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Abstract

The purpose of this paper is to demonstrate that a distinguisher of Reed-Solomon codes
based on the square code construction leads to the cryptanalysis of several cryptosystems relying
on them. These schemes are respectively (i) a homomorphic encryption scheme proposed by
Bogdanov and Lee; (ii) a variation of the McEliece cryptosystem proposed by Baldi et al. which
firstly uses Reed-Solomon codes instead of Goppa codes and secondly, adds a rank 1 matrix
to the permutation matrix; (iii) Wieschebrink’s variant of the McEliece cryptosystem which
consists in concatenating a few random columns to a generator matrix of a secretly chosen
generalized Reed-Solomon code. XXX signaler l’attaque sur les GRSXXXX

1 Reed-Solomon Codes and the Square Code Construction

We recall in this section a few relevant results and definitions from coding theory and bring in the
fundamental notion which is used in both attacks, namely the square code construction. Generalized
Reed-Solomon codes (GRS in short) form a special case of codes with a very powerful low complexity
decoding algorithm. It will be convenient to use the definition of these codes as evaluation codes

Definition 1 (Generalized Reed-Solomon code). Let k and n be integers such that 1 6 k < n 6
q where q is a power of a prime number. The generalized Reed-Solomon code GRSk(x,y) of
dimension k is associated to a pair (x,y) ∈ Fnq × Fnq where x is an n-tuple of distinct elements of
Fq and the entries yi are arbitrary nonzero elements in Fq. GRSk(x,y) is defined as:

GRSk(x,y)
def
=
{

(y1p(x1), . . . , ynp(xn)) : p ∈ Fq[X], deg p < k
}
.
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Remark 1. Reed-Solomon codes correspond to the case where yi = 1 for all i.

The first work that suggested to use GRS code in a public-key cryptosystem scheme was [Nie86].
But Sidelnikov and Shestakov discovered in [SS92] that this scheme is insecure. They namely showed
that for any GRS code it is possible to recover in polynomial time a couple (x,y) which defines
it. This is all that is needed to decode efficiently such codes and is therefore enough to break the
Niederreiter cryptosystem suggested in [Nie86] or any McEliece type cryptosystem [McE78] that
uses GRS codes instead of binary Goppa codes.

Definition 2 (Componentwise products). Given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) ∈
Fnq , we denote by a ? b the componentwise product

a ? b
def
= (a1b1, . . . , anbn)

Definition 3 (Product of codes & square code). Let A and B be two codes of length n. The star
product code denoted by A ?B of A and B is the vector space spanned by all products a ? b where
a and b range over A and B respectively. When B = A then A ?A is called the square code of
A and is rather denoted by A 2.

It is clear that A ?B is also generated by the ai ? bj ’s where the ai’s and the bj ’s form a basis
of A and B respectively. Therefore, we have the following result.

Proposition 4. Let A and B be two codes of length n, then

1. dim(A ?B) 6 dim(A ) dim(B)

2. dim(A 2) 6

(
dim(A ) + 1

2

)
.

The importance of the square code construction will become clear when we compare the dimen-
sions of square codes obtained through a structured code and random code and one major question
is to know what one should expect. The following Proposition 5 shows that when applied to GRS
codes, the dimension of the square code is roughly twice as large as the dimension of the underlying
code.

Proposition 5. GRSk(x,y)2 = GRS2k−1(x,y ? y).

Proof. This follows immediately from the definition of a GRS code as an evaluation code since
the star product of two elements c = (y1p(x1), . . . , ynp(xn)) and c′ = (y1q(x1), . . . , ynq(xn)) of
GRSk(x,y) where p and q are two polynomials of degree at most k − 1 is of the form

c ? c′ =
(
y21p(x1)q(x2), . . . , y

2
np(xn)q(xn)

)
=
(
y21r(x1), . . . , y

2
nr(xn)

)
where r is a polynomial of degree 6 2k−2. Conversely, any element of the form

(
y21r(x1), . . . , y

2
nr(xn)

)
where r is a polynomial of degree less than or equal to 2k−2 is a linear combination of star products
of two elements of GRSk(x,y).

This proposition shows that the square code is only of dimension 2k− 1 when 2k− 1 6 n. This
property can also be used in the case 2k−1 > n. To see this, consider the dual of the Reed-Solomon
code itself a Reed-Solomon code [MS86, Theorem 4, p.304]

Proposition 6. GRSk(x,y)⊥ = GRSn−k(x,y
′) where the length of GRSk(x,y) is n and y′ is a

certain element of Fnq depending only on x and y.
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This result is clearly different what would obtain if random linear codes are taken. Indeed,
we expect that the square code when applied to a random linear code of dimension k should be

a code of dimension of order min
{(

k+1
2

)
, n
}

. Actually it can be shown by the proof technique of

[FGO+11] the following result (see also [MCP12]).

Proposition 7 ([FGO+11]). Let k and n be non-negative integers such that k = o(n1/2) and
consider a random (n − k) × (n − k) matrix R where each entry is independently and uniformly
drawn from Fq. Let R be the linear code defined by the generator matrix (Ik | R) where Ik is the
k × k identity matrix.

For any ε such that 0 < ε < 1 and any α > 0, we have as k tends to +∞:

Prob

(
dim

(
R2
)
6

(
k + 1

2

)(
1− αk−ε

))
= o(1)

Therefore GRSk(x,y) can be distinguished from a random linear code of the same dimension
by computing the dimension of the associated square codes. This phenomenon was already observed
in [FGO+11] for q-ary alternant codes (in particular Goppa codes) at very high rates. Let us note
that even when 2k − 1 > n it is still possible to distinguish GRS codes from random codes by

focusing on
(
GRSk(x,y)⊥

)2
. We have in this case:(

GRSk(x,y)⊥
)2

= GRSn−k(x,y
′)2 = GRS2n−2k−1(x,y

′ ? y′)

which is a code of dimension 2n− 2k − 1.

The star product of codes has been used for the first time by Wieschebrink to cryptanalyze a
McEliece-like scheme [BL05] based on subcodes of Reed-Solomon codes [Wie10]. The use of the star
product is nevertheless different in [Wie10] from the way we use it here. In Wieschebrink’s paper, the
star product is used to identify for a certain subcode C of a GRS code GRSk(x,y) a possible pair
(x,y). This is achieved by computing C 2 which turns out to be GRSk(x,y)2 = GRS2k−1(x,y?y).
The Sidelnikov and Shestakov algorithm is then used on C 2 to recover a possible (x,y ? y) pair to
describe C 2 as a GRS code, and hence, a pair (x,y) is deduced for which C ⊂ GRSk(x,y).

