Lecture 6 Quantum Markov Chains

February 13, 2020

Quantum Information Theory

Plan

- 1. Classical Markov chains
- 2. Quantum Markov chains
- 3. Applications

1. Classical Markov chains

Example: Complex network

- ► Web network
 - $\geq 10^{10}$ pages
 - average number of 38 hyper-links per page
 - total number of hyperlinks $\geq 3.8 \ 10^{11}$

► Twitter

- $\approx 5 \ 10^8$ users ($\approx 3.5 \ 10^8$ active users)
- a user follows about 100 other users
- number of following-type social relations $\approx 5.~10^{10}$

Complex network analysis

- Unknown and changing topology
- **Crawling the entire network is slow (ex: limit on the number of requests, Twitter** $\leq 1/\min$)
- Needs methods of sublinear/linear complexity

Exercise : counting the number of nodes

- ► Assumption: possible to sample uniformly among a set
- Question: give a method of sublinear complexity to estimate the size of the set

Counting the number of nodes

$$T \stackrel{\text{def}}{=} \text{number of samples to get the first collision}$$
$$\mathbb{E}(T) = 2 + \frac{n-1}{n} + \frac{(n-1)(n-2)}{n^2} + \dots + \frac{(n-1)(n-2)\dots 1}{n^{n-1}}$$
$$= \sqrt{\frac{\pi n}{2}} + 2/3 + O\left(\frac{1}{\sqrt{n}}\right)$$
$$\sigma(T) = O(\sqrt{n})$$
estimator $\hat{n} = \frac{2\left(T - \frac{2}{3}\right)^2}{\pi}$

Random walk/Markov chain

- Complex network : uniform sampling ?
- ► Idea : random walks, Markov chains

Example : graph coloring

Definition 1. [graph coloring] an assignment $f : V \to \{1, \dots, q\}$ is a *q*-coloring of the graph G(V, E) iff for all edges $\{x, y\}$ of G we have

 $f(x) \neq f(y)$

Problem 1. Input: a graph G, an integer q Output: The number of q-colorings of G

Fundamental idea: define a random walk on a auxiliary graph

- vertices: all possible colorings
- edges: two colorings are adjacent iff they differ only in one vertex at most

coloring $(c_1, \cdots, c_i, \cdots, c_n) \in \{1, \cdots, q\}^n \to \text{coloring } (c_1, \cdots, c'_i, \cdots, c_n) \in \{1, \cdots, q\}^n$

Example: |V| = 3, q = 3

The transition probabilities

The approach/fundamental idea

- ▶ Define local transformation configuration \rightarrow another configuration
- We can specify the transition probabilities to realize a certain asymptotic probability distribution Random walk
- 1. Start in an arbitrary configuration
- 2. perform enough few random transitions
- \Rightarrow distribution of the endpoint very close to the probability distribution we want to emulate

Markov chain

Definition 2. [time-invariant Markov chain] A time invariant Markov chain is a sequence of random variables X_0, X_1, \cdots taking their values in a finite set Ω which is such that for all t and all $(a_0, \cdots, a_t) \in \mathcal{X}^{t+1}$ we have

 $\begin{aligned} \mathbf{Prob}(X_t = a_t | X_{t-1} = a_{t-1} \cdots X_0 = a_0) &= \mathbf{Prob}(X_t = a_t | X_{t-1} = a_{t-1}) \text{ (dep. only on } X_{t-1}) \\ &= \mathbf{P}(a_{t-1}, a_t,) \text{ (time-invariance)} \end{aligned}$

Definition 3. [transition probabilities matrix] The matrix $(P(x, y))_{\substack{x \in \Omega \\ y \in \Omega}}$ is the transition probabilities matrix of the time-invariant Markov chain

Definition 4. [graph associated to the Markov chain]

