Lecture 6
 Quantum Markov Chains

February 13, 2020

Plan

1. Classical Markov chains
2. Quantum Markov chains
3. Applications

1. Classical Markov chains

Example: Complex network

- Web network
- $\geq 10^{10}$ pages
- average number of 38 hyper-links per page
- total number of hyperlinks $\geq 3.810^{11}$
- Twitter
- $\approx 510^{8}$ users ($\approx 3.510^{8}$ active users)
- a user follows about 100 other users
- number of following-type social relations $\approx 5.10^{10}$

Complex network analysis

- Unknown and changing topology
- Crawling the entire network is slow (ex: limit on the number of requests, Twitter $\leq 1 / \mathrm{min}$)
- Needs methods of sublinear/linear complexity

Exercise : counting the number of nodes

- Assumption: possible to sample uniformly among a set
- Question: give a method of sublinear complexity to estimate the size of the set

Counting the number of nodes

$$
\begin{aligned}
T & \stackrel{\text { def }}{=} \text { number of samples to get the first collision } \\
\mathbb{E}(T) & =2+\frac{n-1}{n}+\frac{(n-1)(n-2)}{n^{2}}+\cdots+\frac{(n-1)(n-2) \cdots 1}{n^{n-1}} \\
& =\sqrt{\frac{\pi n}{2}}+2 / 3+O\left(\frac{1}{\sqrt{n}}\right) \\
\sigma(T) & =O(\sqrt{n}) \\
\text { estimator } \hat{n} & =\frac{2\left(T-\frac{2}{3}\right)^{2}}{\pi}
\end{aligned}
$$

Random walk/Markov chain

- Complex network: uniform sampling ?
- Idea : random walks, Markov chains

Example : graph coloring

Definition 1. [graph coloring] an assignment $f: V \rightarrow\{1, \cdots, q\}$ is a q-coloring of the graph $G(V, E)$ iff for all edges $\{x, y\}$ of G we have

$$
f(x) \neq f(y)
$$

Problem 1.

Input: a graph G, an integer q
Output: The number of q-colorings of G

- Fundamental idea: define a random walk on a auxiliary graph
- vertices: all possible colorings
- edges: two colorings are adjacent iff they differ only in one vertex at most coloring $\left(c_{1}, \cdots c_{i} \cdots c_{n}\right) \in\{1, \cdots, q\}^{n} \rightarrow$ coloring $\left(c_{1}, \cdots c_{i}^{\prime} \cdots c_{n}\right) \in\{1, \cdots, q\}^{n}$

Example: $|V|=3, q=3$

The transition probabilities

The approach/fundamental idea

- Define local transformation configuration \rightarrow another configuration
- We can specify the transition probabilities to realize a certain asymptotic probability distribution Random walk

1. Start in an arbitrary configuration
2. perform enough few random transitions
\Rightarrow distribution of the endpoint very close to the probability distribution we want to emulate

Markov chain

Definition 2. [time-invariant Markov chain] A time invariant Markov chain is a sequence of random variables X_{0}, X_{1}, \cdots taking their values in a finite set Ω which is such that for all t and all $\left(a_{0}, \cdots, a_{t}\right) \in \mathcal{X}^{t+1}$ we have

$$
\begin{aligned}
\operatorname{Prob}\left(X_{t}=a_{t} \mid X_{t-1}=a_{t-1} \cdots X_{0}=a_{0}\right) & =\operatorname{Prob}\left(X_{t}=a_{t} \mid X_{t-1}=a_{t-1}\right)\left(\text { dep. only on } X_{t-1}\right) \\
& =\mathbb{P}\left(a_{t-1}, a_{t},\right)(\text { time-invariance })
\end{aligned}
$$

Definition 3. [transition probabilities matrix] The matrix $(P(x, y))_{x \in \Omega}$ is the transition probabilities matrix of the time-invariant Markov chain

Definition 4. [graph associated to the Markov chain]

