Lecture 2 Fundamentals of quantum information

January 14, 2020

Quantum Information Theory

The Density Matrix

- ► How can we model the quantum state after a measurement ? ex: $|0\rangle$ with prob. $\frac{1}{2}$ and $|1\rangle$ with prob. $\frac{1}{2}$?
- ► How can we describe the quantum state relative to a subsystem? ex: the first qubit of the EPR pair ¹/_{√2} (|00⟩ + |11⟩)

What we want is a perfect and concise description of a quantum state

 $2 \neq$ states can not be distinguished iff they have the same description

Observable

- An equivalent description of measurements
- Given by a self-adjoint operator \mathbf{M} ($\mathbf{M}^* = \mathbf{M}$)
- M is diagonalizable in an orthonormal basis, the orthogonal projections \mathbf{P}_{λ} onto the eigenspaces V_{λ} determine the measurement
- Output of the measurement : eigenvalue λ . Measurement = λ with probability $p_{\lambda} \stackrel{\text{def}}{=} \|\mathbf{P}_{\lambda} |\psi\rangle\|^2$

$$egin{aligned} ert\psi
angle &=& \sum_{\lambda}\mathbf{P}_{\lambda}ert\psi
angle \ \mathbf{M}ert\psi
angle &=& \sum_{\lambda}\lambda\mathbf{P}_{\lambda}ert\psi
angle \ \left. \mathbf{M}
angle ert\psi
angle &=& \sum_{\lambda}p_{\lambda}\lambda \ &=& \sum_{\lambda}\lambda\left\Vert\mathbf{P}_{\lambda}ert\psi
angle
ight\Vert^{2} \ &=& \left\langle\psiert\mathbf{M}ert\psi
angle \end{aligned}$$

Measurements on a probability mixture of quantum states

• Quantum state ρ probabilistic mixture of quantum states $|\psi_j\rangle$: $\rho = |\psi_j\rangle$ with probability p_j . We have for any observable **M**:

$$\begin{split} \langle \mathbf{M} \rangle_{\rho} &= \sum_{j} p_{j} \langle \mathbf{M} \rangle_{|\psi_{j}\rangle} \\ &= \sum_{j} p_{j} \langle \psi_{j} | \mathbf{M} | \psi_{j}\rangle \\ &= \sum_{j} p_{j} \mathbf{Tr} \langle \psi_{j} | \mathbf{M} | \psi_{j}\rangle \\ &= \sum_{j} p_{j} \mathbf{Tr} \left(\mathbf{M} | \psi_{j} \rangle \langle \psi_{j} | \right) \\ &= \mathbf{Tr} \left(\mathbf{M} \sum_{j} p_{j} | \psi_{j} \rangle \langle \psi_{j} | \right) \\ &\Rightarrow \text{ define } \rho \stackrel{\text{def}}{=} \sum_{j} p_{j} | \psi_{j} \rangle \langle \psi_{j} | \end{split}$$

The density matrix

Définition[density matrix] The density matrix ρ corresponding to a probabilistic mixture of states $|\psi_j\rangle$, the corresponding quantum state being equal to $|\psi_j\rangle$ with probability p_j is given by

 $ho \stackrel{ ext{def}}{=} \sum_{j} p_{j} \ket{\psi_{j}} ra{\psi_{j}}$

The density matrix of a qubit

$$\begin{split} |\psi\rangle &= \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \quad \langle\psi| = \begin{pmatrix} \overline{\alpha} & \overline{\beta} \end{pmatrix} \\ |\psi\rangle \langle\psi| &= \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \begin{pmatrix} \overline{\alpha} & \overline{\beta} \end{pmatrix} = \begin{pmatrix} \alpha \overline{\alpha} & \alpha \overline{\beta} \\ \overline{\alpha} \beta & \beta \overline{\beta} \end{pmatrix} = \begin{pmatrix} |\alpha|^2 & \alpha \overline{\beta} \\ \overline{\alpha} \beta & |\beta|^2 \end{pmatrix} \end{split}$$

Exercise

Compute the density matrix of

- 1. the probabilistic mixture of $|0\rangle$ (prob $\frac{1}{2}$) and $|1\rangle$ (prob $\frac{1}{2}$)
- 2. the probabilistic mixture of $|+\rangle \stackrel{\text{def}}{=} \frac{|0\rangle}{\sqrt{2}} + \frac{|1\rangle}{\sqrt{2}} \text{ (prob } \frac{1}{2}\text{) and } |-\rangle \stackrel{\text{def}}{=} \frac{|0\rangle}{\sqrt{2}} \frac{|1\rangle}{\sqrt{2}}$
- 3. What can you conclude ?