- vertex set Ω
- edge $x \to y \Leftrightarrow P(x, y) > 0$

Fundamental properties

Fact 1. For all x, y in Ω and any t

$$\operatorname{Prob}(X_t = y | X_0 = x) = \operatorname{P}^t(x, y)$$

Definition 5. [irreducible chain] A Markov chain is irreducible iff for any pair $(x, y) \in \mathcal{X}^2$, there exists t > 0 such that $P^t(x, y) > 0$

path of length t from x to $y \Rightarrow$ the graph associated to the Markov chain is strongly connected

Fundamental properties (II)

Definition 6. [aperiodic chain] A Markov chain is aperiodic iff for any pair $(x, y) \in \Omega^2$,

$$gcd{t: P^{t}(x, y) > 0} = 1$$

Definition 7. [stationary distribution] a probability distribution π on Ω is a stationary distribution for the Markov chain iff for all $y \in \Omega$

$$\pi(y) = \sum_{x \in \Omega} \pi(x) P(x, y)$$

Theorem 1. If the Markov chain is aperiodic and irreducible then

- all the eigenvalues $\lambda \neq 1$ of **P** are such that $|\lambda| < 1$
- 1 is an eigenvalue of **P** of multiplicity 1
- there is a unique stationary distribution π
- for any $x, y \in \Omega$, we have

$$\lim_{t\to\infty} P^t(x,y) = \pi(y)$$

(the chain is ergodic)

Fundamental properties

Definition 8. [reversible Markov chain] A Markov chain is reversible iff there exists $\pi : \Omega \rightarrow [0, 1]$ such that for all $x, y \in \Omega$ we have

$$\pi(x)P(x,y) = \pi(y)P(y,x) \tag{1}$$

Fact 2. For an irreducible Markov chain such a π satisfying (1) is proportional to the stationary distribution

$$\sum_{x \in \Omega} \pi(x) P(x, y) = \sum_{x \in \Omega} \pi(y) P(y, x) = \pi(y)$$

 \Rightarrow can be used to define "locally" the chain to give a prescribed stationary distribution

Counting with Markov chains

- ► Choose **P** to be symmetric: stationary distribution is the uniform distribution
- ► Roughly speaking, an ergodic Markov chain is rapidly mixing if $P^t(x, y) \approx \pi(y)$ already for rather small t
- ▶ Use the Markov chain and $X_0 X_t$, X_{2t} , · · · are \approx distributed according to the stationary distribution=uniform distribution

Spectral analysis

Assumption 1. P is symmetric

- the chain is irreducible iff G is connected
- the chain is aperiodic iff G is not bipartite

In such a case the eigenvalues of ${f P}$ satisfy

$$\lambda_1 = 1 > \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_m > -1$$

Definition 9. [spectral gap] The spectral gap δ of the Markov chain is defined as $\delta \stackrel{\text{def}}{=} 1 - \max\{|\lambda_i|, 2 \le i \le m\}$

Spectral analysis (II)

$$\mathbf{v} \stackrel{\text{def}}{=} \text{ starting probability distribution}$$

$$\mathbf{v}_i \stackrel{\text{def}}{=} \text{ eigenvector of } \mathbf{P} \text{ corresp. to } \lambda_i$$

$$\mathbf{v}_1 = \frac{1}{n} (1, \cdots, 1)^T = \mathbf{u}$$

$$\mathbf{v} = \sum_i \alpha_i \mathbf{v}_i$$

$$\alpha_1 = 1$$

$$\mathbf{v} \mathbf{P}^t = \left(\sum_i \alpha_i \mathbf{v}_i\right) \mathbf{P}^t$$

$$= \mathbf{v}_1 + \sum_{i \ge 2} \alpha_i \lambda_i^t \mathbf{v}_i$$

$$\left\|\mathbf{v} \mathbf{P}^t - u\right\|^2 = \left\|\sum_{i \ge 2} \alpha_i \lambda_i^t \mathbf{v}_i\right\|^2 = \sum_{i \ge 2} |\alpha_i|^2 |\lambda_i|^{2t} \le (1 - \delta)^{2t} \|v\|^2 \le (1 - \delta)^{2t}$$

Spectral analysis (III)

$$t = \frac{\ln(1/\eta)}{\delta} \Rightarrow \left\| \mathbf{v} \mathbf{P}^t - u \right\| \le \eta$$

Problem 2.