- vertex set Ω
- edge $x \rightarrow y \Leftrightarrow P(x, y)>0$

Fundamental properties

Fact 1. For all x, y in Ω and any t

$$
\operatorname{Prob}\left(X_{t}=y \mid X_{0}=x\right)=\mathbf{P}^{t}(x, y)
$$

Definition 5. [irreducible chain] A Markov chain is irreducible iff for any pair $(x, y) \in \mathcal{X}^{2}$, there exists $t>0$ such that $P^{t}(x, y)>0$

path of length t from x to $y \Rightarrow$ the graph associated to the Markov chain is strongly connected

Fundamental properties (II)

Definition 6. [aperiodic chain] A Markov chain is aperiodic iff for any pair $(x, y) \in \Omega^{2}$,

$$
\operatorname{gcd}\left\{t: P^{t}(x, y)>0\right\}=1
$$

Definition 7. [stationary distribution] a probability distribution π on Ω is a stationary distribution for the Markov chain iff for all $y \in \Omega$

$$
\pi(y)=\sum_{x \in \Omega} \pi(x) P(x, y)
$$

Theorem 1. If the Markov chain is aperiodic and irreducible then

- all the eigenvalues $\lambda \neq 1$ of \mathbf{P} are such that $|\lambda|<1$
- 1 is an eigenvalue of \mathbf{P} of multiplicity 1
- there is a unique stationary distribution π
- for any $x, y \in \Omega$, we have

$$
\lim _{t \rightarrow \infty} P^{t}(x, y)=\pi(y)
$$

(the chain is ergodic)

Fundamental properties

Definition 8. [reversible Markov chain] A Markov chain is reversible iff there exists $\pi: \Omega \rightarrow$ $[0,1]$ such that for all $x, y \in \Omega$ we have

$$
\begin{equation*}
\pi(x) P(x, y)=\pi(y) P(y, x) \tag{1}
\end{equation*}
$$

Fact 2. For an irreducible Markov chain such a π satisfying (1) is proportional to the stationary distribution

$$
\sum_{x \in \Omega} \pi(x) P(x, y)=\sum_{x \in \Omega} \pi(y) P(y, x)=\pi(y)
$$

\Rightarrow can be used to define "locally" the chain to give a prescribed stationary distribution

Counting with Markov chains

- Choose \mathbf{P} to be symmetric: stationary distribution is the uniform distribution
- Roughly speaking, an ergodic Markov chain is rapidly mixing if $P^{t}(x, y) \approx \pi(y)$ already for rather small t
- Use the Markov chain and $X_{0} X_{t}, X_{2 t}, \cdots$ are \approx distributed according to the stationary distribution=uniform distribution

Spectral analysis

Assumption 1. \mathbf{P} is symmetric

- the chain is irreducible iff G is connected
- the chain is aperiodic iff G is not bipartite

In such a case the eigenvalues of \mathbf{P} satisfy

$$
\lambda_{1}=1>\lambda_{2} \geq \lambda_{3} \geq \cdots \geq \lambda_{m}>-1
$$

Definition 9. [spectral gap] The spectral gap δ of the Markov chain is defined as

$$
\delta \stackrel{\text { def }}{=} 1-\max \left\{\left|\lambda_{i}\right|, \quad 2 \leq i \leq m\right\}
$$

Spectral analysis (II)

$$
\begin{aligned}
\mathrm{V} & \stackrel{\text { def }}{=} \text { starting probability distribution } \\
\mathrm{v}_{i} & \stackrel{\text { def }}{=} \text { eigenvector of } \mathbf{P} \text { corresp. to } \lambda_{i} \\
\mathbf{v}_{1} & =\frac{1}{n}(1, \cdots, 1)^{T}=u \\
\mathbf{v} & =\sum_{i} \alpha_{i} \mathbf{v}_{i} \\
\alpha_{1} & =1 \\
\mathbf{v P}^{t} & =\left(\sum_{i} \alpha_{i} \mathbf{v}_{i}\right) \mathbf{P}^{t} \\
& =\mathbf{v}_{1}+\sum_{i \geq 2} \alpha_{i} \lambda_{i}^{t} \mathbf{v}_{i} \\
\left\|\mathbf{v P}^{t}-u\right\|^{2} & =\left\|\sum_{i \geq 2} \alpha_{i} \lambda_{i}^{t} \mathbf{v}_{i}\right\|^{2}=\sum_{i \geq 2}\left|\alpha_{i}\right|^{2}\left|\lambda_{i}\right|^{2 t} \leq(1-\delta)^{2 t}\|v\|^{2} \leq(1-\delta)^{2 t}
\end{aligned}
$$

Spectral analysis (III)

$$
t=\frac{\ln (1 / \eta)}{\delta} \Rightarrow\left\|\mathbf{v P}^{t}-u\right\| \leq \eta
$$

Problem 2.

