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Plan

1. Grover’s algorithm

2. A generalization : amplitude amplification and application to collision finding

3. Lower bound on the query complexity
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Grover

1. Grover’s algorithm

I Allows a quadratic speedup for searching in an unstructured data structure

I Does not provide an exponential speedup unlike Shor’s algorithm but is more widely applicable
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Grover

The problem

Problem 1.
Input: A boolean function f : {0, 1}n → {0, 1} given as a “black box”

Output: an x ∈ {0, 1}n such that f(x) = 1.

I Can be viewed as a modeling of a data search in an unstructured database of size N = 2n

I Classically a randomized algorithm would need Θ(N) queries if there are 0(1) elements x

such that f(x) = 1

I Grover can solve this problem with only O(
√
N) queries to f and O(

√
N logN) other gates

I This query complexity can be shown to be optimal
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Grover

The algorithm

Start by applying H⊗n and then iterate
√
N times the following steps

1. Perform Of : |x〉 7→ (−1)f(x) |x〉
2. Perform H⊗n

3. Perform R where

• R |0〉 = |0〉
• R |x〉 = − |x〉 for x 6= 0

4. Perform H⊗n
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Grover

Exercise

Give a quantum circuit of low complexity implementing R.
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Grover

Circuit for R

Ingredient 1: from a quantum circuit Qg performing |x, b〉 7→ |x, b⊕ g(x)〉 where g is a Boolean

function to a circuit performing |x〉 7→ (−1)g(x) |x〉:

|x>
g

|0> X H

Q

|x〉 |0〉 Id⊗X→ |x〉 |1〉 Id⊗H→ |x〉
|0〉 − |1〉
√

2

Qg→ |x〉
|g(x)〉 −

∣∣∣g(x)
〉

√
2

= (−1)
g(x) |x〉

|0〉 − |1〉
√

2
Ingredient 2: a quantum circuit performing

|x1, · · · , xn〉 |b〉 7→ |x〉
∣∣b⊕ x̄1 · · · x̄n

〉
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Grover

Exercise

1. Let |ψ〉 def
= 1√

2n

∑
x∈{0,1}n |x〉. Show that one iteration of H⊗nRH⊗n amounts to multiply

the quantum state by

2 |ψ〉 〈ψ| − Id

2. Show that one iteration of H⊗nRH⊗n amounts to transform a state
∑

x αx |x〉 into∑
x

(2〈α〉 − αx) |x〉

where 〈α〉 = 1
2n

∑
x αx.
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Grover

Grover

1.

R = 2 |0n〉 〈0n| − Id

H
⊗n

RH
⊗n

= 2 |ψ〉 〈ψ| − Id

2.

|ψ〉 〈ψ|
∑
x

αx |x〉 =
∑
x

αx |ψ〉 〈ψ| |x〉

=

(∑
x

αx 〈ψ|x〉
)
|ψ〉

=

(
1

2n/2

∑
x

αx

)
1

2n/2

∑
y

|y〉

= 〈α〉
∑
y

|y〉
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Grover

Initialisation+first step
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Grover

Second step
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Grover

Third step
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Grover

Steps 4-7
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Grover

Steps 8-11
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Grover

An algebraic proof

N
def
= 2

n

t
def
= #{x : f(x) = 1}

|ψk〉
def
= state after k iterations

|ψk〉 =
∑

x:f(x)=1

ak |x〉+
∑

x:f(x)=0

bk |x〉
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Grover

Algebraic proof(I)

a0 = b0 =
1
√
N∣∣ψ′k〉 = −ak

∑
x:f(x)=1

|x〉+ bk
∑

x:f(x)=0

|x〉

|ψk+1〉 =
∑

x:f(x)=1

(2〈ψ′k〉+ ak)︸ ︷︷ ︸
ak+1

|x〉+
∑

x:f(x)=0

(2〈ψ′k〉 − bk)︸ ︷︷ ︸
bk+1

|x〉

〈ψ′k〉 = −
t

N
ak +

(
1−

t

N

)
bk

ak+1 =

(
1−

2t

N

)
ak +

(
2−

2t

N

)
bk

bk+1 = −
2t

N
ak +

(
1−

2t

N

)
bk

Quantum Information Theory 15/42



Grover

Algebraic proof(II)

sin θ
def
=

√
t

N

P
def
=

(
1− 2t

N 2− 2t
N

−2t
N 1− 2t

N

)
=

(
cos 2θ 2 cos2 θ

−2 sin2 θ cos 2θ

)
The eigenvalues of P are readily seen to be equal to e±2iθ and therefore

ak = A−e
−2ikθ

+ A+e
−2ikθ

bk = B−e
−2ikθ

+ B+e
−2ikθ
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Grover

Algebraic proof(III)

ak =
1
√
t

sin ((2k + 1)θ)

bk =
1

√
N − t

cos ((2k + 1)θ)

