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1. Classical Markov chains

Example: Complex network

I Web network

• ≥ 1010 pages

• average number of 38 hyper-links per page

• total number of hyperlinks ≥ 3.8 1011

I Twitter

• ≈ 5 108 users (≈ 3.5 108 active users)

• a user follows about 100 other users

• number of following-type social relations ≈ 5. 1010
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Complex network analysis

I Unknown and changing topology

I Crawling the entire network is slow (ex: limit on the number of requests, Twitter ≤ 1/min)

I Needs methods of sublinear/linear complexity
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Exercise : counting the number of nodes

I Assumption: possible to sample uniformly among a set

I Question: give a method of sublinear complexity to estimate the size of the set
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Counting the number of nodes

T
def
= number of samples to get the first collision

E(T ) = 2 +
n− 1

n
+

(n− 1)(n− 2)

n2
+ · · ·+

(n− 1)(n− 2) · · · 1
nn−1

=

√
πn

2
+ 2/3 +O

(
1
√
n

)
σ(T ) = O(

√
n)

estimator n̂ =
2
(
T − 2

3

)2

π
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Random walk/Markov chain

I Complex network : uniform sampling ?

I Idea : random walks, Markov chains
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Example : graph coloring

Definition 1. [graph coloring] an assignment f : V → {1, · · · , q} is a q-coloring of the

graph G(V,E) iff for all edges {x, y} of G we have

f(x) 6= f(y)

Problem 1.
Input: a graph G, an integer q

Output: The number of q-colorings of G

I Fundamental idea: define a random walk on a auxiliary graph

• vertices: all possible colorings

• edges: two colorings are adjacent iff they differ only in one vertex at most

coloring (c1, · · · ci · · · cn) ∈ {1, · · · , q}n → coloring (c1, · · · c′i · · · cn) ∈ {1, · · · , q}
n
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Example: |V | = 3, q = 3
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The transition probabilities
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The approach/fundamental idea

I Define local transformation configuration→ another configuration

I We can specify the transition probabilities to realize a certain asymptotic probability distribution

Random walk

1. Start in an arbitrary configuration

2. perform enough few random transitions

⇒ distribution of the endpoint very close to the probability distribution we want to emulate
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Markov chain

Definition 2. [time-invariant Markov chain] A time invariant Markov chain is a sequence of

random variables X0, X1, · · · taking their values in a finite set Ω which is such that for all t and

all (a0, · · · , at) ∈ X t+1 we have

Prob(Xt = at|Xt−1 = at−1 · · ·X0 = a0) = Prob(Xt = at|Xt−1 = at−1) (dep. only on Xt−1)

= P(at−1, at, ) (time-invariance)

Definition 3. [transition probabilities matrix] The matrix (P (x, y))x∈Ω
y∈Ω

is the transition

probabilities matrix of the time-invariant Markov chain

Definition 4. [graph associated to the Markov chain]

• vertex set Ω

• edge x→ y ⇔ P (x, y) > 0
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Fundamental properties

Fact 1. For all x, y in Ω and any t

Prob(Xt = y|X0 = x) = P
t
(x, y)

Definition 5. [irreducible chain] A Markov chain is irreducible iff for any pair (x, y) ∈ X 2,

there exists t > 0 such that P t(x, y) > 0

y

x

path of length t from x to y ⇒ the graph associated to the Markov chain is strongly connected
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Fundamental properties (II)

Definition 6. [aperiodic chain] A Markov chain is aperiodic iff for any pair (x, y) ∈ Ω2,

gcd{t : P
t
(x, y) > 0} = 1

Definition 7. [stationary distribution] a probability distribution π on Ω is a stationary

distribution for the Markov chain iff for all y ∈ Ω

π(y) =
∑
x∈Ω

π(x)P (x, y)

Theorem 1. If the Markov chain is aperiodic and irreducible then

• all the eigenvalues λ 6= 1 of P are such that |λ| < 1

• 1 is an eigenvalue of P of multiplicity 1

• there is a unique stationary distribution π

• for any x, y ∈ Ω, we have

lim
t→∞

P
t
(x, y) = π(y)

(the chain is ergodic)
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Fundamental properties

Definition 8. [reversible Markov chain] A Markov chain is reversible iff there exists π : Ω →
[0, 1] such that for all x, y ∈ Ω we have

π(x)P (x, y) = π(y)P (y, x) (1)

