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introduction

1. Introduction

I Quantum key distribution with a security-proof only relying on

• authenticated channel between Alice and Bob
• laws of quantum physics

I Information theoretically secure : no computational assumptions

I Implemented in practice

• 2004 first bank transfer in Swiss
• 2007 ballot results of the Swiss canton of Geneva transmitted to the capital
• Chinese network

– 2016: space mission → QKD channel between China and Austria (7500
km)

– 2017: 2000-km fiber line between Beijing, Jinan, Hefei and Shanghai
• current optic fibre networks : infrastructure is in place for a more widespread

use
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introduction

KQD basic principles

I private key bits created by communicating qubits over a public channel

I Eve can not gain information from the qubits without disturbing the states

I Eve can not clone the qubits

I Non-orthogonal states are sent through the channel
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introduction

Exercise : distinguishing two non orthogonal quantum states

1. Show how to distinguish perfectly two orthogonal states with just one
measurement

2. Show that there is no (general) measurement that distinguishes perfectly two
non orthogonal states
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introduction

Recall: Measurement

A (general) measurement is given by a collection of M1, . . . ,Mk such that

k∑
m=1

M∗mMm = I

Measuring |ψ〉 → Mm |ψ〉
||Mm |ψ〉||

with prob. ||Mm |ψ〉||2
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introduction

Solution

1. projective measurement along V ⊕V ⊥ where V contains the first state and V ⊥

the second one

2. Let the two states be |ψ1〉 and |ψ2〉 and the measurement be given by a collection

M1, . . . ,Mk which are such that
∑k
m=1M

∗
mMm = I.s If it is possible to

distinguish perfectly between |ψ1〉 and |ψ2〉 with these measurements, then if
we let f : {1, · · · , k} → {1, 2} be the decision made on |ψ1〉 and |ψ2〉 based on
the measurement we should have

(i) I = E1 +E2

(ii) 〈ψi|Ei |ψi〉 = 1

where
Ei

def
=

∑
j:f(j)=i

M∗iMi
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Since 〈ψ1|ψ1〉 = 1 and I = E1 +E2 we have

1 = 〈ψ1|E1 |ψ1〉+ 〈ψ1|E2 |ψ1〉

Since 〈ψ1|E1 |ψ1〉 = 1 we deduce

0 = 〈ψ1|E2 |ψ1〉 =
∣∣∣∣∣∣√E2 |ψ1〉

∣∣∣∣∣∣2
Decompose |ψ2〉 = α |ψ1〉 + β |ψ3〉 with |ψ3〉 orthogonal to |ψ1〉. We have
|β| < 1 since |α|2 + |β|2 = 1 and |ψ1〉 and |ψ2〉 are non-orthogonal. Since√
E2 |ψ2〉 = β

√
E2 |ψ3〉 we have

〈ψ2|E2 |ψ2〉 = |β|2
∣∣∣∣∣∣√E2 |ψ3〉

∣∣∣∣∣∣ = |β|2 〈ψ3|E2 |ψ3〉 ≤ |β|2 < 1
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introduction

Exercise : information gain on non orthogonal states implies
disturbance

I |ψ〉 and |φ〉 two non-orthogonal states.

I Process of Eve : unitarily interact |ψ〉 and |φ〉 with an ancilla |u〉 without
disturbance:

|ψ〉 |u〉 7→ |ψ〉 |v〉
|φ〉 |u〉 7→ |φ〉 |v′〉

Prove that |v〉 = |v′〉 meaning that Eve can not gain information on |ψ〉 and |φ〉
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introduction

Solution

〈v|v′〉 〈ψ|φ〉 = 〈u|u〉 〈ψ|φ〉
⇓

〈v|v′〉 = 〈u|u〉 = 1

⇓
|v〉 = |v′〉
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BB84

2. The BB84 protocol

I Proposed by Charles Bennett and Gilles Brassard in 1984

I Originally proposed/based on photon polarization
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BB84

