
Hard and easy Components of Collision Search
in the Zémor-Tillich Hash Function:

new Attacks and Reduced Variants with
Equivalent Security

Christophe Petit1?, Jean-Jacques Quisquater1,
Jean-Pierre Tillich2 and Gilles Zémor3

1 2 3
UCL Crypto Group?? Equipe SECRET Institut de Mathématiques de Bordeaux

Université catholique de Louvain INRIA Rocqencourt Université de Bordeaux 1
Place du levant 3 351 Cour de la Libération

1348 Louvain-la-Neuve, Belgium 78153 Le Chesnay, France 33405 Talence, France

e-mails: christophe.petit@uclouvain.be,jjq@uclouvain.be,
jean-pierre.tillich@inria.fr,Gilles.Zemor@math.u-bordeaux1.fr

Abstract. The Zémor-Tillich hash function has remained unbroken since
its introduction at CRYPTO’94. We present the first generic collision
and preimage attacks against this function, in the sense that the attacks
work for any parameters of the function. Their complexity is the cu-
bic root of the birthday bound; for the parameters initially suggested
by Tillich and Zémor they are very close to being practical. Our attacks
exploit a separation of the collision problem into an easy and a hard com-
ponent. We subsequently present two variants of the Zémor-Tillich hash
function with essentially the same collision resistance but reduced out-
puts of 2n and n bits instead of the original 3n bits. Our second variant
keeps only the hard component of the collision problem; for well-chosen
parameters the best collision attack on it is the birthday attack.

1 Introduction

Since its introduction at CRYPTO’94, the Zémor-Tillich hash function has kept
on appealing Cryptographers by its originality, its elegance, its simplicity and its
security. The function computation can be parallelized and even the serial version
is quite efficient as it only requires XOR, SHIFT and TEST operations. Uniform
distribution of the outputs follows from a graph theoretical interpretation of the
hash computation, and collision resistance is strictly equivalent to an interesting
group theoretical problem [9].

There has been a few publications claiming attacks on the Zémor-Tillich hash
function. However, a closer look at these papers reveals that the scheme has not
? Research Fellow of the Belgian Fund for Scientific Research (F.R.S.-FNRS) at Uni-

versité catholique de Louvain (UCL).
?? A member of BCRYPT network.

been seriously threatened so far. Some of the claimed “attacks” are unpractical,
creating very long colliding messages [3]. Others are trapdoor attacks that can be
avoided by fixing the parameters in an appropriate way [2,1,8]. A last, important
class of attacks are subgroup attacks [8], damaging for particular parameters in
a similar way that RSA algorithm can be insecure if the parameters are not
correctly generated. For well-chosen parameters, the function has remained un-
broken so far.

In this paper, we present new collision and preimage subgroup attacks against
the Zémor-Tillich hash function. Unlike previous ones, our attacks are generic
in the sense that they work for any parameters of the function. With a time
complexity close to 2n/2, our attacks beat by far the birthday bound and ideal
preimage complexities which are 23n/2 and 23n for the Zémor-Tillich hash func-
tion. The attacks are practical up to n ≈ 120, 130 that is very close to the
parameter’s lower bound n ≥ 130 initially proposed by Zémor and Tillich. As
the attacks include a birthday search in a reduced set of size 2n they do not
invalidate the scheme but rather suggest that the initial parameters were too
small.

Our attacks exploit a separation of the collision problem into an easy and
a hard component, and suggest that an output of n bits should be extracted
from the original 3n bits of Zémor-Tillich. We consequently present two reduced
versions of Zémor-Tillich, the vectorial and projective versions with output sizes
respectively 2n and n, and we show that their collision resistance is essentially
equivalent to the collision resistance of the original Zémor-Tillich.

This paper is organized as follows: the Zémor-Tillich hash function is recalled
in Section 2. In Section 3 we present a general result separating hard and easy
components of the collision problem, then we apply this result in Section 4 to
obtain a generic collision search algorithm with time complexity close to 2n/2

(while the birthday bound is 23n/2). This collision algorithm is extended in
Section 5 to a generic preimage attack with the same complexity (while the
ideal bound would be 23n), and memory free versions of these algorithms are
given in Section 6. Finally, we introduce the vectorial and projective versions of
Zémor-Tillich in Sections 7 and 8 and conclude the paper in Section 9.