In this work, we use directly the fact that the square code of a somehow GRS code has an ab-
normally small dimension. When applied on several public-key encryption schemes [Nie86, Wie06,
BBC+11, BL11], we achieve different goals but it always results in an efficient key-recovery attack.
For instance, computing the dimensions of the square of various:

• subcodes of the public code permits to detect random columns in the generator matrix of the
public code of Wieschebrink’s cryptosystem [Wie06] (Section 2);

• punctured versions of the public code in the Bogdanov-Lee cryptosystem [BL11] enables to
retrieve the Reed-Solomon part of the public code (Section 3).

In the case of the scheme [BBC+11], it is possible to identify a certain subcode that is both included
in a GRS code and the public code (Section 4). In the case of a McEliece-like cryptosystem based
on a GRS code [Nie86], it enables to get a full filtration by means of GRS subcodes, so that the
structure of the public code as a GRS code is recovered (Section 5).
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2 Wieschebrink’s Scheme

In [Wie06] Wieschebrink suggests a variant of the McEliece cryptosystem based on GRS codes
whose purpose was to resist to the Sidelnikov–Shestakov attack. The idea of this proposal is to
use the generator matrix of a GRS code in which a small number of randomly chosen columns are
inserted. More precisely, let G be a generator matrix of a GRS code of length n and dimension k
defined over Fq. Let C1, . . . , Cr be r column vectors in Fkq drawn uniformly at random and let G′

be the matrix obtained by concatenating G and the columns C1, . . . , Cr. Choose S to be a k × k
random invertible matrix and let Q be a an (n+ r)× (n+ r) permutation matrix. The public key
of the scheme is

Gpub
def
= S−1G′Q−1.

This cryptosystem can be cryptanalyzed if a description of the GRS code can be recovered from
Gpub. We give here a way to break this scheme in polynomial time which relies on two ingredients.
The first one is given by

Lemma 8. Let G′ be a k× (n+ r)–matrix obtained by inserting r random columns in a generator
matrix of an [n, k] GRS code C . Let C ′ be the corresponding code. Assume that k < n/2, then

2k − 1 6 dim C ′2 6 2k − 1 + r.

Proof. The first inequality comes from the fact that puncturing C ′2 at the r positions corresponding
to the added random columns yields the code C 2 which is the square of an [n, k] GRS code and
hence an [n, 2k−1] GRS code. To prove the upper bound, let D be the code with generator matrix
G′′ obtained from G′ by replacing the Ci’s columns by all-zero columns and let D ′ be the code
with generator matrix G′′′ obtained by replacing in G′ all columns which are not the Ci’s by zero
columns. Since G′ = G′′ +G′′′ we have

C ′ ⊂ D + D ′. (1)

Therefore

C ′2 ⊂
(
D + D ′

)2
⊂ D2 + D ′2 + D ?D ′

⊂ D2 + D ′2

where the last inclusion comes from the fact that D ?D ′ is the zero subspace since D and D ′ have
disjoint supports. The right-hand side inequality follows immediately from this, since dim D2 =
2k − 1 and dim D ′2 6 r.

Actually the right-hand inequality of Lemma 8 is sharp and with very high probability we
observe that if 2k − r − 1 < n then

dim C ′2 = 2k − 1 + r.

This will be useful to detect the positions which correspond to the Ci’s. We call such positions the
random positions whereas the other positions are referred to as the GRS positions. We use in this
case a shortening trick which relies upon the following well known fact.

Fact. Shortening a GRS code of parameters [n, k] in ` 6 k positions gives a GRS code with
parameters [n− `, k − `].
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An attack easily follows from these facts. First of all, let us consider the case when 2k−1+r 6 n,
then consider C ′i which is the shortened C ′ code at position i. Two cases can occur

– i belongs to the random positions, then we expect that the dimension of C ′i is given by

dim C ′2i = 2k − 2 + r.

since C ′i is nothing but a k-dimensional GRS code with r− 1 random columns inserted in its
generator matrix.

– i belongs to the GRS positions, then C ′i is a k − 1-dimensional GRS code with r random
columns added to its generator matrix and we expect that

dim C ′2i = 2k − 3 + r.

This gives a straightforward way to distinguish between the random positions and the GRS posi-
tions.

Consider now the case where 2k − 1 + r > n. The point is to shorten C ′ in a positions
in order to be able to apply again the same principle. Here a is chosen such that a < k and
2(k− a)− 1 + r < n− a =⇒ a > 2k− 1 + r− n. Notice that these conditions on a can be met as
soon as k > 2k+r−n =⇒ n > k+r, which always holds true. Among these a positions, a0 of them

are random positions and a1
def
= a − a0 are GRS positions. This yields a GRS code of parameters

[n− a1, k − a1] to which r − a0 random positions have been added (or more precisely this yields a
code with generator matrix given by the generator matrix of a GRS code of size (k− a1)× (n− a1)
with r − a0 random columns added to it). Denote by C ′a this shortened code. Using the previous
results, we get that with high probability,

dim C ′a
2

= 2(k − a1)− 1 + r − a0

By this manner we get the value of 2a1 + a0 and since a = a1 + a0 is already known we can deduce
the values of a0 and a1. To identify which positions of C ′a are random positions and which ones
are GRS positions we just use the previous approach by shortening C ′a in an additional position
and checking whether or not the dimension decreases by one or two. This approach has been
implemented in Magma and leads to identify easily all the random columns for the parameters
suggested in [Wie06]. After identifying the random columns in the public generator matrix, it
just remains to puncture the public code at these positions and to apply the Sidelnikov-Shestakov
attack to completely break the scheme proposed in [Wie06].

3 Bogdanov-Lee Homomorphic Cryptosystem

3.1 Description of the Scheme

The cryptosystem proposed by Bogdanov and Lee in [BL11] is a public-key homomorphic encryption
scheme based on linear codes. It encrypts a plaintext m from Fq into a ciphertext c that belongs
to Fnq where n is a given integer satisfying n < q. The key generation requires two non-negative
integer `, k such that 3` < n and ` < k together with a subset L ⊂ {1, . . . , n} of cardinality 3`. A
set of n distinct elements x1, . . . , xn from F×q are generated at random. They serve to construct a

k × n matrix G whose i-th column GT
i (1 6 i 6 n) is defined by

GT
i

def
=


(xi, x

2
i , . . . , x

`
i , 0, . . . , 0) if i ∈ L

(xi, x
2
i , . . . , x

`
i , x

`+1
i , . . . , xki ) if i /∈ L

,
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where the symbol T stands for the transpose. The cryptosystem is defined as follows:

1. Secret key. (L,G).

2. Public key. P
def
= SG where S is a k × k random invertible matrix over Fq.

3. Encryption. The ciphertext c ∈ Fnq corresponding to m ∈ Fq is obtained as c
def
= xP+m1+e

where 1 ∈ Fnq is the all-ones row vector, x is picked uniformly at random in Fkq and e in Fnq
by choosing its components according to a certain distribution η̃.

4. Decryption. Solve the following linear system with unknowns y
def
= (y1, . . . , yn) ∈ Fnq :

GyT = 0,
∑
i∈L

yi = 1 and yi = 0 for all i /∈ L. (2)

The plaintext is then m =
n∑
i=1

yici.

