Lecture 7
 Quantum simulationThe HHL algorithm

February 27, 2020

Plan

1. Quantum simulation
2. The HHL algorithm

1. Quantum simulation; the dream of Feynman

Feynman (1982) "Can physics be simulated by a quantum computer? [...] the full description of quantum mechanics for a large system with R particles has too many variables, it cannot be simulated with a normal computer with a number of elements proportional to $R[\ldots$ but it can be simulated with] quantum computer elements. "

The Hamiltonian

- Dynamical behavior of quantum systems governed by Schrödinger's equation

$$
i \hbar \frac{d}{d t}|\psi\rangle=\mathbf{H}|\psi\rangle
$$

- Key challenge in simulating quantum systems: exponential number of differential equations that have to be solved: a system of n qubits \Rightarrow solving 2^{n} differential equations . . .

Applications of quantum simulation

- Condensed-matter physics
- solving problems that are classically intractable: Hubbard model (simplest model of interactings particles on a lattice), spin systems..;
- understanding phase transitions, disordered systems, high-temperature superconductivity,...
- High-energy physics
- Cosmology
- Atomic and nuclear physics

Application to quantum chemistry

- calculating the thermal rate constant
- obtaining the energy spectrum of a molecular system
- simulate the static and dynamical chemical properties of molecules
- simulate chemical reactions

Exponentiating the Hamiltonian

$$
\begin{aligned}
i \frac{d}{d t}|\psi\rangle & =\mathbf{H}|\psi\rangle \\
& \Downarrow \\
|\psi(t)\rangle & =e^{-i \mathbf{H} t}|\psi(0)\rangle
\end{aligned}
$$

Hamiltonian simulation

Problem 1. [Hamiltonian simulation]

Input: Hamiltonian H acting on n qubits, time $t \in \mathbb{R}^{+}$, accuracy $\varepsilon \in \mathbb{R}^{+}$ Output: a quantum circuit/algorithm implementing a unitary \mathbb{U} which is such that

$$
\left\|e^{i t \mathbf{H}}-\mathbf{U}\right\| \leq \varepsilon
$$

Cost: the number of gates implementing \mathbf{U}

- \mathbf{H} is can be efficiently simulated if the quantum circuit consists of poly $\left(n, t, \frac{1}{\varepsilon}\right)$ gates

Exercise: some simple principles

1. Show that if the unitary transform \mathbf{U} can be efficiently implemented and the Hamiltonian \mathbf{H} be efficiently simulated, then $\mathbf{U H U}^{*}$ can be efficiently simulated
2. if \mathbf{H} is diagonalizable in a basis corresponding to a unitary \mathbf{U} that can be efficiently implemented and if its eigenvalues can be efficiently computed, show that such \mathbf{H} can be efficiently simulated

Solution

1.

$$
\begin{aligned}
e^{i t \mathbf{U H U}}{ }^{*} & =\sum_{i=0}^{\infty} \frac{\left(i t \mathbf{U H} \mathbf{U}^{*}\right)^{i}}{i!} \\
& =\sum_{i=0}^{\infty} \mathbf{U} \frac{(i t \mathbf{H})^{i}}{i!} \mathbf{U}^{*} \\
& =\mathbf{U} e^{i \mathbf{H} t} \mathbf{U}^{*}
\end{aligned}
$$

2. Assume first that \mathbf{H} is diagonalizable in the computational basis. Then \mathbf{H} can be efficiently simulated by performing the following steps

$$
\begin{aligned}
|a, 0\rangle & \mapsto|a, \lambda(a)\rangle \\
& \mapsto e^{i t \lambda(a)}|a, \lambda(a)\rangle \\
& \mapsto e^{i t \lambda(a)}|a, 0\rangle \\
& =e^{i t \mathbf{H}}|a\rangle|0\rangle
\end{aligned}
$$

