Quantum cryptography

March 11

Plan

- ▶ 1. Introduction
- ▶ 2. The BB84 protocol
- ► 3. The B92 protocol
- ► 4. The EPR protocol
- ► 5. The Lo-Chau protocol
- ▶ 6. The CSS protocol
- ► 7. The secure BB84 protocol

1. Introduction

Quantum key distribution with a security-proof only relying on

- authenticated channel between Alice and Bob
- laws of quantum physics
- Information theoretically secure : no computational assumptions
- Implemented in practice
 - 2004 first bank transfer in Swiss
 - 2007 ballot results of the Swiss canton of Geneva transmitted to the capital
 - Chinese network
 - 2016: space mission \rightarrow QKD channel between China and Austria (7500 km)
 - 2017: 2000-km fiber line between Beijing, Jinan, Hefei and Shanghai
 - current optic fibre networks : infrastructure is in place for a more widespread use

introduction

KQD basic principles

- private key bits created by communicating qubits over a public channel
- Eve can not gain information from the qubits without disturbing the states
- Eve can not clone the qubits
- Non-orthogonal states are sent through the channel

introduction

Exercise : distinguishing two non orthogonal quantum states

- 1. Show how to distinguish perfectly two orthogonal states with just one measurement
- 2. Show that there is no (general) measurement that distinguishes perfectly two non orthogonal states

Recall: Measurement

A (general) measurement is given by a collection of $\mathbf{M}_1, \ldots, \mathbf{M}_k$ such that

$$\sum_{m=1}^k \mathbf{M}_m^* \mathbf{M}_m = \mathbf{I}$$

Measuring
$$|\psi\rangle \rightarrow \frac{\mathbf{M}_m |\psi\rangle}{\|\mathbf{M}_m |\psi\rangle\|}$$
 with prob. $\|\mathbf{M}_m |\psi\rangle\|^2$

Solution

- 1. projective measurement along $V \oplus V^{\perp}$ where V contains the first state and V^{\perp} the second one
- 2. Let the two states be $|\psi_1\rangle$ and $|\psi_2\rangle$ and the measurement be given by a collection $\mathbf{M}_1, \ldots, \mathbf{M}_k$ which are such that $\sum_{m=1}^k \mathbf{M}_m^* \mathbf{M}_m = \mathbf{I}.s$ If it is possible to distinguish perfectly between $|\psi_1\rangle$ and $|\psi_2\rangle$ with these measurements, then if we let $f : \{1, \cdots, k\} \rightarrow \{1, 2\}$ be the decision made on $|\psi_1\rangle$ and $|\psi_2\rangle$ based on the measurement we should have

(i) $\mathbf{I} = \mathbf{E}_1 + \mathbf{E}_2$ (ii) $\langle \psi_i | E_i | \psi_i \rangle = 1$

where

$$\mathbf{E}_{i} \stackrel{\mathrm{def}}{=} \sum_{j:f(j)=i} \mathbf{M}_{i}^{*} \mathbf{M}_{i}$$

Since $\langle \psi_1 | \psi_1 \rangle = 1$ and $\mathbf{I} = \mathbf{E}_1 + \mathbf{E}_2$ we have

 $1 = \langle \psi_1 | E_1 | \psi_1 \rangle + \langle \psi_1 | E_2 | \psi_1 \rangle$

Since $\langle \psi_1 | E_1 | \psi_1 \rangle = 1$ we deduce

$$0 = \langle \psi_1 | E_2 | \psi_1 \rangle = \left\| \sqrt{E_2} | \psi_1 \rangle \right\|^2$$