Phase 1: Alice side

I Binary strings of length (4 + δ)n encoded with as a block of (4 + δ)n qubits

a = a1 · · · a(4+δ)n keybit string

b = b1 · · · b(4+δ)n basis string

0 basis = {|0〉 , |1〉} 1 basis = {|+〉 , |−〉}

|+〉def= |0〉+ |1〉√
2

|−〉def= |0〉 − |1〉√
2

|ψ00〉
def
= |0〉 |ψ10〉

def
= |1〉

|ψ01〉
def
= |+〉 |ψ11〉

def
= |−〉

I Alice sends to Bob

|ψ〉 =
(4+δ)n⊗
k=1

∣∣ψakbk〉
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BB84

Phase 2 : Bob’s side

I When Bob has received the (4 + δ)n qubits he announces that to Alice

I He measures each of these qubits in either the {|0〉 , |1〉} or the {|+〉 , |−〉}
basis. Each basis is chosen uniformly at random
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BB84

Phase 3: Verification

1. Alice announces b, Bob announces his own choice b′ of bases

2. They keep 2n bits corresponding to bi = b′i

3. Alice selects n positions among them to serve as check on Eve’s interference
and tells Bob which bits she selected

4. Alice and Bob compare a and a′ on these n positions. Abort if too many bits
disagree
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BB84

Information reconciliation/privacy amplification

I Reconciliation: ending with a common string from a and a′ by public
communication

I Privacy amplification: ending with a common and private string by public
communication
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BB84

Exercise: Eve’s attack

1. Find a basis choice which gives Eve the same information on ai irrespective of
the basis choice bi

2. Let âi be Eve’s choice for ai that maximizes Prob(âi = ai). Give a formula for
Prob(âi = ai)

3. What is in this case Prob(a′i 6= ai) ?
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BB84

Solution

1. basis {cos π8 |0〉+ sin π8 |1〉 ,− sin π8 |0〉+ cos π8 |1〉}

2. Prob(âi = ai) = cos2(π/8) ≈ 0.85

3. Prob(a′i 6= ai) = sin2(π/8) ≈ 0.15
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B92

3. The Bennett protocol

I Highlights that the impossibility of perfect distinction between non-orthogonal
states lies at the heart of quantum cryptography

I Alice prepares one classical bit a and sends to Bob

|ψ〉 =

{
|0〉 if a = 0
|0〉+|1〉√

2
if a = 1

I Bob generates a random classical bit a′.

• he measures |ψ〉 in the {|0〉 , |1〉} basis if a′ = 0

• he measures |ψ〉 in the {|0〉+|1〉√
2
, |0〉−|1〉√

2
} basis if a′ = 1

→ b ∈ {0, 1}
I He publicly announces b

I keep only pairs for which b = 1. Final key = a for Alice = 1− a′ for Bob
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EPR

4. The EPR protocol

I Based on EPR pairs
|00〉+ |11〉√

2
I Symmetric protocol

I Alice and Bob share n EPR pairs, Alice has the first qubit of the pairs, Bob the
second one

1. Alice choose randomly b ∈ {0, 1}n and Bob b′ ∈ {0, 1}n

2. According to bi (resp. b′i) Alice (resp. Bob) measures her/his qubit of the i-th

pair in the {|0〉 , |1〉} basis for a 0 bit and in
{
|0〉+|1〉√

2
, |0〉−|1〉√

2

}
for a 1 bit and

obtain ai and a′i respectively

3. Communicate b and b′ publicly and keep only the ai’s for which bi = b′i
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EPR

Fidelity ⇒ security
I Quantum information theory: if Alice and Bob share an entangled state |β00〉⊗k

Eve has no information on a k-bit string they may have in common

I Random sampling can upper-bound eavesdropping

|β00〉 =
|00〉+ |11〉√

2

|β10〉 =
|00〉 − |11〉√

2

|β01〉 =
|01〉+ |10〉√

2

|β11〉 =
|01〉 − |10〉√

2

• bit flips detected by the projectors |β01〉 〈β01|+ |β11〉 〈β11| and |β00〉 〈β00|+
|β10〉 〈β10|
• phase flips detected by the projectors |β10〉 〈β10|+|β11〉 〈β11| and |β00〉 〈β00|+
|β01〉 〈β01|
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Lo-Chau

5. The Lo-Chau protocol

|β00〉⊗n
noise/Eve−−−−−→ ρ

entanglement distillation−−−−−−−−−−−−−→ ρ′ ≈ |β00〉⊗k

I Sacrificing half of the EPR pairs for measuring the noise

I Based on a random CSS code to correct a fraction δ of X,Y and Z errors in ρ
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Lo-Chau

The Lo-Chau protocol

1. Alice creates 2n EPR pairs

2. Alice chooses randomly b ∈ {0, 1}2n, performs Hadamard H on the 2nd qubit
for which b is 1, sends these qubits to Bob

3. After receiving the announcement that Bob received its qubits, Alice announces
b and the n pairs that serve as check qubits, Bob performs H when b = 1