The general case is handled by using the previous principle

The Hamiltonian encountered in practice

$$
\mathbf{H}=\sum_{j=1}^{m} \mathbf{H}_{i}
$$

where the \mathbf{H}_{i} only involve a few qubits

Method 1: the Lie-Suzuki-Trotter method

- If H_{1} and H_{2} can be efficiently simulated, then \mathbf{H}_{1} and \mathbf{H}_{2} can also be efficiently simulated

Theorem 1.

$$
\left.e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}}+O(\|A\| \cdot\|B\|)\right)
$$

Zassenhaus formula

$$
e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}} e^{-\frac{1}{2}[\mathbf{A}, \mathbf{B}]} \ldots
$$

The method

$$
\begin{aligned}
e^{i \mathbf{H} t} & =\left(e^{i \mathbf{H} t / r}\right)^{r} \\
& =\left(e^{i \mathbf{H}_{1} t / r+i \mathbf{H}_{2} t / r}\right)^{r} \\
& =\left(e^{i \mathbf{H}_{1} t / r} e^{i \mathbf{H}_{2} t / r}+E\right)^{r} \\
& =\left(e^{i \mathbf{H}_{1} t / r} e^{i \mathbf{H}_{2} t / r}\right)^{r}+O(r\|E\|) \\
\|E\| & =O\left(\left\|i \mathbf{H}_{1} t / r\right\| \cdot\left\|i \mathbf{H}_{2} t / r\right\|\right) \\
& =O\left(\left\|\mathbf{H}_{1}\right\| \cdot\left\|\mathbf{H}_{2}\right\| \frac{t^{2}}{r^{2}}\right) \\
\text { choose } r & =O\left(\frac{t^{2}}{\varepsilon\left\|\mathbf{H}_{1}\right\| \cdot\left\|\mathbf{H}_{2}\right\|}\right) \\
\Rightarrow e^{i \mathbf{H} t} & =\left(e^{i \mathbf{H}_{1} t / r} e^{i \mathbf{H}_{2} t / r}\right)^{r}+O(\varepsilon)
\end{aligned}
$$

- In general for a sum of m hamiltonians : $O\left(m t^{2} / \varepsilon\right)$ simulations of individual hamiltonians

Method 2: quantum walk approach

- Dependency in t of the previous approach $O\left(t^{2}\right)$
- Optimal dependency in $t: O(t)$
- Can be obtained by a quantum walk approach

Block encoding

- A recent and flexible approach with a logarithmic dependency in ε
- Assume that \mathbf{A} acts on n qubits with operator norm $\|\mathbf{A}\| \leq 1$ and we know how to implement an $(n+a)$-qubit unitary operator

$$
\mathbf{U}=\left(\begin{array}{ll}
\mathbf{A} & \cdot \\
\cdot & .
\end{array}\right)
$$

Definition 1. [block-encoding] \mathbf{U} is said to be an a-block encoding of A. If

$$
\mathbf{U}=\left(\begin{array}{ll}
\tilde{\mathbf{A}} & . \\
. & \cdot
\end{array}\right) \quad \text { with } \quad\|\mathbf{A}-\tilde{\mathbf{A}}\| \leq \varepsilon
$$

then \mathbf{U} is an (s, a, ε) approximate block encoding of \mathbf{A}

Sparse access

- We assume that \mathbf{A} is s-sparse and have sparse access to \mathbf{A}

$$
\begin{aligned}
O_{A}:|i, j\rangle\left|0^{b}\right\rangle & \mapsto|i, j\rangle\left|A_{i j}\right\rangle \\
O_{r}:|i, \ell\rangle & \mapsto
\end{aligned}|i, r(i, \ell)\rangle,
$$

where

- $A_{i j}$ is a b-bit description of $A_{i j}$,
- $r(i, \ell)$ denotes the location of the ℓ-th nonzero entry of the i-th row of \mathbf{A},
- $c(\ell, j)$ denotes the location of the ℓ-th nonzero entry of the j-th column of \mathbf{A}

