
Introduction to Information Theory : list of topics/projects for
the oral examination

mailto:jean-pierre.tillich@inria.fr

1 Theoretical subject where there are things to prove

If you choose one of the projects of this section you are asked to give an oral presentation explaining
the proof of a result in Information Theory taken from the following list.

1.1 Topic 1: proof of Shannon’s second theorem for linear codes

The alphabet A for the symbols that are transmitted through a noisy channel is assumed to be of
cardinality q which is a power of a prime number p, i.e. q = pm for a certain positive integer m.
This implies that there exists a finite field Fq with exactly q elements. Show that if we are interested
in using linear codes over Fq, then there exists a Shannon theorem adapted to this restricted class
of codes where we have to replace the capacity of a channel by I(U ;Y), where U is a uniformly
distributed random variable over Fq and Y is the corresponding channel output.

1.2 Topic 2: Upper bound on the bit error probability after decoding

Consider the following scenario. We are interested here in transmitting bits through a memoryless
channel of capacity C. We want to transmit information at a rate R that is above capacity, i.e.
R > C. Of course this means that we have to tolerate large probabilities of error after decoding.
We encode here k bits of information u = u1, u2, . . . , uk with a codeword x = x1, x2, . . . , xn of
length n. Here R = k

n . Let y be the received word when we transmit x through the noisy channel
and let û = û1, . . . , ûk be the binary output of the decoder. The average bit error probability is
given by

pb =
1

k

k∑
i=1

prob(ui 6= ûi)

Show that

1− h(pb) ≤
C

R

where h is the binary entropy function h(x) = −x log2 x− (1− x) log2(1− x).

Hint.
Show that

I(x, y) ≥ I(u; û)

by using Section 2.8 of the Cover and Thomas’ book Information Theory. Then show that

I(x; y) ≤ nC

1

mailto:jean-pierre.tillich@inria.fr

Finally show that
I(u; û) ≥ k(1− h(pb))

by using a certain result that you can find in Chapter 13 “‘Rate distortion theory” in Cover and
Thomas’ book.

2 Projects where you have to present an article

For the projects of this list you have to present what you understood from the following articles
(you choose of course only one topic). Important note: for topic 1, you are allowed to implement
the Burrows-Wheeler compression algorithm (instead of presenting the article) and to present your
implementation (this is in the spirit of a “projet informatique”).

2.1 Topic 1 : Source coding with the Burrows-Wheeler transform

This algorithm is more recent and is generally better than Lempel-Ziv is many cases (it is used in
bzip2 for instance).

References.
The article of Burrows Wheeler http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.
pdf

An article about this article https://marknelson.us/posts/1996/09/01/bwt.html

2.2 Topic 2: Proof of the optimality of Lempel-Ziv 1978

There are lecture notes by Shor at the MIT proving the optimality of Lempel-Ziv in the case of a
memoryless source. A proof in a much general setting is given in Chapter 10 (see Subsection 10.2)
in Cover and Thomas’ book.

References

papers/lempel_ziv_notes.pdf

2.3 Topic 3: Relationship between error correction in the worst case and error
correction for “typical” errors

This is also a simple and nice tutorial about using the probabilistic method in coding theory.

References. http://people.ee.ethz.ch/~loeliger/localpapers/MasseyBirthday.pdf

2.4 Topic 4: LDPC codes

A tutorial about an important family of error correcting codes.

2

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://marknelson.us/posts/1996/09/01/bwt.html
papers/lempel_ziv_notes.pdf
http://people.ee.ethz.ch/~loeliger/localpapers/MasseyBirthday.pdf

References. http://arizona.openrepository.com/arizona/handle/10150/607470

2.5 Topic 5: Codes for distributed storage systems

The codes presented here are used in the Ceph storage platform.

References. https://www.usenix.org/system/files/conference/fast18/fast18-vajha.
pdf You can also have a look a more mathematically oriented oriented article https://arxiv.org/
abs/1605.08630.

2.6 Topic 6: Information Theory and Statistical Mechanics

The work which is proposed here is to present Chapter 6 “Random code ensemble” of Andrea Mon-
tanari and Marc Mézard’s book Information, Physics and Computation (2009, Oxford University
Press) which can be found at http://www.stanford.edu/~montanar/RESEARCH/book.html The
chapter which is of interest to you is in http://www.stanford.edu/~montanar/RESEARCH/BOOK/

partB.pdf

2.7 Topic 7: Quantum Codes

The toric code belongs to the family of quantum surface codes and is particularly popular family of
quantum codes due to its simple structure and good error correction capacity. You might find a short
description of this code p.18-20 in http://www.math.u-bordeaux.fr/~zemor/QuantumCodes.pdf.
You are asked to present this family of codes, prove their minimum distance and explain as rigor-
ously as possible how they can be decoded from the sketchy description given in these notes.

2.8 Topic 8: Code-based Cryptography

Decoding a linear code in general is considered as a very difficult problem that can be used as a
building block for devising cryptographic schemes. Here it is asked to understand and present the
notes written by G. Zémor about Alekhnovich’s cryptosystems, which is a rather old cryptosystem.
But many most modern code-based cryptosystems are a variation of it. The nice feature is that the
security of the two cryptosystems presented here can be directly linked to the difficulty of decoding.

