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Introduction

1.Introduction

Constructing a quantum computer

⇒

error protection mechanism : impossibility to be completely isolated from the
environment : decoherence
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Introduction

Very tough issue?

• Problem 1: Not enough to protect |0〉 and |1〉, every linear combination
α |0〉+ β |1〉 must be protected as well

• Problem 2 : Much richer error model than for classical bits

• Problem 3 : Impossibility result (”no cloning theorem”)

• Problem 4 : Measure modifies the qubit !
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Shor

2. A first example : the Shor code
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Shor

Error model

Much richer error model than for bits

• qubit inversion(X)

|0〉 → |1〉
|1〉 → |0〉

• phase error (Z)

|0〉 → |0〉
|1〉 → − |1〉

• both! (Y)

|0〉 → −i |1〉
|1〉 → i |0〉
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Shor

The Pauli group

single qubit Pauli group G1 :

{±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ}.

Pauli group over n qubits Gn : G1 ⊗ G1 · · · ⊗ G1

Gn ≡ {I,X, Y, Z}n × {±1,±i}
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Shor

Two error models

I Depolarizing channel : each qubit undergoes an error X,Y, Z with probability
p
3, and is not modified with probability 1− p.

I Quantum erasure channel : each qubit is erased with probability p (and it is
known if the qubit has been erased or not). when the qubit is not erased, it
is not affected by any noise. If erased, the qubit undergoes a transformation
I,X, Y, Z with probability 1

4 for each of them
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Shor

A code correcting one qubit inversion

|0〉 → |000〉
|1〉 → |111〉

This is NOT the repetition code !

α |0〉+ β |1〉 → α |000〉+ β |111〉
6=

(α |0〉+ β |1〉)⊗3
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Shor

Exercise

Give a circuit that realizes the encoding, i.e. a circuit performing the unitary
transformation

|0〉 |00〉 7→ |000〉
|1〉 |00〉 7→ |111〉
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Shor

Solution

|0>

|0>

|φ>
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Shor

An example

α |000〉+ β |111〉

 error X on the 2-th qubit

α |010〉+ β |101〉
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Shor

Idea

Measure without destroying the state, for |x, y, z〉 “observe” y ⊕ z, x⊕ z :

⇐⇒

measure according to C ⊕ C1 ⊕ C2 ⊕ C3.

C1 = Vect(|100〉 , |011〉) C2 = Vect(|010〉 , |101〉) C3 = Vect(|001〉 , |110〉)

Code = Vect(|000〉 , |111〉)
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Shor

Example : error on the 2-th qubit

α |010〉+ β |101〉
↓ measure : “we are in C2”

α |010〉+ β |101〉 N.B. same state!

↓ inverting 2-th qubit

α |000〉+ β |111〉
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Shor

Exercise

Give a circuit that performs the decoding
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Shor

Solution

|a>

|b>

|c>

|0>

|0>

|a+b>

|b+c>

|a>

|b>

|c>
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Shor

More general errors can also be corrected:

|000〉 a |000〉+ b |100〉+ c |010〉+ d |001〉
Same decoding algorithm : measure according to C ⊕ C1 ⊕ C2 ⊕ C3 :

• with prob. |a|2 observe ”no error” and get |000〉,

• with prob. |b|2 observe ”error on the first qubit”, after measuring we get|100〉
and invert the first qubit.
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Shor

This code is useless against Z errors :

α |000〉+ β |111〉 α |000〉 − β |111〉 ∈ C

error of type Z = error of type X in the basis

|ψ0〉
def
=
|0〉+ |1〉√

2

|ψ1〉
def
=
|0〉 − |1〉√

2
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Shor

In this base the error acts as :

|ψ0〉  |ψ1〉
|ψ1〉  |ψ0〉

This gives the following encoding :

α |0〉+ β |1〉 → α |ψ0〉 |ψ0〉 |ψ0〉+ β |ψ1〉 |ψ1〉 |ψ1〉 .
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Shor

Exercise

Give the corresponding encoding circuit, i.e. a circuit that corresponds to the
unitary transform U such that

|0〉 |00〉 7→ |ψ0〉 |ψ0〉 |ψ0〉
|1〉 |00〉 7→ |ψ1〉 |ψ1〉 |ψ1〉
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Shor