Let us explain here why the decryption algorithm outputs the correct plaintext when ` and n
are chosen such that the entry ei at position i of the error vector is zero when i ∈ L. If this property
on e holds, notice that the linear system (2) has 3` unknowns and ` + 1 equations and since it is
by construction of rank `+ 1, it always admits at least one solution. Then observe that

n∑
i=1

yici = (xP +m1 + e)yT

= (xP +m1)yT (since ei = 0 if i ∈ L and yi = 0 if i /∈ L)

= xSGyT +m
n∑
i=1

yi

= m (since GyT = 0 and
n∑
i=1

yi = 1).

The decryption algorithm will output the correct plaintext when ` and n are chosen such that
the entry ei at position i of the error vector is zero when i ∈ L. The distribution η which is used
to draw at random the coordinates of e is chosen such that this property holds with very large
probability. More precisely, the parameters k, q, ` and the noise distribution η̃ are chosen such
that q = Ω

(
2n

α)
, k = Θ

(
n1−α/8

)
, ` = Θ

(
nα/4

)
and the noise distribution η̃ is the q-ary symmetric

channel with noise rate1 η = Θ
(
1/n1−α/4

)
where α is a in (0, 14 ]. For further details see [BL11,

§2.3]. It is readily checked that the probability that ei 6= 0 for i ∈ L is vanishing as n goes to

infinity since it is upper-bounded by η` = Θ
(

nα/4

n1−α/4

)
= Θ

(
n−1+α/2

)
= o(1).

3.2 An Efficient Key-Recovery Attack

The attack consists in first recovering the secret set L and from here, one finds directly a suitable
vector y by solving the system

PyT = 0,
∑
i∈L

yi = 1, yi = 0 for all i /∈ L. (3)

1It means that Prob(ei = 0) = 1 − η and Prob(ei = x) = η
q−1

for any x in Fq different from zero.
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Indeed, requiring that PyT = 0 is equivalent to SGyT = 0 and since S is invertible this is
equivalent to the equation GyT = 0. Therefore System (3) is equivalent to the “secret” system (2).
An attacker may therefore recover m without even knowing G just by outputting

∑
i yici for any

solution y of (3). In the following subsection, we will explain how L can be recovered from P in
polynomial time.

Our attack which recovers L relies heavily on the fact that the public matrix may be viewed
as a the generator matrix of a code C which is quite close to a generalized Reed-Solomon code (or
to a Reed-Solomon code if a row consisting only of 1’s is added to it). Notice that any punctured
version of the code has also this property (a punctured code consists in keeping only a fixed subset
of positions in a codeword). More precisely, let us introduce

Definition 9. For any I ⊂ {1, . . . , n} of cardinality |I|, the restriction of a code A of length n is

the subset of F|I|q defined as AI
def
=
{
v ∈ F|I|q | ∃a ∈ A ,v = (ai)i∈I

}
.

The results about the unusual dimension of the square of a Reed-Solomon codes which are
given in Section 1 prompt us to study the dimension of the square code C 2 or more generally the
dimension of C 2

I . When I contains no positions in L, then CI is nothing but a generalized Reed-
Solomon code and we expect a dimension of 2k − 1 when |I| is larger than 2k − 1. On the other
hand, when there are positions in I which also belong to L we expect the dimension to become
bigger and the dimension of C 2 to behave as an increasing function of |I ∩L|. This is exactly what
happens as shown in the proposition below.

Proposition 10. Let I be a subset of {1, . . . , n} and set J
def
= I ∩ L. If the cardinality of I and J

satisfy |J | 6 `− 1 and |I| − |J | > 2k then

dim(C 2
I ) = 2k − 1 + |J | . (4)

Proof. Set a
def
= |I| − |J | and b

def
= |I|. After a suitable permutation of the support and the indexes

of the xj ’s, the code CI has a generator matrix of the form

x1 x2 · · · xa xa+1 · · · xb
...

...
...

...
...

x`1 x`2 · · · x`a x`a+1 · · · x`b

x`+1
1 x`+1

2 · · · x`+1
a

...
...

... (0)
xk1 xk2 · · · xka


We define the maps

ΦI :

{
Fq[x] → Fbq
P 7→ (P (x1), . . . , P (xb))

, ΦI\J :

{
Fq[x] → Fbq
P 7→ (P (x1), . . . , P (xa), 0 . . . , 0)

.

We have the two following obvious lemmas.

Lemma 11. Both maps ΦI and ΦI\J are linear. In addition, their restrictions to the vector space

< x2, . . . , x2k > are injective.

Proof. It is sufficient to prove that the restriction of ΦI\J is injective. It is an elementary conse-
quence of polynomial interpolation, since a = |I| − |J | is assumed to be be larger than 2k.
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Lemma 12. For all P,Q ∈ Fq[x], we have

ΦI (P ) ? ΦI (Q) = ΦI (PQ) (5)

ΦI\J (P ) ? ΦI\J (Q) = ΦI\J (PQ) (6)

ΦI (P ) ? ΦI\J (Q) = ΦI\J (PQ) (7)

Clearly, we have

CI = ΦI

(
< x, . . . , x

`
>
)
⊕ ΦI\J

(
< x`+1, . . . , xk >

)
. (8)

Using (5), (6) and (7), we get

C 2
I = ΦI

(
< x, . . . , x` >

)2
+ ΦI\J

(
< x`+1, . . . , xk >

)2
+ ΦI

(
< x, . . . , x` >

)
? ΦI\J

(
< x`+1, . . . , xk >

)
= ΦI

(
< x2, . . . , x2` >

)
+ ΦI\J

(
< x2`+2, . . . , x2k >

)
+ ΦI\J

(
< x`+2, . . . , xk+` >

)
= ΦI

(
< x2, . . . , x2` >

)
+ ΦI\J

(
< x2`+2, . . . , x2k > + < x`+2, . . . , xk+` >

)
Since, by assumption, ` < k, we have

< x`+2, . . . , xk+` > + < x2`+2, . . . , x2k > = < x`+2, . . . , x2k >

Therefore,

C 2
I = ΦI

(
< x2, . . . , x2` >

)
+ ΦI\J

(
< x`+2, . . . , x2k >

)
. (9)

Lemma 11 entails

dim ΦI

(
< x2, . . . , x2` >

)
= 2`− 1, and dim ΦI\J

(
< x`+2, . . . , x2k >

)
= 2k − `− 1. (10)

To conclude the proof, we need to compute the dimension of the intersection of these spaces. For
this purpose, set

R(x)
def
=

b∏
j=a+1

(x− xj).

An element of ΦI

(
< x2, . . . , x2` >

)
∩ΦI\J

(
< x`+2, . . . , x2k >

)
is an element of ΦI

(
< x2, . . . , x2` >

)
which vanishes on the |J | = b−a last positions: it is an element of ΦI

(
< x2R(x), . . . , x2`−|J |R(x) >

)
.