Fact 2. For an irreducible Markov chain such a π satisfying (1) is proportional to the stationary

distribution ∑
x∈Ω

π(x)P (x, y) =
∑
x∈Ω

π(y)P (y, x) = π(y)

⇒ can be used to define “locally” the chain to give a prescribed stationary distribution
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Counting with Markov chains

I Choose P to be symmetric: stationary distribution is the uniform distribution

I Roughly speaking, an ergodic Markov chain is rapidly mixing if P t(x, y) ≈ π(y) already for

rather small t

I Use the Markov chain and X0 Xt, X2t, · · · are ≈ distributed according to the stationary

distribution=uniform distribution
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Spectral analysis

Assumption 1. P is symmetric

• the chain is irreducible iff G is connected

• the chain is aperiodic iff G is not bipartite

In such a case the eigenvalues of P satisfy

λ1 = 1 > λ2 ≥ λ3 ≥ · · · ≥ λm > −1

Definition 9. [spectral gap] The spectral gap δ of the Markov chain is defined as

δ
def
=1−max{|λi|, 2 ≤ i ≤ m}
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Spectral analysis (II)

v
def
= starting probability distribution

vi
def
= eigenvector of P corresp. to λi

v1 =
1

n
(1, · · · , 1)

T
= u

v =
∑
i

αivi

α1 = 1

vP
t

=

(∑
i

αivi

)
P
t

= v1 +
∑
i≥2

αiλ
t
ivi

∣∣∣∣∣∣vPt − u∣∣∣∣∣∣2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i≥2

αiλ
t
ivi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
∑
i≥2

|αi|2|λi|2t ≤ (1− δ)2t ||v||2 ≤ (1− δ)2t
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Spectral analysis (III)

t =
ln(1/η)

δ
⇒
∣∣∣∣∣∣vPt − u∣∣∣∣∣∣ ≤ η

Problem 2.
Input: graph G(V,E), f : V → {0, 1} with f(v) = 1 iff v is marked

Output: a marked vertex

I technique : iterate

(i) random walk on G with transition probabilities matrix P

(ii) perform θ(1/δ) steps of the random walk

(iii) output the corresponding vertex and check if it is marked

• S setup cost: the cost to set up the initial probability distribution v

• U update cost: the cost to perform one step of the random walk

• C check cost: the cost to check if a vertex is marked

• ε: the proportion of marked vertices

Complexity for finding a marked vertex = S + 1
ε

(
C + 1

δU
)
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Application to the coloring problem

Theorem 2. Assume that for a graph G(V,E) we have an almost uniform sampler with time

complexity T (n, δ) where n = |V |, δ deviation from uniformity, then we can construct a

randomized approximation scheme for the number N of q-colorings which has time complexity

O

(
m2

ε2
T

(
n,

ε

6m

))

where m
def
= |E| and ε the specified error bound

Prob((1− ε)N ≤ Y ≤ (1 + ε)N) ≥ 3/4

where Y is the estimator

I polynomial in m!
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The key algorithmic technique

G = Gm > Gm−1 > · · · > G1 > G0

Gi−1 obtained from Gi by removing one edge ei

|Ω(G)| def
= # of q-colorings of G

|Ω(G)| =
|Ω(Gm)|
|Ω(Gm−1)|

× · · · ×
|Ω(G1)|
|Ω(G0)|

× |Ω(G0)|

|Ω(G0)| = q
n

ρi
def
=

|Ω(Gi)|
|Ω(Gi−1)|

I Estimating ρi:

• uniform sampling on the q-colorings from Ω(Gi−1) by random walk on Ω(Gi−1)

• estimate the proportion of samples that lie in Ω(Gi): endpoints of ei have 6= colors
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2. Quantum walks

A first try

Pij =

{
1/ deg(j) (i, j) ∈ E
0 otherwise

}
|j〉 U?−→ |∂j〉

def
=

1√
deg(j)

∑
k:(j,k)∈E

|k〉

Problem: |∂j〉 and |∂k〉 may not be orthogonal...

