Quantum error correcting codes

March 4

Plan

- 1. Introduction
- 2. The Shor code
- 3. CSS codes
- 4. Stabilizer codes
- 5. More general error models

1.Introduction

Constructing a quantum computer

\Rightarrow
error protection mechanism : impossibility to be completely isolated from the environment : decoherence

Very tough issue?

- Problem 1: Not enough to protect $|0\rangle$ and $|1\rangle$, every linear combination $\alpha|0\rangle+\beta|1\rangle$ must be protected as well
- Problem 2 : Much richer error model than for classical bits
- Problem 3: Impossibility result ("no cloning theorem")
- Problem 4 : Measure modifies the qubit !

2. A first example : the Shor code

Error model

Much richer error model than for bits

- qubit inversion(X)

$$
\begin{array}{ll}
|0\rangle & \rightarrow|1\rangle \\
|1\rangle & \rightarrow|0\rangle
\end{array}
$$

- phase error (Z)

$$
\begin{array}{cc}
|0\rangle & \rightarrow|0\rangle \\
|1\rangle & \rightarrow-|1\rangle
\end{array}
$$

- both! (Y)

$$
\begin{array}{cc}
|0\rangle & \rightarrow-i|1\rangle \\
|1\rangle & \rightarrow i|0\rangle
\end{array}
$$

The Pauli group

single qubit Pauli group \mathcal{G}_{1} :

$$
\{ \pm I, \pm X, \pm Y, \pm Z, \pm i I, \pm i X, \pm i Y, \pm i Z\}
$$

Pauli group over n qubits $\mathcal{G}_{n}: \mathcal{G}_{1} \otimes \mathcal{G}_{1} \cdots \otimes \mathcal{G}_{1}$

$$
\mathcal{G}_{n} \equiv\{I, X, Y, Z\}^{n} \times\{ \pm 1, \pm i\}
$$

Two error models

- Depolarizing channel : each qubit undergoes an error X, Y, Z with probability $\frac{p}{3}$, and is not modified with probability $1-p$.
- Quantum erasure channel : each qubit is erased with probability p (and it is known if the qubit has been erased or not). when the qubit is not erased, it is not affected by any noise. If erased, the qubit undergoes a transformation I, X, Y, Z with probability $\frac{1}{4}$ for each of them

A code correcting one qubit inversion

$$
\begin{aligned}
|0\rangle & \rightarrow|000\rangle \\
|1\rangle & \rightarrow|111\rangle
\end{aligned}
$$

This is NOT the repetition code!

$$
\begin{array}{cc}
\alpha|0\rangle+\beta|1\rangle & \rightarrow \\
& \neq \\
& (\alpha|0\rangle+\beta|1\rangle)^{\otimes 3}
\end{array}
$$

Exercise

Give a circuit that realizes the encoding, i.e. a circuit performing the unitary transformation

$$
\begin{array}{rll}
|0\rangle|00\rangle & \mapsto & |000\rangle \\
|1\rangle|00\rangle & \mapsto & |111\rangle
\end{array}
$$

Solution

An example

$$
\begin{gathered}
\alpha|000\rangle+\beta|111\rangle \\
\vdots \\
\alpha|010\rangle+\beta|101\rangle
\end{gathered} \text { error } X \text { on the } 2 \text {-th qubit }
$$

Idea

Measure without destroying the state, for $|x, y, z\rangle$ "observe" $y \oplus z, x \oplus z$:

$$
\begin{gathered}
\Longleftrightarrow \\
\text { measure according to } C \oplus C_{1} \oplus C_{2} \oplus C_{3} . \\
\operatorname{Code}=\operatorname{Vect}(|000\rangle,|111\rangle) \\
C_{1}=\operatorname{Vect}(|100\rangle,|011\rangle) C_{2}=\operatorname{Vect}(|010\rangle,|101\rangle) C_{3}=\operatorname{Vect}(|001\rangle,|110\rangle)
\end{gathered}
$$

Example : error on the 2-th qubit

$$
\begin{array}{cl}
\alpha|010\rangle+\beta|101\rangle & \\
\downarrow & \text { measure: "we are in } C_{2} " \\
\alpha|010\rangle+\beta|101\rangle & \text { N.B. same state! } \\
\downarrow & \text { inverting 2-th qubit } \\
\alpha|000\rangle+\beta|111\rangle &
\end{array}
$$

