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1. Classical Markov chains

Complex network

» Web network
> 101" pages
average number of 38 hyper-links per page
total number of hyperlinks > 3.8 10'!

» Twitter

~ 5 10° users (= 3.5 10° active users)
a user follows about 100 other users
number of following-type social relations ~~ 5. 10"
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Complex network analysis

» Unknown and changing topology
» Crawling the entire network is slow (ex: limit on the number of requests, Twitter < 1/min)

» Needs methods of sublinear/linear complexity
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Exercise : counting the number of nodes

» Assumption: possible to sample uniformly among a set

» Question: give a method of sublinear complexity to estimate the size of the set

Quantum Information Theory
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Counting the number of nodes

number of samples to get the first collision
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Random walk/Markov chain

» Complex network : uniform sampling ?

» |dea : random walks, Markov chains

Quantum Information Theory
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Example : graph coloring

Definition 1. | ] an assignment f : V — is a of the
graph G(V, E) iff for all edges {x,y} of G we have

f(x) # f(y)

Problem 1.
Input: a graph (-, an integer
Output: The number of g-colorings of G

» Fundamental idea: define a random walk on a auxiliary graph

vertices: all possible colorings
edges: two colorings are adjacent iff they differ only in one vertex at most

coloring (c1,+-+c;--+cp) € {1,--+,q}" — coloring (cl,---c;---cn) e{1,---,q}"
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The transition probabilities
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The approach/fundamental idea

» Define local transformation configuration — another configuration

» We can specify the transition probabilities to realize a certain asymptotic probability distribution

1. Start in an arbitrary configuration

2. perform enough few random transitions

= distribution of the endpoint very close to the probability distribution we want to emulate
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Markov chain

Definition 2. | ] A time invariant Markov chain is a sequence of
random variables taking their values in a finite set {’ which is such that for all t and
all (ag, -+ ,a;) € X" we have

PI‘Ob(Xt = CLt|Xt_1 = Q¢—1 """ XO = CL()) = PI‘Ob(Xt = CLt|Xt_1 = at_l) (dep on/y on Xt—l)

= (time-invariance)

Definition 3. | ] The matrix is the

of the time-invariant Markov chain

Definition 4. | ]

vertex set ()
edgex — y < P(x,y) >0
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Fundamental properties

Fact 1. Forall x, y in Q and any t
PI‘Ob(Xt = y|X0 — 33) — Pt(xa y)

Definition 5. | ] A Markov chain is iff for any pair (x,y) € X?,

there exists t > 0 such that P*(x,y) > 0

F o

o .\./

Y

path of length t from x to y = the graph associated to the Markov chain is strongly connected
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Fundamental properties (1)

Definition 6. | ] A Markov chain is iff for any pair (x,y) € Q2
ged{t: P'(z,y) >0} =1

Definition 7. | ] a probability distribution on $) is a stationary
distribution for the Markov chain iff for all y € Q)

Theorem 1. If the Markov chain is aperiodic and irreducible then
all the eigenvalues X # 1 of P are such that |\| < 1
1 is an eigenvalue of P of multiplicity 1
there is a unique stationary distribution
for any x, y € €2, we have t
lim P(z,y) = m(y)
(the chain is )
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Definition 8. | ] A Markov chain is iff there exists m : 2 —
[0, 1] such that for all x, y € €2 we have

m(z)P(z,y) = 7(y)P(y, x) (1)

Fact 2. For an irreducible Markov chain such a m satisfying (1) is proportional to the stationary
distribution

> w(x)P(z,y) = > _ 7w(y)Py,z) = n(y)
el xe
—> can be used to define “locally” the chain to give a prescribed stationary distribution
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Counting with Markov chains

» Choose P to be symmetric: stationary distribution is the uniform distribution

» Roughly speaking, an ergodic Markov chain is if P'(x,y) ~ m(y) already for
rather small ¢

» Use the Markov chain and Xy X, Xo, - are = distributed according to the stationary
distribution=uniform distribution
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Spectral analysis

Assumption 1. P is symmetric

the chain is irreducible iff G is connected

the chain is aperiodic iff G is not bipartite

In such a case the eigenvalues of P satisfy

A=1>X2A 322 An > —1

Definition 9. | ] The spectral gap © of the Markov chain is defined as

51 — max{|\i], 2 < i < m}
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Spectral analysis (1)