2 The Zémor-Tillich Hash Function

Let m = m0m1...mk be the bit string representation of a message m. Let Pn(X)
be an irreducible polynomial of degree n (Tillich and Zémor suggested to use
130 ≤ n ≤ 170) and let us represent the field F2n by F2[X]/(Pn(X)). Let A0, A1

be the matrices of G := SL(2,F2n) (the group of 2 × 2 matrices over F2n with
unitary determinant) defined by

A0 =
(
X 1
1 0

)
A1 =

(
X X + 1
1 1

)

The Zémor-Tillich hash value of m is defined as the matrix product [9]

hZT (m) := Am0Am1 ...Amk
.

As the group SL(2,F2n) has size 2n(22n − 1), the output size is roughly 3n
bits if the matrices of SL(2,F2n) are mapped to bitstrings.

3 Hard and Easy Components of Collision Search

The best attack so far against the Zémor-Tillich hash function has been the sub-
group attack of Steinwandt et al. [8]. However, as this attack exploits subgroups
of SL(2,F2n) that are specific to composite degrees n and particular polynomials
Pn(X), it can be simply prevented by choosing n in an appropriate way.

In this section, we consider the generic subgroups of SL(2,F2n) (subgroups
existing for any parameter n), including the subgroups of diagonal or triangular
matrices and the subgroups of matrices with a given left or right eigenvector. We
show that finding elements of these subgroups together with their factorization
is nearly as hard as finding collisions for the Zémor-Tillich hash function. As
our reductions involve solving discrete logarithms in F∗2n we do not claim ppt
(probabilistic polynomial time) reductions but reductions that are practical for
the parameters initially suggested by Zémor and Tillich.

We start with an easy proposition that will simplify our proofs later.

Proposition 1

(a) Let (a b) , (a′ b′) ∈ F2
2n \ {(0 0)} and M ∈ SL(2,F2n) such that (a b)M =

(a′ b′). Then there exists ε ∈ F2n such that M =
(

a−1 b
0 a

) (
a′ b′

0 a′−1

)
+ε (b

a) (a′ b′) .

(b) If M1 =
(

a−1
0 b0
0 a0

)(
a1 b1
0 a−1

1

)
+ε1

(
b0
a0

)
(a1 b1) and M2 =

(
a−1
1 b1
0 a1

)(
a2 b2
0 a−1

2

)
+

ε2
(

b1
a1

)
(a2 b2) then M1M2 =

(
a−1
0 b0
0 a0

)(
a2 b2
0 a−1

2

)
+ (ε1 + ε2)

(
b0
a0

)
(a2 b2).

Proof: Part (a) is implied by the two following observations:

– For ε = 0 we have (a b)
(

a−1 b
0 a

) (
a′ b′

0 a′−1

)
= (a′ b′).

– If M1,M2 ∈ SL(2,F2n) satisfy (a, b)M1 = (a, b)M2 = (a′, b′) then M1+M2 =
ε (b

a) (a′ b′). Indeed, let c, d such that
(

a b
c d

)
is unitary and let

(
a′ b′

c1 d1

)
:=(

a b
c d

)
M1 and

(
a′ b′

c2 d2

)
:=
(

a b
c d

)
M2. As M1,M2 and

(
a b
c d

)
are in SL(2,F2n),

we have det
(

a′ b′

c1 d1

)
= det

(
a′ b′

c2 d2

)
= 1. We get

M1 +M2 =
(

a b
c d

)−1 [(a′ b′

c1 d1

)
+
(

a′ b′

c2 d2

)]
= (d b

c a)
(

0 0
c1+c2 d1+d2

)
= (b

a) (c1+c2 d1+d2) .

Moreover, as (c1+c2 d1+d2) (b
a) = a(d1 + d2) + b(c1 + c2) = (ad2 + bc2) +

(ad1 + bc1) = 0, we get the result.

Part (b) is a straightforward computation. �

We now define the (generalized) representation problem in F∗2n and we show
how it can be solved for small n (and certainly if n ≤ 170).

Problem 1 Representation problem in F∗2n : Given N (randomly chosen) ele-
ments gi ∈ F∗2n , find a factorization

∏
gei

i = 1 such that
∑
|ei| is not too large.

Generalized representation problem in F∗2n : Given N (randomly chosen) ele-
ments gi ∈ F∗2n and a (randomly chosen) element g0 ∈ F∗2n , find a factorization∏
gei

i = g0 such that
∑
|ei| is not too large.

Proposition 2 The (generalized) representation problem can be solved in groups
F∗2n where the discrete logarithm problem can be solved.