Decompose $|\psi_2\rangle = \alpha |\psi_1\rangle + \beta |\psi_3\rangle$ with $|\psi_3\rangle$ orthogonal to $|\psi_1\rangle$. We have $|\beta| < 1$ since $|\alpha|^2 + |\beta|^2 = 1$ and $|\psi_1\rangle$ and $|\psi_2\rangle$ are non-orthogonal. Since $\sqrt{\mathbf{E}_2} |\psi_2\rangle = \beta \sqrt{\mathbf{E}_2} |\psi_3\rangle$ we have

$$\langle \psi_2 | E_2 | \psi_2 \rangle = |\beta|^2 \left\| \sqrt{\mathbf{E}_2} | \psi_3 \rangle \right\| = |\beta|^2 \langle \psi_3 | E_2 | \psi_3 \rangle \le |\beta|^2 < 1$$

introduction

Exercise : information gain on non orthogonal states implies disturbance

- \triangleright $|\psi\rangle$ and $|\phi\rangle$ two non-orthogonal states.
- > Process of Eve : unitarily interact $|\psi\rangle$ and $|\phi\rangle$ with an ancilla $|u\rangle$ without disturbance:

$$egin{array}{cccc} \psi & |u
angle & \mapsto & |\psi
angle |v
angle \ |\phi
angle |u
angle & \mapsto & |\phi
angle |v'
angle \end{array}$$

Prove that $|v\rangle = |v'\rangle$ meaning that Eve can not gain information on $|\psi\rangle$ and $|\phi\rangle$

introduction

Solution

9/46

2. The BB84 protocol

Proposed by Charles Bennett and Gilles Brassard in 1984

Originally proposed/based on photon polarization

Phase 1: Alice side

> Binary strings of length $(4 + \delta)n$ encoded with as a block of $(4 + \delta)n$ qubits

 $\begin{aligned} \mathbf{a} &= a_1 \cdots a_{(4+\delta)n} & \text{keybit string} \\ \mathbf{b} &= b_1 \cdots b_{(4+\delta)n} & \text{basis string} \\ \mathbf{0} \text{ basis} &= \{|0\rangle, |1\rangle\} & \mathbf{1} \text{ basis} &= \{|+\rangle, |-\rangle\} \\ &|+\rangle \stackrel{\text{def}}{=} \frac{|0\rangle + |1\rangle}{\sqrt{2}} & |-\rangle \stackrel{\text{def}}{=} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &|\psi_{00}\rangle \stackrel{\text{def}}{=} |0\rangle & |\psi_{10}\rangle \stackrel{\text{def}}{=} |1\rangle \\ &|\psi_{01}\rangle \stackrel{\text{def}}{=} |+\rangle & |\psi_{11}\rangle \stackrel{\text{def}}{=} |-\rangle \end{aligned}$

Alice sends to Bob

$$|\psi\rangle = \bigotimes_{k=1}^{(4+\delta)n} \left|\psi_{a_k b_k}\right\rangle$$

11/46

Phase 2 : Bob's side

- > When Bob has received the $(4 + \delta)n$ qubits he announces that to Alice
- ▶ He measures each of these qubits in either the $\{|0\rangle, |1\rangle\}$ or the $\{|+\rangle, |-\rangle\}$ basis. Each basis is chosen uniformly at random

Phase 3: Verification

- 1. Alice announces \mathbf{b} , Bob announces his own choice \mathbf{b}' of bases
- 2. They keep 2n bits corresponding to $b_i = b'_i$
- 3. Alice selects n positions among them to serve as check on Eve's interference and tells Bob which bits she selected
- 4. Alice and Bob compare a and a' on these n positions. Abort if too many bits disagree

Information reconciliation/privacy amplification

- Reconciliation: ending with a common string from a and a' by public communication
- Privacy amplification: ending with a common and private string by public communication

Exercise: Eve's attack

- 1. Find a basis choice which gives Eve the same information on a_i irrespective of the basis choice b_i
- 2. Let \hat{a}_i be Eve's choice for a_i that maximizes $\operatorname{Prob}(\hat{a}_i = a_i)$. Give a formula for $\operatorname{Prob}(\hat{a}_i = a_i)$
- 3. What is in this case $\operatorname{\mathbf{Prob}}(a'_i \neq a_i)$?

Solution

- 1. basis $\left\{\cos\frac{\pi}{8}|0\rangle + \sin\frac{\pi}{8}|1\rangle, -\sin\frac{\pi}{8}|0\rangle + \cos\frac{\pi}{8}|1\rangle\right\}$
- 2. $\mathbf{Prob}(\hat{a_i} = a_i) = \cos^2(\pi/8) \approx 0.85$
- 3. $\operatorname{Prob}(a'_i \neq a_i) = \sin^2(\pi/8) \approx 0.15$

3. The Bennett protocol

Highlights that the impossibility of perfect distinction between non-orthogonal states lies at the heart of quantum cryptography

> Alice prepares one classical bit a and sends to Bob

$$|\psi\rangle = \begin{cases} |0\rangle & \text{if } a = 0\\ \frac{|0\rangle + |1\rangle}{\sqrt{2}} & \text{if } a = 1 \end{cases}$$

▶ Bob generates a random classical bit a'.