Exercise

Let

$$
\begin{aligned}
W_{1}:|0\rangle\left|0^{n}\right\rangle|j\rangle & \mapsto \frac{1}{\sqrt{s}}|0\rangle \sum_{k: A_{k j} \neq 0}|k, j\rangle \\
W_{2}:|0\rangle|k, j\rangle\left|0^{b}\right\rangle & \mapsto\left(A_{k j}|0\rangle+\sqrt{1-\mid A_{k j}^{2}}|1\rangle\right)|k, j\rangle\left|0^{b}\right\rangle \\
W_{3}:|0\rangle\left|0^{n}\right\rangle|i\rangle & \mapsto \frac{1}{\sqrt{s}}|0\rangle \sum_{\ell: A_{i \ell} \neq 0}|i, \ell\rangle
\end{aligned}
$$

We assume $s=2^{m}$.

1. Show how to implement W_{1} and W_{3} using an O_{c} and O_{r} queries and a few other A-independent gates.
2. Show how to implement W_{2} using an O_{A}-query, an O_{A}^{-1}-query, and a few other A-independent gates.
3. Show that the $\left(0^{n+1} i, 0^{n+1} j\right)$-entry of $W_{3}^{-1} W_{1}$ is exactly $1 / s$ if $A_{i j} \neq 0$, and is 0 if $A_{i j}=0$
4. Show that the $\left(0^{n+1} i, 0^{n+1} j\right)$-entry of $W_{3}^{-1} W_{2} W_{1}$ is exactly $A_{i j} / s$

Solution

1.

$$
\begin{aligned}
|0\rangle\left|0^{n}\right\rangle|j\rangle \xrightarrow{\mathbf{I d} \otimes \mathbf{H}^{\otimes m} \otimes \mathbf{I d}} \quad & \sum_{\ell} \frac{1}{\sqrt{s}}|0\rangle|\ell\rangle|j\rangle \\
\xrightarrow{\mathbf{I d} \otimes 0_{c}} \quad & \sum_{\ell} \frac{1}{\sqrt{s}}|0\rangle|c(\ell, j)\rangle|j\rangle \\
= & \frac{1}{\sqrt{s}}|0\rangle \sum_{k: A_{k j} \neq 0}|k, j\rangle
\end{aligned}
$$

2.

$$
\begin{aligned}
R(\theta) & \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
\theta & =\cos ^{-1}\left(A_{k j}\right) \\
R_{j} & \stackrel{\text { def }}{=} R\left(2 \pi / 2^{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
|0\rangle|k, j\rangle\left|0^{b}\right\rangle & \xrightarrow{\mathrm{Id} \otimes O_{A}} \quad|0\rangle|k, j\rangle\left|A_{k j}\right\rangle \\
& \xrightarrow{\mathrm{Id} \otimes \cos ^{-1}} \quad|0\rangle|k, j\rangle\left|\theta_{k j}\right\rangle \\
& \xrightarrow{\mathrm{c}-R} \quad\left(\cos \theta_{k j}|0\rangle+\sin \theta_{k j}|1\rangle\right)|k, j\rangle\left|\theta_{k j}\right\rangle \\
& \xrightarrow{\mathbf{I d} \otimes \cos }\left(A_{k j}|0\rangle+\sqrt{1-A_{k j}^{2}}|1\rangle\right)|k, j\rangle\left|A_{k j}\right\rangle \\
& \xrightarrow{\mathbf{I d} \otimes O_{A}^{-1}}\left(A_{k j}|0\rangle+\sqrt{1-A_{k j}^{2}}|1\rangle\right)|k, j\rangle\left|0^{b}\right\rangle
\end{aligned}
$$

3.

$$
\left\langle 0^{n+1}\right|\langle i| W_{3}^{*} W_{1}\left|0^{n+1}\right\rangle|j\rangle=\frac{1}{s} \text { if } A_{i j} \neq 0 \text { and } 0 \text { otherwise }
$$

4.