Proof: Let gi ∈ F∗2n , i = 0, ...N . Let g a generator of F∗2n , and let αi be
the discrete logarithms of gi with respect to base g. The representation prob-
lem amounts to solve the following problem: find {ei} such that

∑
eiαi =

α0 mod (2n − 1) and
∑
|ei| is not too large. A good solution to this problem

can be computed with the LLL algorithm [4].�

If the exponents αi are random numbers uniformly distributed in [1, 2n − 1]
the smallest solution has expected size

∑
i |ei| about N2n/N (approximating that

there is no collision, the sums
∑
eiαi for ei ≤ 2n/N produce the 2n − 1 possible

values). The LLL algorithm actually gives a solution such that
∑
|ei|2 is close to

optimal, but this is enough for our purposes. By the LLL approximation bound,
the solution provided using LLL has a norm 2 smaller than

√
N2n/N+N which

for N ≈
√
n is subexponential. In practice, LLL performs much better and in

the analysis of our algorithms, we will approximate that the solution given by
LLL algorithm also has size about N2n/N .

With this method, the representation problem in F∗2n can be solved if discrete
logarithms can be computed, in particular the representation problem can be
solved today for n ≤ 170. The following result follows from Proposition 2.

Proposition 3 Let n such that discrete logarithms can be solved in F∗2n . Let
D, T up, T low,Lv,Rv ⊂ SL(2,F2n) be the subgroups of diagonal, upper and lower
triangular matrices and the subgroup of matrices with left or right eigenvector
v. If an attacker can compute N random elements Mi of one of these subgroups
together with bit sequences mi of length at most L hashing to these matrices,
then he can also find a message m such that hZT (m) = I. The message m
has expected size smaller than NL2n/N in the diagonal case and smaller than
NL21+n/N in the other cases.

Proof: Clearly any diagonal matrix writes down as Di =
(

ai 0

0 a−1
i

)
for some

ai ∈ F∗2n . Let {ei} be a solution to the representation problem with respect to
{ai}, that is

∏
aei

i = 1. Construct m as the concatenation of e1 messages m1, e2
messages m2, etc. (in any order). Then hZT (m) =

∏
Dei

i =
(∏

a
ei
i 0

0
∏

a
−ei
i

)
= I.

Similarly, an upper triangular matrix Ti writes down as
(

ai bi

0 a−1
i

)
for some

ai ∈ F∗2n , bi ∈ F2n . Let {ei} be a solution to the representation problem with
respect to {ai}, that is

∏
aei

i = 1. Construct m′ as the concatenation of e1
messages m1, e2 messages m2, etc. (in any order) and m = m′||m′. Then
hZT (m′) =

(
1 b
0 1−1

)
for some b ∈ F2n and hZT (m) = I.

By definition eachMi ∈ L(a b) satisfies (a b)Mi = λi (a b) for some λi ∈ F∗2n .
Let {ei} be a solution to the representation problem with respect to {λi}, that
is
∏
λei

i = 1. Construct m′ as the concatenation of e1 messages m1, e2 messages
m2, etc. (in any order) and m = m′||m′. Then (a b)hZT (m′) = (a b) which by
Proposition 1 implies hZT (m′) = I + ε (b

a) (a b) hence hZT (m) = I.
The proof for T low and Rv are similar and the claim on the message lengths

follows from our analysis of the representation problem in F∗2n . �

The part of Proposition 3 concerning Lv and Rv has interesting graph inter-
pretations that we give in Appendix A.

4 A New Generic Collision Attack

We now give an algorithm finding N2 matrices Mi such that (1 0)Mi = λi (1 0)
for some λi ∈ F∗2n , and combining them as in Proposition 3 to find collisions for
the Zémor-Tillich hash function.

We denote by P1(F2n) the projective space of dimension 1 on F2n , which is the
set of equivalence classes of F2n × F2n that results from identifying two vectors
(a1 b1) and (a2 b2) if and only (a2 b2) = λ (a1 b1) for some λ ∈ F∗2n . We denote
by [a : b] the projective point that is the equivalence class of a vector (a b). To
any message m = m1m2...mk we associate two projective points q(m), q−1(m) ∈
P1(F2n) as follows. We define (a(m) b(m)) := (1 0)