- he measures $|\psi\rangle$ in the $\{|0\rangle, |1\rangle\}$ basis if a' = 0• he measures $|\psi\rangle$ in the $\{\frac{|0\rangle+|1\rangle}{\sqrt{2}}, \frac{|0\rangle-|1\rangle}{\sqrt{2}}\}$ basis if a' = 1 $\rightarrow b \in \{0, 1\}$
- ► He publicly announces *b*

▶ keep only pairs for which b = 1. Final key = a for Alice = 1 - a' for Bob

4. The EPR protocol

Based on EPR pairs

$$\frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

- Symmetric protocol
- Alice and Bob share n EPR pairs, Alice has the first qubit of the pairs, Bob the second one
- 1. Alice choose randomly $\mathbf{b} \in \{0,1\}^n$ and Bob $\mathbf{b}' \in \{0,1\}^n$
- 2. According to b_i (resp. b'_i) Alice (resp. Bob) measures her/his qubit of the *i*-th pair in the $\{|0\rangle, |1\rangle\}$ basis for a 0 bit and in $\{\frac{|0\rangle+|1\rangle}{\sqrt{2}}, \frac{|0\rangle-|1\rangle}{\sqrt{2}}\}$ for a 1 bit and obtain a_i and a'_i respectively
- 3. Communicate **b** and **b**' publicly and keep only the a_i 's for which $b_i = b'_i$

$\textbf{Fidelity} \Rightarrow \textbf{security}$

- Quantum information theory: if Alice and Bob share an entangled state $|\beta_{00}\rangle^{\otimes k}$ Eve has no information on a k-bit string they may have in common
- Random sampling can upper-bound eavesdropping

$$|\beta_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$
$$|\beta_{10}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$$
$$|\beta_{01}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$
$$|\beta_{11}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

- bit flips detected by the projectors $|\beta_{01}\rangle \langle \beta_{01}| + |\beta_{11}\rangle \langle \beta_{11}|$ and $|\beta_{00}\rangle \langle \beta_{00}| + |\beta_{10}\rangle \langle \beta_{10}|$
- phase flips detected by the projectors $|\beta_{10}\rangle \langle \beta_{10}| + |\beta_{11}\rangle \langle \beta_{11}|$ and $|\beta_{00}\rangle \langle \beta_{00}| + |\beta_{01}\rangle \langle \beta_{01}|$

Lo-Chau

5. The Lo-Chau protocol

$$|\beta_{00}\rangle^{\otimes n} \xrightarrow{\text{noise/Eve}} \rho \xrightarrow{\text{entanglement distillation}} \rho' \approx |\beta_{00}\rangle^{\otimes k}$$

- Sacrificing half of the EPR pairs for measuring the noise
- ▶ Based on a random CSS code to correct a fraction δ of X, Y and Z errors in ρ

The Lo-Chau protocol

- 1. Alice creates 2n EPR pairs
- 2. Alice chooses randomly $\mathbf{b} \in \{0,1\}^{2n}$, performs Hadamard \mathbf{H} on the 2nd qubit for which \mathbf{b} is 1, sends these qubits to Bob
- 3. After receiving the announcement that Bob received its qubits, Alice announces **b** and the n pairs that serve as check qubits, Bob performs **H** when b = 1
- 4. Alice and Bob measure their n check qubits in the $\{|0\rangle, |1\rangle\}$ basis and publicly share their results, abort if # disagreements > t
- 5. Alice and Bob measure their remaining qubits according to the check matrix of an [[n, k, t]]-CSS code, share the results and correct the quantum state $\rightarrow |\beta_{00}\rangle^{\otimes k}$: entanglement distillation
- 6. Alice and Bob measure the k EPR pairs in the $\{ |0\rangle\,, |1\rangle\}$ basis to obtain a shared secret key