! starting probability distribution
= eigenvector of P corresp. to \;
1
vi = —(1,--- ,1)T:
n
v = Yow
i
1 = 1

VPt = (Z awi) Pt

2

2
[vP' =] = S anivi| =Dl < (1= 9T ol < (1 - 5)”

i>2 i>2
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In(1
t= 20 ept | <

Problem 2.
Input: graph G(V, E), f : V — {0,1} with f(v) =1 iffv is
Output: a marked vertex

» technique : iterate
(i) random walk on G with transition probabilities matrix P
(ii) perform 0(1/6) steps of the random walk
(iii) output the corresponding vertex and check if it is marked

the cost to set up the initial probability distribution v
the cost to perform one step of the random walk
the cost to check if a vertex is marked
. the proportion of marked vertices

Complexity for finding a marked vertex =| S + % (C’ + %U)
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Application to the coloring problem

Theorem 2. Assume that for a graph G(V, E) we have an almost uniform sampler with time
complexity where n = |V'|, & deviation from uniformity, then we can construct a
randomized approximation scheme for the number N of g-colorings which has time complexity

o (2 (i)

where d§f|E| and - the specified error bound

Prob((1—e)N <Y < (14¢)N) > 3/4

where Y Is the estimator

» polynomial in m/!
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The key algorithmic technique

G —
(G;_1 obtained from G; by removing one edge
et 7 of g-colorings of G
Q(G,, Q(G

felted] — [£2(Gm) X"'XMX|Q(GO)|
Q(Go)l = 4"

def 12(G)]

12(Gi-1)]

uniform sampling on the g-colorings from 2(G;_1) by random walk on Q(G;_1)
estimate the proportion of samples that lie in 2(G;): endpoints of e; have # colors

Quantum Information Theory 20
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A first try

_ 1/deg(y)  (h,j)€E
Pij = { 0

U? def 1

= B v deg(j) ke (

Problem: |9;) and |9x) may not be orthogonal...

» Can be fixed by going to a larger Hilbert space

Quantum Information Theory
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j.k)eEE
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Simplifying assumption

» Quantum random walk on a d-regular graph with N vertices with transition probabilities

Py

1
= if edge between = and y
O otherwise

stat. dist. 7,

1
N
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Basic definitions
> generated by {|x) |y) ,zy € E}

def
—  set of marked states

det number of vertices
1 humber of marked states = | M|
2 LS
= x) |1) where
xEM
def Z 1 |
= — |y)
y:xyel \/E

def
x@/\/l

def M _

= ~ =

def 1 Z .

= — |z) |1) = sin O |G) 4 cos 6 | B)
NJIEV

Quantum Information Theory
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. cost of constructing ﬁ > zcv lx) |0) from |0) |0)
. cost of realizing any of the unitary
_ 1
) [0) = |z) > i 1Y)
y:xyel d
1

0)ly) — > N2

and their inverses

> . cost of realizing

|x>\y>l—>{ — |x) |y) if x € M

|z) |y) otherwise

Quantum Information Theory

24

51




The quantum walk search algorithm

1. Setup the starting state |U)
2. Repeat O(1/+/€) times

(i) reflect through | B)

(ii) reflect through |U)

3. measure the first register and check whether x is marked

Quantum Information Theory
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The Grover/quantum walk picture

|¢)

choose ¢

sin((2t + 1)6)

Quantum Information Theory

|G>
A
one iteration
39 |U>
|B>

sin((2t + 1)8) |G) + cos((2t + 1)6) | B)

S0 ()

1
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Reflection through |U) by applying W (P)

= span{|x) [¢.) : x € V}
vy = |v) ifjlv) e A
= —|v) if|v) e A"

£ span{luy) |y) - y €V}
vy = |v) if|v) € B

= —|v) if|v) € BT

e ref(B)ref(A)

» W (P) is the unitary analogue of P
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Implementing W (P)

—1

Ref(A) : |z) [2) ﬁ—> |z) |0) ———

Ref(B) « [hy) [) L [0 [y)) A0,

» Cost 4U to implement W (P)

Quantum Information Theory

Id®Ref(O)

Ref(O)@Id

) |0) T, ) |)2)
0) |y) T, [y) |Y)
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1. Give a basis of the orthogonal of the space W generated by the |x) |¢;)'s

2. Use this to prove that the previous transformations implement W ( P)

Quantum Information Theory
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1. U ) |y) for y # O are in this space and form necessarily a basis of the space W (dimension
consideration)