Input: graph G(V, E), $f: V \to \{0, 1\}$ with f(v) = 1 iff v is marked Output: a marked vertex

- technique : iterate
 - (i) random walk on G with transition probabilities matrix ${f P}$
 - (ii) perform $\theta(1/\delta)$ steps of the random walk
 - (iii) output the corresponding vertex and check if it is marked
- S setup cost: the cost to set up the initial probability distribution ${f v}$
- U update cost: the cost to perform one step of the random walk
- C check cost: the cost to check if a vertex is marked
- ε : the proportion of marked vertices

Complexity for finding a marked vertex =

$$S + \frac{1}{\varepsilon} \left(C + \frac{1}{\delta} U \right)$$

Application to the coloring problem

Theorem 2. Assume that for a graph G(V, E) we have an almost uniform sampler with time complexity $T(n, \delta)$ where n = |V|, δ deviation from uniformity, then we can construct a randomized approximation scheme for the number N of q-colorings which has time complexity

$$O\left(rac{m^2}{arepsilon^2}T\left(n,rac{arepsilon}{6m}
ight)
ight)$$

where $m \stackrel{\text{def}}{=} |E|$ and ε the specified error bound

$$\operatorname{Prob}((1-\varepsilon)N \le Y \le (1+\varepsilon)N) \ge 3/4$$

where Y is the estimator

 \blacktriangleright polynomial in m!

The key algorithmic technique

$$\begin{array}{lcl} G & = & G_m > G_{m-1} > \dots > G_1 > G_0 \\ & G_{i-1} & \text{obtained from } G_i \text{ by removing one edge } e_i \end{array}$$
$$\begin{array}{ll} \left| \Omega(G) \right| & \stackrel{\text{def}}{=} & \# \text{ of } q\text{-colorings of } G \\ \left| \Omega(G) \right| & = & \frac{\left| \Omega(G_m) \right|}{\left| \Omega(G_{m-1}) \right|} \times \dots \times \frac{\left| \Omega(G_1) \right|}{\left| \Omega(G_0) \right|} \times \left| \Omega(G_0) \right| \end{array}$$
$$\left| \Omega(G_0) \right| & = & q^n \\ \rho_i & \stackrel{\text{def}}{=} & \frac{\left| \Omega(G_i) \right|}{\left| \Omega(G_{i-1}) \right|} \end{array}$$

Estimating ρ_i :

- uniform sampling on the q-colorings from $\Omega(G_{i-1})$ by random walk on $\Omega(G_{i-1})$
- estimate the proportion of samples that lie in $\Omega(G_i)$: endpoints of e_i have \neq colors

2. Quantum walks

A first try

$$P_{ij} = \begin{cases} 1/\deg(j) & (i,j) \in E\\ 0 & \text{otherwise} \end{cases} \\ |j\rangle \xrightarrow{U?} |\partial_j\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{\deg(j)}} \sum_{k:(j,k)\in E} |k\rangle \end{cases}$$

Problem: $|\partial_j\rangle$ and $|\partial_k\rangle$ may not be orthogonal...