Exercise

Give a circuit that performs the decoding

Solution

More general errors can also be corrected:

$$
|000\rangle \rightsquigarrow a|000\rangle+b|100\rangle+c|010\rangle+d|001\rangle
$$

Same decoding algorithm : measure according to $C \oplus C_{1} \oplus C_{2} \oplus C_{3}$:

- with prob. $|a|^{2}$ observe " no error" and get $|000\rangle$,
- with prob. $|b|^{2}$ observe "error on the first qubit", after measuring we get $|100\rangle$ and invert the first qubit.
\} This code is useless against Z errors :

$$
\alpha|000\rangle+\beta|111\rangle \rightsquigarrow \alpha|000\rangle-\beta|111\rangle \in C
$$

error of type $Z=$ error of type X in the basis

$$
\begin{aligned}
\left|\psi_{0}\right\rangle & \stackrel{\text { def }}{=} \frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
\left|\psi_{1}\right\rangle & \stackrel{\text { def }}{=} \frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{aligned}
$$

In this base the error acts as:

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle \rightsquigarrow\left|\psi_{1}\right\rangle \\
& \left|\psi_{1}\right\rangle \rightsquigarrow\left|\psi_{0}\right\rangle
\end{aligned}
$$

This gives the following encoding :

$$
\alpha|0\rangle+\beta|1\rangle \rightarrow \alpha\left|\psi_{0}\right\rangle\left|\psi_{0}\right\rangle\left|\psi_{0}\right\rangle+\beta\left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle .
$$

Exercise

Give the corresponding encoding circuit, i.e. a circuit that corresponds to the unitary transform U such that

$$
\begin{array}{lll}
|0\rangle|00\rangle & \mapsto & \left|\psi_{0}\right\rangle\left|\psi_{0}\right\rangle\left|\psi_{0}\right\rangle \\
|1\rangle|00\rangle & \mapsto & \left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle
\end{array}
$$

Solution

Concatenation

Correcting both types of error

codage protecteur codage protecteur contre les erreurs (P) contre les erreurs (I)

Encoding

$$
\begin{aligned}
|0\rangle \rightarrow(|0\rangle+|1\rangle)^{\otimes 3} & \rightarrow(|000\rangle+|111\rangle)^{\otimes 3} \\
|1\rangle \rightarrow(|0\rangle-|1\rangle)^{\otimes 3} & \rightarrow(|000\rangle-|111\rangle)^{\otimes 3}
\end{aligned}
$$

Decoding

$$
\begin{gathered}
(|010\rangle+|101\rangle)(|100\rangle-|011\rangle)(|000\rangle+|111\rangle) \\
\downarrow \text { correct the }(X) \text { errors } \\
(|000\rangle+|111\rangle)(|000\rangle-|111\rangle)(|000\rangle+|111\rangle) \\
\downarrow \text { correct the }(Z) \text { errors } \\
(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)
\end{gathered}
$$

Exercise

1. Show that the Shor code corrects all X, Y and Z errors on one qubit
2. Find an error on 2 qubits which can not be corrected by Shor's code

Solution

1. done in one step for X and Z errors, Y errors are corrected in two steps since $Y=i X Z$
2. two X errors on the same block
3. The CSS codes

3. The CSS codes

- CSS = Calderbank-Shor-Steane codes
- A construction of quantum codes from classical codes
- Shor's code is a CSS code
- Construction based on two classical codes: the first one corrects X errors, the other Z errors

Classical linear code

Definition 1. [binary linear code] A binary linear code C is a subspace of \mathbb{F}_{2}^{n}
Can be specified by a basis

$$
\mathcal{C}=\operatorname{Vect}\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}\right\}
$$

Definition 2. [length and dimension] n is the length of \mathcal{C} and k the dimension of \mathcal{C} as a subspace of \mathbb{F}_{2}^{n} is the dimension of the code

Definition 3. [Generator matrix] The generator matrix of a code \mathcal{C} is a matrix G whose rows span the code

$$
\mathcal{C}=\left\{\mathbf{x} \mathbf{G} \mid \mathbf{x} \in \mathbb{F}_{2}^{k}\right\} .
$$