Characterizations of density matrices

Theorem 1. An operator ρ acting on a Hilbert space \mathcal{H} is a density operator iff

- 1. ρ is self-adjoint
- 2. ρ is positive semidefinite
- 3. $Tr(\rho) = 1$

$$\blacktriangleright \mathbf{Tr}(\rho) = 1$$

$$\mathbf{Tr}\left(\sum_{j=1}^{k} p_j |\psi_j\rangle \langle\psi_j|\right) = \sum_{j=1}^{k} p_j Tr(|\psi_j\rangle \langle\psi_j|)$$
$$= \sum_{j=1}^{k} p_j \mathbf{Tr}(\langle\psi_j|\psi_j\rangle)$$
$$= 1$$

 $\blacktriangleright \rho$ is positive semidefinite

If
$$ho = \sum_{j=1}^{k} p_j |\psi_j\rangle \langle\psi_j|$$

then for any $|\phi\rangle \quad \langle\phi| \rho |\phi\rangle = \sum_{j=1}^{k} p_j \langle\phi|\psi_j\rangle \langle\psi_j|\phi\rangle$
$$= \sum_{j=1}^{k} p_j |\langle\phi|\psi_j\rangle|^2 \ge 0$$

Pure and mixed states

Définition[pure state] A quantum system whose state $|\psi\rangle$ is known exactly is said to be in pure state.

Définition[mixed state] A quantum system which is not in pure state is said to be in mixed state.

Theorem 2.

$$\begin{aligned} \mathbf{Tr}(\rho^2) &\leq 1 \\ \mathbf{Tr}(\rho^2) &= 1 \Leftrightarrow \rho \text{ is a pure state} \\ \mathbf{Tr}(\rho^2) &< 1 \Leftrightarrow \rho \text{ is a mixed state} \end{aligned}$$

Exercise

Prove the previous theorem.

The Bloch ball representation

$$\sigma_{x} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_{y} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_{z} \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

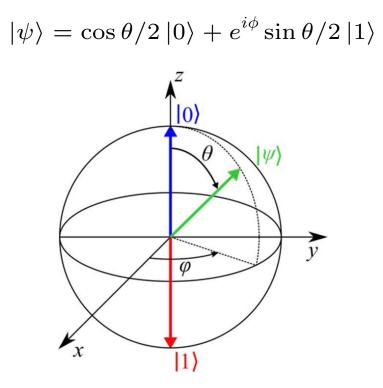
Let $\mathbf{a} \stackrel{\text{def}}{=} (a_{x}, a_{y}, a_{z})$ (Bloch vector) $\sigma \stackrel{\text{def}}{=} (\sigma_{x}, \sigma_{y}, \sigma_{z})$

$$\begin{aligned} \mathbf{Tr}\rho &= 1 + \mathbf{Tr}(\sigma_*) = 0 \Rightarrow \rho &= \frac{1}{2}(\mathbf{Id} + \mathbf{a} \cdot \sigma) \\ &= \frac{1}{2}\mathbf{Id} + a_x\sigma_x + a_y\sigma_y + a_z\sigma_z \\ &= \frac{1}{2}\begin{pmatrix} 1 + a_z & a_x - ia_y \\ a_x + ia_y & 1 - a_z \end{pmatrix} \\ &\det \rho &= \frac{1}{4}(1 - ||\mathbf{a}||^2) \\ &\mathbf{Tr}\rho^2 &= \frac{1}{2}(1 + ||\mathbf{a}||^2) \end{aligned}$$

▶ ρ is a density matrix iff $||\mathbf{a}|| \leq 1$, ρ is a pure state iff $||\mathbf{a}|| = 1$