Can be fixed by going to a larger Hilbert space

Simplifying assumption

 \blacktriangleright Quantum random walk on a *d*-regular graph with N vertices with transition probabilities

$$P_{xy} = rac{1}{d}$$
 if edge between x and y
 $= 0$ otherwise
 \Downarrow
stat. dist. $\pi_x = rac{1}{N}$

Basic definitions

▶ State space: generated by $\{ |x\rangle | y\rangle, xy \in E \}$

► Good and bad states:

$$\mathcal{M} \stackrel{\text{def}}{=} \text{ set of marked states}$$

$$N \stackrel{\text{def}}{=} \text{ number of vertices}$$

$$M \stackrel{\text{def}}{=} \text{ number of marked states} = |\mathcal{M}|$$

$$|G\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{M}} \sum_{x \in \mathcal{M}} |x\rangle |\psi_x\rangle \text{ where}$$

$$|\psi_x\rangle \stackrel{\text{def}}{=} \sum_{y:xy \in E} \frac{1}{\sqrt{d}} |y\rangle$$

$$|B\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{N - M}} \sum_{x \notin \mathcal{M}} |x\rangle |\psi_x\rangle$$

$$\sin \theta \stackrel{\text{def}}{=} \sqrt{\frac{M}{N}} = \sqrt{\varepsilon}$$

$$|U\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{N}} \sum_{x \in V} |x\rangle |\psi_x\rangle = \sin \theta |G\rangle + \cos \theta |B\rangle$$

The cost model

- ▶ Setup cost S: cost of constructing $\frac{1}{\sqrt{N}} \sum_{x \in V} |x\rangle |\bar{0}\rangle$ from $|\bar{0}\rangle |\bar{0}\rangle$
- \blacktriangleright Update cost S: cost of realizing any of the unitary

$$\begin{array}{ccc} |x\rangle \left| \bar{0} \right\rangle & \stackrel{\overrightarrow{U}}{\mapsto} & |x\rangle \sum_{y:xy \in E} \frac{1}{\sqrt{d}} \left| y \right\rangle \\ |\bar{0}\rangle \left| y \right\rangle & \stackrel{\overleftarrow{U}}{\mapsto} & \sum_{x:xy \in E} \frac{1}{\sqrt{d}} \left| x \right\rangle \left| y \right\rangle \end{array}$$

and their inverses

Checking cost C: cost of realizing

$$\begin{array}{cc} |x\rangle |y\rangle \mapsto \left\{ \begin{array}{cc} -|x\rangle |y\rangle & \quad \text{if } x \in \mathcal{M} \\ |x\rangle |y\rangle & \quad \text{otherwise} \end{array} \right.$$

The quantum walk search algorithm

- 1. Setup the starting state |U
 angle
- 2. Repeat $O(1/\sqrt{\epsilon})$ times
 - (i) reflect through $|B\rangle$
 - (ii) reflect through |U
 angle
- 3. measure the first register and check whether x is marked

The Grover/quantum walk picture

$$\begin{aligned} |\psi_t\rangle &= \sin((2t+1)\theta) |G\rangle + \cos((2t+1)\theta) |B\rangle \\ \text{choose} \quad t &\approx \frac{\pi}{4\theta} = O\left(\frac{1}{\sqrt{\varepsilon}}\right) \\ \sin((2t+1)\theta) &\approx 1 \end{aligned}$$

Quantum Information Theory

Reflection through $|U\rangle$ by applying W(P)

$$\mathcal{A} \stackrel{\text{def}}{=} \operatorname{span}\{|x\rangle |\psi_x\rangle : x \in V\}$$

$$\operatorname{ref}(\mathcal{A}) |v\rangle = |v\rangle \quad \text{if } |v\rangle \in \mathcal{A}$$

$$= -|v\rangle \quad \text{if } |v\rangle \in \mathcal{A}^{\perp}$$

$$\mathcal{B} \stackrel{\text{def}}{=} \operatorname{span}\{|\psi_y\rangle |y\rangle : y \in V\}$$

$$\operatorname{ref}(\mathcal{B}) |v\rangle = |v\rangle \quad \text{if } |v\rangle \in \mathcal{B}$$

$$= -|v\rangle \quad \text{if } |v\rangle \in \mathcal{B}^{\perp}$$

$$W(P) \stackrel{\text{def}}{=} \operatorname{ref}(\mathcal{B})\operatorname{ref}(\mathcal{A})$$

