_{\rho}=\sum_{j} p_{j}\langle\mathbf{M}\rangle_{\left|\psi_{j}\right\rangle} \\
&=\sum_{j} p_{j}\left\langle\psi_{j}\right| \mathbf{M}\left|\psi_{j}\right\rangle \\
&=\sum_{j} p_{j} \operatorname{Tr}\left\langle\psi_{j}\right| \mathbf{M}\left|\psi_{j}\right\rangle \\
&=\sum_{j} p_{j} \operatorname{Tr}\left(\mathbf{M}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right) \\
&=\operatorname{Tr}\left(\mathbf{M} \sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right) \\
& \Rightarrow \text { define } \rho \stackrel{\text { def }}{=} \sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
\end{aligned}
$$

The density matrix

Définition[density matrix] The density matrix ρ corresponding to a probabilistic mixture of states $\left|\psi_{j}\right\rangle$, the corresponding quantum state being equal to $\left|\psi_{j}\right\rangle$ with probability p_{j} is given by

$$
\rho \stackrel{\text { def }}{=} \sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
$$

The density matrix of a qubit

$$
\begin{gathered}
|\psi\rangle=\binom{\alpha}{\beta} \quad\langle\psi|=\left(\begin{array}{ll}
\bar{\alpha} & \bar{\beta}
\end{array}\right) \\
|\psi\rangle\langle\psi|=\binom{\alpha}{\beta}\left(\begin{array}{ll}
\bar{\alpha} & \bar{\beta}
\end{array}\right)=\left(\begin{array}{cc}
\alpha \bar{\alpha} & \alpha \bar{\beta} \\
\bar{\alpha} \beta & \beta \bar{\beta}
\end{array}\right)=\left(\begin{array}{cc}
|\alpha|^{2} & \alpha \bar{\beta} \\
\bar{\alpha} \beta & |\beta|^{2}
\end{array}\right)
\end{gathered}
$$

Exercise

Compute the density matrix of

1. the probabilistic mixture of $|0\rangle$ (prob $\frac{1}{2}$) and $|1\rangle\left(\operatorname{prob} \frac{1}{2}\right)$
2. the probabilistic mixture of $|+\rangle \stackrel{\text { def }}{=} \frac{|0\rangle}{\sqrt{2}}+\frac{|1\rangle}{\sqrt{2}}$ (prob $\frac{1}{2}$) and $|-\rangle \stackrel{\text { def }}{=} \frac{0\rangle}{\sqrt{2}}-\frac{|1\rangle}{\sqrt{2}}$
3. What can you conclude ?

Characterizations of density matrices

Theorem 1. An operator ρ acting on a Hilbert space \mathcal{H} is a density operator iff

1. ρ is self-adjoint
2. ρ is positive semidefinite
3. $\operatorname{Tr}(\rho)=1$

- $\operatorname{Tr}(\rho)=1$

$$
\begin{aligned}
\operatorname{Tr}\left(\sum_{j=1}^{k} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right) & =\sum_{j=1}^{k} p_{j} \operatorname{Tr}\left(\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right) \\
& =\sum_{j=1}^{k} p_{j} \operatorname{Tr}\left(\left\langle\psi_{j} \mid \psi_{j}\right\rangle\right) \\
& =1
\end{aligned}
$$

- ρ is positive semidefinite

$$
\begin{aligned}
& \qquad \begin{aligned}
\text { If } \rho & =\sum_{j=1}^{k} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \\
\text { then for any }|\phi\rangle\langle\phi| \rho|\phi\rangle & =\sum_{j=1}^{k} p_{j}\left\langle\phi \mid \psi_{j}\right\rangle\left\langle\psi_{j} \mid \phi\right\rangle \\
& =\sum_{j=1}^{k} p_{j}\left|\left\langle\phi \mid \psi_{j}\right\rangle\right|^{2} \geq 0
\end{aligned}, l
\end{aligned}
$$

Pure and mixed states

Définition[pure state] A quantum system whose state $|\psi\rangle$ is known exactly is said to be in pure state.