I Can be fixed by going to a larger Hilbert space
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Simplifying assumption

I Quantum random walk on a d-regular graph with N vertices with transition probabilities

Pxy =
1

d
if edge between x and y

= 0 otherwise

⇓

stat. dist. πx =
1

N
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Basic definitions
I State space: generated by {|x〉 |y〉 , xy ∈ E}
I Good and bad states:

M def
= set of marked states

N
def
= number of vertices

M
def
= number of marked states = |M|

|G〉 def
=

1
√
M

∑
x∈M

|x〉 |ψx〉 where

|ψx〉
def
=

∑
y:xy∈E

1
√
d
|y〉

|B〉 def
=

1
√
N −M

∑
x/∈M

|x〉 |ψx〉

sin θ
def
=

√
M

N
=
√
ε

|U〉 def
=

1
√
N

∑
x∈V

|x〉 |ψx〉 = sin θ |G〉+ cos θ |B〉
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The cost model

I Setup cost S: cost of constructing 1√
N

∑
x∈V |x〉 |0̄〉 from |0̄〉 |0̄〉

I Update cost S: cost of realizing any of the unitary

|x〉 |0̄〉
−→
U7→ |x〉

∑
y:xy∈E

1
√
d
|y〉

|0̄〉 |y〉
←−
U7→

∑
x:xy∈E

1
√
d
|x〉 |y〉

and their inverses

I Checking cost C: cost of realizing

|x〉 |y〉 7→
{
− |x〉 |y〉 if x ∈ M
|x〉 |y〉 otherwise
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The quantum walk search algorithm

1. Setup the starting state |U〉
2. Repeat O(1/

√
ε) times

(i) reflect through |B〉
(ii) reflect through |U〉

3. measure the first register and check whether x is marked
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The Grover/quantum walk picture

|G>

|B>
|U>θ3

θ

one iteration

|ψt〉 = sin((2t+ 1)θ) |G〉+ cos((2t+ 1)θ) |B〉

choose t ≈
π

4θ
= O

(
1
√
ε

)
sin((2t+ 1)θ) ≈ 1
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Reflection through |U〉 by applying W (P )

A def
= span{|x〉 |ψx〉 : x ∈ V }

ref(A) |v〉 = |v〉 if |v〉 ∈ A

= − |v〉 if |v〉 ∈ A⊥

B def
= span{|ψy〉 |y〉 : y ∈ V }

ref(B) |v〉 = |v〉 if |v〉 ∈ B

= − |v〉 if |v〉 ∈ B⊥

W (P )
def
= ref(B)ref(A)

I W (P ) is the unitary analogue of P
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Implementing W (P )

Ref(A) : |x〉 |ψx〉
−→
U−1

−−−→ |x〉 |0̄〉 Id⊗Ref(0̄)−−−−−→ |x〉 |0̄〉
−→
U−→ |x〉 |ψx〉

Ref(B) : |ψy〉 |y〉
←−
U−1

−−−→ |0̄ |y〉〉 Ref(0̄)⊗Id−−−−−→ |0̄〉 |y〉
←−
U−→ |ψy〉 |y〉

I Cost 4U to implement W (P )
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Exercise

1. Give a basis of the orthogonal of the space W generated by the |x〉 |ψx〉’s
2. Use this to prove that the previous transformations implement W (P )
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Solution

1.
−→
U |x〉 |y〉 for y 6= 0̄ are in this space and form necessarily a basis of the space W⊥ (dimension

consideration)

2.
−→
U |x〉 |y〉

−→
U−1

−−−→ |x〉 |y〉 Id⊗Ref(0̄)−−−−−→ − |x〉 |y〉
−→
U−→ −

−→
U |x〉 |y〉
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Exercise: Grover reflection vs. W (P ) in the complete graph with loops

1. Consider the Grover reflection H⊗nRH⊗. What is its effect on the basis {
∣∣̄i〉 : i ∈ {0, 1}n}

where
∣∣̄i〉 def

=H⊗n |i〉 ?

2. Consider the complete graph with loops, i.e. any x is connected to any other y (including x).

Express the operator W (P ) in a basis of A+ B that seems the most appropriate to you

3. Compare both results
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Solution: Grover reflection vs. W (P ) in the complete graph with loops

1.

H
⊗n

RH
⊗ |0̄〉 = |0̄〉

H
⊗n

RH
⊗ ∣∣̄i〉 = −

∣∣̄i〉 if i 6= 0

2. Consider a unitary transform on the Hilbert space V = Span{|x〉 , x ∈ V }, a unitary

transform U on V such that U |0〉 = 1√
|V |

∑
x∈V |x〉 and let |x̄〉 def

=U |x〉

A = Span{|x〉 |0̄〉 , x ∈ V }

= Span{|x̄〉 |0̄〉 , x ∈ V }

B = Span{|0̄〉 |ȳ〉 , y ∈ V }

A ∩ B = Span{|0̄〉 |0̄〉}

W (P ) |0̄〉 |0̄〉 = |0̄〉 |0̄〉

W (P ) |0̄〉 |x̄〉 = − |0̄〉 |x̄〉 for x 6= 0

W (P ) |x̄〉 |0̄〉 = − |x̄〉 |0̄〉 for x 6= 0
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The spectrum of W (P )

