Lecture 3 Quantum circuits

January 22, 2020

Quantum Information Theory

Classical computation on a quantum computer

- Efficient classical computation \Rightarrow efficient quantum computer ?
- Unitary transform \rightarrow reversible computation

First example, computing $a \wedge b$

► The Toffoli gate

 $T \left| a \right\rangle \left| b \right\rangle \left| c \right\rangle = \left| a \right\rangle \left| b \right\rangle \left| c \oplus (a \wedge b) \right\rangle$

Quantum Information Theory

Exercise : NOT, XOR, OR, COPY

Give a quantum gate or circuit based on X, c-**NOT** and the Toffoli gate for computing for a, $b \in \{0, 1\}$:

- 1. \bar{a}
- 2. $a \oplus b$
- 3. $a \lor b$
- 4. a copy of a, namely $a \mapsto (a, a)$

Exercise : implementing the classical Toffoli gate with 1 and 2-bit permutation gates ?

Is it possible to implement the Toffoli gate by using only 1 and 2 permutation gates ?

Exercise

Show that the following circuit implements the Toffoli gate

where \boldsymbol{S} is the following transform

$$S(\alpha |0\rangle + \beta |1\rangle) = \alpha |0\rangle + \beta i |1\rangle$$

Classical circuit

Reversible circuit

A better reversible circuit

Universal Quantum Computation with one or two qubit gates

- Universal quantum computation with one qubit gates + CNOT gate
- Approximation with accuracy ε of one qubit unitaries with $O(\log^c(1/\varepsilon))$ gates **H**, **S** and **T** where $c \approx 2$ and

$$\begin{split} \mathbf{H} & \stackrel{\text{def}}{=} & \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \\ \mathbf{S} & \stackrel{\text{def}}{=} & \begin{pmatrix} 1 & 0\\ 0 & i \end{pmatrix} \\ \mathbf{T} & \stackrel{\text{def}}{=} & \begin{pmatrix} 1 & 0\\ 0 & e^{i\pi/4} \end{pmatrix} \end{split}$$

Approximation with accuracy ε of every n qubit gate with $O\left(n^2 4^n \log^c(n^2 4^n / \varepsilon)\right)$ gates **H**, **T** and c-**NOT**.

The fundamental theorem

Theorem 1. The basis consisting of all one-qubit and two-qubit unitary operators allows the realization of an arbitrary unitary operator

Breaking up a unitary into two-level unitaries

Lemma 1. An arbitrary unitary operator U on \mathbb{C}^m can be represented as a product of at most m(m-1)/2 two-level unitary matrices, i.e. matrices of the form

(1)	0 ·	•••	•••	•••	•••	•••	0
0	· · .	0	•••	•••	•••	•••	:
:	• • •	1	0	• • •	• • •	• • •	:
:	· · · · · · · ·	• • •	a	b	• • •	• • •	:
:	• • •	•••	С	d	0	•••	:
:	• • •	•••	•••	0	1	· · .	:
:	• • •	•••	•••	•••	· · .	· · .	0
$\int 0$	•••	•••	•••	•••	•••	0	1/

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{U}(2)$

Proof

For any numbers c_1, c_2 there exists $\mathbf{V} \in \mathbb{U}(2)$ s.t.

$$\mathbf{V} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \sqrt{|c_1|^2 + |c_2|^2} \\ 0 \end{pmatrix}$$
$$\mathbf{U} = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1m} \\ u_{21} & u_{22} & \dots & u_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m1} & u_{m2} & \dots & \ddots \end{pmatrix}$$
$$\mathbf{U}_{m-1} \cdots \mathbf{U}_1 \mathbf{U} = \begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{pmatrix} = \mathbf{U}^{(1)}$$
$$\mathbf{U}^{(1)} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{pmatrix}$$

Corollary

A unitary acting on n qubits can be decomposed as a product of $2^{n-1}(2^n - 1)$ two-level unitary matrices

Exercise

Show that there is a unitary on n qubits that can not be decomposed in a product of less than $2^n - 1$ two-level unitary matrices

Implementing a 2-level unitary with a c-U unitary

$$\operatorname{\mathsf{c-U}}^n \ket{x_1 \cdots x_n} \ket{\psi} \quad = \quad \ket{x_1 \cdots x_n} \operatorname{\mathbf{U}}^{x_1 \cdots x_m} \ket{\psi}$$

corresponds to

$$\begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & 0 & \dots & \dots & 1 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \dots & 1 & 0 & 0 \\ \vdots & & & 0 & \alpha & b \end{pmatrix}$$

$$\vdots \dots \dots 0 \quad a \quad b \ (0 \quad \dots \quad \dots \quad 0 \quad c \quad d)$$

0

•

where
$$\mathbf{U} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Exercise

- 1. Give a quantum circuit that realizes c-U $\!$ from c-U, c-NOT and one qubit gates
- 2. Give a quantum circuit that realizes c-Uⁿ from c-U, c-NOT and one qubit gates. What is its complexity (in the number of gates) ? What is its depth ?

c-U with <code>c-NOT</code> and <code>one</code> <code>qubit</code> gates

Lemma 2. Any unitary $\mathbf{U} \in \mathbb{U}(2)$ can be written as

 $\mathbf{U} = e^{i\alpha} \mathbf{AXBXC}$

where ABC = Id.