Parity-check matrix and dual code

Definition 4. [dual code] The dual code $\mathcal{C} \perp$ of a linear code $\mathcal{C} \subset \mathbb{F}_{2}^{n}$ is defined by

$$
C \stackrel{\perp \text { def }}{=}\left\{\mathbf{x} \in \mathbb{F}_{2}^{n}: \mathbf{x} \cdot \mathbf{c}=0, \forall \mathbf{c} \in \mathbb{C}\right\}
$$

Definition 5. [parity-check matrix] The parity-check matrix of a linear code \mathcal{C} of dimension k and length n is an $(n-k) \times n$ matrix H whose kernel is the code:

$$
\mathcal{C}=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{H} \mathbf{x}^{t}=0\right\} .
$$

Minimum distance

Definition 6. [minimum distance] The minimum distance d

$$
d \stackrel{\text { def }}{=} \min \left\{d_{H}(x, y) ; x \neq y \in \operatorname{code}\right\}
$$

d_{H} : Hamming distance
Fact 1.

$$
d=\min \left\{w_{H}(x), x \neq 0 \in \operatorname{code}\right\}
$$

w_{H} : Hamming weight
error correction capacity: $\stackrel{\text { def }}{=}\left\lfloor\frac{d-1}{2}\right\rfloor=$ maximum number of errors that are always corrected by a decoder which outputs the closest codeword

Exercise: proving that there are codes with large minimum

 distanceWe assume here that a binary code \mathcal{C} of length n is drawn at random by choosing an $(n-k) \times n$ parity-check matrix for it uniformly at random.

1. Let $\mathbf{x} \in \mathbb{F}_{2}^{n} \backslash\{0\}$. Compute $\operatorname{Prob}(x \in \mathcal{C})$
2. Compute $\mathbb{E}\left(n_{t}\right)$ where $n_{t} \stackrel{\text { def }}{=}$ number of codewords in \mathcal{C} of weight t
3. What is $\mathbb{E}\left(n_{\leq t}\right)$ where $n_{\leq t} \xlongequal{\text { def }}$ number of non-zero codewords of weight $\leq t$?
4. What can you say when $\mathbb{E}\left(n_{\leq t}\right)<1$?
5. Let $h(x) \stackrel{\text { def }}{=}-x \log _{2}(x)-(1-x) \log _{2}(1-x)$. By using $\sum_{i=1}^{t-1}\binom{n}{i} \leq 2^{n h(t / n)}$ which holds whenever $t / n \leq 1 / 2$ prove that there exists a code of minimum distance $\geq t$ and dimension $\geq k$ as soon as

$$
1-h(t / n)>k / n
$$

Solution

1. $\operatorname{Prob}(\mathrm{x} \in \mathcal{C})=\frac{1}{2^{n-k}}$
2.

$$
\begin{aligned}
n_{t} & =\sum_{x:|x|=t} 1_{x \in \mathcal{C}} \\
\Rightarrow \mathbb{E}\left(n_{t}\right) & =\sum_{x:|x|=t} \mathbb{E}\left(1_{x \in \mathcal{C}}\right) \\
& =\sum_{x:|x|=t} \operatorname{Prob}(x \in \mathcal{C}) \\
& =\frac{\binom{n}{t}}{2^{n-k}}
\end{aligned}
$$

3.

$$
\begin{aligned}
n_{\leq t} & =\sum_{s=1}^{t} n_{s} \\
\Rightarrow \mathbb{E}\left(n_{\leq t}\right) & =\sum_{s=1}^{t} \mathbb{E}\left(n_{s}\right) \\
& =\frac{\sum_{s=1}^{t}\binom{n}{s}}{2^{n-k}}
\end{aligned}
$$

4. When $\mathbb{E}\left(n_{\leq t}\right)<1$ there exists a code in this family of minimum distance $\geq t+1$
5. Since $\mathbb{E}\left(n_{\leq t-1}\right) \leq 2^{n h(t / n)+k-n}<1$ if $1-h(t / n)>k / n$ we have the desired result (and the code is necessarily of dimension $\geq k$).