4. Alice and Bob measure their n check qubits in the {|0〉 , |1〉} basis and publicly
share their results, abort if # disagreements > t

5. Alice and Bob measure their remaining qubits according to the check matrix
of an [[n, k, t]]-CSS code, share the results and correct the quantum state

→ |β00〉⊗k: entanglement distillation

6. Alice and Bob measure the k EPR pairs in the {|0〉 , |1〉} basis to obtain a
shared secret key
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Lo-Chau

Entanglement distillation

1. Alices prepares |β00〉⊗n and sends the second qubit of each EPR pair to Bob

2. There is channel noise which results in (I ⊗ E) |β00〉⊗n where I is the identity
acting on Alice’s side and E is a Pauli error of weight t acting on Bob’s side

Goal: generate |β00〉⊗k
Means: [[n, k, t]] stabilizer code C
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Lo-Chau

Exercise : stabilizer code

Consider an [[n, k]] stabilizer code with generators g1, · · · , gn−k. What happens if

(i) we start from an arbitrary n-qubit quantum state |ψ〉

(ii) perform the measurement according to g1, · · · , gn−k

(iii) find a Pauli error E whose syndrome corresponds to the measurement

(iv) and finally apply E∗ to the measured state ?
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Lo-Chau

Exercise : properties of Bell states

1. For any matrix M ∈ C2n×2n, show that there exists M′ such that

(M⊗ I) |β00〉⊗n = (I⊗M′) |β00〉⊗n

where M acts on Alice’s side whereas M′ acts on Bob’s side

2. Let P1, · · · ,P2n−k be the projectors corresponding to ±1 eigenspaces of the
generators g1, · · · , gn−k. Show that for all i

(Pi ⊗ I)(I⊗E) |β00〉⊗n = (I⊗E)(Pi ⊗Pᵀ
i ) |β00〉

⊗n
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Lo-Chau

Solution

1. First we notice that

|β00〉⊗n =
1√
2n

∑
x∈{0,1}n

|x〉 |x〉

From this we deduce

(M⊗ I) |β00〉⊗n =
1√
2n

∑
x∈{0,1}n

∑
y∈{0,1}n

Myx |y〉 |x〉

=
1√
2n

∑
y∈{0,1}n

|y〉
∑

x∈{0,1}n
Myx |x〉

= (I⊗Mᵀ) |β00〉⊗n
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2.

(Pi ⊗ I)(I⊗E) |β00〉⊗n = (I⊗E)(Pi ⊗ I) |β00〉⊗n

= (I⊗E)(Pi ⊗ I)(Pi ⊗ I) |β00〉⊗n

= (I⊗E)(Pi ⊗ I)(I⊗Pᵀ
i ) |β00〉

⊗n

= (I⊗E)(Pi ⊗Pᵀ
i ) |β00〉

⊗n
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Lo-Chau

Exercise : entanglement distillation protocol

The entanglement distillation protocol consists in

1. Alices measures the n− k generators of C on her side

2. she performs the inverse of a unitary Pauli error that has the measured syndrome
σA

3. she tells Bob her syndrome

4. Bob computes his syndrome and performs the unitary transform of weight ≤ t
that would give him the same syndrome as Alice

5. they both perform the decoding unitary corresponding to C
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CSS

6. Another modification of the Lo-Chau protocol : the CSS
protocol

I Problem of the Lo-Chau protocol : needs full power of quantum computing to
perform entanglement distillation + entanglement

I This protocol can be simplified without compromising security

I We begin to simplify it by removing the need to distribute EPR pairs

I Idea: Alice’s measurements collapse the pairs into n single qubits
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Lo-Chau

Modified Lo-Chau protocol (II)

1. Alice creates random bits a1, . . . , an, qubits |a1〉 , · · · , |an〉 and |β00〉⊗n

2. Alice chooses randomly n positions (out of 2n) puts the |ai〉’s in them and half
of each EPR pair in the remaining positions

3. Alice chooses randomly b ∈ {0, 1}2n and performs Hadamard H on the qubit
for which b is 1 then sends each of those qubits to Bob