22/46

Entanglement distillation

- 1. Alices prepares $|\beta_{00}\rangle^{\otimes n}$ and sends the second qubit of each EPR pair to Bob
- 2. There is channel noise which results in $(\mathbf{I} \otimes \mathbf{E}) |\beta_{00}\rangle^{\otimes n}$ where \mathbf{I} is the identity acting on Alice's side and \mathbf{E} is a Pauli error of weight t acting on Bob's side

```
Goal: generate |\beta_{00}\rangle^{\otimes k}
Means: [[n, k, t]] stabilizer code C
```

Exercise : stabilizer code

Consider an [[n,k]] stabilizer code with generators g_1, \dots, g_{n-k} . What happens if

(i) we start from an arbitrary *n*-qubit quantum state $|\psi
angle$

(ii) perform the measurement according to g_1, \dots, g_{n-k}

(iii) find a Pauli error ${f E}$ whose syndrome corresponds to the measurement

(iv) and finally apply \mathbf{E}^* to the measured state ?

Exercise : properties of Bell states

1. For any matrix $\mathbf{M} \in \mathbb{C}^{2^n imes 2^n}$, show that there exists \mathbf{M}' such that

$$(\mathbf{M} \otimes \mathbf{I}) |\beta_{00}\rangle^{\otimes n} = (\mathbf{I} \otimes \mathbf{M}') |\beta_{00}\rangle^{\otimes n}$$

where ${\bf M}$ acts on Alice's side whereas ${\bf M}'$ acts on Bob's side

2. Let $\mathbf{P}_1, \dots, \mathbf{P}_{2^{n-k}}$ be the projectors corresponding to ± 1 eigenspaces of the generators g_1, \dots, g_{n-k} . Show that for all i

$$(\mathbf{P}_i \otimes \mathbf{I})(\mathbf{I} \otimes \mathbf{E}) |\beta_{00}\rangle^{\otimes n} = (\mathbf{I} \otimes \mathbf{E})(\mathbf{P}_i \otimes \mathbf{P}_i^{\mathsf{T}}) |\beta_{00}\rangle^{\otimes n}$$

Solution

1. First we notice that

$$\left|\beta_{00}\right\rangle^{\otimes n} = \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} \left|x\right\rangle \left|x\right\rangle$$

From this we deduce

$$(\mathbf{M} \otimes \mathbf{I}) |\beta_{00}\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} M_{yx} |y\rangle |x\rangle$$

$$= \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} |y\rangle \sum_{x \in \{0,1\}^n} M_{yx} |x\rangle$$

$$= (\mathbf{I} \otimes \mathbf{M}^{\mathsf{T}}) |\beta_{00}\rangle^{\otimes n}$$

$\begin{aligned} (\mathbf{P}_{i} \otimes \mathbf{I})(\mathbf{I} \otimes \mathbf{E}) |\beta_{00}\rangle^{\otimes n} &= (\mathbf{I} \otimes \mathbf{E})(\mathbf{P}_{i} \otimes \mathbf{I}) |\beta_{00}\rangle^{\otimes n} \\ &= (\mathbf{I} \otimes \mathbf{E})(\mathbf{P}_{i} \otimes \mathbf{I})(\mathbf{P}_{i} \otimes \mathbf{I}) |\beta_{00}\rangle^{\otimes n} \\ &= (\mathbf{I} \otimes \mathbf{E})(\mathbf{P}_{i} \otimes \mathbf{I})(\mathbf{I} \otimes \mathbf{P}_{i}^{\mathsf{T}}) |\beta_{00}\rangle^{\otimes n} \\ &= (\mathbf{I} \otimes \mathbf{E})(\mathbf{P}_{i} \otimes \mathbf{P}_{i}^{\mathsf{T}}) |\beta_{00}\rangle^{\otimes n} \end{aligned}$

Exercise : entanglement distillation protocol

The entanglement distillation protocol consists in

- 1. Alices measures the n-k generators of $\mathcal C$ on her side
- 2. she performs the inverse of a unitary Pauli error that has the measured syndrome σ_A
- 3. she tells Bob her syndrome
- 4. Bob computes his syndrome and performs the unitary transform of weight $\leq t$ that would give him the same syndrome as Alice
- 5. they both perform the decoding unitary corresponding to ${\cal C}$