Définition[mixed state] A quantum system which is not in pure state is said to be in mixed state.

Theorem 2.

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho^{2}\right) \leq 1 \\
& \operatorname{Tr}\left(\rho^{2}\right)=1 \Leftrightarrow \rho \text { is a pure state } \\
& \operatorname{Tr}\left(\rho^{2}\right)<1 \Leftrightarrow \rho \text { is a mixed state }
\end{aligned}
$$

Exercise

Prove the previous theorem.

The Bloch ball representation

$$
\begin{aligned}
& \sigma_{x} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \text { Let } a \stackrel{\text { def }}{=}\left(a_{x}, a_{y}, a_{z}\right)(\text { Bloch vector }) \quad \sigma \stackrel{\text { def }}{=}\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right) \\
& \operatorname{Tr} \rho=1+\operatorname{Tr}\left(\sigma_{*}\right)=0 \Rightarrow \rho=\frac{1}{2}(\mathbf{I} \mathbf{d}+\mathbf{a} \cdot \sigma) \\
&=\frac{1}{2} \mathbf{I} \mathbf{d}+a_{x} \sigma_{x}+a_{y} \sigma_{y}+a_{z} \sigma_{z} \\
&=\frac{1}{2}\left(\begin{array}{cc}
1+a_{z} & a_{x}-i a_{y} \\
a_{x}+i a_{y} & 1-a_{z}
\end{array}\right) \\
& \operatorname{det} \rho=\frac{1}{4}\left(1-\|\mathbf{a}\|^{2}\right) \\
& \operatorname{Tr} \rho^{2}=\frac{1}{2}\left(1+\|\mathbf{a}\|^{2}\right)
\end{aligned}
$$

- ρ is a density matrix iff $\|\mathbf{a}\| \leq 1, \rho$ is a pure state iff $\|\mathbf{a}\|=1$

Bloch ball representation : ρ is represented by a

The Bloch ball

$$
|\psi\rangle=\cos \theta / 2|0\rangle+e^{i \phi} \sin \theta / 2|1\rangle
$$

Projective measurement

$$
\mathbf{M}=\sum_{\lambda} \lambda \mathbf{P}_{\lambda}
$$

- Initial state $|\psi\rangle$. We measure λ with probability

$$
\begin{aligned}
p_{\lambda} & =\| \mathbf{P}_{\lambda}|\psi\rangle \|^{2} \\
& =\langle\psi| \mathbf{P}_{\lambda}^{2}|\psi\rangle \\
& =\operatorname{Tr}\left(\mathbf{P}_{\lambda}^{2}|\psi\rangle\langle\psi|\right)
\end{aligned}
$$

and the output is $\left|\psi_{\lambda}\right\rangle \stackrel{\text { def }}{=} \frac{\mathbf{P}_{\lambda}|\psi\rangle}{\| \mathbf{P}_{\lambda}|\psi\rangle \|}=\frac{\mathbf{P}_{\lambda}|\psi\rangle}{\sqrt{p_{\lambda}}}$

- Output is a probabilistic mixtures of states ψ_{λ} with prob. p_{λ}.

$$
\begin{aligned}
\rho & =\sum_{\lambda} p_{\lambda}\left|\psi_{\lambda}\right\rangle\left\langle\psi_{\lambda}\right| \\
& =\sum_{\lambda} p_{\lambda} \frac{1}{p_{\lambda}} \mathbf{P}_{\lambda}|\psi\rangle\langle\psi| \mathbf{P}_{\lambda} \\
& =\sum_{\lambda} \mathbf{P}_{\lambda}|\psi\rangle\langle\psi| \mathbf{P}_{\lambda}
\end{aligned}
$$

Measurement for a density operator ρ

$$
\begin{aligned}
\mathbf{M} & =\sum_{\lambda} \lambda \mathbf{P}_{\lambda} \\
\mathbf{P}_{\lambda}^{2} & =\mathbf{P}_{\lambda} \\
\mathbf{P}_{\lambda}^{*} & =\mathbf{P}_{\lambda} \\
\sum_{\lambda} \mathbf{P}_{\lambda} & =\mathbf{I d} \\
\rho^{\prime} & =\sum_{\lambda} \mathbf{P}_{\lambda} \rho \mathbf{P}_{\lambda}
\end{aligned}
$$