CSS Construction

- defined from two binary linear codes \mathcal{C}_{X} and \mathcal{C}_{Z} satisfying

$$
\mathcal{C}_{Z}^{\perp} \subset \mathcal{C}_{X}
$$

Definition 7. [CSS code] The CSS code associated to the pair $\left(\mathcal{C}_{X}, \mathcal{C}_{Z}\right)$ is the quantum code generated by the basis

$$
|\bar{w}\rangle=\frac{1}{\sqrt{2^{k_{Z}^{\perp}}}} \sum_{v \in C_{\frac{1}{Z}}^{\perp}}|v+w\rangle
$$

where w is a set of representatives of the 2^{k} cosets of \mathcal{C}_{Z}^{\perp} in \mathcal{C}_{X} where

$$
k \stackrel{\text { def }}{=} \operatorname{dim}\left(C_{X}\right)-\underbrace{C_{Z}^{\perp}}_{k_{\frac{1}{Z}}}
$$

Exercise : the Shor code

Show that the following codes are CSS codes and give $\left(\mathcal{C}_{X}, \mathcal{C}_{Z}\right)$ for them

1. Vect $\{|000\rangle,|111\rangle\}$
2. Vect $\left\{(|0\rangle+|1\rangle)^{\otimes 3},(|0\rangle-|1\rangle)^{\otimes 3}\right\}$
3. the Shor code Vect $\left\{(|000\rangle+|111\rangle)^{\otimes 3},(|000\rangle-|111\rangle)^{\otimes 3}\right\}$

Solution

2.

$$
\begin{aligned}
\mathcal{C}_{Z}^{\perp} & =\{000\} \\
\mathcal{C}_{Z} & =\{0,1\}^{3} \\
\mathbf{G}_{X} & =\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{C} & =\text { Vect }\left\{\sum_{x:|x| \text { even }}|x\rangle+\sum_{x:|x| \text { odd }}|x\rangle, \sum_{x:|x| \text { even }}|x\rangle-\sum_{x:|x| \text { odd }}|x\rangle\right\} \\
& =\text { Vect }\left\{\sum_{x:|x| \text { even }}|x\rangle, \sum_{x:|x| \text { odd }}|x\rangle\right\} \\
\mathcal{C}_{Z}^{\perp} & =\{000,011,101,110\}, \quad \mathbf{G}_{Z}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \\
\mathcal{C}_{X} & =\{0,1\}^{3}
\end{aligned}
$$

3.

$$
\begin{aligned}
\mathbf{G}_{X} & =\left(\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right) \\
\mathbf{H}_{Z} & =\left(\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \\
\mathbf{G}_{Z} & =\left(\begin{array}{lllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Exercise: the Steane code

Let $\mathcal{C}_{X}=\mathcal{C}_{Z}$ be given by the following parity matrix

$$
\mathbf{H}=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

1. Prove that $\mathbf{H H}^{\top}=0$
2. Prove that $\mathcal{C}_{Z}^{\perp} \subset \mathcal{C}_{X}$
3. Give a description of the CSS code associated to $\left(\mathcal{C}_{X}, \mathcal{C}_{Z}\right)$

Solution

1. obvious
2. obvious
3. C_{X} and C_{Z} have as generator matrix

$$
\mathbf{G}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The first row of \mathbf{G} and the all 1 vector $\mathbf{1}$ does not belong to C_{Z}^{\perp}. The code is generated by the two states

$$
\begin{aligned}
|\overline{0}\rangle & =\sum_{v \in \mathcal{C}_{\frac{1}{Z}}}|v\rangle \\
|\overline{1}\rangle & =\sum_{v \in \mathcal{C}_{\frac{1}{Z}}}|\mathbf{1}+v\rangle
\end{aligned}
$$

Action of $t X$ errors on a CSS code

$\mathbf{e} \in\{0,1\}^{n}$ s.t. $|\mathbf{e}|=t$ and

$$
\frac{1}{\sqrt{2^{k_{Z}^{\perp}}}} \sum_{\mathbf{v} \in C_{\frac{1}{Z}}^{\perp}}|\mathbf{v}+\mathbf{w}\rangle \rightsquigarrow \frac{1}{\sqrt{2^{k^{\frac{1}{Z}}}}} \sum_{\mathbf{v} \in C_{Z}^{\perp}}|\mathbf{v}+\mathbf{w}+\mathbf{e}\rangle
$$