$$
\left\langle 0^{n+1}\right|\langle i| W_{3}^{*} W_{2} W_{1}\left|0^{n+1}\right\rangle|j\rangle=\frac{A_{i j}}{s}
$$

Low-degree approximation

- We want to implement

$$
\mathbf{v}=\left(\begin{array}{ll}
\mathbf{A} & . \\
& . \\
& .
\end{array}\right)
$$

given a block encoding of \mathbf{A},

$$
U:\left|0^{a}\right\rangle|\psi\rangle \mapsto\left|0^{a}\right\rangle \mathbf{A}|\psi\rangle+\sum_{j>0}|j\rangle\left|\psi_{j}\right\rangle
$$

examples of interest:

- $f(x)=e^{i x t}$
- $f(x)=\frac{1}{x}$
- We have a degree polynomial P approximating f

Theorem 2. Let $P:[-1,1] \rightarrow\{z \in \mathbb{C}:|z| \leq 1 / 4\}$ be a degree-d polynomial and let U an (s, a, ε) approximate block encoding of \mathbf{A}. We can implement an ($1, a+2,4 d \sqrt{\varepsilon / s}$) approximate block encoding of $P(\mathbf{A} / s)$ with d applications of \mathbf{U} and \mathbf{U}^{*}, a single application of $c-\mathbf{U}$ and $O(a d)$ other 1 and 2-qubit gates

Exercise

Show that a sufficiently large constant c can be chosen such that for all hermitian \mathbf{A} with operator norm $\|\mathbf{A}\| \leq 1$, we have

$$
\left\|e^{i t \mathbf{A}}-\sum_{k=0}^{c(t+\log (1 / \varepsilon))-1} \frac{(i t \mathbf{A})^{k}}{k!}\right\| \leq \varepsilon
$$

Solution

$$
\begin{aligned}
\left\|e^{i t \mathbf{A}}-\sum_{k=0}^{c(t+\log (1 / \varepsilon))-1} \frac{(i t \mathbf{A})^{k}}{k!}\right\| & =\left\|\sum_{k=c(t+\log (1 / \varepsilon))}^{\infty} \frac{(i t \mathbf{A})^{k}}{k!}\right\| \\
& \leq \sum_{k=c(t+\log (1 / \varepsilon))}^{\infty}\left(\frac{t e}{k}\right)^{k} \\
& \leq \sum_{k=c(t+\log (1 / \varepsilon))}^{\infty}\left(\frac{e}{c}\right)^{k} \\
& \leq \frac{\left(\frac{e}{c}\right)^{c(t+\log (1 / \varepsilon))}}{1-\frac{e}{c}}
\end{aligned}
$$

Let $c=e^{2}$

$$
\begin{aligned}
\left\|e^{i t \mathbf{A}}-\sum_{k=0}^{c(t+\log (1 / \varepsilon))-1} \frac{(i t \mathbf{A})^{k}}{k!}\right\| & \leq \frac{\left(\varepsilon \frac{1}{e^{e^{2} t}}\right)}{1-\frac{1}{e}} \\
& \leq \varepsilon
\end{aligned}
$$

Hamiltonian simulation via transforming block-encoded matrices

- Approximate $f(x)=e^{i x t}$ with a degree $d=O(t+\log (1 / \varepsilon))$ polynomial P
- If \mathbf{H} is s-sparse \Rightarrow block encoding \mathbf{U} of \mathbf{H} / s using $O(1)$ queries to \mathbf{H} and $O(n)$ other gates evolving \mathbf{H} for time $t=$ evolving \mathbf{H} / s for time $s t$
- Previous theorem \Rightarrow block-encoding \mathbf{V} of $P(x) \approx \frac{e^{i t \mathbf{H}}}{4}$ by invoking \mathbf{U} an $\mathbf{U}^{-1} O(s t+$ $\log (1 / \varepsilon))$ times and mapping

$$
\mathbf{V}:|0\rangle|\psi\rangle \mapsto|0\rangle P(\mathbf{H})|\psi\rangle+|\phi\rangle
$$

where $|\phi\rangle$ has no support on basis states starting with $|0\rangle$

- Complexity of ε-precise Hamiltonian simulation of s-sparse \mathbf{H} is $O(s t+\log (1 / \varepsilon))$ queries to \mathbf{H} and $O(n(s t+\log (1 / \varepsilon))) 2$-qubit gates