∏k
i=1Mmi = (1 0)hZT (m)

and (a′(m) b′(m)) := (1 0)
∏1

i=k M
−1
mi

= (1 0)h−1
ZT (m), then q(m) := [a(m) :

b(m)] and q−1(m) := [a′(m) : b′(m)].
Our algorithm first performs a birthday attack [11] to find collisions on the

q values as follows. Random messages m and m′ of size k > n/2 are generated
and stored together with q(m) and q(−m′), until m1,m2 are found such that
q(m1) = q−1(m2) (see Figure 1). As there are 2n +1 points in P1(F2n), the prob-

ability that q(m1) = q−1(m2) for some m1,m2 is 1 −
(

1− 2N1

2n+1

)2N1

after 2N1

steps. In particular, after 2N1 = 2n/2 steps we have a probability 1− e−1 ≈ 0.63
to know a message m := m1||m2 of size 2k such that (1 0)hZT (m) = λ (1 0) for
some λ ∈ F∗2n .

This collision search is repeated until N2 distinct messages mi are found
such that (1 0)hZT (mi) = λi (1 0) for some λi ∈ F∗2n . To guarantee that the
collisions found are all distinct, we may perform each collision search with a
different length k > n/2, or choose k slightly larger than n/2 + log2(N2), say
k = n/2 + log2(N2) + 10.

[1 : 0]

[1 : 0]

q(m) and q−1(m
′) values

1

Fig. 1. Collision search on q values.

The next step of the algorithm combines the messages mi to get a collision
for the Zémor-Tillich hash function. As in the proof of Proposition 3, we com-
pute a solution {ei} to the representation problem in F∗2n with respect to the
λi, that is

∏
λei

i = 1. From this solution, we finally construct a message m′ as
the concatenation of each message mi repeated ei times (in any order), and a
message m = m′||m′ that collides with the void message as shown in the proof
of Proposition 3.

To analyze this attack, suppose that the N2 collision searches are done with
k = n/2 + 1, ..., n/2 +N2 and that the algorithm described in Section 3 is used
to solve the representation problem. The expected size of the collision is then
bounded by (n/2 +N2)N22n/N2+2, the memory requirement is 2n/2+1n and the
time complexity is N22n/2+1t + tREP where t is the time needed to compute
one q value and tREP is the time needed to solve the representation problem.
In particular for n = 130 and N2 = 16, this attack produces a collision to the
void message of size about 218 in time 269t and memory requirements 269. The
memory requirements will be removed in Section 6 by using distinguished points
techniques [6].

5 A New Generic Preimage Attack

We now extend our ideas to a preimage attack. Interestingly, this attack has
essentially the same complexity as the collision attack.

Suppose we want to find a preimage to a matrix M =
(

a b
c d

)
, that is a message

m = m1...mk such that M = hZT (m) =
∏
Mmi

. As we showed in previous
section, random messagesmi of size L > n such that (1 0)hZT (mi) = λi (1 0) for
some λi ∈ F∗2n can be found with memory n2n/2+1 and time 2n/2+1t. Similarly,
random messages mi, i = 0, ...N2 of size L > n satisfying (1 0)hZT (m0) =

λ0 (a b) and (a b)hZT (mi) = λi (a b) , i > 0 for some λi ∈ F∗2n can also be
found with the same time and memory complexities.

Solving a (generalized) representation problem, we can compute {ei} such
that

∏
λei

i = λ0, hence we can compute a message m′0 of size N2L2n/N2 and a
matrix M0 := hZT (m′0) such that (1 0)M0 = (a b). Similarly, from N3 different
solutions to the representation problem

∏
λei

i = 1 we get N3 messages m′i of
size N2L2n/N2 such that (a b)hZT (m′i) = (a b). Let (c′ d′) := (0 1)hZT (m′0).
As ad′+ bc′ = ad+ bc = 1, we have a(d+d′)+ b(c+ c′) = 0, that is (c+c′ d+d′) =
δ0 (a b) for some δ0 ∈ F2n .

According to Proposition 1, for all i > 0 there exists δi ∈ F2n such that
hZT (m′i) = (1 0

0 1) + δi (b
a) (a b); moreover we have hZT (m′i1)hZT (m′i2) = (1 0

0 1) +
(δi1 + δi2) (b

a) (a b). Suppose the δi values generate F2n/F2, which is very likely
if N3 is shortly bigger than n, say N3 = n + 10. Then by solving a binary
linear system, we can write δ0 =

∑
i∈I δi for some I ⊂ {1, ..., N3} of size

≤ n and hence M1 :=
∏

i∈I hZT (m′i) = (1 0
0 1) + δ0 (b

a) (a b). Finally, we have
M0M1 =

(
a b
c′ d′

)
[(1 0

0 1) + δ0 (b
a) (a b)] =

(
a b
c d

)
.