- The affine spaces $\mathbf{x}+\mathcal{C}_{X}$ in $\{0,1\}^{n}$ are disjoint \Rightarrow the spaces Vect $\left\{\left|\mathbf{x}+\mathbf{c}_{X}\right\rangle, \mathbf{c}_{X} \in \mathcal{C}_{X}\right\}$ define a projective measurement
- We recover e if $2 t+1 \leq d_{X}, d_{X} \stackrel{\text { def }}{=}$ minimum distance of C_{X}.
- Action of C_{X} : correct X errors

Action of $t Z$ errors on a CSS code

$\mathbf{e} \in\{0,1\}^{n}$ s.t. $|e|=t$ representing phase errors

Idea : correct phase errors by correcting X errors in the Hadamard basis Reminder:

$$
H^{\otimes n}:|x\rangle \rightarrow \frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{x \cdot y}|y\rangle
$$

Correcting phase errors

$$
\frac{1}{\sqrt{2^{k \frac{1}{Z}}}} \sum_{\mathbf{v} \in C_{\frac{1}{Z}}^{\perp}}(-1)^{(\mathbf{v}+\mathbf{w}) \cdot \mathbf{e}}|\mathbf{v}+\mathbf{w}\rangle \stackrel{H^{\otimes n}}{\mapsto} \frac{1}{\sqrt{2^{k \frac{1}{Z}+n}}} \sum_{\substack{\mathbf{x} \in\{0,1\}^{n} \\ \mathbf{v} \in C_{\frac{1}{Z}}}}(-1)^{(\mathbf{v}+\mathbf{w}) \cdot(\mathbf{e}+\mathbf{x})}|\mathbf{x}\rangle
$$

Note that

$$
\begin{aligned}
\sum_{\substack{x \in\{0,1\}^{n} \\
\mathbf{v} \in C_{\bar{Z}}}}(-1)^{(\mathrm{v}+\mathbf{w}) \cdot(\mathbf{e}+\mathbf{x})}|\mathbf{x}\rangle & =\sum_{\substack{\mathbf{y} \in\{0,1\}^{n} \\
\mathbf{v} \in C_{\bar{Z}}}}(-1)^{(\mathrm{v}+\mathbf{w}) \cdot \mathbf{y}}|\mathbf{y}+\mathbf{e}\rangle \\
& =\sum_{\mathbf{y}}(-1)^{\mathbf{w} \cdot \mathbf{y}} \sum_{\mathbf{v} \in C_{\frac{1}{Z}}^{1}}(-1)^{\mathbf{v} \cdot \mathbf{y}}|\mathbf{y}+\mathbf{e}\rangle
\end{aligned}
$$

Correcting phase errors(II)

Since $\sum_{\mathbf{v} \in C_{\frac{1}{Z}}^{\perp}}(-1)^{\mathrm{v} \cdot \mathbf{y}}=\left|C_{\bar{Z}}^{\perp}\right|$ if $\mathbf{y} \in C_{Z}$ and 0 else, we obtain

$$
\left.\sum_{\substack{\mathbf{x} \in\{0,1\}^{n} \\ \mathbf{v} \in C \frac{1}{\bar{Z}}}}(-1)^{(\mathrm{v}+\mathrm{w}) \cdot(\mathrm{e}+\mathrm{x})}|\mathbf{x}\rangle=\left|C_{\frac{1}{Z}}^{\frac{1}{2}} \sum_{\mathbf{y} \in C_{Z}}(-1)^{\mathbf{w} \cdot \mathbf{y}}\right| \mathbf{y}+\mathbf{e}\right\rangle .
$$

Result : In the new basis, this results in X errors ! We use now a projective measurement according to the decomposition of the cosets of \mathcal{C}_{Z}