Bloch ball representation : ρ is represented by a

The Bloch ball



Projective measurement

$$\mathbf{M} = \sum_{\lambda} \lambda \mathbf{P}_{\lambda}$$

▶ Initial state $|\psi\rangle$. We measure λ with probability

$$egin{array}{rcl} p_{\lambda} &=& \left\| \mathbf{P}_{\lambda} \left| \psi
ight
angle
ight\|^{2} \ &=& \left\langle \psi
ight| \mathbf{P}_{\lambda}^{2} \left| \psi
ight
angle \ &=& \mathbf{Tr}(\mathbf{P}_{\lambda}^{2} \left| \psi
ight
angle \left\langle \psi
ight|) \end{array}$$

and the output is $|\psi_{\lambda}\rangle \stackrel{\text{def}}{=} \frac{\mathbf{P}_{\lambda}|\psi\rangle}{\left\|\mathbf{P}_{\lambda}|\psi\rangle\right\|} = \frac{\mathbf{P}_{\lambda}|\psi\rangle}{\sqrt{p_{\lambda}}}$

• Output is a probabilistic mixtures of states ψ_{λ} with prob. p_{λ} .

$$egin{array}{rcl}
ho &=& \sum_{\lambda} p_{\lambda} \ket{\psi_{\lambda}} raket{\psi_{\lambda}} \ &=& \sum_{\lambda} p_{\lambda} rac{1}{p_{\lambda}} \mathbf{P}_{\lambda} \ket{\psi} raket{\psi} \mathbf{P}_{\lambda} \ &=& \sum_{\lambda} \mathbf{P}_{\lambda} \ket{\psi} raket{\psi} \mathbf{P}_{\lambda} \end{array}$$

Measurement for a density operator ρ

$$egin{array}{rcl} \mathbf{M}&=&\sum_{\lambda}\lambda\mathbf{P}_{\lambda}\ \mathbf{P}_{\lambda}^{2}&=&\mathbf{P}_{\lambda}\ \mathbf{P}_{\lambda}^{*}&=&\mathbf{P}_{\lambda}\ \mathbf{P}_{\lambda}^{*}&=&\mathbf{P}_{\lambda}\ \sum_{\lambda}\mathbf{P}_{\lambda}&=&\mathbf{Id}\ &&
ho'&=&\sum_{\lambda}\mathbf{P}_{\lambda}\,
ho\,\mathbf{P}_{\lambda} \end{array}$$

Quantum Information Theory

Unitary Evolution

$$egin{array}{cccc} |\psi
angle &
ightarrow & \mathbf{U} \,|\psi
angle \
ho &= |\psi
angle \,\langle\psi| &\mapsto & \mathbf{U} \,|\psi
angle \,\langle\psi| \,\mathbf{U}^* \ \mathbf{U}^*\mathbf{U} &= & \mathbf{Id} \end{array}$$

In general

$$\rho' = \mathbf{U}\rho\mathbf{U}^*$$

CPTP operation

Most general quantum operation = Completely positive trace preserving (CPTP) operation Définition A CPTP map Φ is defined from a collection of matrices $\mathbf{A}_1, \dots, \mathbf{A}_k$ such that

$$\sum_{j=1}^k \mathbf{A}_j^* \mathbf{A}_j = \mathbf{Id}$$

 $\Phi(
ho) \stackrel{ ext{def}}{=} \sum_{j=1}^k \mathbf{A}_j
ho \mathbf{A}_j^*$

and

Exercise

Let

$$\mathbf{A}_0 = \mathbf{Id} \otimes \ket{0} \quad \mathbf{A}_1 = \mathbf{Id} \otimes \ket{1}$$

- 1. Show that they define a CPTP map as $\Phi(\rho) = \mathbf{A}_0 \rho \mathbf{A}_0^* + \mathbf{A}_1 \rho \mathbf{A}_1^*$
- 2. What is the effect of this map on $\sigma_1\otimes\sigma_2$?

Partial trace = reduction to a subsystem

Problem 1. $\rho_{AB} \in \mathcal{A} \otimes \mathcal{B}$, what is the quantum state with respect to \mathcal{A} ?

Answer:

 $\rho_A \stackrel{\text{def}}{=} \mathbf{Tr}_B(\rho_{AB}) \text{ where}$ $\mathbf{Tr}_B(X \otimes Y) = \mathbf{Tr}(Y)X$

This is a CPTP map

$$egin{array}{rll} {f Tr}_B(
ho)&=&\sum_a {f Id}\otimes \langle a| \
ho \ {f Id}\otimes |a
angle \ &=&\sum_a {f A}_a
ho {f A}_a^* \ &=& {f Id}\otimes \langle a| \ &\sum_a {f A}_a^* {f A}_a &=& {f Id} \ & \sum_a {f A}_a^* {f A}_a &=& {f Id} \end{array}$$

Where does this expression come from ?