Input: graph $G(V, E), f: V \rightarrow\{0,1\}$ with $f(v)=1$ iff v is marked Output: a marked vertex

- technique : iterate
(i) random walk on G with transition probabilities matrix \mathbf{P}
(ii) perform $\theta(1 / \delta)$ steps of the random walk
(iii) output the corresponding vertex and check if it is marked
- S setup cost: the cost to set up the initial probability distribution \mathbf{v}
- U update cost: the cost to perform one step of the random walk
- C check cost: the cost to check if a vertex is marked
- ε : the proportion of marked vertices

Complexity for finding a marked vertex $=S+\frac{1}{\varepsilon}\left(C+\frac{1}{\delta} U\right)$

Application to the coloring problem

Theorem 2. Assume that for a graph $G(V, E)$ we have an almost uniform sampler with time complexity $T(n, \delta)$ where $n=|V|, \delta$ deviation from uniformity, then we can construct a randomized approximation scheme for the number N of q-colorings which has time complexity

$$
O\left(\frac{m^{2}}{\varepsilon^{2}} T\left(n, \frac{\varepsilon}{6 m}\right)\right)
$$

where $m \stackrel{\text { def }}{=}|E|$ and ε the specified error bound

$$
\operatorname{Prob}((1-\varepsilon) N \leq Y \leq(1+\varepsilon) N) \geq 3 / 4
$$

where Y is the estimator

- polynomial in m !

The key algorithmic technique

$$
\begin{aligned}
G & =G_{m}>G_{m-1}>\cdots>G_{1}>G_{0} \\
& G_{i-1} \\
|\Omega(G)| & \stackrel{\text { def }}{=} \\
|\Omega(G)| & =\frac{\left|\Omega\left(G_{m}\right)\right|}{\left|\Omega\left(G_{m-1}\right)\right|} \times \cdots \times \frac{\left|\Omega\left(G_{1}\right)\right|}{\left|\Omega\left(G_{0}\right)\right|} \times\left|\Omega\left(G_{0}\right)\right| \\
\left|\Omega\left(G_{0}\right)\right| & =q^{n} \\
\rho_{i} & \stackrel{\text { def }}{=} \frac{\left|\Omega\left(G_{i}\right)\right|}{\left|\Omega\left(G_{i-1}\right)\right|}
\end{aligned}
$$

- Estimating ρ_{i} :

- uniform sampling on the q-colorings from $\Omega\left(G_{i-1}\right)$ by random walk on $\Omega\left(G_{i-1}\right)$
- estimate the proportion of samples that lie in $\Omega\left(G_{i}\right)$: endpoints of e_{i} have \neq colors

2. Quantum walks

A first try

$$
\begin{aligned}
& P_{i j}=\left\{\begin{array}{ll}
1 / \operatorname{deg}(j) & (i, j) \in E \\
0 & \text { otherwise }
\end{array}\right\} \\
& |j\rangle \xrightarrow{U ?} \quad\left|\partial_{j}\right\rangle \stackrel{\text { def }}{=} \frac{1}{\sqrt{\operatorname{deg}(j)}} \sum_{k:(j, k) \in E}|k\rangle
\end{aligned}
$$

Problem: $\left|\partial_{j}\right\rangle$ and $\left|\partial_{k}\right\rangle$ may not be orthogonal...