Simultaneous correction of X and Z errors

Same procedure

$$
\frac{1}{\sqrt{2^{k_{Z}^{\frac{1}{Z}}}}} \sum_{\mathbf{v} \in C_{\frac{\perp}{Z}}^{\perp}}|\mathbf{v}+\mathbf{w}\rangle \rightsquigarrow \frac{1}{\sqrt{2^{k_{Z}^{\perp}}}} \sum_{\mathbf{v} \in C_{Z}^{\perp}}(-1)^{(\mathbf{v}+\mathbf{w}) \cdot \mathbf{e}_{2}}\left|\mathbf{v}+\mathbf{w}+\mathbf{e}_{1}\right\rangle
$$

where $e_{1} \in\{0,1\}^{n}$ represents the X errors and e_{2} the Z errors
Result: We can correct $\left\lfloor\frac{d_{X}-1}{2}\right\rfloor$ errors de type X et $\left\lfloor\frac{d_{Z}-1}{2}\right\rfloor$ errors of type Z, where d_{X} is the minimum distance of C_{X} and d_{Z} is the minimum distance of C_{Z}

Exercise

Compute $\left(d_{X}, d_{Z}\right)$ for

1. the Steane code
2. the Shor code

Solution

1. $\left(d_{X}, d_{Z}\right)=(3,3)$
2. $\left(d_{X}, d_{Z}\right)=(3,2) \ldots$

4. The stabilizer codes

4. The stabilizer codes

1. A class of codes containing the CSS codes
2. Many similarities with classical linear codes
3. Powerful framework for defining/manipulating/constructing/understanding quantum codes

The \mathcal{G}_{1} error group

$$
\begin{aligned}
X Z & =-Z X=-i Y \\
X Y & =-Y X=i Z \\
Y Z & =-Z Y=-i X
\end{aligned}
$$

\Rightarrow the elements of \mathcal{G}_{1} commute or anti-commute

The \mathcal{G}_{n} error group

- The elements of \mathcal{G}_{n} commute or anti-commute

A simple criterion : $E_{1} \ldots E_{n}$ and $E_{1}^{\prime} \ldots E_{n}^{\prime}$ commute iff $\#\left\{i: E_{i} E_{i}^{\prime}=-E_{i}^{\prime} E_{i}\right\}$ is even

Example : $X X I$ and $X Y X$ anti-commute and $X X I$ and $Z Z Z$ commute

Definition

- Let \mathcal{S} be an abelian subgroup of \mathcal{G}_{n} where all the elements are of order 2 and $-1 \notin \mathcal{S}$, we call such a subgroup a stabilizer subgroup
- The stabilizer code \mathcal{C} associated to \mathcal{S} is the subspace of $\mathcal{H}^{\otimes n}$ defined by

$$
\left.\mathcal{C}=\left\{|\psi\rangle \in \mathcal{H}^{\otimes n}|\forall M \in \mathcal{S}, M| \psi\right\rangle=|\psi\rangle\right\}
$$

Fundamental property

Proposition 1. If the stabilizer subgroup is generated by $n-k$ independent generators, then the dimension of the quantum code is 2^{k}.

Proof : by induction on $n-k$.
$n-k=1, \mathcal{S}=\{I, M\}$. The eigenvalues of M are ± 1. Let N be such that $N M=-N M$. We have

$$
M|\psi\rangle=|\psi\rangle \Leftrightarrow M N|\psi\rangle=-N|\psi\rangle .
$$

$\Rightarrow N$ swaps the eigenspaces associated to 1 and -1 .
\Rightarrow the two spaces have the same dimension, i.e 2^{n-1}.
\mathcal{S} generated by j independent elements of order $2 M_{1}, M_{2}, \ldots, M_{j}$ Induction hypothesis satisfied by $n-k=j-1$
2 crucial arguments:
Lemma 1. For a stabilizer group \mathcal{S} generated by t generators of order 2 we have $|\mathcal{N}(\mathcal{S})|=2^{2 n+2-t}$.

Lemma 2. There exists $N \in \mathcal{G}_{n}$ that commutes with M_{1}, \ldots, M_{j-1} and anticommutes with M_{j}.

Indeed, let $\mathcal{S}_{t}=<M_{1}, \ldots, M_{t}>.\left|\mathcal{N}\left(\mathcal{S}_{j-1}\right)\right|=2^{2 n-j+3}$ then $\left|\mathcal{N}\left(\mathcal{S}_{j}\right)\right|=2^{2 n-j+2}$.

