Lecture 3
 Quantum circuits

January 22, 2020

Classical computation on a quantum computer

- Efficient classical computation \Rightarrow efficient quantum computer ?
- Unitary transform \rightarrow reversible computation

First example, computing $a \wedge b$

- The Toffoli gate

$$
T|a\rangle|b\rangle|c\rangle=|a\rangle|b\rangle|c \oplus(a \wedge b)\rangle
$$

- Implementing $a \wedge b$

Exercise : NOT, XOR, OR, COPY

Give a quantum gate or circuit based on \mathbf{X}, c-NOT and the Toffoli gate for computing for a, $b \in\{0,1\}$:

1. \bar{a}
2. $a \oplus b$
3. $a \vee b$
4. a copy of a, namely $a \mapsto(a, a)$

Exercise : implementing the classical Toffoli gate with 1 and 2-bit permutation gates ?

Is it possible to implement the Toffoli gate by using only 1 and 2 permutation gates ?

Exercise

Show that the following circuit implements the Toffoli gate

where S is the following transform

$$
S(\alpha|0\rangle+\beta|1\rangle)=\alpha|0\rangle+\beta i|1\rangle
$$

Classical circuit

Reversible circuit

A better reversible circuit

Universal Quantum Computation with one or two qubit gates

- Universal quantum computation with one qubit gates + CNOT gate
- Approximation with accuracy ε of one qubit unitaries with $O\left(\log ^{c}(1 / \varepsilon)\right)$ gates \mathbf{H}, \mathbf{S} and \mathbf{T} where $c \approx 2$ and

$$
\left.\begin{array}{ll}
\mathbf{H} & \stackrel{\text { def }}{=} \\
\mathbf{1} \\
\mathbf{S} & \stackrel{\text { def }}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
\mathbf{T} & \stackrel{1}{1} 0 \\
0 & i
\end{array}\right) .
$$

- Approximation with accuracy ε of every n qubit gate with $O\left(n^{2} 4^{n} \log ^{c}\left(n^{2} 4^{n} / \varepsilon\right)\right)$ gates \mathbf{H}, T and c-NOT.

The fundamental theorem

Theorem 1. The basis consisting of all one-qubit and two-qubit unitary operators allows the realization of an arbitrary unitary operator

Breaking up a unitary into two-level unitaries

Lemma 1. An arbitrary unitary operator \mathbf{U} on \mathbb{C}^{m} can be represented as a product of at most $m(m-1) / 2$ two-level unitary matrices, i.e. matrices of the form

$$
\left(\begin{array}{cccccccc}
1 & 0 & \ldots & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & \cdots & 0 & \ldots & \ldots & \ldots & \ldots & \vdots \\
\vdots & \ldots & 1 & 0 & \ldots & \ldots & \ldots & \vdots \\
\vdots & \ldots & \ldots & a & b & \ldots & \ldots & \vdots \\
\vdots & \ldots & \ldots & c & d & 0 & \ldots & \vdots \\
\vdots & \ldots & \ldots & \ldots & 0 & 1 & \ddots & \vdots \\
\vdots & \ldots & \ldots & \ldots & \ldots & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots & 0 & 1
\end{array}\right)
$$

where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{U}(2)$

Proof

For any numbers c_{1}, c_{2} there exists $\mathbf{V} \in \mathbb{U}(2)$ s.t.

$$
\begin{aligned}
\mathbf{V}\binom{c_{1}}{c_{2}} & =\left(\begin{array}{cccc}
\sqrt{\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}} \\
0 &
\end{array}\right) \\
\mathbf{U} & =\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 m} \\
u_{21} & u_{22} & \ldots & u_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
u_{m 1} & u_{m 2} & \ldots & \ddots
\end{array}\right) \\
\mathbf{U}_{m-1} \cdots \mathbf{U}_{1} \mathbf{U} & =\left(\begin{array}{cccc}
* & * & \ldots & * \\
0 & * & \ldots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & * & \ldots & *
\end{array}\right)=\mathbf{U}^{(1)} \\
\mathbf{U}^{(1)} & =\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & * & \ldots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & * & \ldots & *
\end{array}\right)
\end{aligned}
$$

Corollary

- A unitary acting on n qubits can be decomposed as a product of $2^{n-1}\left(2^{n}-1\right)$ two-level unitary matrices

Exercise

Show that there is a unitary on n qubits that can not be decomposed in a product of less than $2^{n}-1$ two-level unitary matrices

Implementing a 2-level unitary with a c-U unitary

$$
\mathrm{c}-\mathrm{U}^{n}\left|x_{1} \cdots x_{n}\right\rangle|\psi\rangle=\left|x_{1} \cdots x_{n}\right\rangle \mathbf{U}^{x_{1} \cdots x_{m}}|\psi\rangle
$$

corresponds to

$$
\left(\begin{array}{cccccc}
1 & 0 & \ldots & \ldots & \ldots & 0 \\
0 & 1 & 0 & \cdots & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ldots & \cdots & \vdots \\
\vdots & \cdots & \cdots & 1 & 0 & 0 \\
\vdots & \cdots & \cdots & 0 & a & b \\
0 & \cdots & \cdots & 0 & c & d
\end{array}\right)
$$

where $\mathbb{U}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

Exercise

1. Give a quantum circuit that realizes $c-\mathbf{U}^{2}$ from $\mathrm{c}-\mathbf{U}, \mathrm{c}-\mathbf{N O T}$ and one qubit gates
2. Give a quantum circuit that realizes $c-\mathbf{U}^{n}$ from $c-\mathbf{U}, \mathrm{c}-$ NOT and one qubit gates. What is its complexity (in the number of gates)? What is its depth?