The HHL algorithm

$$
\begin{aligned}
N & \stackrel{\text { def }}{=} 2^{n} \\
\mathrm{~A} & \in \mathbb{C}^{N \times N} \\
\mathrm{~b} & \in \mathbb{C}^{N}
\end{aligned}
$$

$$
\text { Find } \mathrm{x} \text { s.t. } \mathbf{A x}=\mathrm{b}
$$

Problem 2. [quantum linear system problem (QLSP)] Find an n-qubit state $|\hat{\mathrm{x}}\rangle$ such that
(i) $\||\mathrm{x}\rangle-|\hat{\mathbf{x}}\rangle \| \leq \varepsilon$
(ii) $\mathbf{A x}=\mathbf{b}$

Assumptions

1. \mathbf{A} is non-singular
2. $|b\rangle$ can be prepared using a circuit of $B 2$-gates
3. \mathbf{A} is s-sparse
4. $\lambda_{i} \in(0,1]$ for all i where $\lambda_{1}, \cdots, \lambda_{N}$ are the singular values of \mathbf{A}

Complexity

$$
\kappa \stackrel{\text { def }}{=} \frac{\max _{j} \mu_{j}}{\min _{j} \mu_{j}}
$$

Problem	Algorithm	Complexity
LSP	Conjugate Gradient	$O(N s \kappa \log (1 / \varepsilon))$
QLSP	HHL 2009	$O\left(\frac{s^{2} \kappa^{2} \log N}{\varepsilon}\right)$
QLSP	VTAA-HHL (Ambainis 2010)	$O\left(\frac{s^{2} \kappa \log N}{\varepsilon}\right)$
QLSP	Childs et al 2017	$O(s \kappa$ polylog $(s \kappa / \varepsilon))$
QLSP	QLSA 2018	$O\left(\frac{\kappa^{2} \operatorname{polylog}(n) \sqrt{\operatorname{Tr}\left(\mathbf{A A A}^{*}\right)}}{\varepsilon}\right)$

Application: recommendation system

Problem 3. [Recommendation system] An unknown (hidden) $m \times n$ binary matrix \mathbf{P} modelling customers preferences and \mathbf{P} is of low rank k. For a customer i one should output columns j such that it is likely that $P_{i j}=1$.

- Quantum algorithm based on HHL that is of complexity $O($ poly $(k) \operatorname{polylog}(m n))$ (we do not use all the entries of $\mathbf{P}!$)

Application: support vector machine

Problem 4. [Support Vector Machine]

Input: M training data points of the form $\left\{\left(x_{i}, y_{i}\right), x_{i} \in \mathbb{R}^{N}, y_{i}= \pm 1\right\}_{i=1 \cdots M}$ Output: $\mathrm{w} \in \mathbb{R}^{N}$ and b that minimizes $\|\mathrm{w}\|$ under the constraint $y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1$

- best classical algorithm takes poly (M, N) whereas quantum complexity $O(\log (M N))$

Exercise: solving a Boolean system

1. Solve the following system over \mathbb{F}_{2} :

$$
\left\{\begin{array}{lll}
x_{1} x_{2}+x_{1} x_{3} & = & 0 \\
x_{1} x_{3}+x_{2} x_{3}+x_{2} x_{4} & = & 1 \\
x_{1} x_{2}+x_{2} x_{3} & = & 0 \\
x_{1} x_{2}+x_{2} x_{4} & = & 1
\end{array}\right.
$$

2. Outline a strategy for solving a polynomial system involving the multiplication of the polynomial equations by all monomials of degree $\leq D$
3. Can you associate to a polynomial system over \mathbb{F}_{2} a polynomial system over \mathbb{C} that has as only solutions the solutions of the previous system ?
4. What happens if you apply HHL to this system over \mathbb{C} ?