6. Another modification of the Lo-Chau protocol : the CSS protocol

- Problem of the Lo-Chau protocol : needs full power of quantum computing to perform entanglement distillation + entanglement
- This protocol can be simplified without compromising security
- ► We begin to simplify it by removing the need to distribute EPR pairs
- \blacktriangleright Idea: Alice's measurements collapse the pairs into n single qubits

Modified Lo-Chau protocol (II)

- 1. Alice creates random bits a_1, \ldots, a_n , qubits $|a_1\rangle, \cdots, |a_n\rangle$ and $|\beta_{00}\rangle^{\otimes n}$
- 2. Alice chooses randomly n positions (out of 2n) puts the $|a_i\rangle$'s in them and half of each EPR pair in the remaining positions
- 3. Alice chooses randomly $\mathbf{b} \in \{0,1\}^{2n}$ and performs Hadamard \mathbf{H} on the qubit for which \mathbf{b} is 1 then sends each of those qubits to Bob
- 4. Bob ack. the rec. of the qubits, Alice announces ${\bf b}$ and the n check qubits, Bob performs ${\bf H}$ when b=1
- 5. Bob measures check qubits in $|0\rangle$, $|1\rangle$, shares results, aborts if # disagree. > t
- 6. Alice and Bob measure their remaining qubits accord. to the check matrix of an [[n, k, t]]-CSS code, share results and correct the quantum state $\rightarrow |\beta_{00}\rangle^{\otimes k}$
- 7. Alice and Bob measure the k EPR pairs in the $\{|0\rangle\,,|1\rangle\}$ basis to obtain a shared secret key

Lo-Chau

CSS Codes

▶ Based on two binary linear codes C_X and C_Z such that

$$\mathcal{C}_Z^\perp \subset \mathcal{C}_X$$

Quantum code *Q* defined by

$$egin{aligned} \mathcal{Q} &\stackrel{ ext{def}}{=} & ext{Vect} \left\{ |\xi_{\mathbf{u}}
angle : \mathbf{u} \in \mathcal{C}_X / \mathcal{C}_Z^{\perp}
ight\} \ |\xi_{\mathbf{u}}
angle &= & rac{1}{\sqrt{2^{k_Z^{\perp}}}} \sum_{\mathbf{v} \in \mathcal{C}_Z^{\perp}} |\mathbf{u} + \mathbf{v}
angle \ k_Z^{\perp} &= & ext{dim} \, \mathcal{C}_Z^{\perp} \end{aligned}$$

 \blacktriangleright Encodes k qubits where

$$k_X = \dim \mathcal{C}_X$$
$$k = k_X - k_Z^{\perp}$$

▶ Corrects t errors if C_X and C_Z correct t errors

Quantum measurement

Firm $\mathbf{e} \in {\{\mathbf{I}, X, Y, Z\}^n}$ decomposes as

$$\mathbf{e} = e_X X + e_Z Z$$

Syndrome measurement yields

$$\sigma_X = \mathbf{H}_X \mathbf{e}_X^\mathsf{T}$$
$$\sigma_Z = \mathbf{H}_Z \mathbf{e}_Z^\mathsf{T}$$

> After error + measurement, the code state $|\xi_U\rangle$ becomes

$$\left|\xi_{\mathbf{u},\mathbf{e}_{X},\mathbf{e}_{Z}}\right\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{2^{k_{Z}^{\perp}}}} \sum_{\mathbf{v}\in\mathcal{C}_{Z}^{\perp}} (-1)^{\mathbf{e}_{Z}\cdot\mathbf{v}} \left|\mathbf{u}+\mathbf{v}+\mathbf{e}_{X}\right\rangle$$

The code state gets projected to one of the (orthogonal) spaces

$$\mathsf{CSS}_{\mathbf{z},\mathbf{x}}(\mathcal{C}_X,\mathcal{C}_Z) \stackrel{\text{def}}{=} \mathbf{Vect} \left\{ \left| \xi_{\mathbf{u},\mathbf{e}_X,\mathbf{e}_Z} \right\rangle, \mathbf{u} \in \mathcal{C}_X/\mathcal{C}_Z^{\perp} \right\}$$