$\mathrm{c}-\mathrm{U}$ with $\mathrm{c}-\mathrm{NOT}$ and one qubit gates

Lemma 2. Any unitary $\mathbf{U} \in \mathbb{U}(2)$ can be written as

$$
\mathbf{U}=e^{i \alpha} \mathbf{A X B X C}
$$

where $\mathbf{A B C}=\mathbf{I d}$.

Proof

$$
\begin{array}{ll}
\mathbb{R}_{y}(\theta) & \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\cos \theta / 2 & -\sin \theta / 2 \\
\sin \theta / 2 & \cos \theta / 2
\end{array}\right) \\
\mathbb{R}_{z}(\theta) \stackrel{\text { def }}{=}\left(\begin{array}{cc}
e^{-i \theta / 2} & 0 \\
0 & e^{-i \theta / 2}
\end{array}\right)
\end{array}
$$

Lemma 3. Suppose $\mathbf{U} \in \mathbb{U}(2)$, then there exist real numbers α, β, γ and δ such that

$$
\mathbf{U}=e^{i \alpha} \mathbf{R}_{z}(\beta) \mathbf{R}_{y}(\gamma) \mathbf{R}_{z}(\delta)
$$

Set

$$
\begin{array}{ll}
\mathrm{A} & \stackrel{\text { def }}{=} \mathbf{R}_{z}(\beta) \mathbf{R}_{y}(\gamma / 2) \\
\mathrm{B} & \stackrel{\text { def }}{=} \mathbf{R}_{y}(-\gamma / 2) \mathbf{R}_{z}(-(\beta+\delta) / 2) \\
\mathrm{C} & \stackrel{\text { def }}{=} \\
\mathbf{R}_{z}((\delta-\beta) / 2)
\end{array}
$$

Exercise

Show that

where

$$
\mathbf{S}_{\alpha}(a|0\rangle+b|1\rangle)=a|0\rangle+b e^{i \alpha}|1\rangle
$$

Exercise : implementing an arbitrary unitary two-level matrix in $\mathbb{U}\left(2^{n}\right)$ with a $\mathrm{c}-\mathrm{U}$

Show how to implement an arbitrary two-level matrix in $\mathbb{U}\left(2^{n}\right)$ with a non trivial two-level part $\mathbf{U} \in \mathbb{U}(2)$ with $\mathrm{c}-\mathbf{U}^{n}$ and \mathbf{X} and c-NOT gates with gate complexity $O\left(n^{2}\right)$.

Approximating any one qubit gate with a discrete gate set

$$
\begin{array}{ll}
\mathbf{H} & \stackrel{\text { def }}{=} \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
\mathbf{T} & \stackrel{\text { def }}{=} \\
& \left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right)
\end{array}
$$

- Up to a global phase \mathbf{T} and $\mathbf{H T H}$ are rotations around the \hat{z} axis and the \hat{x} axis of the Bloch sphere
- Composing them gives a rotation about an axis along $\mathbf{n}=(\cos \pi / 8, \sin \pi / 8, \cos \pi / 8)$ of an angle θ defined by $\cos \theta / 2=\cos ^{2} \pi / 8$
- approximate any unitary $\mathbf{U} \in \mathbb{U}(2)$

Approximating arbitrary unitary gates is generically hard

- With $O(1)$ different types of gates acting each on $O(1)$ qubits we have poly (n) different gates on n qubits

$$
\begin{array}{rll}
\left|0^{n}\right\rangle & \xrightarrow{\mathrm{U}} & |\psi\rangle \\
\left|0^{n}\right\rangle & \xrightarrow{\mathrm{U}_{\varepsilon}} & \left|\psi_{\varepsilon}\right\rangle \\
\||\psi\rangle-\left|\psi_{\varepsilon}\right\rangle \| & \leq & \varepsilon
\end{array}
$$

\#dif. \mathbf{U}_{ε} obtained by a circuit with m gates $=\operatorname{poly}(n)^{m}$

Approximating arbitrary unitary gates is generically hard (II)

- $|\psi\rangle$ and $\left|\psi_{\varepsilon}\right\rangle$ belong to the $2^{n+1}-1$-sphere and are at distance $\leq \varepsilon$

$$
\begin{aligned}
& \text { \#dif. } \begin{aligned}
\mathbf{U}_{\varepsilon} \times \operatorname{Vol}\left(\text { ball of radius } \varepsilon \text { in } S^{2^{n+1}-1}\right) & \geq \operatorname{Vol}\left(S^{2^{n+1}-1}\right) \\
\frac{\operatorname{Vol}\left(S^{2^{n+1}-1}\right)}{\operatorname{Vol}\left(\text { ball of radius } \varepsilon \text { in } S^{2^{n+1}-1}\right)} & =\frac{\sqrt{\pi} \Gamma\left(2^{n}-1 / 2\right)\left(2^{n+1}-1\right)}{\Gamma\left(2^{n}\right) \varepsilon^{2^{n+1}-1}} \\
& =\Omega\left(\frac{1}{\varepsilon^{2^{n+1}-1}}\right)
\end{aligned}
\end{aligned}
$$

- We should therefore have

$$
\begin{aligned}
\operatorname{poly}(n)^{m} & \geq\left(\frac{1}{\varepsilon^{2^{n+1}-1}}\right) \\
& \Downarrow \\
m & =\Omega\left(\frac{2^{n} \log (1 / \varepsilon)}{\log n}\right)
\end{aligned}
$$

- Solovay-Kitaev $m=O\left(n^{2} 4^{n} \log ^{c}\left(n^{2} 4^{n} / \varepsilon\right)\right)$