Solution

|0>

|φ>

|0>

H

H

H
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Shor

Correcting both types of error
Concatenation

1 qubit
1 qubit
1qubit

1 qubit
1 qubit
1qubit

1 qubit
1 qubit
1qubit

1 qubit

1 qubit

1qubit

1 qubit

codage protecteur 
contre les erreurs (P)

codage protecteur 
contre les erreurs (I)
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Shor

Encoding

|0〉 → (|0〉+ |1〉)⊗3 → (|000〉+ |111〉)⊗3

|1〉 → (|0〉 − |1〉)⊗3 → (|000〉 − |111〉)⊗3
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Shor

Decoding

(|010〉+ |101〉)(|100〉− |011〉)(|000〉+ |111〉)
↓ correct the (X) errors

(|000〉+ |111〉)(|000〉− |111〉)(|000〉+ |111〉)
↓ correct the (Z) errors

(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
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Shor

Exercise

1. Show that the Shor code corrects all X,Y and Z errors on one qubit

2. Find an error on 2 qubits which can not be corrected by Shor’s code
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Shor

Solution

1. done in one step for X and Z errors, Y errors are corrected in two steps since
Y = iXZ

2. two X errors on the same block
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CSS

3. The CSS codes
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CSS

3. The CSS codes

I CSS = Calderbank-Shor-Steane codes

I A construction of quantum codes from classical codes

I Shor’s code is a CSS code

I Construction based on two classical codes: the first one corrects X errors, the
other Z errors
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CSS

Classical linear code

Definition 1. [binary linear code] A binary linear code C is a subspace of Fn
2

Can be specified by a basis

C = Vect{c1, . . . , ck}

Definition 2. [length and dimension] n is the length of C and k the dimension
of C as a subspace of Fn

2 is the dimension of the code

Definition 3. [Generator matrix] The generator matrix of a code C is a matrix
G whose rows span the code

C = {xG|x ∈ Fk
2}.
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CSS

Parity-check matrix and dual code

Definition 4. [dual code] The dual code C⊥ of a linear code C ⊂ Fn
2 is defined

by

C⊥def
= {x ∈ Fn

2 : x · c = 0, ∀c ∈ C}

Definition 5. [parity-check matrix] The parity-check matrix of a linear code C
of dimension k and length n is an (n− k)× n matrix H whose kernel is the code:

C = {x ∈ Fn
2 |Hxt = 0}.
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CSS

Minimum distance

Definition 6. [minimum distance] The minimum distance d

d
def
= min{dH(x, y);x 6= y ∈ code}

dH : Hamming distance

Fact 1.
d = min{wH(x), x 6= 0 ∈ code}

wH : Hamming weight

error correction capacity :
def
= bd−1

2 c = maximum number of errors that are
always corrected by a decoder which outputs the closest codeword
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CSS

Exercise: proving that there are codes with large minimum
distance

We assume here that a binary code C of length n is drawn at random by choosing
an (n− k)× n parity-check matrix for it uniformly at random.

1. Let x ∈ Fn
2 \ {0}. Compute Prob(x ∈ C)

2. Compute E(nt) where nt
def
= number of codewords in C of weight t

3. What is E(n≤t) where n≤t
def
= number of non-zero codewords of weight ≤ t ?

4. What can you say when E(n≤t) < 1 ?

5. Let h(x)
def
= − x log2(x) − (1 − x) log2(1 − x). By using

∑t−1
i=1

(
n
i

)
≤ 2nh(t/n)

which holds whenever t/n ≤ 1/2 prove that there exists a code of minimum
distance ≥ t and dimension ≥ k as soon as

1− h(t/n) > k/n
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CSS

Solution

1. Prob(x ∈ C) = 1
2n−k

2.

nt =
∑

x:|x|=t

1x∈C

⇒ E(nt) =
∑

x:|x|=t

E (1x∈C)

=
∑

x:|x|=t

Prob(x ∈ C)

=

(
n
t

)
2n−k
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3.

n≤t =

t∑
s=1

ns

⇒ E(n≤t) =

t∑
s=1

E(ns)

=

∑t
s=1

(
n
s

)
2n−k

4. When E(n≤t) < 1 there exists a code in this family of minimum distance ≥ t+1

5. Since E (n≤t−1) ≤ 2nh(t/n)+k−n < 1 if 1 − h(t/n) > k/n we have the desired
result (and the code is necessarily of dimension ≥ k).
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CSS