Unitary Evolution

$$
\begin{aligned}
|\psi\rangle & \rightarrow \mathbf{U}|\psi\rangle \\
\rho=|\psi\rangle\langle\psi| & \mapsto \mathbf{U}|\psi\rangle\langle\psi| \mathbf{U}^{*} \\
\mathbf{U}^{*} \mathbf{U} & =\mathbf{I d}
\end{aligned}
$$

In general

$$
\rho^{\prime}=\mathbf{U} \rho \mathbf{U}^{*}
$$

CPTP operation

- Most general quantum operation $=$ Completely positive trace preserving (CPTP) operation Définition A CPTP map Φ is defined from a collection of matrices $\mathbf{A}_{1}, \cdots, \mathbf{A}_{k}$ such that

$$
\sum_{j=1}^{k} \mathbf{A}_{j}^{*} \mathbf{A}_{j}=\mathbf{I d}
$$

and

$$
\Phi(\rho) \stackrel{\text { def }}{=} \sum_{j=1}^{k} \mathbf{A}_{j} \rho \mathbf{A}_{j}^{*}
$$

Exercise

Let

$$
\mathbf{A}_{0}=\mathbf{I d} \otimes|0\rangle \quad \mathbf{A}_{1}=\mathbf{I d} \otimes|1\rangle
$$

1. Show that they define a CPTP map as $\Phi(\rho)=\mathbf{A}_{0} \rho \mathbf{A}_{0}^{*}+\mathbf{A}_{1} \rho \mathbf{A}_{1}^{*}$
2. What is the effect of this map on $\sigma_{1} \otimes \sigma_{2}$?

Partial trace $=$ reduction to a subsystem

Problem 1. $\rho_{A B} \in \mathcal{A} \otimes \mathcal{B}$, what is the quantum state with respect to \mathcal{A} ?
Answer:

$$
\begin{aligned}
\rho_{A} & \stackrel{\text { def }}{=} \operatorname{Tr}_{B}\left(\rho_{A B}\right) \text { where } \\
\operatorname{Tr}_{B}(X \otimes Y) & =\operatorname{Tr}(Y) X
\end{aligned}
$$

This is a CPTP map

$$
\begin{aligned}
\operatorname{Tr}_{B}(\rho) & =\sum_{a} \mathbf{I d} \otimes\langle a| \rho \mathbf{I d} \otimes|a\rangle \\
& =\sum_{a} \mathbf{A}_{a} \rho \mathbf{A}_{a}^{*} \\
\mathbf{A}_{a} & =\mathbf{I d} \otimes\langle a| \\
\sum_{a} \mathbf{A}_{a}^{*} \mathbf{A}_{a} & =\mathbf{I d}
\end{aligned}
$$

Where does this expression come from ?

- M an observable on system A and $\tilde{\mathrm{M}}$ the corresponding observable for the composite system $A B$

$$
\tilde{\mathbf{M}}=\sum_{\lambda} \lambda\left(\mathbf{P}_{\lambda} \otimes \mathbf{I} \mathbf{d}\right)
$$

Physical consistency

$$
\begin{gathered}
\langle\mathbf{M}\rangle_{\rho_{A}}=\langle\tilde{\mathbf{M}}\rangle_{\rho_{A B}} \\
\langle\mathbf{M}\rangle_{\rho_{A}}=\operatorname{Tr}\left(\mathbf{M} \rho_{A}\right) \\
\langle\tilde{\mathbf{M}}\rangle_{\rho_{A}}=\operatorname{Tr}\left(\mathbf{M} \otimes \mathbf{I d} \rho_{A B}\right)
\end{gathered}
$$

Exercise

Consider the EPR pair

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

1. Compute the density matrix $\rho_{A B}$ of the EPR pair.
2. Compute the reduced density matrices ρ_{A} and ρ_{B} with respect to the first and second qubit respectively
3. Is $\rho_{A B}=\rho_{A} \otimes \rho_{B}$?