I Probability of seing a solution Pk = sin2((2k + 1)θ)

k̃
def
=

π

4θ
−

1

2

k
def
= closest integer to k̃

1− Pk = cos
2
((2k + 1)θ)

= cos
2
((2k̃ + 1)θ + 2(k − k̃)θ)

= cos
2

(
π

2
+ 2(k − k̃)θ

)
= sin

2
(2(k − k̃)θ) ≤ sin

2
θ =

t

N
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Grover

A geometric proof

N
def
= 2

n

t
def
= #{x : f(x) = 1}

|G〉 def
=

1
√
t

∑
x:f(x)=1

|x〉

|B〉 def
=

1
√
N − t

∑
x:f(x)=0

|x〉

|U〉 def
=

1
√
N

∑
x

|x〉

= sin θ |G〉+ cos θ |B〉 with

sin θ =

√
t

N

Quantum Information Theory 18/42



Grover

The {|G〉 , |B〉} plane

|B>

|G>

|U>

θ
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Grover

Reflections

I Of = reflection through |B〉

Of |B〉 = |B〉

Of |G〉 = − |G〉

I H⊗nRH⊗n = 2 |U〉 〈U | − Id reflection through |U〉

(2 |U〉 〈U | − Id) |U〉 = 2 〈U |U〉 |U〉 − |U〉

= |U〉

(2 |U〉 〈U | − Id)
∣∣∣U⊥〉 = 2

〈
U |U⊥

〉
|U〉 −

∣∣∣U⊥〉
= −

∣∣∣U⊥〉
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Grover

The picture

f

|G>

|U>

θ |B>
θ

O |U>

3

|G>

|U>

θ |B>
θ

O |U>f

θ

HRHO |U>f
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Grover

Iterating the reflections

I Initial state

sin θ |G〉+ cos θ |B〉

I Each iteration = rotation of an angle 2θ, after k iterations we have

sin((2k + 1)θ) |G〉+ cos((2k + 1)θ) |B〉

I Probability of seing a solution

Pk = sin
2
((2k + 1)θ) ≥ 1−

t

N

for k chosen as the closest integer to π
4θ −

1
2

I The algorithm given in this way needs to know t to stop when the number of iterations k is

the closest integer to π
4θ −

1
2 where θ = sin−1

(√
t
N

)

Complexity = O

(√
N
t

)
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Grover

Exercise : do we need to know t? (Quantum counting)

1. Let G
def
=H⊗nRH⊗nOf and let |U〉 = 1√

2n

∑
x∈{0,1}n |x〉. What is the dimension of the

space V generated by the Gi |U〉’s ?

2. What are the eigenvalues of G restricted to V ?

3. Give a quantum algorithm that estimates these eigenvalues up to s bits of precision.
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Grover

Quantum counting

1. dimV = 2 (generated by |B〉 and |G〉)

2. The eigenvalues are e2iθ and e−2iθ where sin θ =
√

t
N

3. This is the phase estimation algorithm of Lecture 4.
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Grover

Quantum counting: the circuit

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

s

|0>

|0>

G 4 2
nH

H

s−1

*

G G G

QFT

2

s
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Grover

Quantum counting: the analysis

I Estimating the eigenvalue ±θ can be done with a precision of 2−s by using QFT∗2s and s

auxiliary qubits. Estimation holds with some probability ≥ 1− ε

sin
2
θ

def
=

t

N

|∆t|
N

=
∣∣∣sin2

(θ + ∆θ)− sin
2
θ
∣∣∣

< |2 sin θ + |∆θ|| |∆θ|

|∆θ| ≤ 2
−s

⇒ |∆t| <

(
2
√
tN +

N

2s

)
2
−s

= O(
√
t) for 2

s
=
√
N
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amplification

2. Amplitude amplification

I More general version of Grover’s algorithm

• Boolean function χ : X → {0, 1}
• Quantum algorithm A such that A |0〉 =

∑
x∈X αx |x〉 that has probability p of finding

an element x ∈ X for which χ(x) = 1, whenA |0〉 is measured i.e. p =
∑

x:χ(x)=1 |αx|
2

I Classically we need to run A 1
p times

I Quantumly we only need to run A and A−1 O( 1√
p) times

Amplitude amplification algorithm

1. Setup the starting state |U〉 = A |0〉
2. Repeat the following O( 1√

p) times

(a) apply Oχ : |x〉 7→ (−1)χ(x) (= reflect through |B〉)
(b) apply ARA−1 (=reflect through |U〉)