Thus,

ΦI

(
< x2, . . . , x2` >

)
∩ ΦI\J

(
< x`+2, . . . , x2k >

)
= ΦI

(
< x2R, . . . , x2`−|J |R >

)
∩ ΦI\J

(
< x`+2, . . . , x2k >

)
= ΦI\J

(
< x2R, . . . , x2`−|J |R >

)
∩ ΦI\J

(
< x`+2, . . . , x2k >

)
= ΦI\J

(
< x2R, . . . , x2`−|J |R > ∩ < x`+2, . . . , x2k >

)
.

The last equality is also a consequence of Lemma 11: the direct image of an intersection by an
injective map is the intersection of the direct images.
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Since all the xi’s are nonzero, the polynomials x`+2 and R are prime to each other, this yields

< x2R, . . . , x2`−|J |R > ∩ < x`+2, . . . , x2k > =< x`+2R, . . . , x2`−|J |R > .

Therefore,

ΦI

(
< x2, . . . , x2` >

)
∩ ΦI\J

(
< x`+2, . . . , x2k >

)
= ΦI\J

(
< x`+2R(x), . . . , x2`−|J |R(x) >

)
(11)

and this last space has dimension `− |J | − 1. Finally, combining (9), (10) and (11), we get

dim C 2
I = (2k − `− 1) + (2`− 1)− (`− |J | − 1) = 2k − |J | − 1.

An attacker can exploit this proposition to mount a distinguisher that recognizes whether a
given position belongs to the secret set L. At first a set I which satisfies with high probability the

assumptions of Proposition 10 is randomly chosen. Take for instance |I| = 3k. Then kI
def
= dim(C 2

I )
is computed. Next, one element x is removed from I to get a new set I ′ and kI′ = dim(C 2

I′)
is computed. The only two possible cases are either x /∈ L then kI′ = kI or x ∈ L and then
kI′ = kI − 1. By repeating this procedure, the whole set J = I ∩ L is easily recovered. The next
step now is to find all the elements of L that are not in I. One solution is to exchange one element
in I \ J by another element in {1, . . . , n} \ I and compare the values of kI . If it increases, it means
that the new element belongs to L. At the end of this procedure the set L is totally recovered.
This probabilistic algorithm is obviously of polynomial time complexity and breaks completely the
homomorphic scheme suggested in [BL11].

4 The BBCRS Cryptosystem

4.1 Description of the Scheme

The cryptosystem proposed by Baldi et al. in [BBC+11] is a variant of McEliece’s cryptosystem
[McE78] which replaces the permutation matrix used to hide the secret generator matrix by one of
the form Π +R where Π is a permutation matrix and R is a rank-one matrix. From the authors’
point of view, this new kind of transformation would allow to use families of codes that were shown
insecure in the original McEliece’s cryptosystem. In particular, it would become possible to use
GRS codes in this new framework. The scheme can be summarized as follows.

Secret key.

• Gsec is a generator matrix of a GRS code of length n and dimension k over Fq,

• Q def
= Π +R where Π is an n× n permutation matrix;

• R is a rank-one matrix over Fq such that Q is invertible. In other words there exist

α
def
= (α1, . . . , αn) and β

def
= (β1, . . . , βn) in Fnq such that R

def
= αTβ.

• S is a k × k random invertible matrix over Fq.

Public key. Gpub
def
= S−1GsecQ

−1.

Encryption. The ciphertext c ∈ Fnq of a plaintext m ∈ Fkq is obtained by drawing at random e

in Fnq of weight less than or equal to n−k
2 and computing c

def
= mGpub + e.

9



Decryption. It consists in performing the three following steps:

1. Guessing the value of eR;

2. Calculating c′
def
= cQ− eR = mS−1Gsec + eQ− eR = mS−1Gsec + eΠ and using the

decoding algorithm of the GRS code to recover mS−1 from the knowledge of c′;

3. Multiplying the result of the decoding by S to recover m.

The first step of the decryption, that is guessing the value eR, boils down to trying q elements
(in the worst case) since eR = eαTβ = γβ where γ is an element of Fq.

4.2 Key-Recovery Attack When 2k + 2 < n

We define Csec and Cpub to be the codes generated by the matrices Gsec and Gpub respectively.
We denote by n the length of these codes and by k their dimension. We assume in this subsection
that

2k + 2 < n (12)

The case of rates larger than 1/2 will be treated in Subsection 4.3.
As explained in Subsection 4.1, Csec is a GRS code. It will be convenient to bring in the code

C
def
= CsecΠ

−1. (13)

This code C , being a permutation of a GRS code, is itself a GRS code. So there are elements x and
y in Fnq such that C = GRSk(x,y). There is a simple relation between Cpub and C as explained
by Lemma 13 below.

First, notice that, since R has rank 1, then so does RΠ−1. Hence there exist a and b in Fnq
such that:

RΠ−1 = bTa. (14)

Lemma 13. Let λ
def
= − 1

1+a·bb For any c in Cpub there exists p in C such that:

c = p+ (p · λ)a. (15)

Remark 2. Notice that the definition of λ makes sense if and only of a · b 6= −1. This actually
holds since Q is assumed to be invertible (See Lemmas 22 and 23 in Appendix B).

Proof of Lemma 13. Let c be an element of Cpub. Since

Csec = CpubQ = Cpub(Π +R) = Cpub(I +RΠ−1)Π = CpubPΠ,

we obtain CsecΠ
−1 = CpubP and therefore

Cpub = (CsecΠ
−1)P−1 = CP−1.

From this, we obtain that there exists p in C such that c = pP−1. Thus, from Lemma 23,

c = p

(
I − 1

1 + a · b
bTa

)
= p− b · p

1 + a · b
a = p+ (λ · p)a.

10



From now on we make the assumption that

λ /∈ C⊥ and a /∈ C . (16)

If this is not the case then Cpub = C = GRSk(x,y) and there is straightforward attack by applying
the Sidelnikov and Shestakov algorithm [SS92]. It finds (x′,y′) that expresses Cpub as GRSk(x

′,y′).
Our attack relies on identifying a code of dimension k − 1 that is both a subcode of Cpub and the
GRS code C . It consists more precisely of codewords p+ (p ·λ)a with p in C such that p ·λ = 0.
This particular code which is denoted by Cλ⊥ is therefore:

Cλ⊥
def
= C∩ < λ >⊥ (17)

where < λ > denotes the vector space spanned by λ. It is a subspace of Cpub of codimension 1 if
Assumption (16) holds. Here is an inclusion diagram for the involved codes.

Cpub

Codim1

C

Codim1

Cλ⊥

(18)

Summary of the attack. Before describing it in depth, let us give the main steps of the attack.

Step 1. Compute a basis of Cλ⊥ using distinguisher-based methods. See § 4.2.1 for further details.