Let N commute with M_{1}, \ldots, M_{j-1} and anti-commute with M_{j}. Let

$$
\begin{aligned}
V & \stackrel{\text { def }}{=}\left\{|\psi\rangle: M_{i}|\psi\rangle=|\psi\rangle, 1 \leq i \leq j-1\right\} \\
V_{1} & \stackrel{\text { def }}{=}\left\{|\psi\rangle: M_{i}|\psi\rangle=|\psi\rangle, 1 \leq i \leq j\right\} \\
V_{2} & \stackrel{\text { def }}{=}\left\{|\psi\rangle: M_{i}|\psi\rangle=|\psi\rangle, 1 \leq i \leq j-1, M_{j}|\psi\rangle=-|\psi\rangle\right\}
\end{aligned}
$$

We have

$$
V=V_{1} \oplus V_{2} \text { and } N V_{1}=V_{2} .
$$

Therefore $\operatorname{dim} V_{1}=\frac{\operatorname{dim} V}{2}=2^{n-j}$.

Syndrome

For $E, F \in \mathcal{G}_{n}$ we denote by

$$
E \star F \stackrel{\text { def }}{=} 0 \text { if } E \text { and } F \text { commute and } 1 \text { else }
$$

for a choice M_{1}, \ldots, M_{n-k} of generators of \mathcal{S} the syndrome associated to $E \in \mathcal{S}$ is

$$
\sigma(E) \stackrel{\text { def }}{=}\left(M_{i} \star E\right)_{1 \leq i \leq n-k}
$$

Syndrome (II)

- syndrome can be obtained by a measurement.
- Let $s \in\{0,1\}^{n-k}$, there exists $E(s)$ of syndrome s.
- Let \mathcal{C} be the code stabilized by \mathcal{S} and $C(s) \stackrel{\text { def }}{=} E(s) C$. We have

$$
\begin{aligned}
\mathcal{C}(s) & =\left\{|\psi\rangle: M_{i}|\psi\rangle=(-1)^{s_{i}}|\psi\rangle\right\} \\
\mathcal{H}^{\otimes n} & =\stackrel{\perp}{\oplus_{s \in\{0,1\}^{n-k}} \mathcal{C}(s)}
\end{aligned}
$$

Analogies

Linear codes
k bits encoded in n bits subs. of dimension k
parity-check matrix \mathbf{H} $n-k$ rows, n columns syndrome $\in\{0,1\}^{n-k}$
stabilizer codes
k qubits encoded in n qubits subs. of dimension 2^{k}
generator set of \mathcal{S}
$n-k$ generators of \mathcal{G}_{n} syndrome $\in\{0,1\}^{n-k}$

Decoding

- Decoding steps
- Computing the syndrome by a projective measurement : quantum step
- Determining the most likely error: classical step
- Inverting the error: quantum step

Decoding(II)

- For a stabilizer code \mathcal{C} associated to $\mathcal{S}=<S_{1}, \ldots, S_{n-k}>$ we can distinguish two types of errors with 0 syndrome
- those which belong to \mathcal{S} (type \mathbf{G}), such an error E is harmless: for all $|\psi\rangle \in \mathcal{C}$ we have $E|\psi\rangle=|\psi\rangle$
- those which do not belong to \mathcal{S} (type \mathbf{B}), such an error E is harmful: it is impossible that $E|\psi\rangle=|\psi\rangle$ for all $|\psi\rangle \in \mathcal{C}$

Minimum distance and error correction capacity

- Minimum distance

$$
d \stackrel{\text { def }}{=} \min \{|E|: E \text { of type } \mathbf{B}\}
$$

- Error correction capacity

$$
\left\lfloor\frac{d-1}{2}\right\rfloor
$$

- decoding success : $E_{\text {estimée }}^{-1} E_{\text {canal }}$ of type \mathbf{G}

Exercise : a first example

1. Let $\mathcal{C}=\operatorname{Vect}(|000\rangle,|111\rangle)$. Show that this code is a stabilizer code
2. Determine the errors of \mathcal{G}_{3} that are no detected by the code. Which are harmful? Which are harmless? What is the smallest error that can not be corrected ?