3 A mix of programming/theoretical study

In this project, you are asked to find an answer to the following problem that comes from DNA
digital storage. This consists in encoding and decoding data to and from synthesized DNA strands.
The amount of information that can be encoded in a single gram of DNA is really impressive, it
is of order 1017 bytes (hundreds of petabytes!). Storing information in this way might very well
be a way to handle a few worrisome problems that start to appear in big data storage (amount of

3

http://arizona.openrepository.com/arizona/handle/10150/607470
https://en.wikipedia.org/wiki/Ceph_(software)
https://www.usenix.org/system/files/conference/fast18/fast18-vajha.pdf
https://www.usenix.org/system/files/conference/fast18/fast18-vajha.pdf
https://arxiv.org/abs/1605.08630
https://arxiv.org/abs/1605.08630
http://www.stanford.edu/~montanar/RESEARCH/book.html
http://www.stanford.edu/~montanar/RESEARCH/BOOK/partB.pdf
http://www.stanford.edu/~montanar/RESEARCH/BOOK/partB.pdf
http://www.math.u-bordeaux.fr/~zemor/QuantumCodes.pdf
http://www.math.u-bordeaux.fr/~zemor/alekhnovich.pdf

energy that is needed, lifetime of standard storage solutions, whether the actual solutions will be
able to cope with the big amount of data produced in ten years from now,. . .).

Encoding of data in DNA strands can be modelled by a one-to-one mapping f from the set
{0, 1}∗ of binary strings to the set of words {A, C, G, T}∗ over the 4 nucleobases that can be found
in DNA, namely A, C, G and T. The problem that arises is here that for several reasons not all
words in {A, C, G, T}∗ are desirable. The set of words that are obtained by f should be admissible,
meaning that

1. neither ATG, nor TATAAT, nor CCCAT nor TTGCA should be subwords of a produced word f(x).
For instance, f(x) is not allowed to be equal to CGGATGCAT but could be ACTG.

2. For any ε > 0 the probability that
|f(x)|C,G
|f(x)| is not in [1

2 − ε, 1
2 + ε] when x is chosen uniformly

at random in the set {0, 1}n of binary words of length n tends to 0 as n tends to infinity.
Here |f(x)| is the length of the word f(x) and |f(x)|C,G is the number of symbols equal to C

or G in it. For instance when f(x) = AACCTCGC, we have |f(x)| = 8 and |f(x)|C,G = 5.

3. a symbol is never repeated in a sequence f(x) more than 4 times in a row. For instance
TAAAATTA is allowed but not TCGAAAAACC.

DNA storage works as follows: when one wants to store the binary word w the sequence f(x) is
synthesized and stored. To recover the information f(x) is read and x = f−1(f(x)) is computed.

Let f̄n be the expected length of f(x) when x is chosen uniformly in {0, 1}n. Let ϕn
def
= f̄n

n and

ϕ∞
def
= limn→∞ ϕn. You are now asked to answer the following questions.

1. Give the best lower bound you can find for ϕ∞ for an f that produces only admissible words.
This might involve some programming.

2. Implement an encoding function f for which ϕ∞ is close to this lower bound. The program
should take as input a binary string and output an admissible sequence in {A, C, G, T}∗.

You are also allowed here to give a solution that skips Condition 2, but in this case you are asked

to give the limit as n tends to infinity of the ratio
E(|fn(x)|C,G)
E(|fn(x)|) that you obtain. Here E(X) stands

for the expectation of the random variable X.

Subsidiary question: There is an additional problem that arises: when f(x) is read, it might
be that some of symbols are read incorrectly and that an error-correcting code might be needed.
For this purpose a special kind of encoding function might be used. It first consists in grouping
the binary data in binary packets of size m (the length n of the binary sequence is supposed to be
a multiple of m). The binary sequence x = x1 · · · , xn of length n is now viewed as a sequence of
length n/m over the finite field F2m : u = u1 · · ·un′ with ui ∈ F2m and n′ = n/m. One chooses now
a function g of the form

g : {A, C, G, T}m′ → F2m

which is such that there is a one-to-one mapping f ′ that maps any sequence u = u1 · · ·un′ of
elements in F2m into an admissible sequence v1 · · · vn′ of elements in {A, C, G, T} where we have for

4

all i that vi ∈ g−1(ui). Give an example of such a g and such an f ′. Explain how this can be used
to perform error-correction. As an additional subsidiary question you might want to find such a g
and an m such that the ratio m′

m is close to ϕ∞ that you have found in the previous question.

5

	Theoretical subject where there are things to prove
	 Topic 1: proof of Shannon's second theorem for linear codes
	Topic 2: Upper bound on the bit error probability after decoding

	Projects where you have to present an article
	Topic 1 : Source coding with the Burrows-Wheeler transform
	Topic 2: Proof of the optimality of Lempel-Ziv 1978
	Topic 3: Relationship between error correction in the worst case and error correction for ``typical'' errors
	Topic 4: LDPC codes
	Topic 5: Codes for distributed storage systems
	Topic 6: Information Theory and Statistical Mechanics
	Topic 7: Quantum Codes
	Topic 8: Code-based Cryptography

	A mix of programming/theoretical study