 \blacktriangleright M an observable on system A and $\tilde{\mathbf{M}}$ the corresponding observable for the composite system AB

$$ilde{\mathbf{M}} = \sum_{\lambda} \lambda(\mathbf{P}_{\lambda} \otimes \mathbf{Id})$$

Physical consistency

$$\langle \mathbf{M} \rangle_{\rho_A} = \langle \tilde{\mathbf{M}} \rangle_{\rho_{AB}}$$

$$\begin{split} \langle \mathbf{M} \rangle_{\rho_A} &= \mathbf{Tr}(\mathbf{M}\rho_A) \\ \langle \tilde{\mathbf{M}} \rangle_{\rho_A} &= \mathbf{Tr}(\mathbf{M} \otimes \mathbf{Id}\rho_{AB}) \end{split}$$

Exercise

Consider the EPR pair

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

- 1. Compute the density matrix ρ_{AB} of the EPR pair.
- 2. Compute the reduced density matrices ρ_A and ρ_B with respect to the first and second qubit respectively
- 3. Is $\rho_{AB} = \rho_A \otimes \rho_B$?

Exercise : teleportation

- 1. Compute the reduced density operator of Bob's system once Alice has performed her measurement but before he has learned ab
- 2. What can you conclude ?

Schmidt decomposition

Theorem 3. $\forall |\psi\rangle \in \mathcal{A} \otimes \mathcal{B}, \exists !d$, an orthonormal set $|a_1\rangle, \cdots, |a_d\rangle \in \mathcal{A}$ and an orthornormal set $|b_1\rangle, \cdots, |b_d\rangle \in \mathcal{A}$ and positive $\lambda_1, \cdots, \lambda_d$ such that

$$\ket{\psi} = \sum_{i=1}^{d} \lambda_i \ket{a_i} \ket{b_i}$$
 (1)

Exercise

 $\mathsf{Consider}|\psi\rangle \in \mathcal{A}\otimes \mathcal{B}$

1. Consider $ho_A = \operatorname{Tr}_{\mathcal{B}} |\psi\rangle \langle \psi|$. Show that we can write

$$ho_A = \sum_{j=1}^n p_j \ket{\psi_j}ra{\psi_j}$$

for a certain orthonormal set $\{|\psi_1\rangle, \cdots, |\psi_k\rangle\}$ and a certain probability vector (p_1, \ldots, p_k) 2. Show that we can write $|\psi\rangle$ as

$$\ket{\psi} = \sum_{j=1}^n \ket{\mu_j} \ket{
u_j}$$

for some choice of vectors ν_1, \cdots, ν_n .

The Schmidt number

Définition[Schmidt number] The number of non zero λ_i 's is called the Schmidt number of the decomposition. This number does not depend on the decomposition and it depends only on $|\psi\rangle$.

Theorem 4. A pure state $|\psi\rangle$ is entangled iff its Schmidt number is > 1.

Exercise

Find the Schmidt decomposition of the states

1.
$$\frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

2.
$$\frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

3.
$$\frac{|00\rangle + |01\rangle + |10\rangle}{\sqrt{3}}$$

Bit commitment

- Alice and Bob do not trust each other
- ► Alice has chosen a bit *b*
- ▶ Right now she does not want to reveal b to Bob, but wants to convince him that indeed she chose b and not 1 b
- Much later Alice reveals b to Bob and Bob is convinced that this is indeed the value she chose in the past

The protocol must be

- Binding : Alice should not be able to change the *b* she committed
- Concealing : Bob should not be able to identify b until Alice reveals it

Very useful tool in cryptography

- coin flipping
- zero knowledge proofs
- secure multiparty computation...