Exercise : a second example

Let

$$
\begin{aligned}
\left|\psi_{0}\right\rangle & =\frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
\left|\psi_{1}\right\rangle & =\frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Show that the code generated by $\left|\psi_{0}\right\rangle\left|\psi_{0}\right\rangle\left|\psi_{0}\right\rangle$ and $\left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle$ is a stabilizer code. Give the set of errors of minimum weight that are not detected. Which are harmful ? Which are harmless ? What is the smallest error that can not be corrected ?

Exercise : revisiting Shor's code

1. Show that the Shor code is a stabilizer code
2. Show that there are errors of weight 1 that can be corrected without inverting the error. Determine all errors of this type
3. Did you experience the same phenomenon with the two previous codes?

Solution

1.

$$
\begin{aligned}
\mathcal{S} & =\left\langle\mathcal{S}_{X}, \mathcal{S}_{Z}\right\rangle \\
\mathcal{S}_{X} & =<X X X X X X I I I, \text { IIIXXXXXX>} \\
\mathcal{S}_{Z}= & \left.<H_{Z}\right\rangle\left(\text { generated by the rows of } H_{Z}\right) \\
& =\left(\begin{array}{lllllllll}
Z & Z & I & I & I & I & I & I & I \\
I & Z & Z & I & I & I & I & I & I \\
I & I & I & Z & Z & I & I & I & I \\
I & I & I & I & Z & Z & I & I & I \\
I & I & I & I & I & I & Z & Z & I \\
I & I & I & I & I & I & I & Z & Z
\end{array}\right)
\end{aligned}
$$

2. The set of errors \mathcal{E} of weight 1 is given by the rows of the matrix E

$$
E=\left(\begin{array}{lllllllll}
Z & I & I & I & I & I & I & I & I \\
I & Z & I & I & I & I & I & I & I \\
I & I & Z & I & I & I & I & I & I \\
I & I & I & Z & I & I & I & I & I \\
I & I & I & I & Z & I & I & I & I \\
I & I & I & I & I & Z & I & I & I \\
I & I & I & I & I & I & Z & I & I \\
I & I & I & I & I & I & I & Z & I \\
I & I & I & I & I & I & I & I & Z
\end{array}\right)
$$

3. No

Exercise : CSS codes

1. Show that any CSS code is a stabilizer code
2. Give a set of stabilizers for the Steane code

Exercise : the 5 qubit code

Consider the stabilizer code associated to $\mathcal{S}=<X Z Z X I, I X Z Z X, X I X Z Z, Z X I X Z>$.

1. Show that every error in \mathcal{G}_{5} of weight 1 or 2 has a syndrome $\neq 0$
2. Find a harmful error of weight 3
3. How many errors can be corrected by such a code ?
4. In which sense is this code better than Steane's code ?

Solution

1.

$$
\left[\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\right]
$$

2. $E=X X I Z I$
3. 1
4. $R=\frac{1}{5}>\frac{1}{7}$

5. General error model

Exercise

Consider the stabilizer code on 3 qubits given by $\mathcal{S}=<Z Z I, I Z Z>$. Assume that the error is given by the unitary transform $U \otimes U \otimes U$ with

$$
U=\left(\begin{array}{cc}
\cos \delta & i \sin \delta \\
i \sin \delta & \cos \delta
\end{array}\right)
$$

with $\delta \ll 1$. What is the effect of the decoding algorithm we saw for this code?

General error model

Code correcting t errors and error unitary $T=(I+R)^{\otimes n}$ with $\|R\| \leq \epsilon$.

$$
\begin{aligned}
I+R & =(1+O(\epsilon)) I+O(\epsilon) X+O(\epsilon) Y+O(\epsilon) Z \\
T & =\sum_{A:|A| \leq t} R^{\otimes A} \otimes I^{\otimes \bar{A}}+\sum_{A:|A|>t} R^{\otimes A} \otimes I^{\otimes \bar{A}} \\
\sum_{A:|A|>t} R^{\otimes A} \otimes I^{\otimes \bar{A}} & \leq \sum_{j>t}\binom{n}{j}\|R\|^{j}=O\left(\epsilon^{t+1}\right)
\end{aligned}
$$