Step 2. Use Wieschebrink’s method [Wie10], which asserts that: C 2
λ⊥

= C 2 to recover the structure

of C 2 and then that of C . See § 4.2.2.

Step 3. Compute a pair (a0,λ0) called a valid pair (Definition 17), which will have similar prop-
erties than the pair (a, λ) (see (14) and Lemma 13 for the definitions of a and λ). See
§ 4.2.3.

Step 4. Thanks to the valid pair, one can decrypt any ciphered message. See § 4.2.4.

4.2.1 First step: computing a basis of Cλ⊥

The inclusion relations described in the diagram (18) strongly suggest that C 2
pub should have an

unusual low dimension since C 2 has dimension 2k− 1 by Proposition 5. More exactly we have the
following result.

Proposition 14. The square code of Cpub satisfies

(1) C 2
pub ⊂ C 2 + C ? a + < a ? a >;

(2) dim
(
C 2
pub

)
6 3k − 1.

Proof. Assertion (1) follows immediately from Lemma 13. As for the proof of (2), let c and c′ be
two elements in Cpub. By applying Lemma 13 to them we know that there exist two elements p
and p′ in C such that

c = p+ (λ · p)a

c′ = p′ + (λ · p′)a.

11



This implies that

c ? c′ = (p+ (λ · p)a) ? (p′ + (λ · p′)a)

= p ? p′ + ((λ · p)p′ + (λ · p′)p) ? a+ (λ · p)(λ · p′)a ? a (19)

Consider the symmetric bilinear map

Φ :

{
C × C → Cpub

(p,p′) 7→ (λ · p)p′ + (λ · p′)p+ (λ · p)(λ · p′)a

Relation (19) can be reformulated as

c ? c′ = p ? p′ + Φ(p,p′) ? a. (20)

Set K
def
=< Φ(p,p′) | (p,p′) ∈ C × C >. Equation (20) entails

C 2
pub ⊆ C 2 + K ? < a > . (21)

Since C is a GRS code of dimension k, from Proposition 5, we know that dim C 2 = 2k− 1. Hence,
to prove the result, there remains to prove that dim K 6 k. To prove that, let (p1, . . . ,pk−1,pk)
be a basis of C , such that (p1, . . . ,pk−1) is a basis of Cλ⊥ . First, observe that, since Φ is bilinear
and symmetric, we have

K =< Φ(pi,pj) | 1 6 i 6 j 6 k > . (22)

Second, notice that Φ(p,p′) = 0 as soon as both p and p′ ∈ Cλ⊥ . Hence (22) reduces to

K =< Φ(pi,pk) | 1 6 i 6 k > . (23)

Therefore dim K 6 k.

Experimentally it has been observed that the upper-bound is sharp. Indeed, the dimension of
C 2
pub has always been found to be equal to 3k − 1 in all our experiments when choosing randomly

the codes and Q.

The second observation is that when a basis g1, . . . , gk of Cpub is chosen together with l other
random elements z1, . . . ,zl ∈ Cpub, then we may expect that the dimension of the vector space
generated by all products zi ? gj with i in {1, . . . , l} and j in {1, . . . , k} is the dimension of the full
space C 2

pub when l > 3. This is indeed the case when l > 4 but it is not true for l = 3 since we have
the following result.

Proposition 15. Let B be the space spanned by
{
zi ? gj | 1 6 i 6 3, 1 6 j 6 k

}
, then dim (B) 6

3k − 3.

Proof. This follows immediately from the fact that we can express zi in terms of the gj ’s, say

zi =
∑

16j6k

aijgj .

We observe now that we have the following three relations between the zi ? gj ’s:∑
16j6k

a2jz1 ? gj −
∑

16j6k

a1jz2 ? gj = 0 (24)

∑
16j6k

a3jz1 ? gj −
∑

16j6k

a1jz3 ? gj = 0 (25)

∑
16j6k

a2jz3 ? gj −
∑

16j6k

a3jz2 ? gj = 0 (26)

12



(24) can be verified as follows∑
16j6k

a2jz1 ? gj −
∑

16j6k

a1jz2 ? gj = z1 ? z2 − z2 ? z1 = 0.

The two remaining identities can be proved in a similar fashion. It remains to prove that the three
obtained identities relating the zi?gj ’s are independent under some conditions on the zi’s. Actually,
these relations are independent if and only if the zi’s generate a space of dimension larger than or
equal to 2. Indeed, sort the z1 ? gj ’s as z1 ? g1, . . . ,z1 ? gk, z2 ? g1, . . . ,z2 ? gk, z3 ? g1, . . . ,z3 ? gk.
Then the system defined by Equations (24) to (26) is defined by the 3× 3k matrix

A :=

a21 · · · a2k −a11 · · · −a1k 0 · · · 0
a31 · · · a3k 0 · · · 0 −a11 · · · −a1k
0 · · · 0 −a31 · · · −a3k a21 · · · a2k

 .

Then, A has rank strictly less than 3 if there exists a vector u = (u1, u2, u3) such that uA = 0
which is equivalent to the system 

u1z2 + u2z3 = 0
−u1z1 − u3z3 = 0
−u2z1 + u3z2 = 0

and such a system has a nonzero solution u = (u1, u2, u3) if and only if the zi’s are pairwise collinear
i.e. generate a subspace of dimension lower than or equal to 1.

Experimentally, it turns out that almost always this upper-bound is tight and the dimension
is generally 3k − 3. But if we assume now that z1, z2, z3 all belong to Cλ⊥ , which happens with
probability 1

q3
since Cλ⊥ is a subspace of Cpub of codimension 1 (at least when (16) holds), then

the vectors zi ? gj generate a subspace with a much smaller dimension.

Proposition 16. If zi is in Cλ⊥ for i in {1, 2, 3} then for all j in {1, . . . , k}:

zi ? gj ⊂ C 2 + < z1 ? a > + < z2 ? a > + < z3 ? a > (27)

and if B is the linear code spanned by
{
zi ? gj | 1 6 i 6 3 and 1 6 j 6 k

}
then

dim (B) 6 2k + 2. (28)

Proof. Assume that the zi’s all belong to Cλ⊥ . For every gj there exists pj in C such that
gj = pj + λ · pja. We obtain now

zi ? gj = zi ? (pj + (λ · pj)a)

= zi ? pj + (λ · pj)zi ? a
∈ C 2+ < z1 ? a > + < z2 ? a > + < z3 ? a > . (29)

This proves the first part of the proposition, the second part follows immediately from the first part
since it implies that the dimension of the vector space generated by the zi ? gj ’s is upperbounded
by the sum of the dimension of C 2 (that is 2k − 1) and the dimension of the vector space spanned
by the zi ? a’s (which is at most 3).
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Algorithm 1 Recovering Cλ⊥ .

Input: A basis {g1, . . . , gk} of Cpub.
Output : A basis L of Cλ⊥ .