 \blacktriangleright W(P) is the unitary analogue of P

Implementing W(P)

$$\operatorname{\mathsf{Ref}}(\mathcal{A}) : |x\rangle |\psi_x\rangle \xrightarrow{\overrightarrow{U}^{-1}} |x\rangle |\overline{0}\rangle \xrightarrow{\operatorname{\mathsf{Id}}\otimes\operatorname{\mathsf{Ref}}(\overline{0})} |x\rangle |\overline{0}\rangle \xrightarrow{\overrightarrow{U}} |x\rangle |\psi_x\rangle$$
$$\operatorname{\mathsf{Ref}}(\mathcal{B}) : |\psi_y\rangle |y\rangle \xrightarrow{\overleftarrow{U}^{-1}} |\overline{0} |y\rangle\rangle \xrightarrow{\operatorname{\mathsf{Ref}}(\overline{0})\otimes\operatorname{\mathsf{Id}}} |\overline{0}\rangle |y\rangle \xrightarrow{\overleftarrow{U}} |\psi_y\rangle |y\rangle$$

▶ Cost 4U to implement W(P)

Exercise

- 1. Give a basis of the orthogonal of the space W generated by the $|x\rangle |\psi_x\rangle$'s
- 2. Use this to prove that the previous transformations implement W(P)

Solution

1. $\overrightarrow{U} |x\rangle |y\rangle$ for $y \neq \overline{0}$ are in this space and form necessarily a basis of the space W^{\perp} (dimension consideration)

$$\overrightarrow{U} \ket{x} \ket{y} \xrightarrow{\overrightarrow{U}^{-1}} \ket{x} \ket{y} \xrightarrow{\operatorname{Id} \otimes \operatorname{Ref}(\overline{0})} - \ket{x} \ket{y} \xrightarrow{\overrightarrow{U}} - \overrightarrow{U} \ket{x} \ket{y}$$

Exercise: Grover reflection vs. $W({\cal P})$ in the complete graph with loops

- 1. Consider the Grover reflection $\mathbf{H}^{\otimes n}\mathbf{R}\mathbf{H}^{\otimes}$. What is its effect on the basis $\{|\bar{i}\rangle : i \in \{0,1\}^n\}$ where $|\bar{i}\rangle \stackrel{\text{def}}{=} \mathbf{H}^{\otimes n} |i\rangle$?
- 2. Consider the complete graph with loops, i.e. any x is connected to any other y (including x). Express the operator W(P) in a basis of $\mathcal{A} + \mathcal{B}$ that seems the most appropriate to you
- 3. Compare both results

Solution: Grover reflection vs. W(P) in the complete graph with loops 1.

$$\mathbf{H}^{\otimes n} \mathbf{R} \mathbf{H}^{\otimes} |\bar{0}\rangle = |\bar{0}\rangle$$

$$\mathbf{H}^{\otimes n} \mathbf{R} \mathbf{H}^{\otimes} |\bar{i}\rangle = -|\bar{i}\rangle \text{ if } i \neq 0$$

2. Consider a unitary transform on the Hilbert space $\mathcal{V} = \text{Span}\{|x\rangle, x \in V\}$, a unitary transform U on \mathcal{V} such that $\mathbf{U}|0\rangle = \frac{1}{\sqrt{|V|}} \sum_{x \in V} |x\rangle$ and let $|\bar{x}\rangle \stackrel{\text{def}}{=} \mathbf{U}|x\rangle$