32/46

Exercise : $\left| \xi_{\mathbf{u},\mathbf{e}_{X},\mathbf{e}_{Z}} \right\rangle$

- 1. Prove that all the states $|\xi_{\mathbf{u},\mathbf{e}_X,\mathbf{e}_Z}\rangle$ are orthogonal when \mathbf{u} ranges over $\mathcal{C}_X/\mathcal{C}_Z^{\perp}$, \mathbf{e}_X and \mathbf{e}_Z are vectors that are a particular solution of $\mathbf{H}_X \mathbf{e}_X^{\mathsf{T}} = \sigma_X$, $\mathbf{H}_Z \mathbf{e}_Z^{\mathsf{T}} = \sigma_Z$ and σ_X , σ_Z range respectively over $\mathbb{F}_2^{n-k_X}$ and $\mathbb{F}_2^{k_Z^{\perp}}$
- 2. Prove that

$$\left|\beta_{00}\right\rangle^{\otimes n} = \frac{1}{\sqrt{2^{n}}} \sum_{j \in \{0,1\}^{n}} \left|j\right\rangle \left|j\right\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{u}, \mathbf{e}_{X}, \mathbf{e}_{Z}} \left|\xi_{\mathbf{u}, \mathbf{e}_{X}, \mathbf{e}_{Z}}\right\rangle \left|\xi_{\mathbf{u}, \mathbf{e}_{X}, \mathbf{e}_{Z}}\right\rangle$$

3. Give an interpretation of Steps 6 and 7 in terms of $|\xi_{\mathbf{u},\mathbf{e}_X,\mathbf{e}_Z}\rangle$

Solution

- When Alice measures the stabilizer generators corresponding to H_X and H_Z she obtains random values x and z
 - ullet her final measurement yields $oldsymbol{u}$
 - the remaining qubits are thus left in $|\xi_{\mathbf{u},\mathbf{e}_X,\mathbf{e}_Z}\rangle$ which is the codeword for \mathbf{u} in $\text{CSS}_{\mathbf{z},\mathbf{x}}(\mathcal{C}_X,\mathcal{C}_Z)$
 - Alice measurements yield random qubits encoded in a random code

Modification III

- 1. Alice creates random bits a_1, \ldots, a_n , qubits $|a_1\rangle, \cdots, |a_n\rangle$ and $|\beta_{00}\rangle^{\otimes n}$
- 2. Alice chooses randomly n positions (out of 2n) puts the $|a_i\rangle$'s in them and half of each EPR pair in the remaining positions
- $\Rightarrow 1'$. Alice creates random bits a_1, \ldots, a_n , qubits $|a_1\rangle, \cdots, |a_n\rangle$, random **x**, **z**, random k bits $\tilde{\mathbf{u}}$ and encodes $\tilde{\mathbf{u}}$ in $\text{CSS}_{\mathbf{z},\mathbf{x}}(\mathcal{C}_X, \mathcal{C}_Z)$
- $\Rightarrow 2'$. Alice chooses randomly n positions (out of 2n) puts the $|a_i\rangle$'s in them and encoded qubits in the remaining positions
 - 4. Bob ack. the rec. of the qubits, Alice announces **b** and the n check qubits, Bob performs **H** when b = 1
- \Rightarrow 4. Bob ack. the rec. of the qubits, Alice announces **b**, **x**, **z** and the *n* check qubits, Bob performs **H** when *b* = 1