Can be done classically under computational security assumptions

Bit commitment with a safe

Commit phase

- Alice writes x on a piece of paper
- She puts the paper in a safe. She is the only one to have the code of the safe
- she hands the safe to Bob

Reveal phase

- Alice reveals x and the code to unlock the safe
- Bob opens the safe to check x

Unconditionally secure bit quantum commitment protocol ? $S_{0} \stackrel{\text{def}}{=} \{|0\rangle, |1\rangle\}$ $S_{1} \stackrel{\text{def}}{=} \{|+\rangle, |-\rangle\}, \text{ with}$ $|+\rangle \stackrel{\text{def}}{=} \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ $|-\rangle \stackrel{\text{def}}{=} \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

When Alice wants to commit to b

- 1. Commit phase : Alice choose $|\psi\rangle$ uniformly at random in S_b and sends $|\psi\rangle$ to Bob
- 2. Reveal phase : Alice reveals ab to Bob where ab is a classical description of $|\psi\rangle$:

00	\leftrightarrow	$ 0\rangle$
10	\leftrightarrow	1 angle
01	\leftrightarrow	$ +\rangle$
11	\leftrightarrow	- angle

3. Verification phase : Bob measures $|\psi\rangle$ in the basis S_b

Exercise (warm up)

Suppose that $|\phi
angle$ and $|\phi
angle\in\mathcal{A}\otimes\mathcal{B}$ satsify

$$\operatorname{Tr}_{\mathcal{B}} \ket{\phi} ra{\phi} = \operatorname{Tr}_{\mathcal{B}} \ket{\psi} ra{\psi}.$$

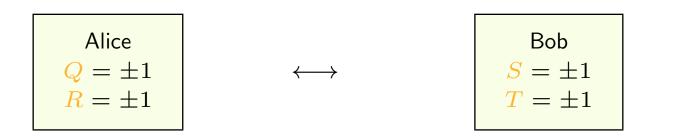
Show that there exists a unitary ${\bf U}$ such that

 $\left({\rm Id} \otimes {\rm U} \right) \left| \phi \right\rangle = \left| \psi \right\rangle.$

Exercise

- 1. Verify that the protocol is concealing
- 2. Find a cheating strategy for Alice
- 3. Use the previous exercise to show that there is always a cheating strategy for Alice, irrespective of the protocol whenever the protocol is concealing

The EPR paradox



Exercise: the Bell inequality

- 1. Show that $QS + RS + RT QT = \pm 2$. You may use that QS + RS + RT QT =(Q+R)S + (R-Q)T

2. Deduce the Bell inequality $\langle QS \rangle_+ \langle RS \rangle_+ \langle RT \rangle_- \langle QT \rangle_{\leq 2}$

The quantum experiment

What is $\langle QS \rangle_+ \langle RS \rangle_+ \langle RT \rangle_- \langle QT \rangle_?$

realism and locality

- (1) realism assumption: the physical properties have definite values Q, R, S and T which exist independent of observation.
- (2) locality assumption Alice measurement does not influence Bob's measurement.

One of these assumptions is violated by these quantum experiments.

Exercise : a maximal violation of Bell's inequality

Let A_0 , A_1 , B_0 , B_1 be observables with eigenvalues in [-1, 1] and $|\psi\rangle$ be a quantum state upon which the $A_i \otimes B_j$'s act. Let

$$\mathbf{M} \stackrel{\mathrm{def}}{=} \mathbf{A}_0 \otimes \mathbf{B}_0 + \mathbf{A}_0 \otimes \mathbf{B}_1 + \mathbf{A}_1 \otimes \mathbf{B}_0 - \mathbf{A}_1 \otimes \mathbf{B}_1$$

- 1. Show that $\langle \psi | \mathbf{M} | \psi \rangle \leq \| \mathbf{M} | \psi \rangle \|$
- 2. Show that $\|\mathbf{M} |\psi\rangle\| \leq \||\phi_0\rangle + |\phi_1\rangle\| + \||\phi_0\rangle |\phi_1\rangle\|$ for $|\phi_b\rangle \stackrel{\text{def}}{=} (\mathbf{Id} \otimes \mathbf{B}_b) |\psi\rangle$.
- 3. Deduce from this Tsirelson's inequality, namely

 $\langle \mathbf{A}_0 \otimes \mathbf{B}_0 \rangle_{|\psi\rangle} + \langle \mathbf{A}_0 \otimes \mathbf{B}_1 \rangle_{|\psi\rangle} + \langle \mathbf{A}_1 \otimes \mathbf{B}_0 \rangle_{|\psi\rangle} - \langle \mathbf{A}_1 \otimes \mathbf{B}_1 \rangle_{|\psi\rangle} \le 2\sqrt{2}$ (2)