Proof

$$\mathbf{R}_{y}(\theta) \stackrel{\text{def}}{=} \begin{pmatrix} \cos \theta/2 & -\sin \theta/2 \\ \sin \theta/2 & \cos \theta/2 \end{pmatrix}$$
$$\mathbf{R}_{z}(\theta) \stackrel{\text{def}}{=} \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix}$$

Lemma 3. Suppose $\mathbf{U} \in \mathbb{U}(2)$, then there exist real numbers α, β, γ and δ such that $\mathbf{U} = e^{i\alpha} \mathbf{R}_z(\beta) \mathbf{R}_y(\gamma) \mathbf{R}_z(\delta)$

Set

$$\mathbf{A} \stackrel{\text{def}}{=} \mathbf{R}_{z}(\beta)\mathbf{R}_{y}(\gamma/2)$$
$$\mathbf{B} \stackrel{\text{def}}{=} \mathbf{R}_{y}(-\gamma/2)\mathbf{R}_{z}(-(\beta+\delta)/2)$$
$$\mathbf{C} \stackrel{\text{def}}{=} \mathbf{R}_{z}((\delta-\beta)/2)$$

Exercise

where

$$\mathbf{S}_{\alpha} \left(a \left| 0 \right\rangle + b \left| 1 \right\rangle \right) = a \left| 0 \right\rangle + b e^{i\alpha} \left| 1 \right\rangle$$

Exercise : implementing an arbitrary unitary two-level matrix in $\mathbb{U}(2^n)$ with a $\mathbf{c}\text{-}\mathbf{U}$

Show how to implement an arbitrary two-level matrix in $\mathbb{U}(2^n)$ with a non trivial two-level part $\mathbf{U} \in \mathbb{U}(2)$ with c-Uⁿ and X and c-**NOT** gates with gate complexity $O(n^2)$.

Approximating any one qubit gate with a discrete gate set

$$\mathbf{H} \stackrel{\text{def}}{=} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$
$$\mathbf{T} \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0\\ 0 & e^{i\pi/4} \end{pmatrix}$$

- Up to a global phase T and HTH are rotations around the \hat{z} axis and the \hat{x} axis of the Bloch sphere
- Composing them gives a rotation about an axis along $\mathbf{n} = (\cos \pi/8, \sin \pi/8, \cos \pi/8)$ of an angle θ defined by $\cos \theta/2 = \cos^2 \pi/8$
- ▶ approximate any unitary $\mathbf{U} \in \mathbb{U}(2)$

Approximating arbitrary unitary gates is generically hard

▶ With O(1) different types of gates acting each on O(1) qubits we have poly(n) different gates on n qubits

$$\begin{array}{cccc} |0^n\rangle & \xrightarrow{\mathbf{U}} & |\psi\rangle \\ \\ |0^n\rangle & \xrightarrow{\mathbf{U}_{\varepsilon}} & |\psi_{\varepsilon}\rangle \\ \||\psi\rangle - |\psi_{\varepsilon}\rangle\| & \leq & \varepsilon \end{array}$$

#dif. $\mathbf{U}_{arepsilon}$ obtained by a circuit with m gates = $\mathsf{poly}(n)^m$

Approximating arbitrary unitary gates is generically hard (II)

▶ $|\psi\rangle$ and $|\psi_{\varepsilon}\rangle$ belong to the $2^{n+1}-1$ -sphere and are at distance $\leq \varepsilon$

$$\# \text{dif. } \mathbf{U}_{\varepsilon} \times \text{Vol(ball of radius } \varepsilon \text{ in } S^{2^{n+1}-1}) \geq \text{Vol}(S^{2^{n+1}-1}) \\ \frac{\text{Vol}(S^{2^{n+1}-1})}{\text{Vol(ball of radius } \varepsilon \text{ in } S^{2^{n+1}-1})} = \frac{\sqrt{\pi}\Gamma(2^n - 1/2)(2^{n+1} - 1)}{\Gamma(2^n)\varepsilon^{2^{n+1}-1}} \\ = \Omega\left(\frac{1}{\varepsilon^{2^{n+1}-1}}\right)$$

► We should therefore have

$$poly(n)^{m} \geq \left(\frac{1}{\varepsilon^{2^{n+1}-1}}\right)$$

$$\Downarrow$$

$$m = \Omega\left(\frac{2^{n}\log(1/\varepsilon)}{\log n}\right)$$

► Solovay-Kitaev $m = O\left(n^2 4^n \log^c(n^2 4^n / \varepsilon)\right)$

Quantum Information Theory