- Can be fixed by going to a larger Hilbert space

Simplifying assumption

- Quantum random walk on a d-regular graph with N vertices with transition probabilities

$$
\begin{aligned}
P_{x y} & =\frac{1}{d} \quad \text { if edge between } x \text { and } y \\
& =0 \quad \text { otherwise } \\
& \Downarrow \\
\text { stat. dist. } \pi_{x} & =\frac{1}{N}
\end{aligned}
$$

Basic definitions

- State space: generated by $\{|x\rangle|y\rangle, x y \in E\}$
- Good and bad states:

$$
\begin{aligned}
\mathcal{M} & \stackrel{\text { def }}{=} \text { set of marked states } \\
N & \stackrel{\text { def }}{=} \text { number of vertices } \\
M & \stackrel{\text { def }}{=} \text { number of marked states }=|\mathcal{M}| \\
|G\rangle & \stackrel{\text { def }}{=} \frac{1}{\sqrt{M}} \sum_{x \in \mathcal{M}}|x\rangle\left|\psi_{x}\right\rangle \text { where } \\
\left|\psi_{x}\right\rangle & \stackrel{\text { def }}{=} \sum_{y: x y \in E} \frac{1}{\sqrt{d}}|y\rangle \\
|B\rangle & \stackrel{\text { def }}{=} \frac{1}{\sqrt{N-M}} \sum_{x \notin \mathcal{M}}|x\rangle\left|\psi_{x}\right\rangle \\
\sin \theta & \stackrel{\text { def }}{=} \sqrt{\frac{M}{N}}=\sqrt{\varepsilon} \\
|U\rangle & \stackrel{\text { def }}{=} \frac{1}{\sqrt{N}} \sum_{x \in V}|x\rangle\left|\psi_{x}\right\rangle=\sin \theta|G\rangle+\cos \theta|B\rangle
\end{aligned}
$$

The cost model

- Setup cost S : cost of constructing $\frac{1}{\sqrt{N}} \sum_{x \in V}|x\rangle|\overline{0}\rangle$ from $|\overline{0}\rangle|\overline{0}\rangle$
- Update cost S : cost of realizing any of the unitary

$$
\begin{aligned}
&|x\rangle|\overline{0}\rangle \stackrel{\vec{U}}{\mapsto} \\
&|x\rangle \sum_{y: x y \in E} \frac{1}{\sqrt{d}}|y\rangle \\
&|\overline{0}\rangle|y\rangle \stackrel{\Psi}{\mapsto} \\
& \sum_{x: x y \in E} \frac{1}{\sqrt{d}}|x\rangle|y\rangle
\end{aligned}
$$

and their inverses

- Checking cost C : cost of realizing

$$
|x\rangle|y\rangle \mapsto\left\{\begin{aligned}
-|x\rangle|y\rangle & \text { if } x \in \mathcal{M} \\
|x\rangle|y\rangle & \text { otherwise }
\end{aligned}\right.
$$

The quantum walk search algorithm

1. Setup the starting state $|U\rangle$
2. Repeat $O(1 / \sqrt{\epsilon})$ times
(i) reflect through $|B\rangle$
(ii) reflect through $|U\rangle$
3. measure the first register and check whether x is marked

The Grover/quantum walk picture

$$
\left|\psi_{t}\right\rangle=\sin ((2 t+1) \theta)|G\rangle+\cos ((2 t+1) \theta)|B\rangle
$$

$$
\text { choose } t \approx \frac{\pi}{4 \theta}=O\left(\frac{1}{\sqrt{\varepsilon}}\right)
$$

$$
\sin ((2 t+1) \theta) \quad \approx 1
$$

Reflection through $|U\rangle$ by applying $W(P)$

$$
\begin{aligned}
\mathcal{A} & \stackrel{\text { def }}{=} \operatorname{span}\left\{|x\rangle\left|\psi_{x}\right\rangle: x \in V\right\} \\
\operatorname{ref}(\mathcal{A})|v\rangle & =|v\rangle \text { if }|v\rangle \in \mathcal{A} \\
& =-|v\rangle \text { if }|v\rangle \in \mathcal{A}^{\perp} \\
\mathcal{B} & \stackrel{\text { def }}{=} \operatorname{span}\left\{\left|\psi_{y}\right\rangle|y\rangle: y \in V\right\} \\
\operatorname{ref}(\mathcal{B})|v\rangle & =|v\rangle \text { if }|v\rangle \in \mathcal{B} \\
& =-|v\rangle \text { if }|v\rangle \in \mathcal{B}^{\perp} \\
W(P) & \stackrel{\text { def }}{=} \operatorname{ref}(\mathcal{B}) \operatorname{ref}(\mathcal{A})
\end{aligned}
$$