Exercise : teleportation

1. Compute the reduced density operator of Bob's system once Alice has performed her measurement but before he has learned $a b$
2. What can you conclude?

Schmidt decomposition

Theorem 3. $\forall|\psi\rangle \in \mathcal{A} \otimes \mathcal{B}, \exists!d$, an orthonormal set $\left|a_{1}\right\rangle, \cdots,\left|a_{d}\right\rangle \in \mathcal{A}$ and an orthornormal set $\left|b_{1}\right\rangle, \cdots,\left|b_{d}\right\rangle \in \mathcal{A}$ and positive $\lambda_{1}, \cdots, \lambda_{d}$ such that

$$
\begin{equation*}
|\psi\rangle=\sum_{i=1}^{d} \lambda_{i}\left|a_{i}\right\rangle\left|b_{i}\right\rangle \tag{1}
\end{equation*}
$$

Exercise

Consider $|\psi\rangle \in \mathcal{A} \otimes \mathcal{B}$

1. Consider $\rho_{A}=\operatorname{Tr}_{\mathcal{B}}|\psi\rangle\langle\psi|$. Show that we can write

$$
\rho_{A}=\sum_{j=1}^{n} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
$$

for a certain orthonormal set $\left\{\left|\psi_{1}\right\rangle, \cdots,\left|\psi_{k}\right\rangle\right\}$ and a certain probability vector $\left(p_{1}, \ldots, p_{k}\right)$
2. Show that we can write $|\psi\rangle$ as

$$
|\psi\rangle=\sum_{j=1}^{n}\left|\mu_{j}\right\rangle\left|\nu_{j}\right\rangle
$$

for some choice of vectors ν_{1}, \cdots, ν_{n}.

The Schmidt number

Définition[Schmidt number] The number of non zero λ_{i} 's is called the Schmidt number of the decomposition. This number does not depend on the decomposition and it depends only on $|\psi\rangle$.

Theorem 4. A pure state $|\psi\rangle$ is entangled iff its Schmidt number is >1.

Exercise

Find the Schmidt decomposition of the states

1. $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$
2. $\frac{|00\rangle+|01\rangle+|10\rangle+|11\rangle}{2}$
3. $\frac{|00\rangle+|01\rangle+|10\rangle}{\sqrt{3}}$

Bit commitment

- Alice and Bob do not trust each other
- Alice has chosen a bit b
- Right now she does not want to reveal b to Bob, but wants to convince him that indeed she chose b and not $1-b$
- Much later Alice reveals b to Bob and Bob is convinced that this is indeed the value she chose in the past

The protocol must be

- Binding : Alice should not be able to change the b she committed
- Concealing : Bob should not be able to identify b until Alice reveals it

Very useful tool in cryptography

- coin flipping
- zero knowledge proofs
- secure multiparty computation...

Can be done classically under computational security assumptions

Bit commitment with a safe

Commit phase

- Alice writes x on a piece of paper
- She puts the paper in a safe. She is the only one to have the code of the safe
- she hands the safe to Bob

Reveal phase

- Alice reveals x and the code to unlock the safe
- Bob opens the safe to check x

Unconditionally secure bit quantum commitment protocol?

When Alice wants to commit to b

1. Commit phase : Alice choose $|\psi\rangle$ uniformly at random in S_{b} and sends $|\psi\rangle$ to Bob
2. Reveal phase : Alice reveals $a b$ to Bob where $a b$ is a classical description of $|\psi\rangle$:

3. Verification phase: Bob measures $|\psi\rangle$ in the basis S_{b}

Exercise (warm up)

Suppose that $|\phi\rangle$ and $|\phi\rangle \in \mathcal{A} \otimes \mathcal{B}$ satsify

$$
\operatorname{Tr}_{\mathcal{B}}|\phi\rangle\langle\phi|=\operatorname{Tr}_{\mathcal{B}}|\psi\rangle\langle\psi| .
$$