T 12y ) 2 [2) y) 220 vy Dy — T () )
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Exercise: Grover reflection vs. W (P) in the complete graph with loops

1. Consider the Grover reflection H®"RH®. What is its effect on the basis {|7) : < € {0,1}"}
where |7) LHEn |3) 2

2. Consider the complete graph with loops, i.e. any x is connected to any other y (including x).
Express the operator W (P) in a basis of A + B that seems the most appropriate to you

3. Compare both results

Quantum Information Theory 31/51




Solution: Grover reflection vs. W (P) in the complete graph with loops

H®*"RH® |0) |0)
H*'RH” [i) = —[i) ifi#0

2. Consider a unitary transform on the HiIbert space V = Span{|z), = € V}, a unitary
def

transform U on V such that U |0) = \/|7 > sev |z) and let |Z) =U |x)
A = Span{|z)|0), z € V}
= Span{|z)|0), = € V}
B = Span{|0)|y), y € V}
ANB = Span{|0)]0)}
W(P)|0)[0) = 10)]0)
W(P)|0)|z) = —10)]z) forz #0
W(P)|z)|0) = —]z)|0) forxz #0
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Theorem 3. Let P be an ergodic and reversible Markov chain. The spectrum of W (P) on
A + B can be characterized by

U) = —=>".cx |z) |¢s) is the unique 1-eigenvector

N
for every eigenvalue \ of P e=*" js an eigenvalue of W (P) where cos 6 = ||

the remaining eigenvalues are —1
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The phase gap

Definition 10. [ ] The phase gap of W (P) is defined as 20 where 0 is the
smallest angle in (0, /2] s.t. cos® is a singular value of P (i.e. cos@ = |\| where X\ is an
eigenvalue of P)

Fact 3.
A(P) > 24/6(P)

%
|

1 — cos@

26

11— 2|

2| sin 6|

24/1 — cos2 6
2V/§

>
AVARNI

1V
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Exercise : implementing Ref(|U))

Use these results to show that Ref(|U)) can be implemented with complexity O (%) calls to
c-W(P).
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Theorem 4. For every unitary operator U acting on m qubits, there exists a quantum circuit
acting on m + s qubits satisfying the following properties

1. the circuit PE(U) uses 2s Hadamard gates, O(s?) controlled phase rotations and makes 2511
calls to c-U

2. for any eigenvector |v) with eigenvalue 1, PE(U) |v) |0%) = |¢) |0%)
3. ifU |¢) = €27 |p) then PE(U) |1) [0°) = [4) |w) where | (0°|w) | = $2C %)
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k> -
k,> g -
k> -
FT s
Q 2
k> H T |
2S—]
|\|j> .......... U
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Realizing Ref(|U))

For an eigenvector |1) of W (P) with eigenvalue e*

9} 10) 25 |9 |8) = (—1)" ) |0)

Quantum Information Theory

PET, (-1)

70 1) |0)
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The complexity of searching with quantum walks

. the cost of constructing |U)

. the cost of the unitary map |z) |y) — (—1)™®) |z) |y) where m(z) = 1
Is « is marked and O otherwise

: 1/4 of the cost of one step of the quantum walk, i.e. of W (P)

Complexity for finding a marked vertex =| S + ﬁ (C’ + %U)

Quantum Information Theory 39/51




Comparison of all the strategies

setup cost
update cost

checking cost

standard search | random walk search amplitude amplification | quantum random walk
repeat % times apply A repeat ﬁ times apply A
— apply A repeat % times — apply ARA™? repeat % times
— check — repeat % times update | — check — repeat % times update
— check — check
1S+ O) S+1(:3U+O) 7=(C +5) S+ (U +C)
Quantum Information Theory 40/51




Let G be the complete graph on IV vertices. Let P be the transition probabilities associated to
the standard random walk associated to G, i.e.

P, = 0

Py, =

1. What are the eigenvalues of P 7
2. What is the spectral gap of P ?

3. What is the cost of finding a marked vertex in GG (the cost is measured in terms of the number
of queries) ?

4. Compare this with Grover's algorithm.
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Solution: the complete graph

1. P has eigenvalue 1 and since P + x—Id has rank 1 = eigenvalue O with multiplicity
N — 1 = P has eigenvalue _ﬁ Wlth mu|t|p||C|ty N — 1.