3. measure and verify that the outcome |x〉 is such that χ(x) = 1
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amplification

Amplitude amplification

I The analysis on Grover’s search algorithm actually shows in this case a stronger statement. Let

V be the space 〈|x〉 : χ(x) = 1〉. We have in our case

A |0〉 = α |φV 〉+ β
∣∣∣φ⊥V〉

where |α|2 = p. The quantum amplitude amplification algorithm produces a state close to

|φV 〉
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amplification

Exercise : collision search

Let

f : {0, 1}n → {0, 1}n

which is assumed to be to 2 to 1, for each x ∈ {0, 1} there is exactly one other y such that

f(x) = f(y). Such a pair is called a collision.

1. Choose S uniformly at random among the sets of size s in {0, 1}n. What is the expected

number of solutions in S ?

2. Give a classical randomized algorithm that finds a collision (with probability ≥ 2/3 say) using

O(
√

2n) queries to f

3. Give a quantum algorithm that finds a collision using O(2n/3) queries to f
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amplification

collision search

1. s(s−1)
2(2n−1)

2. Choosing a set of size Ω(2n/2)

3. Choosing a set S of size Ω(2n/3), check that there is no collision in it, then define

g(x) = 1 iff ∃y ∈ S : f(y) = f(x)

and use Grover’s algorithm
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amplification

Exercise : collision finding with poly(n) quantum memory

We keep the same notation as before, but model now f as a random function. Let

Sr
def
=

{
(x, f(x)) : ∃z ∈ {0, 1}n−r, f(x) = 0 · · · 0︸ ︷︷ ︸

r times

||z
}

and consider the following algorithm

(i) Construct a list L consisting of 2t−r elements from Sr. Let g : {0, 1}n → {0, 1} where

g(x) = 1 if and only if there is an (x′, f(x′)) in L such that f(x) = f(x′).

(ii) apply the quantum amplification algorithm where

• the initialization consists in the construction of |ψ〉 def
= 1√

|Sr|

∑
(x,f(x))∈Sr |x, f(x)〉

• the oracle is Og

1. How do you perform (i) and (ii) ? What are the costs (complexity, quantum memory, classical

memory) of steps (i) and (ii) ?

2. What are the classical and quantum memory costs of this algorithm ?

3. What is the optimal quantum complexity of this algorithm for a polynomial quantum memory

cost ?
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amplification

collision finding with poly(n) quantum memory

1. (i) can be done with Grover with fr(x) = 1 if (x, f(x)) ∈ Sr. Probability that a given x

evaluates to 1 = O(2−r)⇒ Complexity O(2r/2) of a Grover call

– overall quantum complexity O(2t−r/2)

– quantum memory poly(n)

– classical memory O(2t−r)

(ii) detailing each step

setup: (constructing |φr〉) done by amplitude amplification with gr(x) = 1 if (x, f(x)) ∈ Sr
and A |0〉 = 1

2n/2

∑
x |x〉

∗ quantum complexity O(2r/2)

∗ quantum memory poly(n)

Og : testing sequentially against the elements of L

∗ quantum complexity O(2t−r)

∗ quantum memory poly(n)
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Step (ii) is essentially a Grover search for g with input space Sr

Prob(g(x) = 1|(x, f(x)) ∈ Sr) = O

(
2t−r

2n−r

)
= O(2

t−n
)

⇒ qu. comp. of (ii) = O

 2
n−t

2︸︷︷︸
# Grover iter.

2
r/2︸︷︷︸

setup

+ 2
t−r︸︷︷︸
Og


Overall complexity

• time

O
(

2
t−r/2

+ 2
n−t

2

[
2
r/2

+ 2
t−r
])

• quantum memory poly(n)

• classical memory 2t−r

2. Optimization

• r/2 = t− r ⇒ r = 2
3t

• n−t
2 + r/2 = t− r/2⇒ n

2 −
t
6 = 2t

3 ⇒ t = 3n
5

• Overall complexity

– time O(2
2n
5 )

– classical memory O(2
n
5 )
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lower bound

3. Lower bound on the query complexity

I Assumptions

• only one solution x :

Ox = Id− 2 |x〉 〈x|
• the algorithm starts in a state |ψ〉 and applies the oracle Ox exactly k times with unitary

operations U1, · · · ,Uk interleaved between the oracle calls

|ψxk〉
def
= UkOxUk−1Ox · · ·U1Ox |ψ〉

|ψk〉
def
= UkUk−1 · · ·U1 |ψ〉

Dk
def
=

∑
x

|||ψxk〉 − |ψk〉||
2

It turns out that

(i) Dk ≤ 4k2

(ii) to distinguish among N alternatives we need Dk = Ω(N)