Show that there exists a unitary \mathbf{U} such that

$$
(\mathbf{I d} \otimes \mathbf{U})|\phi\rangle=|\psi\rangle .
$$

Exercise

1. Verify that the protocol is concealing
2. Find a cheating strategy for Alice
3. Use the previous exercise to show that there is always a cheating strategy for Alice, irrespective of the protocol whenever the protocol is concealing

The EPR paradox

Exercise: the Bell inequality

1. Show that $Q S+R S+R T-Q T= \pm 2$. You may use that $Q S+R S+R T-Q T=$ $(Q+R) S+(R-Q) T$
2. Deduce the Bell inequality $\langle Q S\rangle_{+}\langle R S\rangle_{+}\langle R T\rangle_{-}\langle Q T\rangle_{\leq}$

The quantum experiment

$$
\begin{aligned}
|\psi\rangle & \stackrel{\text { def }}{=} \frac{|01\rangle-|10\rangle}{\sqrt{2}} \\
\text { Alice } & : \text { first qubit } \\
\text { Bob } & : \text { second qubit } \\
Q & \stackrel{\text { def }}{=} \text { meas. according to } \sigma_{Z} \\
R & \stackrel{\text { def }}{=} \text { meas. according to } \sigma_{X} \\
S & \stackrel{\text { def }}{=} \text { meas. according to } \frac{-\sigma_{Z}-\sigma_{X}}{\sqrt{2}} \\
T & \stackrel{\text { def }}{=} \text { meas. according to } \frac{\sigma_{Z}-\sigma_{X}}{\sqrt{2}}
\end{aligned}
$$

What is $\langle Q S\rangle_{+}\langle R S\rangle_{+}\langle R T\rangle_{-}\langle Q T\rangle_{?}$?

realism and locality

(1) realism assumption: the physical properties have definite values Q, R, S and T which exist independent of observation.
(2) locality assumption Alice measurement does not influence Bob's measurement.

One of these assumptions is violated by these quantum experiments.

Exercise : a maximal violation of Bell's inequality

Let $\mathbf{A}_{0}, \mathbf{A}_{1}, B_{0}, B_{1}$ be observables with eigenvalues in $[-1,1]$ and $|\psi\rangle$ be a quantum state upon which the $\mathbf{A}_{i} \otimes \mathbf{B}_{j}$'s act. Let

$$
\mathbb{M} \stackrel{\text { def }}{=} \mathbf{A}_{0} \otimes \mathbf{B}_{0}+\mathbf{A}_{0} \otimes \mathbf{B}_{1}+\mathbf{A}_{1} \otimes \mathbf{B}_{0}-\mathbf{A}_{1} \otimes \mathbf{B}_{1}
$$

1. Show that $\langle\psi| \mathbf{M}|\psi\rangle \leq \| \mathbf{M}|\psi\rangle \|$
2. Show that $\| \mathbf{M}|\psi\rangle\|\leq\|\left|\phi_{0}\right\rangle+\left|\phi_{1}\right\rangle\|+\|\left|\phi_{0}\right\rangle-\left|\phi_{1}\right\rangle \|$ for $\left|\phi_{b}\right\rangle \stackrel{\text { def }}{=}\left(\mathbf{I d} \otimes \mathbf{B}_{b}\right)|\psi\rangle$.
3. Deduce from this Tsirelson's inequality, namely

$$
\begin{equation*}
\left\langle\mathbf{A}_{0} \otimes \mathbf{B}_{0}\right\rangle_{|\psi\rangle}+\left\langle\mathbf{A}_{0} \otimes \mathbf{B}_{1}\right\rangle_{|\psi\rangle}+\left\langle\mathbf{A}_{1} \otimes \mathbf{B}_{0}\right\rangle_{|\psi\rangle}-\left\langle\mathbf{A}_{1} \otimes \mathbf{B}_{1}\right\rangle_{|\psi\rangle} \leq 2 \sqrt{2} \tag{2}
\end{equation*}
$$