2. 0

‘2
LI

N—1

3. s e ==
S=U=0
CcC=1

— _1
Cost = O(\/N)
4. Same cost as Grover's algorithm. The Hilbert space is different though.
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The Johnson graph

Definition 11. | ] The has

vertex set the subsets of r elements of {1,--- ,n}
two subsets R and R’ are linked by an edge iff RN R'| =r — 1

Fact 4.

J(n,r) isr(n — r)-regular

r(n—r)

spectral gap 6 =

Quantum Information Theory 43 /51




Quantum Information Theory

13

23

12

34

14

24

44

51




Consider the following collision problem,

Input: a function f : {0,1}" — {0,1}"
Assumes: f is either one-to-one or there is exactly one pair {x, y} such that f(x) = f(y)

and x #£ y
Output: the pair {x, y} that collides for f or () if this pair does not exist.

1. Give the best quantum algorithm based on Grover's problem to solve this problem
2. Give a quantum algorithm based on the Johnson graph to improve on the query complexity of
the previous algorithm

3. By using the lower bound 9(2”/3) on the query complexity of the collision problem for a 2 to
1 function, show that the aforementioned collision problem has a query complexity of Q(2"/3)
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NEgn

1. Algorithm 1:

query f in L random places
check whether the N — L remaining candidates have a collision with one of the L elements

The whole algorithm applies now amplitude amplification on Algorithm 1

Analysis:
Cost of Algorithm 1: L 4+ O(v/N — L) = L 4+ O(V N)
probability of success L /N
Total cost : y/L/N (L + O(v/N — L), optimize = L = +/N gives a total cost of
0(23n/4)
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2. Algorithm:

Choose R random places for f and keep track of their values by f

perform a random walk on the Johnson graph J(IN, R) and check each time if the set of R

elements contains the collision we look for (a vertex is marked iff it contains the collision)
Analysis:

Setup cost S = R + 1 create a uniform superposition over all edges xy of the Johnson
graph and add the values of the set x U y (= r + 1 queries)

Checking cost C' = 0 since checking whether = is marked (contains the collision) does not
require additional query of f

Update cost U = O(1) we have to query at least one new additional element
proportion of marked vertices
RR—-1

£ = —
NN —1

spectral gap 6 = O(1/R)
Total cost:

1 1
S+%<C+%U> = O(R + N/VR)

minimal for R = N2/3 and gives a total query complexity of 0(22”/3)
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3. ldea: randomly choose 1/n preimages for the 2 to 1 function. With probability £2(1) there is a
single collision among them. Use now the optimal collision finding algorithm on them. Assume
that it has query complexity f(IN') when there are N’ elements. We know that

F27%) = Q@)

This implies
f@" = Q@)

proving that the previous collision finding algorithm has optimal query complexity

48 /b1
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Finding a triangle in a graph

Consider the following triangle-finding problem

Input: the adjacency matrix of a graph on n vertices

Output: vertices a, b and ¢ forming a triangle

1. Show the lower bound ©(n?) on the query complexity of a classical algorithm

2. Give a more efficient quantum algorithm based on Johnson's graph

49
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1. Take a bipartite graph with Q(n2) edges. All of them have to checked to verify that there is
no triangle.
2. Consider the Johnson graph J(n, ).

Each vertex = set of r vertices + result of querying all the edges of the induced subgraph.

marked vertex=vertex whose associated subgraph contains one edge of the triangle.
Analysis

e = Q(r’/n”)
Setup cost S = (5)
Update cost U = 2r — 2 =remove information from » — 1 edges + query » — 1 additional

edges
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Checking cost C"
Algorithm for deciding whether for a given subset R of size » and another additional vertex u

whether u forms a triangle with two vertices of R:
Random walk on the Johnson graph J(r, 7*/3) of subsets R’ of size ' = r?/3 of R
spectral gap ~ 1/7“2/3
fraction of marked vertices O (12 /r?) = O(r?/?)
we mark R’ iff it forms the sought triangle with u
setup cost = O (r%/3) (for each vertex v of R’ query whether wuv is an edge)
update cost =0 (1)

Total checking cost = O(r?/?)

Combine this with a Grover search for u = C = O(\/nr?/?)

Total cost: . .
n
s+ (c+—Uu)l=0(r2+= 2/3 3/2)
+\/g< +¢3> <r+r(\/ﬁr + %)

minimal for r = n®/® and query complexity of O(nlg/lo)
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