$$\mathcal{A} = \operatorname{Span}\{|x\rangle |\bar{0}\rangle, x \in V\}$$
$$= \operatorname{Span}\{|\bar{x}\rangle |\bar{0}\rangle, x \in V\}$$
$$\mathcal{B} = \operatorname{Span}\{|\bar{0}\rangle |\bar{y}\rangle, y \in V\}$$
$$\mathcal{A} \cap \mathcal{B} = \operatorname{Span}\{|\bar{0}\rangle |\bar{0}\rangle\}$$
$$W(P) |\bar{0}\rangle |\bar{0}\rangle = |\bar{0}\rangle |\bar{0}\rangle$$
$$W(P) |\bar{0}\rangle |\bar{x}\rangle = -|\bar{0}\rangle |\bar{x}\rangle \text{ for } x \neq 0$$
$$W(P) |\bar{x}\rangle |\bar{0}\rangle = -|\bar{x}\rangle |\bar{0}\rangle \text{ for } x \neq 0$$

The spectrum of W(P)

Theorem 3. Let P be an ergodic and reversible Markov chain. The spectrum of W(P) on $\mathcal{A} + \mathcal{B}$ can be characterized by

- $|U
 angle=rac{1}{\sqrt{N}}\sum_{x\in X}|x
 angle\,|\psi_x
 angle$ is the unique 1-eigenvector
- for every eigenvalue λ of $P e^{\pm 2i\theta}$ is an eigenvalue of W(P) where $\cos \theta = |\lambda|$
- the remaining eigenvalues are -1

The phase gap

Definition 10. [phase gap] The phase gap $\Delta(P)$ of W(P) is defined as 2θ where θ is the smallest angle in $(0, \pi/2]$ s.t. $\cos \theta$ is a singular value of P (i.e. $\cos \theta = |\lambda|$ where λ is an eigenvalue of P)

Fact 3.

$$\Delta(P) \ge 2\sqrt{\delta(P)}$$

$$\delta = 1 - \cos \theta$$
$$\Delta = 2\theta$$
$$\geq |1 - e^{2i\theta}|$$
$$= 2|\sin \theta|$$
$$= 2\sqrt{1 - \cos^2 \theta}$$
$$\geq 2\sqrt{\delta}$$

Exercise : implementing \operatorname{Ref}(|U\rangle)

Use these results to show that $\operatorname{Ref}(|U\rangle)$ can be implemented with complexity $O\left(\frac{1}{\sqrt{\delta}}\right)$ calls to $\operatorname{c-}W(P)$.

Phase estimation

Theorem 4. For every unitary operator U acting on m qubits, there exists a quantum circuit PE(U) acting on m + s qubits satisfying the following properties

- 1. the circuit PE(U) uses 2s Hadamard gates, $O(s^2)$ controlled phase rotations and makes 2^{s+1} calls to c-U
- 2. for any eigenvector $|\psi\rangle$ with eigenvalue 1, $\mathbf{PE}(U) |\psi\rangle |0^s\rangle = |\psi\rangle |0^s\rangle$
- 3. if $U |\psi\rangle = e^{2i\theta} |\psi\rangle$ then $PE(U) |\psi\rangle |0^s\rangle = |\psi\rangle |\omega\rangle$ where $|\langle 0^s |\omega\rangle| = \frac{\sin(2^s\theta)}{2^s \sin\theta}$

The circuit

Realizing $\operatorname{Ref}(|U\rangle)$

For an eigenvector $|\psi
angle$ of W(P) with eigenvalue $e^{2i\theta}$

$$\left|\psi\right\rangle\left|\bar{0}\right\rangle\xrightarrow{\mathbf{PE}}\left|\psi\right\rangle\left|\tilde{\theta}\right\rangle\mapsto\left(-1\right)^{\tilde{\theta}\neq0}\left|\psi\right\rangle\left|\tilde{\theta}\right\rangle\xrightarrow{\mathbf{PE}^{-1}}\left(-1\right)^{\tilde{\theta}\neq0}\left|\psi\right\rangle\left|\bar{0}\right\rangle$$