CSS Construction

I defined from two binary linear codes CX and CZ satisfying

C⊥Z ⊂ CX

Definition 7. [CSS code] The CSS code associated to the pair (CX, CZ) is the
quantum code generated by the basis

|w̄〉 =
1√
2k
⊥
Z

∑
v∈C⊥

Z

|v + w〉

where w is a set of representatives of the 2k cosets of C⊥Z in CX where

k
def
= dim(CX)− C⊥Z︸︷︷︸

k⊥
Z
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CSS

Exercise : the Shor code

Show that the following codes are CSS codes and give (CX, CZ) for them

1. Vect {|000〉 , |111〉}

2. Vect
{

(|0〉+ |1〉)⊗3, (|0〉 − |1〉)⊗3
}

3. the Shor code Vect
{

(|000〉+ |111〉)⊗3, (|000〉 − |111〉)⊗3
}
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CSS

Solution1.

C⊥Z = {000}
CZ = {0, 1}3

GX =
(
1 1 1

)
2.

C = Vect

 ∑
x:|x| even

|x〉+
∑

x:|x| odd

|x〉 ,
∑

x:|x| even

|x〉 −
∑

x:|x| odd

|x〉


= Vect

 ∑
x:|x| even

|x〉 ,
∑

x:|x| odd

|x〉


C⊥Z = {000, 011, 101, 110}, GZ =

(
1 1 1

)
CX = {0, 1}3

36/71



3.

GX =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


HZ =

(
1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1

)

GZ =



1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1


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CSS

Exercise: the Steane code

Let CX = CZ be given by the following parity matrix

H =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


1. Prove that HHT = 0

2. Prove that C⊥Z ⊂ CX

3. Give a description of the CSS code associated to (CX, CZ)
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CSS

Solution
1. obvious
2. obvious
3. CX and CZ have as generator matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


The first row of G and the all 1 vector 1 does not belong to C⊥Z . The code is
generated by the two states

|0̄〉 =
∑
v∈C⊥

Z

|v〉

|1̄〉 =
∑
v∈C⊥

Z

|1 + v〉
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CSS

Action of t X errors on a CSS code

e ∈ {0, 1}n s.t. |e| = t and

1√
2k
⊥
Z

∑
v∈C⊥

Z

|v + w〉 1√
2k
⊥
Z

∑
v∈C⊥

Z

|v + w + e〉

I The affine spaces x + CX in {0, 1}n are disjoint ⇒ the spaces
Vect {|x + cX〉 , cX ∈ CX} define a projective measurement

I We recover e if 2t+ 1 ≤ dX, dX
def
= minimum distance of CX.

I Action of CX : correct X errors
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CSS

Action of t Z errors on a CSS code

e ∈ {0, 1}n s.t. |e| = t representing phase errors

1√
2k
⊥
Z

∑
v∈C⊥

Z

|v + w〉 1√
2k
⊥
Z

∑
v∈C⊥

Z

(−1)(v+w).e |v + w〉

Idea : correct phase errors by correcting X errors in the Hadamard basis

Reminder :

H⊗n : |x〉 → 1√
2n

∑
y

(−1)x.y |y〉
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CSS

Correcting phase errors

1√
2k
⊥
Z

∑
v∈C⊥

Z

(−1)(v+w).e |v + w〉 H
⊗n
7→ 1√

2k
⊥
Z

+n

∑
x∈{0,1}n

v∈C⊥
Z

(−1)(v+w).(e+x) |x〉

Note that∑
x∈{0,1}n

v∈C⊥
Z

(−1)(v+w).(e+x) |x〉 =
∑

y∈{0,1}n

v∈C⊥
Z

(−1)(v+w).y |y + e〉

=
∑
y

(−1)w.y
∑
v∈C⊥

Z

(−1)v.y |y + e〉
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CSS

Correcting phase errors(II)

Since
∑

v∈C⊥
Z

(−1)v.y = |C⊥Z | if y ∈ CZ and 0 else, we obtain

∑
x∈{0,1}n

v∈C⊥
Z

(−1)(v+w).(e+x) |x〉 = |C⊥Z |
∑
y∈CZ

(−1)w.y |y + e〉 .