4. Bob ack. the rec. of the qubits, Alice announces b and the n check qubits,
Bob performs H when b = 1

5. Bob measures check qubits in |0〉 , |1〉, shares results, aborts if # disagree. > t

6. Alice and Bob measure their remaining qubits accord. to the check matrix of
an [[n, k, t]]-CSS code, share results and correct the quantum state → |β00〉⊗k

7. Alice and Bob measure the k EPR pairs in the {|0〉 , |1〉} basis to obtain a
shared secret key
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Lo-Chau

CSS Codes
I Based on two binary linear codes CX and CZ such that

C⊥Z ⊂ CX
I Quantum code Q defined by

Q def
= Vect

{
|ξu〉 : u ∈ CX/C⊥Z

}
|ξu〉 =

1√
2k
⊥
Z

∑
v∈C⊥

Z

|u+ v〉

k⊥Z = dim C⊥Z
I Encodes k qubits where

kX = dim CX
k = kX − k⊥Z

I Corrects t errors if CX and CZ correct t errors
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Lo-Chau

Quantum measurement

I Error e ∈ {I, X, Y, Z}n decomposes as

e = eXX + eZZ

I Syndrome measurement yields
σX = HXe

T
X

σZ = HZe
T
Z

I After error + measurement, the code state |ξU〉 becomes∣∣ξu,eX,eZ〉def= 1√
2k
⊥
Z

∑
v∈C⊥

Z

(−1)eZ·v |u+ v + eX〉

I The code state gets projected to one of the (orthogonal) spaces

CSSz,x(CX, CZ)
def
=Vect

{∣∣ξu,eX,eZ〉 ,u ∈ CX/C⊥Z}
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Lo-Chau

Exercise :
∣∣ξu,eX,eZ〉

1. Prove that all the states
∣∣ξu,eX,eZ〉 are orthogonal when u ranges over CX/C⊥Z ,

eX and eZ are vectors that are a particular solution of HXe
T
X = σX, HZe

T
Z =

σZ and σX, σZ range respectively over Fn−kX2 and Fk
⊥
Z

2

2. Prove that

|β00〉⊗n =
1√
2n

∑
j∈{0,1}n

|j〉 |j〉 = 1√
2n

∑
u,eX,eZ

∣∣ξu,eX,eZ〉 ∣∣ξu,eX,eZ〉

3. Give an interpretation of Steps 6 and 7 in terms of
∣∣ξu,eX,eZ〉
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Lo-Chau

Solution

I • When Alice measures the stabilizer generators corresponding to HX and HZ

she obtains random values x and z
• her final measurement yields u
• the remaining qubits are thus left in

∣∣ξu,eX,eZ〉 which is the codeword for u
in CSSz,x(CX, CZ)
• Alice measurements yield random qubits encoded in a random code
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Lo-Chau

Modification III

1. Alice creates random bits a1, . . . , an, qubits |a1〉 , · · · , |an〉 and |β00〉⊗n

2. Alice chooses randomly n positions (out of 2n) puts the |ai〉’s in them and half
of each EPR pair in the remaining positions

⇒ 1′. Alice creates random bits a1, . . . , an, qubits |a1〉 , · · · , |an〉, random x, z,
random k bits ũ and encodes ũ in CSSz,x(CX, CZ)

⇒ 2′. Alice chooses randomly n positions (out of 2n) puts the |ai〉’s in them and
encoded qubits in the remaining positions

4. Bob ack. the rec. of the qubits, Alice announces b and the n check qubits,
Bob performs H when b = 1

⇒ 4. Bob ack. the rec. of the qubits, Alice announces b, x, z and the n check
qubits, Bob performs H when b = 1
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Lo-Chau

The CSS protocol

1. Alice creates random check bits a ∈ Fn2 , key bits ũ ∈ Fk2 ∼ u ∈ CX/C⊥Z , random
z,x ∈ Fn2 and encodes |u〉 in CSSz,x(CX, CZ)

2. Alice chooses randomly n positions (out of 2n) puts the check qubits |ai〉 in
them and the encoded qubits in the remaining positions.