The complexity of searching with quantum walks

- Setup cost S: the cost of constructing |U
 angle
- Checking cost C: the cost of the unitary map $|x\rangle |y\rangle \mapsto (-1)^{m(x)} |x\rangle |y\rangle$ where m(x) = 1 is x is marked and 0 otherwise
- Update cost U: 1/4 of the cost of one step of the quantum walk, i.e. of W(P)

Complexity for finding a marked vertex =

$$= S + \frac{1}{\sqrt{\varepsilon}} \left(C + \frac{1}{\sqrt{\delta}} U \right)$$

Comparison of all the strategies

- *S* setup cost
- U update cost
- C checking cost

standard search	random walk search	amplitude amplification	quantum random walk
repeat $\frac{1}{\epsilon}$ times	apply ${\cal A}$	repeat $\frac{1}{\sqrt{\epsilon}}$ times	apply ${\cal A}$
– apply ${\cal A}$	repeat $rac{1}{\epsilon}$ times	– apply $\mathcal{A}\mathbf{R}\mathcal{A}^{-1}$	repeat $\frac{1}{\sqrt{\epsilon}}$ times
– check	– repeat $rac{1}{\delta}$ times update	– check	- repeat $\frac{1}{\sqrt{\delta}}$ times update
	– check		– check
$\frac{1}{\varepsilon}(S+C)$	$S + \frac{1}{\varepsilon} (\frac{1}{\delta}U + C)$	$\frac{1}{\sqrt{\varepsilon}}(C+S)$	$S + \frac{1}{\sqrt{\varepsilon}} (\frac{1}{\sqrt{\delta}}U + C)$

Exercise : the complete graph

Let G be the complete graph on N vertices. Let P be the transition probabilities associated to the standard random walk associated to G, i.e.

$$P_{xx} = 0$$
$$P_{xy} = \frac{1}{N-1}$$

- 1. What are the eigenvalues of P ?
- 2. What is the spectral gap of P ?
- 3. What is the cost of finding a marked vertex in G (the cost is measured in terms of the number of queries) ?
- 4. Compare this with Grover's algorithm.

Solution: the complete graph

- 1. P has eigenvalue 1 and since $P + \frac{1}{N-1}$ Id has rank $1 \Rightarrow$ eigenvalue 0 with multiplicity $N 1 \Rightarrow P$ has eigenvalue $-\frac{1}{N-1}$ with multiplicity N 1.
- 2. $\delta = \frac{N-2}{N-1}$ 3. $\varepsilon = \frac{1}{N}$ $\bullet S = U = 0$ $\bullet C = 1$ $\operatorname{Cost} = O(\frac{1}{\sqrt{N}})$
- 4. Same cost as Grover's algorithm. The Hilbert space is different though.

The Johnson graph

Definition 11. [Johnson graph] The Johnson graph J(n, r) has

- vertex set the subsets of r elements of $\{1, \cdots, n\}$
- two subsets R and R' are linked by an edge iff $|R \cap R'| = r 1$

Fact 4.

- J(n,r) is r(n-r)-regular
- spectral gap $\delta = \frac{n}{r(n-r)}$

J(4,2)

quantum

Exercise: the collision problem again

Consider the following collision problem,

- Input: a function $f: \{0,1\}^n \mapsto \{0,1\}^n$
- Assumes: f is either one-to-one or there is exactly one pair $\{x,y\}$ such that f(x)=f(y) and $x\neq y$
- Output: the pair $\{x, y\}$ that collides for f or \emptyset if this pair does not exist.
- 1. Give the best quantum algorithm based on Grover's problem to solve this problem
- 2. Give a quantum algorithm based on the Johnson graph to improve on the query complexity of the previous algorithm
- 3. By using the lower bound $\Omega(2^{n/3})$ on the query complexity of the collision problem for a 2 to 1 function, show that the aforementioned collision problem has a query complexity of $\Omega(2^{n/3})$

Solution for collision finding

 $N \stackrel{\text{def}}{=} 2^n$

- 1. Algorithm 1:
 - query f in L random places
 - check whether the N-L remaining candidates have a collision with one of the L elements The whole algorithm applies now amplitude amplification on Algorithm 1