Result : In the new basis, this results in X errors ! We use now a projective
measurement according to the decomposition of the cosets of CZ
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CSS

Simultaneous correction of X and Z errors

Same procedure

1√
2k
⊥
Z

∑
v∈C⊥

Z

|v + w〉 1√
2k
⊥
Z

∑
v∈C⊥

Z

(−1)(v+w).e2 |v + w + e1〉

where e1 ∈ {0, 1}n represents the X errors and e2 the Z errors

Result : We can correct bdX−1
2 c errors de type X et bdZ−1

2 c errors of type Z,
where dX is the minimum distance of CX and dZ is the minimum distance of CZ
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CSS

Exercise

Compute (dX, dZ) for

1. the Steane code

2. the Shor code
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CSS

Solution

1. (dX, dZ) = (3, 3)

2. (dX, dZ) = (3, 2)...
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stabilizer codes

4. The stabilizer codes
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stabilizer codes

4. The stabilizer codes

1. A class of codes containing the CSS codes

2. Many similarities with classical linear codes

3. Powerful framework for defining/manipulating/constructing/understanding
quantum codes
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stabilizer codes

The G1 error group

XZ = −ZX = −iY
XY = −Y X = iZ

Y Z = −ZY = − iX

⇒ the elements of G1 commute or anti-commute
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stabilizer codes

The Gn error group

I The elements of Gn commute or anti-commute

A simple criterion : E1 . . . En and E′1 . . . E
′
n

commute iff #{i : EiE
′
i = −E′iEi} is even

Example : XXI and XYX anti-commute and XXI and ZZZ commute
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stabilizer codes

Definition

I Let S be an abelian subgroup of Gn where all the elements are of order 2 and
−1 /∈ S, we call such a subgroup a stabilizer subgroup

I The stabilizer code C associated to S is the subspace of H⊗n defined by

C = {|ψ〉 ∈ H⊗n|∀M ∈ S,M |ψ〉 = |ψ〉}
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stabilizer codes

Fundamental property

Proposition 1. If the stabilizer subgroup is generated by n − k independent
generators, then the dimension of the quantum code is 2k.

Proof : by induction on n− k.

n − k = 1, S = {I,M}. The eigenvalues of M are ±1. Let N be such that
NM = −NM . We have

M |ψ〉 = |ψ〉 ⇔MN |ψ〉 = −N |ψ〉 .

⇒ N swaps the eigenspaces associated to 1 and −1.
⇒ the two spaces have the same dimension, i.e 2n−1.
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stabilizer codes

S generated by j independent elements of order 2 M1,M2, . . . ,Mj

Induction hypothesis satisfied by n− k = j − 1
2 crucial arguments:

Lemma 1. For a stabilizer group S generated by t generators of order 2 we have
|N (S)| = 22n+2−t.

Lemma 2. There exists N ∈ Gn that commutes with M1, . . . ,Mj−1 and anti-
commutes with Mj.

Indeed, let St =< M1, . . . ,Mt >. |N (Sj−1)| = 22n−j+3 then |N (Sj)| = 22n−j+2.

53/71



stabilizer codes

Let N commute with M1, . . . ,Mj−1 and anti-commute with Mj. Let

V
def
= {|ψ〉 : Mi |ψ〉 = |ψ〉 , 1 ≤ i ≤ j − 1}

V1
def
= {|ψ〉 : Mi |ψ〉 = |ψ〉 , 1 ≤ i ≤ j}

V2
def
= {|ψ〉 : Mi |ψ〉 = |ψ〉 , 1 ≤ i ≤ j − 1,Mj |ψ〉 = − |ψ〉}

We have
V = V1 ⊕ V2 and NV1 = V2.

Therefore dimV1 = dimV
2 = 2n−j.
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stabilizer codes

Syndrome

For E,F ∈ Gn we denote by

E ? F
def
= 0 if E and F commute and 1 else

for a choice M1, . . . ,Mn−k of generators of S the syndrome associated to E ∈ S
is

σ(E)
def
= (Mi ? E)1≤i≤n−k
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stabilizer codes

Syndrome (II)

I syndrome can be obtained by a measurement.

I Let s ∈ {0, 1}n−k, there exists E(s) of syndrome s.