The CSS protocol

- 1. Alice creates random check bits $\mathbf{a} \in \mathbb{F}_2^n$, key bits $\tilde{\mathbf{u}} \in \mathbb{F}_2^k \sim \mathbf{u} \in \mathcal{C}_X/\mathcal{C}_Z^{\perp}$, random $\mathbf{z}, \mathbf{x} \in \mathbb{F}_2^n$ and encodes $|\mathbf{u}\rangle$ in $\mathsf{CSS}_{\mathbf{z},\mathbf{x}}(\mathcal{C}_X,\mathcal{C}_Z)$
- 2. Alice chooses randomly n positions (out of 2n) puts the check qubits $|a_i\rangle$ in them and the encoded qubits in the remaining positions.
- 3. Alice chooses randomly $\mathbf{b} \in \{0,1\}^{2n}$ and performs a Hadamard transform on the qubit for which \mathbf{b} is 1 then sends all the qubits to Bob
- 4. Bob ack. the rec. of the qubits, Alice announces **b**, **x**, **z** and the positions of the check qubits, Bob performs **H** when b = 1
- 5. Bob performs Hadamards on the qubits where **b** is 1, measures the check qubits in $|0\rangle$, $|1\rangle$, shares results, aborts if # disagree. > t
- 6. Bob decodes the remaining n qubits in $CSS_{z,x}(\mathcal{C}_X, \mathcal{C}_Z)$
- 7. Bob measures his qubits to obtain the shared secret key $\tilde{\mathbf{u}}$

7. Secure BB84 protocol

- The CSS QKD protocol is secure by reduction from the modified Lo-Chau protocol
- Much simpler protocol : does not use EPR pairs
- Drawbacks
 - requires quantum computations
 - Bob needs a quantum memory

Exercise

- 1. Explain how we can obtain $\mathbf{u} + \mathbf{v} + \mathbf{x} + \mathbf{e}$ for some error \mathbf{e} added by the channel or Eve and some $\mathbf{v} \in \mathcal{C}_X / \mathcal{C}_Z^{\perp}$
- 2. how can you recover e and then u + v ?
- 3. how can you recover \mathbf{u} ?

Modification I

- 6. Bob decodes the remaining n qubits in $CSS_{z,x}(\mathcal{C}_X, \mathcal{C}_Z)$
- \Rightarrow 6'. Bob measures the qubits to get $\mathbf{u} + \mathbf{v} + \mathbf{x} + \mathbf{e}$, subtracts \mathbf{x} from the result, correct it with the code \mathcal{C}_X to get $\mathbf{u} + \mathbf{v}$
 - 7. Bob measures his qubits to obtain the shared secret key $\tilde{\mathbf{u}}$
- \Rightarrow 7'. Bob obtain **u** and then $\tilde{\mathbf{u}}$ by determining in which coset of \mathcal{C}_Z^{\perp} in \mathcal{C}_Z $\mathbf{u} + \mathbf{v}$ lies.

Exercise

- 1. Notice that in the modified protocol Alice does not need to reveal z. Show that she can effectively send a mixed state $\rho_{u,x}$. Give an expression for this mixed state.
- 2. Show that

$$\frac{1}{2^n} \sum_{\mathbf{z}} |\xi_{\mathbf{u},\mathbf{z},\mathbf{x}}\rangle \langle \xi_{\mathbf{u},\mathbf{z},\mathbf{x}}| = \frac{1}{2^n} \sum_{\mathbf{v}\in\mathcal{C}_Z^{\perp}} |\mathbf{u} + \mathbf{v} + \mathbf{x}\rangle \langle \mathbf{u} + \mathbf{v} + \mathbf{x}|$$

3. How can you create $\rho_{\mathbf{u},\mathbf{v}}$?

Solution

mixed state averaged over the values of z: |ξ_{u,z,x}⟩ is created with probability
 ¹/_{2ⁿ} ⇒ mixed state ρ_{u,v} = ¹/_{2ⁿ} ∑_z |ξ_{u,z,x}⟩ ⟨ξ_{u,z,x}|
 2.

$$\rho_{\mathbf{u},\mathbf{v}} = \frac{1}{2^n} \sum_{\mathbf{z}} |\xi_{\mathbf{u},\mathbf{z},\mathbf{x}}\rangle \langle \xi_{\mathbf{u},\mathbf{z},\mathbf{x}}|$$

$$= \frac{1}{2^{n+k_Z^{\perp}}} \sum_{\mathbf{z}} \sum_{\mathbf{v}_1,\mathbf{v}_2 \in \mathcal{C}_Z^{\perp}} (-1)^{\mathbf{z} \cdot (\mathbf{v}_1 + \mathbf{v}_2)} |\mathbf{u} + \mathbf{v}_1 + \mathbf{x}\rangle \langle \mathbf{u} + \mathbf{v}_2 + \mathbf{x}|$$

$$= \frac{1}{2^{k_Z^{\perp}}} \sum_{\mathbf{v} \in \mathcal{C}_Z^{\perp}} |\mathbf{u} + \mathbf{v} + \mathbf{x}\rangle \langle \mathbf{u} + \mathbf{v} + \mathbf{x}|$$