Analysis:

- Cost of Algorithm 1: $L + O(\sqrt{N-L}) = L + O(\sqrt{N})$
- probability of success L/N
- Total cost : $\sqrt{L/N} \left(L + O(\sqrt{N-L}) \right)$, optimize $\Rightarrow L = \sqrt{N}$ gives a total cost of $O(2^{3n/4})$

- 2. Algorithm:
 - Choose R random places for f and keep track of their values by f
 - perform a random walk on the Johnson graph J(N, R) and check each time if the set of R elements contains the collision we look for (a vertex is marked iff it contains the collision)

Analysis:

- Setup cost S = R + 1 create a uniform superposition over all edges xy of the Johnson graph and add the values of the set $x \cup y$ (= r + 1 queries)
- Checking cost C = 0 since checking whether x is marked (contains the collision) does not require additional query of f
- Update cost U = O(1) we have to query at least one new additional element
- proportion of marked vertices

$$\varepsilon = \frac{R}{N} \frac{R-1}{N-1}$$

• spectral gap $\delta = O(1/R)$

Total cost:

$$S + \frac{1}{\sqrt{\varepsilon}} \left(C + \frac{1}{\sqrt{\delta}} U \right) = O(R + N/\sqrt{R})$$

minimal for $R = N^{2/3}$ and gives a total query complexity of $O(2^{2n/3})$

3. Idea: randomly choose \sqrt{n} preimages for the 2 to 1 function. With probability $\Omega(1)$ there is a single collision among them. Use now the optimal collision finding algorithm on them. Assume that it has query complexity f(N') when there are N' elements. We know that

$$f(2^{n/2}) = \Omega(2^{n/3})$$

This implies

$$f(2^n) = \Omega(2^{2n/3})$$

proving that the previous collision finding algorithm has optimal query complexity

Finding a triangle in a graph

Consider the following triangle-finding problem

- Input: the adjacency matrix of a graph on n vertices
- Output: vertices a, b and c forming a triangle
- 1. Show the lower bound $\Omega(n^2)$ on the query complexity of a classical algorithm
- 2. Give a more efficient quantum algorithm based on Johnson's graph

Solution: triangle finding

- 1. Take a bipartite graph with $\Omega(n^2)$ edges. All of them have to checked to verify that there is no triangle.
- 2. Consider the Johnson graph J(n, r). Each vertex = set of r vertices + result of querying all the edges of the induced subgraph. marked vertex=vertex whose associated subgraph contains one edge of the triangle. Analysis

$$arepsilon = \Omega(r^2/n^2)$$

• Setup cost $S = \binom{r}{2}$

• Update cost U = 2r - 2 =remove information from r - 1 edges + query r - 1 additional edges

Checking cost C:

Algorithm for deciding whether for a given subset R of size r and another additional vertex u whether u forms a triangle with two vertices of R:

- Random walk on the Johnson graph $J(r, r^{2/3})$ of subsets R' of size $r' = r^{2/3}$ of R
- spectral gap $pprox 1/r^{2/3}$
- fraction of marked vertices $O(r'^2/r^2) = O(r^{2/3})$
- we mark R' iff it forms the sought triangle with u
- setup cost = $O(r^{2/3})$ (for each vertex v of R' query whether uv is an edge)
- update cost =O(1)

Total checking cost = $O(r^{2/3})$

Combine this with a Grover search for $u \Rightarrow C = O(\sqrt{n}r^{2/3})$

Total cost:

$$S + \frac{1}{\sqrt{\varepsilon}} \left(C + \frac{1}{\sqrt{\delta}} U \right) = O\left(r^2 + \frac{n}{r} \left(\sqrt{n} r^{2/3} + r^{3/2} \right) \right)$$

minimal for $r = n^{3/5}$ and query complexity of $O(n^{13/10})$