- $W(P)$ is the unitary analogue of P

Implementing $W(P)$

$$
\begin{aligned}
& \operatorname{Ref}(\mathcal{A}):|x\rangle\left|\psi_{x}\right\rangle \xrightarrow{\vec{U}^{-1}}|x\rangle|\overline{0}\rangle \xrightarrow{\mathbf{I d} \otimes \operatorname{Ref}(\overline{0})}|x\rangle|\overline{0}\rangle \xrightarrow{\vec{U}}|x\rangle\left|\psi_{x}\right\rangle \\
& \left.\left.\operatorname{Ref}(\mathcal{B}):\left|\psi_{y}\right\rangle|y\rangle \xrightarrow{\overleftarrow{U}-1}|\overline{0}| y\right\rangle\right\rangle \xrightarrow{\operatorname{Ref}(\overline{0}) \otimes \mathbf{I d}}|\overline{0}\rangle|y\rangle \xrightarrow{\overleftarrow{U}}\left|\psi_{y}\right\rangle|y\rangle
\end{aligned}
$$

- Cost $4 U$ to implement $W(P)$

Exercise

1. Give a basis of the orthogonal of the space W generated by the $|x\rangle\left|\psi_{x}\right\rangle$'s
2. Use this to prove that the previous transformations implement $W(P)$

Solution

1. $\vec{U}|x\rangle|y\rangle$ for $y \neq \overline{0}$ are in this space and form necessarily a basis of the space W^{\perp} (dimension consideration)
2.

$$
\vec{U}|x\rangle|y\rangle \xrightarrow{\vec{U}^{-1}}|x\rangle|y\rangle \xrightarrow{\operatorname{Id} \otimes \operatorname{Ref}(\overline{0})}-|x\rangle|y\rangle \xrightarrow{\vec{U}}-\vec{U}|x\rangle|y\rangle
$$

Exercise: Grover reflection vs. $W(P)$ in the complete graph with loops

1. Consider the Grover reflection $\mathbf{H}^{\otimes n} \mathbf{R} \mathbf{H}^{\otimes}$. What is its effect on the basis $\left\{|\bar{i}\rangle: i \in\{0,1\}^{n}\right\}$ where $|\bar{i}\rangle \stackrel{\text { def }}{=} \mathbf{H}^{\otimes n}|i\rangle$?
2. Consider the complete graph with loops, i.e. any x is connected to any other y (including x). Express the operator $W(P)$ in a basis of $\mathcal{A}+\mathcal{B}$ that seems the most appropriate to you
3. Compare both results

Solution: Grover reflection vs. $W(P)$ in the complete graph with loops
1.

$$
\begin{aligned}
\mathbf{H}^{\otimes n} \mathbf{R H}^{\otimes}|\overline{0}\rangle & =|\overline{0}\rangle \\
\mathbf{H}^{\otimes n} \mathbf{R H}^{\otimes}|\bar{i}\rangle & =-|\bar{i}\rangle \text { if } i \neq 0
\end{aligned}
$$

2. Consider a unitary transform on the Hilbert space $\mathcal{V}=\operatorname{Span}\{|x\rangle, x \in V\}$, a unitary transform \mathbf{U} on \mathcal{V} such that $\mathbf{U}|0\rangle=\frac{1}{\sqrt{|V|}} \sum_{x \in V}|x\rangle$ and let $|\bar{x}\rangle \stackrel{\text { def }}{=} \mathbf{U}|x\rangle$