3. Alice classically chooses $v \in C_Z$ at random, constructs $|u + v + x\rangle$ using her randomly determined x and u

Modification II

- 1. Alice creates random check bits $\mathbf{a} \in \mathbb{F}_2^n$, key bits $\tilde{\mathbf{u}} \in \mathbb{F}_2^k \sim \mathbf{u} \in \mathcal{C}_X/\mathcal{C}_Z^{\perp}$, random $\mathbf{z}, \mathbf{x} \in \mathbb{F}_2^n$ and encodes $|\mathbf{u}\rangle$ in $\mathsf{CSS}_{\mathbf{z},\mathbf{x}}(\mathcal{C}_X,\mathcal{C}_Z)$
- $\Rightarrow 1.'$ Alice creates random check bits $\mathbf{a} \in \mathbb{F}_2^n$, key bits $\tilde{\mathbf{u}} \in \mathbb{F}_2^k \sim \mathbf{u} \in \mathcal{C}_X/\mathcal{C}_Z^{\perp}$, random $\mathbf{x} \in \mathbb{F}_2^n$, random $\mathbf{v} \in \mathcal{C}_Z^{\perp}$ and encodes n qubits in $|0\rangle$ and $|1\rangle$ according to the state $|\mathbf{u} + \mathbf{v} + \mathbf{x}\rangle$

Modification III

- Currently
 - Alice sends $|{f u}+{f v}+{f x}
 angle$
 - \bullet Bob receives and measures to obtain $\mathbf{u}+\mathbf{v}+\mathbf{x}+\mathbf{e}$
 - Alice sends **x**
 - Bob subtracts to obtain $\mathbf{u} + \mathbf{v} + \mathbf{e}$
- ▶ If Alice chooses $\mathbf{u} \in \mathcal{C}_X$ (as opposed to $\mathcal{C}_X/\mathcal{C}_Z^{\perp}$) then \mathbf{v} is unnecessary
- $ightarrow \mathbf{v} + \mathbf{x}$ is completely random \Leftrightarrow
 - Alice chooses x sends $|\mathbf{x}\rangle$
 - \bullet Bob receives and measures to obtain $\mathbf{x} + \mathbf{e}$
 - Alice sends $\mathbf{x} \mathbf{u}$
 - \bullet Bob subtracts to obtain $\mathbf{u}+\mathbf{e}$
- \Rightarrow between check and code bits

Modification IV

- ▶ Removing the Hadamard operations by encoding either in the $\{|0\rangle, |1\rangle\}$ basis or in the $\{|+\rangle, |-\rangle\}$ basis
- Removing quantum memory : Bob measures directly choosing either to measure in the $\{|0\rangle, |1\rangle\}$ basis or in the $\{|+\rangle, |-\rangle\}$ basis

Secure BB84

- 1. Alice creates $(4 + \delta)n$ random bits
- for each bit she creates a qubit in either the Z or X basis according to random b and sends them to Bob
- 3. she chooses a random $\mathbf{u} \in \mathcal{C}_X/\mathcal{C}_Z^{\perp}$
- 4. Bob receives the qubits, announces it, measure them in the ${f Z}$ or ${f X}$ basis
- 5. Alice announces ${\bf b}$ and they discard those bits Bob measure in a basis other than b
- 6. Alice and Bob publicly compare their check bits. Abort if #disag. > t. Alice is left with x, Bob with x + e
- 7. Alice announces $\mathbf{x} \mathbf{u}$. Bob subtracts this from his result and correct it in \mathcal{C}_X to get \mathbf{u}
- 8. They compute the coset $\mathbf{u} + \mathcal{C}_Z^{\perp}$ in \mathcal{C}_X to get the key $\tilde{\mathbf{u}}$

secure-BB84

Information reconciliation and privacy amplification

- \triangleright C_Z used for information reconciliation
- ▶ C_Z^{\perp} used for privacy amplification