I Let C be the code stabilized by S and C(s)def
=E(s)C. We have

C(s) = {|ψ〉 : Mi |ψ〉 = (−1)si |ψ〉}

H⊗n =
⊥
⊕s∈{0,1}n−k C(s)
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stabilizer codes

Analogies

Linear codes stabilizer codes

k bits encoded in n bits k qubits encoded in n qubits
subs. of dimension k subs. of dimension 2k

parity-check matrix H generator set of S
n− k rows, n columns n− k generators of Gn
syndrome ∈ {0, 1}n−k syndrome ∈ {0, 1}n−k
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stabilizer codes

Decoding

I Decoding steps

• Computing the syndrome by a projective measurement : quantum step
• Determining the most likely error : classical step
• Inverting the error : quantum step
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stabilizer codes

Decoding(II)

I For a stabilizer code C associated to S =< S1, . . . , Sn−k > we can distinguish
two types of errors with 0 syndrome

• those which belong to S (type G), such an error E is harmless: for all
|ψ〉 ∈ C we have E |ψ〉 = |ψ〉
• those which do not belong to S (type B), such an error E is harmful: it is

impossible that E |ψ〉 = |ψ〉 for all |ψ〉 ∈ C
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stabilizer codes

Minimum distance and error correction capacity

I Minimum distance
d

def
= min{|E| : E of type B}

I Error correction capacity ⌊
d− 1

2

⌋
I decoding success : E−1

estiméeEcanal of type G
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stabilizer codes

Exercise : a first example

1. Let C = Vect(|000〉 , |111〉). Show that this code is a stabilizer code

2. Determine the errors of G3 that are no detected by the code. Which are harmful?
Which are harmless? What is the smallest error that can not be corrected ?
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stabilizer codes

Exercise : a second example

Let

|ψ0〉 =
|0〉+ |1〉√

2

|ψ1〉 =
|0〉 − |1〉√

2

Show that the code generated by |ψ0〉 |ψ0〉 |ψ0〉 and |ψ1〉 |ψ1〉 |ψ1〉 is a stabilizer
code. Give the set of errors of minimum weight that are not detected. Which
are harmful ? Which are harmless ? What is the smallest error that can not be
corrected ?
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stabilizer codes

Exercise : revisiting Shor’s code

1. Show that the Shor code is a stabilizer code

2. Show that there are errors of weight 1 that can be corrected without inverting
the error. Determine all errors of this type

3. Did you experience the same phenomenon with the two previous codes?
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CSS

Solution

1.

S = < SX,SZ >
SX = < XXXXXXIII, IIIXXXXXX >

SZ = < HZ > ( generated by the rows of HZ )

HZ =


Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z


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2. The set of errors E of weight 1 is given by the rows of the matrix E

E =



Z I I I I I I I I
I Z I I I I I I I
I I Z I I I I I I
I I I Z I I I I I
I I I I Z I I I I
I I I I I Z I I I
I I I I I I Z I I
I I I I I I I Z I
I I I I I I I I Z


3. No
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stabilizer codes

Exercise : CSS codes

1. Show that any CSS code is a stabilizer code

2. Give a set of stabilizers for the Steane code
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stabilizer codes

Exercise : the 5 qubit code

Consider the stabilizer code associated to
S =< XZZXI, IXZZX,XIXZZ,ZXIXZ >.

1. Show that every error in G5 of weight 1 or 2 has a syndrome 6= 0

2. Find a harmful error of weight 3

3. How many errors can be corrected by such a code ?

4. In which sense is this code better than Steane’s code ?
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stabilizer codes

Solution

1. 


0 1 1
0 0 0
0 1 1
1 0 1




1 1 0
0 1 1
0 0 0
0 1 1




1 1 0
1 1 0
0 1 1
0 0 0




0 1 1
1 1 0
1 1 0
0 1 1




0 0 0
0 1 1
1 1 0
1 1 0




2. E = XXIZI

3. 1

4. R = 1
5 >

1
7
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general model

5. General error model
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general model

Exercise

Consider the stabilizer code on 3 qubits given by S =< ZZI, IZZ >. Assume
that the error is given by the unitary transform U ⊗ U ⊗ U with

U =

(
cos δ i sin δ
i sin δ cos δ

)
with δ << 1. What is the effect of the decoding algorithm we saw for this code?
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general model

General error model

Code correcting t errors and error unitary T = (I +R)⊗n with ||R|| ≤ ε.

I +R = (1 +O(ε))I +O(ε)X +O(ε)Y +O(ε)Z

T =
∑

A:|A|≤t

R⊗A ⊗ I⊗Ā +
∑

A:|A|>t

R⊗A ⊗ I⊗Ā

∑
A:|A|>t

R⊗A ⊗ I⊗Ā ≤
∑
j>t

(
n

j

)
||R||j = O(εt+1)
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