3. Alice chooses randomly b ∈ {0, 1}2n and performs a Hadamard transform on
the qubit for which b is 1 then sends all the qubits to Bob

4. Bob ack. the rec. of the qubits, Alice announces b, x, z and the positions of
the check qubits, Bob performs H when b = 1

5. Bob performs Hadamards on the qubits where b is 1, measures the check qubits
in |0〉 , |1〉, shares results, aborts if # disagree. > t

6. Bob decodes the remaining n qubits in CSSz,x(CX, CZ)

7. Bob measures his qubits to obtain the shared secret key ũ
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secure-BB84

7. Secure BB84 protocol

I The CSS QKD protocol is secure by reduction from the modified Lo-Chau
protocol

I Much simpler protocol : does not use EPR pairs

I Drawbacks

• requires quantum computations
• Bob needs a quantum memory

37/46



secure-BB84

Exercise

1. Explain how we can obtain u+v+x+ e for some error e added by the channel
or Eve and some v ∈ CX/C⊥Z

2. how can you recover e and then u+ v ?

3. how can you recover u ?
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secure-BB84

Modification I

6. Bob decodes the remaining n qubits in CSSz,x(CX, CZ)

⇒ 6′. Bob measures the qubits to get u + v + x + e, subtracts x from the result,
correct it with the code CX to get u+ v

7. Bob measures his qubits to obtain the shared secret key ũ

⇒ 7′. Bob obtain u and then ũ by determining in which coset of C⊥Z in CZ u+ v lies.
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secure-BB84

Exercise

1. Notice that in the modified protocol Alice does not need to reveal z. Show that
she can effectively send a mixed state ρu,x. Give an expression for this mixed
state.

2. Show that

1

2n

∑
z

|ξu,z,x〉 〈ξu,z,x| =
1

2n

∑
v∈C⊥

Z

|u+ v + x〉 〈u+ v + x|

3. How can you create ρu,v ?
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secure-BB84

Solution

1. mixed state averaged over the values of z: |ξu,z,x〉 is created with probability
1
2n ⇒ mixed state ρu,v = 1

2n

∑
z |ξu,z,x〉 〈ξu,z,x|

2.

ρu,v =
1

2n

∑
z

|ξu,z,x〉 〈ξu,z,x|

=
1

2n+k
⊥
Z

∑
z

∑
v1,v2∈C⊥Z

(−1)z·(v1+v2) |u+ v1 + x〉 〈u+ v2 + x|

=
1

2k
⊥
Z

∑
v∈C⊥

Z

|u+ v + x〉 〈u+ v + x|

3. Alice classically chooses v ∈ CZ at random, constructs |u+ v + x〉 using her
randomly determined x and u
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secure-BB84

Modification II

1. Alice creates random check bits a ∈ Fn2 , key bits ũ ∈ Fk2 ∼ u ∈ CX/C⊥Z , random
z,x ∈ Fn2 and encodes |u〉 in CSSz,x(CX, CZ)

⇒ 1.′ Alice creates random check bits a ∈ Fn2 , key bits ũ ∈ Fk2 ∼ u ∈ CX/C⊥Z , random
x ∈ Fn2 , random v ∈ C⊥Z and encodes n qubits in |0〉 and |1〉 according to the
state |u+ v + x〉
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secure-BB84

Modification III

I Currently

• Alice sends |u+ v + x〉
• Bob receives and measures to obtain u+ v + x+ e
• Alice sends x
• Bob subtracts to obtain u+ v + e

I If Alice chooses u ∈ CX (as opposed to CX/C⊥Z ) then v is unnecessary

I v + x is completely random ⇔

• Alice chooses x sends |x〉
• Bob receives and measures to obtain x+ e
• Alice sends x− u
• Bob subtracts to obtain u+ e

⇒ between check and code bits
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secure-BB84

Modification IV

I Removing the Hadamard operations by encoding either in the {|0〉 , |1〉} basis
or in the {|+〉 , |−〉} basis

I Removing quantum memory : Bob measures directly choosing either to measure
in the {|0〉 , |1〉} basis or in the {|+〉 , |−〉} basis
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secure-BB84

Secure BB84

1. Alice creates (4 + δ)n random bits

2. for each bit she creates a qubit in either the Z or X basis according to random
b and sends them to Bob

3. she chooses a random u ∈ CX/C⊥Z
4. Bob receives the qubits, announces it, measure them in the Z or X basis

5. Alice announces b and they discard those bits Bob measure in a basis other
than b

6. Alice and Bob publicly compare their check bits. Abort if #disag. > t. Alice is
left with x, Bob with x+ e

7. Alice announces x− u. Bob subtracts this from his result and correct it in CX
to get u

8. They compute the coset u+ C⊥Z in CX to get the key ũ
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Information reconciliation and privacy amplification

I CZ used for information reconciliation

I C⊥Z used for privacy amplification
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