Theorem 3. Let P be an ergodic and reversible Markov chain. The spectrum of W (P ) on

A+ B can be characterized by

• |U〉 = 1√
N

∑
x∈X |x〉 |ψx〉 is the unique 1-eigenvector

• for every eigenvalue λ of P e±2iθ is an eigenvalue of W (P ) where cos θ = |λ|
• the remaining eigenvalues are −1
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The phase gap

Definition 10. [phase gap] The phase gap ∆(P ) of W (P ) is defined as 2θ where θ is the

smallest angle in (0, π/2] s.t. cos θ is a singular value of P (i.e. cos θ = |λ| where λ is an

eigenvalue of P )

Fact 3.

∆(P ) ≥ 2
√
δ(P )

δ = 1− cos θ

∆ = 2θ

≥ |1− e2iθ|

= 2| sin θ|

= 2
√

1− cos2 θ

≥ 2
√
δ
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Exercise : implementing Ref(|U〉)

Use these results to show that Ref(|U〉) can be implemented with complexity O
(

1√
δ

)
calls to

c-W (P ).
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Phase estimation

Theorem 4. For every unitary operator U acting on m qubits, there exists a quantum circuit

PE(U) acting on m+ s qubits satisfying the following properties

1. the circuit PE(U) uses 2s Hadamard gates, O(s2) controlled phase rotations and makes 2s+1

calls to c-U

2. for any eigenvector |ψ〉 with eigenvalue 1, PE(U) |ψ〉 |0s〉 = |ψ〉 |0s〉
3. if U |ψ〉 = e2iθ |ψ〉 then PE(U) |ψ〉 |0s〉 = |ψ〉 |ω〉 where | 〈0s|ω〉 | = sin(2sθ)

2s sin θ
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The circuit

|k  >

|k  >

|k  >

|k  >

1

2

3

s

|ψ>

H

H

U

H

H

U
2 4

U U
2s−1

sQFT
2
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Realizing Ref(|U〉)

For an eigenvector |ψ〉 of W (P ) with eigenvalue e2iθ

|ψ〉 |0̄〉 PE−→ |ψ〉
∣∣∣θ̃〉 7→ (−1)

θ̃ 6=0 |ψ〉
∣∣∣θ̃〉 PE−1

−−−→ (−1)
θ̃ 6=0 |ψ〉 |0̄〉
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The complexity of searching with quantum walks

• Setup cost S: the cost of constructing |U〉
• Checking cost C: the cost of the unitary map |x〉 |y〉 7→ (−1)m(x) |x〉 |y〉 where m(x) = 1

is x is marked and 0 otherwise

• Update cost U : 1/4 of the cost of one step of the quantum walk, i.e. of W (P )

Complexity for finding a marked vertex = S + 1√
ε

(
C + 1√

δ
U
)
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Comparison of all the strategies

• S setup cost

• U update cost

• C checking cost

standard search random walk search amplitude amplification quantum random walk

repeat 1
ε times apply A repeat 1√

ε
times apply A

– apply A repeat 1
ε times – apply ARA−1 repeat 1√

ε
times

– check – repeat 1
δ times update – check – repeat 1√

δ
times update

– check – check
1
ε(S + C) S + 1

ε(
1
δU + C) 1√

ε
(C + S) S + 1√

ε
( 1√

δ
U + C)
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Exercise : the complete graph

Let G be the complete graph on N vertices. Let P be the transition probabilities associated to

the standard random walk associated to G, i.e.

Pxx = 0

Pxy =
1

N − 1

1. What are the eigenvalues of P ?

2. What is the spectral gap of P ?

3. What is the cost of finding a marked vertex in G (the cost is measured in terms of the number

of queries) ?

4. Compare this with Grover’s algorithm.
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Solution: the complete graph

1. P has eigenvalue 1 and since P + 1
N−1Id has rank 1 ⇒ eigenvalue 0 with multiplicity

N − 1⇒ P has eigenvalue − 1
N−1 with multiplicity N − 1.

2. δ = N−2
N−1

3. • ε = 1
N

• S = U = 0

• C = 1

Cost = O( 1√
N

)

4. Same cost as Grover’s algorithm. The Hilbert space is different though.
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The Johnson graph

Definition 11. [Johnson graph] The Johnson graph J(n, r) has

• vertex set the subsets of r elements of {1, · · · , n}
• two subsets R and R′ are linked by an edge iff |R ∩ R′| = r − 1

Fact 4.