1: repeat
2: for 1 6 i 6 3 do
3: Randomly choose zi in Cpub

4: end for
5: B ← <

{
zi ? gj | 1 6 i 6 3 and 1 6 j 6 k

}
>

6: until dim(B) 6 2k + 2 and dim (< z1, z2, z3 >) = 3
7: L ← {z1, z2, z3}
8: s← 4
9: while s 6 k − 1 do

10: repeat
11: Randomly choose zs in Cpub

12: T ← <
{
zi ? gj | i ∈ {1, 2, s} and 1 6 j 6 k

}
>

13: until dim(T ) 6 2k + 2 dim (< L ∪ {zs} >) = s
14: L ← L ∪ {zs}
15: s← s+ 1
16: end whileL;

The upper-bound given in (28) on the dimension follows immediately from (27). This leads to
Algorithm 1 which computes a basis of Cλ⊥ . It is essential that the condition in (12) holds in order
to distinguish the case when the dimension is less than or equal to 2k + 2 from higher dimensions.
The first phase of the attack, namely finding a suitable triple z1, z2, z3 runs in expected time
O
(
k3q3

)
because each test in the repeat loop 4.2.1 has a chance of 1

q3
to succeed. Indeed, Cλ⊥

is of codimension 1 in Cpub and therefore a fraction 1
q of elements of Cpub belongs to Cλ⊥ . Once

z1, z2, z3 are found, getting any other element of Cλ⊥ is easy. Indeed, take a random element
z ∈ Cpub and use the same test to check whether the triple z1, z2, z is in Cλ⊥ . Since z1, z2 ∈ Cλ⊥
the probability of success is 1

q and hence z can be found in O(q) tests. The whole algorithm runs

in expected time O
(
k3q3

)
+O

(
k4q
)

= O
(
k3q3

)
since k = O(q) and the first phase of the attack is

dominant in the complexity.

4.2.2 Second step: recovering the structure of C

Once Cλ⊥ is recovered, it still remains to recover the secret code and a. The problem at hand can
be formulated like this: we know a very large subcode, namely Cλ⊥ , of a GRS code that we want
to recover. This is exactly the problem which was solved in [Wie10]. In our case this amounts to
compute C 2

λ⊥
which turns out to be equal to GRS2k−1(x,y ? y) (see [MCMMP11, MCMMP12]

for more details). It suffices to use the Sidelnikov and Shestakov algorithm [SS92] or the algorithm
described in Section 5 to compute a pair (x,y ? y) describing C 2

λ⊥
as a GRS code. From this, we

deduce a pair (x,y) defining the secret code C as a GRS code.
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4.2.3 Deriving a and λ from C and Cλ⊥

At this step of the attack let us summarize what has been done. We have been able to compute
the codes C and Cλ⊥ defined in (13) and (17) respectively. We recall the inclusion diagram.

Cpub + C

Codim1 Codim1

Cpub

Codim1

C

Codim1

Cλ⊥

In addition, we know that the code C and Cpub are related by the map

ψa,λ :

{
C → Cpub

p 7→ p+ (p · λ)a
. (30)

To finish the attack, we need to find a pair (a0,λ0) ∈ Fnq ×Fnq such that the map ψa0,λ0 induces
an isomorphism from C to Cpub. This motivates the following definition.

Definition 17. A pair (a0,λ0) ∈ Fnq × Fnq is said to be a valid pair is and only if

(a) a0 · λ0 6= −1;

(b) ψa0,λ0(C ) ⊆ Cpub.

Remark 3. From Corollary 24 (Appendix B), Condition (a) asserts that ψa0,λ0 is an isomorphism.
Thus,

∀p ∈ Cpub, ∃p′ ∈ C , such thatp = p′ + (p′ · λ0)a0.

Moreover, if (a) holds then the inclusion in (b) is an equality since both codes have the same
dimension.

First, we choose u ∈ C \ Cλ⊥ and v ∈ Cpub \ Cλ⊥ . Since Cλ⊥ has codimension 1 in C , we have

C = Cλ⊥⊕ < u > and Cpub = Cλ⊥ ⊕ v. (31)

A valid pair (a0,λ0) can be found easily using the two following elementary lemmas.

Lemma 18. For all λ0 ∈ C⊥
λ⊥
\ (C⊥ ∪ C⊥pub), we have

λ0 · u 6= 0 and λ0 · v 6= 0.

Proof. Assume that λ0 · u = 0. Then, λ0 ∈ C⊥
λ⊥
∩ < u >⊥= (Cλ⊥+ < u >)⊥. Hence, from (31),

we would have λ0 ∈ C⊥ which yields a contradiction. The other non-equality is proved by the very
same manner.

Lemma 19. For all λ0 ∈ C⊥
λ⊥

and for all x ∈ Fnq , we have

ψλ0,x(C ) ⊂ Cpub ⇐⇒ ψλ0,x(u) ∈ Cpub.

Proof. Since u ∈ C , the implication (⇐=) is obvious. Conversely, assume that ψλ0,x(u) ∈ Cpub.
Then, from (31), to show the result there remains to show that ψλ0,x(Cλ⊥) ⊂ Cpub. But, since
λ0 ∈ C⊥

λ⊥
, then for all p ∈ Cλ⊥ , we have

ψλ0,x(p) = p+ (λ0 · p)x = p.

Thus, ψλ0,x(Cλ⊥) = Cλ⊥ ⊂ Cpub.
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Procedure to recover a valid pair. Before starting, recall that we fixed vectors u ∈ C \ Cλ⊥
and v ∈ Cpub \ Cλ⊥ so that (31) holds.

Step 1. Choose λ0 ∈ C⊥
λ⊥
\ (C⊥ ∪ C⊥pub) at random. Notice that the set C⊥

λ⊥
\ (C⊥ ∪ C⊥pub) is

nonempty since both C⊥ and C⊥pub have codimension 1 in C⊥
λ⊥

and even over a finite field,
no vector space of dimension > 1 is a union of two vector subspaces of codimension 1.

Step 2. Set

a0 :=
1

λ0 · u
(v − u) .

It is well–defined thanks to Lemma 18.

We claim that the pair (a0,λ0) is valid. Indeed, we have

a0 · λ0 =
λ0 · v
λ0 · u

− 1.

Moreover, λ0 · v 6= 0 thanks to Lemma 18, and hence a0 · λ0 6= −1. Thus, the pair satisfies
Condition (a) of Definition 17.

To show that Condition (b) is satisfied too, Lemma 19 asserts that we only need to prove that
ψa0,λ0(u) ∈ Cpub which is true since an elementary computation yields

ψa0,λ0(u) = v

which is in Cpub by construction.