Exercise : A hermitian ?

1. Give a $2 N \times 2 N$ hermitian matrix \mathbf{A}^{\prime} and $\mathbf{b}^{\prime} \in \mathbb{C}^{2 N}$ such that a solution \mathbf{x} of $\mathbf{A x}=\mathbf{b}$ can be read off from a solution \mathbf{x}^{\prime} to $\mathbf{A}^{\prime} \mathbf{x}=\mathbf{b}^{\prime}$
2. Relation between the condition number of \mathbf{A} and \mathbf{A}^{\prime} ?

Solution

1.

$$
\begin{aligned}
\mathbf{A}^{\prime} & =\left(\begin{array}{cc}
0 & \mathbf{A}^{\top} \\
\mathbf{A} & 0
\end{array}\right) \\
\mathbf{b}^{\prime} & =\binom{0}{\mathbf{b}} \\
\mathbf{x}^{\prime} & =\binom{0}{\mathbf{x}}
\end{aligned}
$$

2.

$$
\begin{aligned}
\mathbf{A}^{\prime 2} & =\left(\begin{array}{cc}
\mathbf{A}^{\top} \mathbf{A} & 0 \\
0 & \mathbf{A} \mathbf{A}^{\top}
\end{array}\right) \\
& \Downarrow \\
\kappa(\mathbf{A}) & =\kappa\left(\mathbf{A}^{\prime}\right)
\end{aligned}
$$

Approach

- We assume that

$$
\begin{aligned}
\mathbf{x} & =\mathbf{A}^{-1} \mathbf{b} \\
\mathbf{A} & =\sum_{j} \lambda_{j} \mathbf{u}_{j} \mathbf{u}_{j}^{\top} \\
\mathbf{A}^{-1} \mathbf{u}_{j} & \mapsto \frac{1}{\lambda_{j}} \mathbf{u}_{j} \\
\mathbf{b} & =\sum_{j} \beta_{j} \mathbf{u}_{j} \\
\mathbf{A}^{-1} \mathbf{b} & =\sum_{j} \frac{\beta_{j}}{\lambda_{j}} \mathbf{u}_{j}
\end{aligned}
$$

- Problem: \mathbf{A}^{-1} is not unitary in general
- \mathbf{A} is hermitian $\Rightarrow e^{i \mathbf{A}}$ is unitary

Phase estimation

Theorem 3. For every unitary operator U acting on m qubits, there exists a quantum circuit $\mathrm{PE}(U)$ acting on $m+s$ qubits satisfying the following properties

1. the circuit $\mathbf{P E}(U)$ uses $2 s$ Hadamard gates, $O\left(s^{2}\right)$ controlled phase rotations and makes 2^{s+1} calls to c- U
2. maps with probability $1-1 / \operatorname{poly}(n)$

$$
\sum_{j} \alpha_{j}\left|\psi_{j}\right\rangle|0\rangle \mapsto \sum_{j} \alpha_{j}\left|\psi_{j}\right\rangle\left|\tilde{\theta}_{j}\right\rangle
$$

where $\left|\psi_{j}\right\rangle$ are the eigenvectors of $\mathbf{U}, e^{i \theta_{j}}$ is the associated eigenvalue and $\left|\theta_{j}-\tilde{\theta}_{j}\right| \leq 2^{-m}$

The circuit of phase estimation

Approach (II)