$$
\begin{aligned}
\mathcal{A} & =\operatorname{Span}\{|x\rangle|\overline{0}\rangle, x \in V\} \\
& =\operatorname{Span}\{|\bar{x}\rangle|\overline{0}\rangle, x \in V\} \\
\mathcal{B} & =\operatorname{Span}\{|\overline{0}\rangle|\bar{y}\rangle, y \in V\} \\
\mathcal{A} \cap \mathcal{B} & =\operatorname{Span}\{|\overline{0}\rangle|\overline{0}\rangle\} \\
W(P)|\overline{0}\rangle|\overline{0}\rangle & =|\overline{0}\rangle|\overline{0}\rangle \\
W(P)|\overline{0}\rangle|\bar{x}\rangle & =-|\overline{0}\rangle|\bar{x}\rangle \text { for } x \neq 0 \\
W(P)|\bar{x}\rangle|\overline{0}\rangle & =-|\bar{x}\rangle|\overline{0}\rangle \text { for } x \neq 0
\end{aligned}
$$

The spectrum of $W(P)$

Theorem 3. Let P be an ergodic and reversible Markov chain. The spectrum of $W(P)$ on $\mathcal{A}+\mathcal{B}$ can be characterized by

- $|U\rangle=\frac{1}{\sqrt{N}} \sum_{x \in X}|x\rangle\left|\psi_{x}\right\rangle$ is the unique 1-eigenvector
- for every eigenvalue λ of $P e^{ \pm 2 i \theta}$ is an eigenvalue of $W(P)$ where $\cos \theta=|\lambda|$
- the remaining eigenvalues are -1

The phase gap

Definition 10. [phase gap] The phase gap $\Delta(P)$ of $W(P)$ is defined as 2θ where θ is the smallest angle in $(0, \pi / 2]$ s.t. $\cos \theta$ is a singular value of P (i.e. $\cos \theta=|\lambda|$ where λ is an eigenvalue of P)

Fact 3.

$$
\begin{aligned}
\Delta & (P) \geq 2 \sqrt{\delta(P)} \\
\delta & =1-\cos \theta \\
\Delta & =2 \theta \\
& \geq\left|1-e^{2 i \theta}\right| \\
& =2|\sin \theta| \\
& =2 \sqrt{1-\cos ^{2} \theta} \\
& \geq 2 \sqrt{\delta}
\end{aligned}
$$

Exercise : implementing $\operatorname{Ref}(|U\rangle)$

Use these results to show that $\operatorname{Ref}(|U\rangle)$ can be implemented with complexity $O\left(\frac{1}{\sqrt{\delta}}\right)$ calls to $\mathrm{c}-W(P)$.

Phase estimation

Theorem 4. For every unitary operator U acting on m qubits, there exists a quantum circuit $\mathbb{P E}(U)$ acting on $m+s$ qubits satisfying the following properties

1. the circuit $\mathbf{P E}(U)$ uses $2 s$ Hadamard gates, $O\left(s^{2}\right)$ controlled phase rotations and makes 2^{s+1} calls to c-U
2. for any eigenvector $|\psi\rangle$ with eigenvalue $1, \mathbf{P E}(U)|\psi\rangle\left|0^{s}\right\rangle=|\psi\rangle\left|0^{s}\right\rangle$
3. if $U|\psi\rangle=e^{2 i \theta}|\psi\rangle$ then $\mathbf{P E}(U)|\psi\rangle\left|0^{s}\right\rangle=|\psi\rangle|\omega\rangle$ where $\left|\left\langle 0^{s} \mid \omega\right\rangle\right|=\frac{\sin \left(2^{s} \theta\right)}{2^{s} \sin \theta}$

The circuit

Realizing $\operatorname{Ref}(|U\rangle)$

For an eigenvector $|\psi\rangle$ of $W(P)$ with eigenvalue $e^{2 i \theta}$

$$
|\psi\rangle|\overline{0}\rangle \xrightarrow{\mathrm{PE}}|\psi\rangle|\tilde{\theta}\rangle \mapsto(-1)^{\tilde{\theta} \neq 0}|\psi\rangle|\tilde{\theta}\rangle \xrightarrow{\mathrm{PE}^{-1}}(-1)^{\tilde{\theta} \neq 0}|\psi\rangle|\overline{0}\rangle
$$