4.2.4 Final step: decryption of any ciphertext

We have found a valid pair (Definition 17) (a0,λ0). We want to decode the vector z
def
= c+e where

e is an error of a certain Hamming weight which can be corrected by the decoding algorithm chosen
for C and c is an element of the public code. From Remark 3 page 15, we know that there exists
p in C such that

c = p+ (λ0 · p)a0. (32)

We compute z(α)
def
= z + αa0 for all elements α in Fq. One of these elements α is equal to −λ0 · p

and we obtain z(α) = p+e in this case. Decoding z(α) in C will reveal p and this gives c by using
Equation (32).

4.3 Using duality when rates are larger than 1
2

The codes suggested in [BBC+11, §5.1.1,§5.1.2] are all of rate significantly larger than 1
2 , for instance

Example 1 p.15 suggests a GRS code of length 255, dimension 195 over F256, whereas Example
2. p.15 suggests a GRS code of length 511, dimension 395 over F512. The attack suggested in the
previous subsection only applies to rates smaller than 1

2 . There is a simple way to adapt the previous
attack for this case by considering the dual C⊥pub of the public code. Note that by Proposition 6,

there exists y′ in Fnq for which we have C⊥ = GRSn−k(x,y
′). Moreover, C⊥pub displays a similar

structure as Cpub.

Lemma 20. For any c from C⊥pub there exists an element p in C⊥ such that:

c = p+ (p · a)b. (33)
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Proof. The key to Lemma 20 is the fact that the dual of Cpub is equal to C⊥P T . Indeed Cpub =
CP−1 and therefore for any element c of Cpub there exists an element p of C such that c = pP−1.
Observe now that every element c′ in C⊥pub satisfies

0 = c · c′ = pP−1 · c′ = p · c′
(
P−1

)T
.

Therefore C⊥pub = C⊥P T . This discussion implies that there exists an element p′ in C⊥ such that:

c′ = p′P T = p′
(
I + bTa

)T
= p′ + p′aTb = p′ + (p′ · a)b.

It implies that the whole approach of the previous subsection can be carried out over C⊥pub. It

allows to recover the secret code C⊥ and therefore also C . This attack needs that 2(n−k)+ 2 < n,
that is 2k > n+ 2. In summary, there is an attack as soon as k is outside a narrow interval around
n/2 which is [n−22 , n+2

2 ] . We have implemented this attack on magma for n = 127, q = 27, k = 30
and the average running time over 50 attacks was about 9 hours.

5 McEliece Variants Based on GRS

Let C be a GRS code C
def
= GRSk(a, b). Assume that it has dimension k 6 n/2 (if not, then one

can work with the dual code).
First assume that the two first positions, i.e. the two first entries if a are 0 and 1. Such an

assumption makes sense since every GRS code is permutation equivalent to a code satisfying this
condition. This is a consequence of the 3–transitivity of the action of PGL(2,Fq) on the points of
the projective line.

Notation 1. For all i, j such that i > 0, j > 0 and i+j 6 k−1, we denote by C (i, j) the subcode of
C given by the evaluation of polynomials vanishing at 0 (i.e. the first position by assumption) with
multiplicity at least i and at 1 (i.e. the second position) with multiplicity at least j, i.e. multiples

of xi(x− 1)j. For convenience sake, we set C (0, 0)
def
= C .

The main step of our attack is to compute some codes among C (i, j). Notice that these codes
are also GRS codes.

5.1 Computing some subcodes

Clearly, the computation of a generator matrix of C (0, 1),C (1, 0) and C (1, 1) is easy since it reduces
to Gauss–elimination.

The main tool of our attack is the following result.

Theorem 21. Assume that k 6 n/2. For all 1 6 i 6 k − 2 and all j such that i + j 6 k − 2, we
have

C (i+ 1, j) ? C (i− 1, j) = C (i, j)2 and C (i, j + 1) ? C (i, j − 1) = C (i, j)2.

Proof. We prove the first identity, the second is obtained easily by symmetry. Set,

Vi,j
def
= xi(x− 1)jFq[x]<k−i−j

Vi−1,j
def
= xi−1(x− 1)jFq[x]<k−1−i−j

Vi+1,j
def
= xi+1(x− 1)jFq[x]<k+1−i−j .
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These spaces have respective dimensions k − i− j, k − i− j − 1 and k − i− j + 1 and are related
to our GRS codes by

C (i, j)
def
= < (P (a) ? b) | P ∈ Vi,j >

C (i+ 1, j)
def
= < (P (a) ? b) | P ∈ Vi+1,j >

C (i− 1, j)
def
= < (P (a) ? b) | P ∈ Vi−1,j > .

Clearly, we have
V 2
i,j = x2i(x− 1)2jFq[x]<2k−2i−2j−1

and it is also simple to check that

Vi−1,j ? Vi+1,j = x2i(x− 1)2jFq[x]<2k−2i−2j−1.

This yields the result.

Thus, from the previous result, as long as C (i, j)2 6= Fnq , which holds for k 6 n/2, given
generator matrices of C (i, j) and C (i − 1, j), one can recover a basis of C (i + 1, j) by solving a
simple linear system. Indeed, deciding whether an element c ∈ C (i, j) is actually in C (i + 1, j)
reduces to solve

c ? C (i− 1, j) ⊆ C (i, j)2.

Consequently, because of our knowledge of C = C (0, 0),C (0, 1),C (1, 0) and C (1, 1), we are
able to compute recursively all the C (i, j)’s.

5.2 Description of the attack

The attack summarises as follows. We assume that the dimension of the GRS code is less than
n/2, if not one can apply the attack on its dual.

Step 1. Compute a basis of C (k − 1, 0), i.e. compute a nonzero vector c of this 1–dimensional
space. The corresponding vector comes from the evaluation of a polynomial of the form
λxk−1 for some λ ∈ F×q . More precisely, we get the vector λ(ak ?b). Then, compute a basis

of C (k − 2, 1). The corresponding vector c′ is of the form µak−2 ? (a− 1) for µ ∈ F×q and
where 1 := (1, . . . , 1).

Step 2. The vectors c and c′ have no zero position but the two first ones. Thus, after puncturing
at the two first positions the quotient c′/c makes sense and corresponds to the evaluation
of the fraction ν(x − 1)/x for some ν ∈ F×q (i.e. is (a − 1)/a, which makes sense after a
suitable puncturing).

It is worth noting that compared to the vectors c and c′, the vector c′/c corresponds to the
exact evaluation of ν(x − 1)/x at some elements of Fq \ {0, 1} since the entries of b, are
cancelled by the quotient.

Step 3. Up to now, we only made two arbitrary choices by fixing the position of 0 and 1. Because
of the 3–transitivity of PGL(2,Fq), one can make a third arbitrary choice. Thus, without
loss of generality, one can assume that ν = 1. Now, notice that the map x 7→ (x− 1)/x is
a bijection from Fq \ {0, 1} to itself with reciprocal map y 7→ 1/(1− y).

Thus, by applying the map y 7→ 1/(1 − y) to the entries of the vector c′/c we get the
corresponding positions, i.e. the vector a.