• J(n, r) is r(n− r)-regular

• spectral gap δ = n
r(n−r)
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J(4, 2)

23

24

14

12

13

34
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Exercise: the collision problem again

Consider the following collision problem,

• Input: a function f : {0, 1}n 7→ {0, 1}n

• Assumes: f is either one-to-one or there is exactly one pair {x, y} such that f(x) = f(y)

and x 6= y

• Output: the pair {x, y} that collides for f or ∅ if this pair does not exist.

1. Give the best quantum algorithm based on Grover’s problem to solve this problem

2. Give a quantum algorithm based on the Johnson graph to improve on the query complexity of

the previous algorithm

3. By using the lower bound Ω(2n/3) on the query complexity of the collision problem for a 2 to

1 function, show that the aforementioned collision problem has a query complexity of Ω(2n/3)
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Solution for collision finding

N
def
=2n

1. Algorithm 1:

• query f in L random places

• check whether the N −L remaining candidates have a collision with one of the L elements

The whole algorithm applies now amplitude amplification on Algorithm 1

Analysis:

• Cost of Algorithm 1: L+O(
√
N − L) = L+O(

√
N)

• probability of success L/N

• Total cost :
√
L/N

(
L+O(

√
N − L

)
, optimize ⇒ L =

√
N gives a total cost of

O(23n/4)
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2. Algorithm:

• Choose R random places for f and keep track of their values by f

• perform a random walk on the Johnson graph J(N,R) and check each time if the set of R

elements contains the collision we look for (a vertex is marked iff it contains the collision)

Analysis:

• Setup cost S = R + 1 create a uniform superposition over all edges xy of the Johnson

graph and add the values of the set x ∪ y (= r + 1 queries)

• Checking cost C = 0 since checking whether x is marked (contains the collision) does not

require additional query of f

• Update cost U = O(1) we have to query at least one new additional element

• proportion of marked vertices

ε =
R

N

R− 1

N − 1
• spectral gap δ = O(1/R)

Total cost:

S +
1
√
ε

(
C +

1
√
δ
U

)
= O(R +N/

√
R)

minimal for R = N2/3 and gives a total query complexity of O(22n/3)
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3. Idea: randomly choose
√
n preimages for the 2 to 1 function. With probability Ω(1) there is a

single collision among them. Use now the optimal collision finding algorithm on them. Assume

that it has query complexity f(N ′) when there are N ′ elements. We know that

f(2
n/2

) = Ω(2
n/3

)

This implies

f(2
n
) = Ω(2

2n/3
)

proving that the previous collision finding algorithm has optimal query complexity
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Finding a triangle in a graph

Consider the following triangle-finding problem

• Input: the adjacency matrix of a graph on n vertices

• Output: vertices a, b and c forming a triangle

1. Show the lower bound Ω(n2) on the query complexity of a classical algorithm

2. Give a more efficient quantum algorithm based on Johnson’s graph
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Solution: triangle finding

1. Take a bipartite graph with Ω(n2) edges. All of them have to checked to verify that there is

no triangle.

2. Consider the Johnson graph J(n, r).

Each vertex = set of r vertices + result of querying all the edges of the induced subgraph.

marked vertex=vertex whose associated subgraph contains one edge of the triangle.

Analysis

•
ε = Ω(r

2
/n

2
)

• Setup cost S =
(r

2

)
• Update cost U = 2r− 2 =remove information from r− 1 edges + query r− 1 additional

edges
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Checking cost C:

Algorithm for deciding whether for a given subset R of size r and another additional vertex u

whether u forms a triangle with two vertices of R:

• Random walk on the Johnson graph J(r, r2/3) of subsets R′ of size r′ = r2/3 of R

• spectral gap ≈ 1/r2/3

• fraction of marked vertices O(r′2/r2) = O(r2/3)

• we mark R′ iff it forms the sought triangle with u

• setup cost = O(r2/3) (for each vertex v of R′ query whether uv is an edge)

• update cost =O(1)

Total checking cost = O(r2/3)

Combine this with a Grover search for u⇒ C = O(
√
nr2/3)

Total cost:

S +
1
√
ε

(
C +

1
√
δ
U

)
= O

(
r

2
+
n

r

(√
nr

2/3
+ r

3/2
))

minimal for r = n3/5 and query complexity of O(n13/10)
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