- With Hamiltonian simulation we can implement $e^{i \mathbf{A}}$

$$
\begin{aligned}
|0\rangle|0\rangle\left|v_{i}\right\rangle & \stackrel{\mathrm{PE}}{\mapsto}|0\rangle\left|\lambda_{j}\right\rangle\left|v_{j}\right\rangle \\
& \mapsto \\
& \left.\stackrel{1}{\kappa \mathrm{PE}_{j}^{-1}}|0\rangle+\sqrt{1-\frac{1}{\left(\kappa \lambda_{j}\right)^{2}}}|1\rangle\right)\left|\lambda_{j}\right\rangle\left|v_{j}\right\rangle \\
V:\left|v_{i}\right\rangle|0\rangle|0\rangle & \mapsto \\
\kappa \lambda_{j} & \left.\mapsto\rangle+\sqrt{1-\frac{1}{\left(\kappa \lambda_{j}\right)^{2}}}|1\rangle\right)|0\rangle\left|v_{j}\right\rangle \\
& \left|v_{j}\right\rangle|0\rangle\left(\frac{1}{\kappa \lambda_{j}}|0\rangle+\sqrt{1-\frac{1}{\left(\kappa \lambda_{j}\right)^{2}}}|1\rangle\right)
\end{aligned}
$$

Approach (III)

$$
\begin{aligned}
|0\rangle|b\rangle & =|0\rangle \sum_{j} \beta_{j}\left|v_{j}\right\rangle \\
& \stackrel{\mathrm{v}}{\mapsto}\left(\frac{1}{\kappa \lambda_{j}}|0\rangle+\sqrt{1-\frac{1}{\left(\kappa \lambda_{j}\right)^{2}}}|1\rangle\right) \sum_{j} \beta_{j}\left|v_{j}\right\rangle \\
& =K|0\rangle|x\rangle+|1\rangle|\phi\rangle
\end{aligned}
$$

Exercise

1. Show that the probability of measuring $|0\rangle$ in the first register is $\geq \frac{1}{\kappa^{2}}$
2. How can this probability be improved?

Solution

1. Let $p=\operatorname{Prob}($ meas. 0$)$, then

$$
p=\sum_{i} \frac{\left|\beta_{i}\right|^{2}}{\lambda_{i}^{2} \kappa^{2}} \geq \sum_{i} \frac{\left|\beta_{i}\right|^{2}}{\kappa^{2}} \geq \frac{1}{\kappa^{2}}
$$

2. amplitude amplification $\Rightarrow O(\kappa)$ calls of the algorithm for having a probability of success $\Omega(1)$

Exercise

Give a quantum circuit performing

$$
|0\rangle\left|\lambda_{j}\right\rangle \mapsto\left(\frac{1}{\kappa \lambda_{j}}|0\rangle+\sqrt{1-\frac{1}{\left(\kappa \lambda_{j}\right)^{2}}}|1\rangle\right)\left|\lambda_{j}\right\rangle
$$

Circuit

Complexity

- Leads to an algorithm that produces a state $|\tilde{x}\rangle$ that is ε-close to $|x\rangle$ using $\kappa^{2} s / \varepsilon$ queries to A and roughly $\kappa s(\kappa n / \varepsilon+B)$ other 2-qubit gates

Improving the efficiency of HHL

- Use the block encoding method of quantum simulation to perform $f(\mathbf{A})$ with

$$
\begin{aligned}
f(x) & \stackrel{\text { def }}{=} \frac{1-\left(1-x^{2}\right)^{b}}{x} \\
b & =\kappa^{2} \ln (\kappa / \varepsilon)
\end{aligned}
$$

- Complexity: $O\left(\kappa^{2} s \log (\kappa / \varepsilon)\right)$ queries to \mathbf{A} and $O(\kappa s(\kappa n \log (\kappa / \varepsilon)+B))$ 2-qubit gates

Exercise

1. Let $I=[-1,-1 / \kappa] \cup[1 / \kappa, 1]$. Give an upperbound on $\left|f(x)-\frac{1}{x}\right|$ on I.
2. Show that the polynomial $p(x)=f(x) /(4(\kappa+\varepsilon))$ meets the conditions of Theorem 1

Solution