This implies

k = Ω(
√
N)
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lower bound

Induction for Dk ≤ 4k2

D0 = 0

Dk+1 =
∑
x

||Ox |ψxk〉 − |ψk〉||
2

=
∑
x

||Ox(|ψxk〉 − |ψk〉) + (Ox − Id) |ψk〉||
2

≤
∑
x

(
|||ψxk〉 − |ψk〉||

2
+ 4 |||ψxk〉 − |ψk〉|| |〈x|ψk〉|+ 4 |〈ψk|x〉|2

)
(1)

≤ Dk + 4

(∑
x

|||ψxk〉 − |ψk〉||
2

)1
2
(∑

x

|〈x|ψk〉|2
)1

2

≤ Dk + 4
√
Dk + 4

we used: ||b+ c||2 ≤ ||b||2 + 2 ||b|| ||c||+ ||c||2 with

b
def
= Ox(|ψxk〉 − |ψk〉)

c
def
= (Ox − Id) |ψk〉

= −2 〈x|ψk〉 |x〉 for (1) (2)∑
x

|〈x|ψk〉|2 = 1 for the last inequality (3)
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lower bound

Exercise: Dk = Ω(N)

Let

Ek
def
=

∑
x

|||ψxk〉 − |x〉||
2

Fk
def
=

∑
x

|||x〉 − |ψk〉||2

1. Show by using the Cauchy-Schwarz inequality that Dk ≥ (
√
Fk −

√
Ek)

2

2. Show that Fk ≥ 2N − 2
√
N

3. Show that if the probability of recovering the right x for any x is greater than 1
2 then

Ek ≤ (2−
√

2)N

4. Show that under the same assumption as in the previous point, we have Dk = Ω(N)
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lower bound

The polynomial method

I The query model:

• want to compute some function f : {0, 1}N → {0, 1} on a given input x = x0 · · · xN−1

• x is not given explicitly can be queried through a quantum operation

Ox : |i, b〉 7→ |i, b⊕ xi〉

• cost : number of queries to Ox, i.e. T when we perform

UTOxUT−1Ox · · ·OxU1OxU0 |0 · · · 0〉

I Example:

f(x) = x0 ∨ x1 ∨ · · · ∨ xN−1 and N = 2n

⇔ knowing whether one of the xi’s evaluate to 1

⇔ the function g(i) = xi evaluates to 1 on at least one entry
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lower bound

From quantum queries to polynomials

p(x0, . . . , xN−1) =
∑

S⊆{0,··· ,N−1}

asΠi∈Sxi

deg(p)
def
= max{|S| : aS 6= 0}

Fact 1. The final state of a T query algorithm with input x ∈ {0, 1}N acting on an m-qubit

space can be written as ∑
z∈{0,1}m

az(x) |z〉

where each az(x) is a polynomial in x of degree at most T
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lower bound

Proof of the fact

By induction on T . Clearly true for T = 0. Assume that the property holds for T queries.

Applying a unitary does not change the state of the state ⇒ the az(x)’s are polynomial in x of

degree ≤ T . Register of the form

|i, b, w〉

Query swaps |i, 0, w〉 and |i, 1, w〉 iff xi = 1, therefore

α(x) |i, 0, w〉+β(x) |i, 1, w〉 7→((1−xi)α(x)+xiβ(x)) |i, 0, w〉+((1−xi)β(x)+xiα(x)) |i, 1, w〉
⇒ degα

T+1
(x) ≤ T + 1
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lower bound

The second ingredient

Assume algorithm A works on m qubits and the outcome is the first qubit. The probability of

output 1 is therefore

p(x) =
∑

z∈{1}×{0,1}m−1

|αz(x)|2

and p(x) is a polynomial of degree ≤ 2T .

A computes f with err. prob. ≤ 1
3

⇓

if f(x) = 0 then p(x) ∈ [0, 1/3]

if f(x) = 1 then p(x) ∈ [2/3, 1]

⇓

p approximates f
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lower bound

Application

I symmetric function f(x) = f(π(x)) for any permutation π of the coordinates: OR, AND,

Parity, Majority

In such a case q(x) defined by

q(x) =
1

N !

∑
π∈SN

p(π(x)) =

d∑
i=0

ai
(|x|
i

)
also approximates f . Moreover there is a single variable polynomial r such that

q(x) = r(|x|)

(choose r(z)
def
=
∑d

i=0 ai
(z
i

)
)
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lower bound

OR

r(0) ∈ [0, 1/3]

r(t) ∈ [2/3, 1] for t ∈ {1, · · · , N}

⇓

deg r ≥ Ω(
√
N)
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