18



Step 4. Now, comparing the vector c with the vector ak, we get b up to multiplication by an
element α ∈ F×q , which does not matter since GRSk(a, b) = GRSk(a, αb) for α ∈ F×q .

Conclusion

XXX ajouter un mot sur l’attaque sur les GRS et sur Wieschebrink XXXX The homomorphic
scheme suggested in [BL11] actually leads in a natural way to choose codes for which the square
product is of unusually small dimension (see Appendix A for more details). This sheds some light on
why considerations of this kind might lead to an attack. It is worthwhile mentioning that replacing
Reed-Solomon codes by Reed-Muller ones for instance in this scheme does not seem to prevent this
kind of attack.

Both attacks we presented here against [BL11, BBC+11] may be viewed as trying to identify,
through square code dimension considerations, certain subcodes or punctured codes of the public
codes of the schemes. In the case of Bogdanov-Lee’s scheme, this was for identifying the punctured
codes with a certain number of elements of L in their support. In the Baldi et al. case, this was for
identifying codewords in a subcode of codimension 1. Reed-Solomon codes are particularly prone
to this kind of attack because of the very low dimension of their square code.

The approach we developped here seems to have other applications to cryptanalysis. For in-
stance, it is not too difficult to use it for finding another way of breaking a McEliece type cryptosys-
tem based on generalized Reed-Solomon (the Sidelnikov-Shestakov attack [SS92]) which would start
by trying to identify the subcode GRSk−1(x,y) of the generalized Reed-Solomon code GRSk(x,y).
It might also be applied to other codes such as for instance Reed-Muller codes [Sid94]. The square
code of these codes have also an abnormal dimension. Finally, the most challenging task would be
to attack the McEliece cryptosystem with similar tools (at least for a range of parameters) since
duals of Goppa codes also have, in a limited way, square codes with low dimensions.2
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A On the Inherent Existence of Low-Dimension Square Codes for
the Bogdanov and Lee Homomorphic Scheme

The purpose of this section is to explain why the homomorphic scheme of [BL11] leads in a natural
way to define codes whose square code has an abnormal dimension. The point of [BL11] is to
define a code which is homomorphic for addition over Fq (all linear codes do the job here) but
also protohomorphic for the multiplication over Fq [BL11, Claim 3.5]. This property holds for
their scheme, because there is a solution y of (2) which satisfies for two ciphertexts c and c′ in Fnq
corresponding respectively to the plaintexts m and m′ in Fq:

y · (c ? c′) = mm′ (34)

Recall that c and c′ are given by

c = xP +m1 + e (35)

c′ = x′P +m′1 + e′ (36)

where e and e′ are error vectors whose support does not intersect L. We also know that y satisfies:

(i) GyT = 0;

(ii)
∑n

i=1 yi = 1;

(iii) yi = 0 if i /∈ L with P and G related by a multiplication of an invertible matrix S, i.e.
P = SG.

We deduce from this

y(c ? c′)T = y
(
(xP +m1 + e) ? (x′P +m′1 + e′)

)T
= y

(
P TxT ? P Tx′T + P TxT ? m′1T + P Tx′T ? m1T +m1T ? m′1T

)
+y
(
eT ? (P Tx′T +m′1T + e′T )

)
+ y

(
(P TxT +m1T ) ? e′T

)
The terms y

(
eT ? (P Tx′T +m′1T + e′T )

)
and y

(
(P TxT +m1T ) ? e′T

)
are equal to zero because

the support of y is contained in L and eT ? (P Tx′T + m′1T + e′T ), (P TxT + m1T ) ? e′T have
their support outside L. The terms y(P TxT ? m′1T ) = m′yGTSTxT and y(P Tx′T ? m1T ) =
myGTSTx′T are equal to 0 from Condition (i) on y given above. Therefore in order to ensure (34)
we need that

y
(
P TxT ? P Tx′T

)
= 0. (37)

has a non zero solution whose support is contained in L. Let C be the code with generating matrix
P , that is the set of elements of the form Px. Notice that the set of solutions of (37) is precisely
the dual of C 2. This implies that C 2 should not be the whole space Fnq . This is quite unusual as

explained in Section 1 when the dimension k of C satisfies k � n1/2. Furthermore, since we are
interested in solutions of (37) whose support is contained in L we actually need that the dual of
C 2
L is non empty which is even more abnormal since CL is a code of length 3` and dimension `. In

other words, the Bogdanov and Lee homomorphic scheme leads in a natural way to choose codes
C which have a non-random behavior with respect to the dimension of the square product.
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B Proof of Lemma 13

Recall that R has rank 1, then so doesRΠ−1 and there exist a and b in Fnq such that RΠ−1 = bTa.
Set

P
def
= I +RΠ−1 = I + bTa.

We need the following lemmas

Lemma 22. The matrix Q is invertible if and only if P is.

Proof. We have Q = Π +R = (I +RΠ−1)Π = PΠ, which yields the proof.

Lemma 23. The matrix P is invertible if and only if a · b 6= −1. In addition, if it is invertible,
then

P−1 = I − 1

1 + a · b
bTa.

Proof. First, assume that a · b 6= −1. Then,

P

(
I − 1

1 + a · b
bTa

)
=

(
I + bTa

)(
I − 1

1 + a · b
bTa

)
= I +

(
1− 1

1 + a · b

)
bTa− 1

1 + a · b
bTabTa

= I +
a · b

1 + a · b
bTa− a · b

1 + a · b
bTa

= I.

To conclude the “only if” part of the proof, we prove that det(P ) = a · b+ 1. If either a or b
is zero, then it is obvious. Thus assume the vectors are nonzero. Up to a re-ordering of the entries
of the vectors (i.e. up to conjugation by a permutation matrix) one can assume that the first entry
a1 of a is nonzero. In addition, up to rescaling a by a−11 a and b by a1b, which has no influence on
P , one can assume that a1 = 1. Hence the matrix P is

P =


b1 + 1 b2 · · · bn
a2b1 a2b2 + 1 · · · a2bn

...
. . .

...
anb1 anb2 · · · anbn + 1


Consider the determinant of this matrix and apply first the operations Rowi ← Rowi− aiRow1 for
i = 2, . . . , n and then the operations Row1 ← Row1 − biRowi for i = 2, . . . , n. This yields

first, det(P ) =

∣∣∣∣∣∣∣∣∣
b1 + 1 b2 · · · bn
−a2 1 (0)

...
. . .

−an (0) 1

∣∣∣∣∣∣∣∣∣ , then, det(P ) =

∣∣∣∣∣∣∣∣∣
a · b+ 1 0 · · · 0
−a2 1 (0)

...
. . .

−an (0) 1

∣∣∣∣∣∣∣∣∣ = a · b+ 1.

Corollary 24. Given u,v ∈ Fnq the map p 7→ p + (u · p)v is an automorphism of Fnq if and only
if u · v 6= −1.
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