The complexity of searching with quantum walks

- Setup cost S : the cost of constructing $|U\rangle$
- Checking cost C : the cost of the unitary map $|x\rangle|y\rangle \mapsto(-1)^{m(x)}|x\rangle|y\rangle$ where $m(x)=1$ is x is marked and 0 otherwise
- Update cost $U: 1 / 4$ of the cost of one step of the quantum walk, i.e. of $W(P)$

$$
\text { Complexity for finding a marked vertex }=S+\frac{1}{\sqrt{\varepsilon}}\left(C+\frac{1}{\sqrt{\delta}} U\right)
$$

Comparison of all the strategies

- S setup cost
- U update cost
- C checking cost

standard search	random walk search	amplitude amplification	quantum random walk
repeat $\frac{1}{\epsilon}$ times	apply \mathcal{A}	repeat $\frac{1}{\sqrt{\epsilon}}$ times	apply \mathcal{A}
- apply \mathcal{A}	repeat $\frac{1}{\epsilon}$ times		
- check	- repeat $\frac{1}{\delta}$ times update - check	- check	repeat $\frac{1}{\sqrt{\epsilon}}$ - repeat $\frac{1}{\sqrt{\delta}}$ times update - check
$\frac{1}{\varepsilon}(S+C)$	$S+\frac{1}{\varepsilon}\left(\frac{1}{\delta} U+C\right)$	$\frac{1}{\sqrt{\varepsilon}}(C+S)$	$S+\frac{1}{\sqrt{\varepsilon}}\left(\frac{1}{\sqrt{\delta}} U+C\right)$

Exercise : the complete graph

Let G be the complete graph on N vertices. Let P be the transition probabilities associated to the standard random walk associated to G, i.e.

$$
\begin{aligned}
P_{x x} & =0 \\
P_{x y} & =\frac{1}{N-1}
\end{aligned}
$$

1. What are the eigenvalues of P ?
2. What is the spectral gap of P ?
3. What is the cost of finding a marked vertex in G (the cost is measured in terms of the number of queries) ?
4. Compare this with Grover's algorithm.

Solution: the complete graph

1. P has eigenvalue 1 and since $P+\frac{1}{N-1} \mathbf{I d}$ has rank $1 \Rightarrow$ eigenvalue 0 with multiplicity $N-1 \Rightarrow P$ has eigenvalue $-\frac{1}{N-1}$ with multiplicity $N-1$.
2. $\delta=\frac{N-2}{N-1}$
3. $-\varepsilon=\frac{1}{N}$

- $S=U=0$
- $C=1$

Cost $=O\left(\frac{1}{\sqrt{N}}\right)$
4. Same cost as Grover's algorithm. The Hilbert space is different though.

The Johnson graph

Definition 11. [Johnson graph] The Johnson graph $J(n, r)$ has

- vertex set the subsets of r elements of $\{1, \cdots, n\}$
- two subsets R and R^{\prime} are linked by an edge iff $\left|R \cap R^{\prime}\right|=r-1$

Fact 4.

- $J(n, r)$ is $r(n-r)$-regular
- spectral gap $\delta=\frac{n}{r(n-r)}$

$$
J(4,2)
$$

Exercise: the collision problem again

Consider the following collision problem,

- Input: a function $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$
- Assumes: f is either one-to-one or there is exactly one pair $\{x, y\}$ such that $f(x)=f(y)$ and $x \neq y$
- Output: the pair $\{x, y\}$ that collides for f or \emptyset if this pair does not exist.

1. Give the best quantum algorithm based on Grover's problem to solve this problem
2. Give a quantum algorithm based on the Johnson graph to improve on the query complexity of the previous algorithm
3. By using the lower bound $\Omega\left(2^{n / 3}\right)$ on the query complexity of the collision problem for a 2 to 1 function, show that the aforementioned collision problem has a query complexity of $\Omega\left(2^{n / 3}\right)$

Solution for collision finding

$N \stackrel{\text { def }}{=} 2^{n}$

1. Algorithm 1:

- query f in L random places
- check whether the $N-L$ remaining candidates have a collision with one of the L elements The whole algorithm applies now amplitude amplification on Algorithm 1

Analysis:

- Cost of Algorithm 1: $L+O(\sqrt{N-L})=L+O(\sqrt{N})$
- probability of success L / N
- Total cost : $\sqrt{L / N}(L+O(\sqrt{N-L})$, optimize $\Rightarrow L=\sqrt{N}$ gives a total cost of $O\left(2^{3 n / 4}\right)$

2. Algorithm:

- Choose R random places for f and keep track of their values by f
- perform a random walk on the Johnson graph $J(N, R)$ and check each time if the set of R elements contains the collision we look for (a vertex is marked iff it contains the collision)
Analysis:
- Setup cost $S=R+1$ create a uniform superposition over all edges $x y$ of the Johnson graph and add the values of the set $x \cup y(=r+1$ queries)
- Checking cost $C=0$ since checking whether x is marked (contains the collision) does not require additional query of f
- Update cost $U=O(1)$ we have to query at least one new additional element
- proportion of marked vertices

$$
\varepsilon=\frac{R}{N} \frac{R-1}{N-1}
$$

- spectral gap $\delta=O(1 / R)$

Total cost:

$$
S+\frac{1}{\sqrt{\varepsilon}}\left(C+\frac{1}{\sqrt{\delta}} U\right)=O(R+N / \sqrt{R})
$$

minimal for $R=N^{2 / 3}$ and gives a total query complexity of $O\left(2^{2 n / 3}\right)$
3. Idea: randomly choose \sqrt{n} preimages for the 2 to 1 function. With probability $\Omega(1)$ there is a single collision among them. Use now the optimal collision finding algorithm on them. Assume that it has query complexity $f\left(N^{\prime}\right)$ when there are N^{\prime} elements. We know that

$$
f\left(2^{n / 2}\right)=\Omega\left(2^{n / 3}\right)
$$

This implies

$$
f\left(2^{n}\right)=\Omega\left(2^{2 n / 3}\right)
$$

proving that the previous collision finding algorithm has optimal query complexity

Finding a triangle in a graph

Consider the following triangle-finding problem

- Input: the adjacency matrix of a graph on n vertices
- Output: vertices a, b and c forming a triangle

1. Show the lower bound $\Omega\left(n^{2}\right)$ on the query complexity of a classical algorithm
2. Give a more efficient quantum algorithm based on Johnson's graph

Solution: triangle finding

1. Take a bipartite graph with $\Omega\left(n^{2}\right)$ edges. All of them have to checked to verify that there is no triangle.
2. Consider the Johnson graph $J(n, r)$.

Each vertex $=$ set of r vertices + result of querying all the edges of the induced subgraph. marked vertex=vertex whose associated subgraph contains one edge of the triangle.
Analysis

$$
\varepsilon=\Omega\left(r^{2} / n^{2}\right)
$$

- Setup cost $S=\binom{r}{2}$
- Update cost $U=2 r-2=$ remove information from $r-1$ edges + query $r-1$ additional edges

Checking cost C :
Algorithm for deciding whether for a given subset R of size r and another additional vertex u whether u forms a triangle with two vertices of R :

- Random walk on the Johnson graph $J\left(r, r^{2 / 3}\right)$ of subsets R^{\prime} of size $r^{\prime}=r^{2 / 3}$ of R
- spectral gap $\approx 1 / r^{2 / 3}$
- fraction of marked vertices $O\left(r^{2} / r^{2}\right)=O\left(r^{2 / 3}\right)$
- we mark R^{\prime} iff it forms the sought triangle with u
- setup cost $=O\left(r^{2 / 3}\right)$ (for each vertex v of R^{\prime} query whether $u v$ is an edge)
- update cost $=O(1)$

Total checking cost $=O\left(r^{2 / 3}\right)$
Combine this with a Grover search for $u \Rightarrow C=O\left(\sqrt{n} r^{2 / 3}\right)$
Total cost:

$$
S+\frac{1}{\sqrt{\varepsilon}}\left(C+\frac{1}{\sqrt{\delta}} U\right)=O\left(r^{2}+\frac{n}{r}\left(\sqrt{n} r^{2 / 3}+r^{3 / 2}\right)\right)
$$

minimal for $r=n^{3 / 5}$ and query complexity of $O\left(n^{13 / 10}\right)$