This shows that any message made of m′0 concatenated with any concate-
nation of the messages m′i, i ∈ I, is a preimage to

(
a b
c d

)
. The collision size is

about bounded by N3(n/2 +N2)N22n/N2+2, that is 12n2(n+ 10) if N2 = n and
N3 = n + 10. The memory requirement of this attack is 2n/2+1n and the time
complexity is N22n/2+1t + tREP where t is the time needed to compute one q
value and tREP is the time needed to solve the representation problem (note
that finding N3 solutions to a representation problem essentially requires the
same time as finding one solution because both time are essentially determined
by the computation of the discrete logarithms). As for our collision attack, the
memory requirements can be removed by using distinguished points techniques.

6 Memory-Free Versions of Our Attacks

The attacks of Sections 4 and 5 require storing two databases of about 2n/2

projective points in P1(F2n) and their corresponding messages. We now remove
the memory requirements by using distinguished points techniques [6].

Let α : P1(F2n) → {0, 1}k and β : P1(F2n) → {0, 1} be two “pseudorandom
functions” and let ϕ : P1(F2n)→ P1(F2n) be defined by

p→ ϕ(p) =
{
q(α(p)) if β(p) = 0
q−1(α(p)) if β(p) = 1,

where k > n is chosen arbitrarily and q and q−1 are defined as in Section 4.
The iterates q0, ϕ(q0), ϕ(ϕ(q0)), ... of ϕ on q0 all belong to the finite domain

P1(F2n) so at some point iterating ϕ will produce a collision (see Figure 2), that
is two points p1 and p2 such that ϕ(p1) = ϕ(p2) = c. If the behavior of ϕ is
sufficiently random then β(p1) 6= β(p2) with a probability 1/2, in which case

α(p1) and α(p2) can be combined to produce a message m of size 2k such that
(1 0)hZT (m) = λ (1 0) for some λ ∈ F∗2n .

The functions α and β do not need to be “pseudorandom” in its strong cryp-
tographic meaning, but only “sufficiently pseudorandom” for the above analysis
to hold.

Now that the problem of finding a collision on the q values has been translated
to the problem of detecting a cycle in the iterates of ϕ, we can remove the memory
requirements by standard techniques. We recall here the method of distinguished
points; other methods are described in [7]. Let Dd := {q = [a : b] ∈ P1(F2n)|b 6=
0, lsbd(a/b) = 0d} be sets of 2n−d distinguished q values such that their d last
bits are all 0. During the collision search, we only store the q values that belong
to D and only look for collisions on these particular q values. Finding a collision
c′ on distinguished points requires 2d−1 additional steps in mean but the memory
is reduced to 2n/2−d; if d = n/2 − 10 the time overhead is negligible and the
memory requirements are very small (see Figure 3).

From the two distinguished points p′1 and p′2 that precede c′ in the iterates
of ϕ, we can recover the points p1 and p2 that produce the actual collision c
as follows. Iterate again ϕ on p′1 and p′2 and store only distinguished points but
this time with d = n/2 − 20. After about 2n/2−10 steps on each side (and a
small memory of about 211) a collision c′′ and preceding distinguished points p′′1
and p′′2 are found that are closer to the actual collision c, p1, p2. Iterating again
from p′′1 and p′′2 with a larger distinguished points set, we finally get the actual
collision with small time overhead and small memory.

q0

c

p1
p2

1

Fig. 2. Iterating ϕ from
some initial point q0, we
eventually get a collision
c

q0

c

p1
p2

p′
1

c′

p′
2

1

Fig. 3. Collision graph with markers on the distin-
guished points. The average distance between two dis-
tinguished points is 2d. The average length of the path is
2n/2. Finding a collision on a distinguished point requires
essentially the same time as finding a general collision,
as soon as 2d << 2n/2.

With this method instead of the trivial collision search steps, our collision
and preimage attacks require negligible memory and essentially the same time
complexity. As the output of Zémor-Tillich is about 3n bits, these attacks are far

better than birthday and optimal preimage bounds. In the following sections, we
introduce two variants of Zémor-Tillich with reduced output sizes respectively
2n and n bits, and we show that these variants are essentially as secure as the
original Zémor-Tillich for sufficiently small parameters including the parameters
initially suggested in [9].

7 Vectorial Version of Zémor-Tillich

Our first variant hvec
ZT is simply the first row of Zémor-Tillich, that is hvec

ZT (m) :=
(a b) if hZT (m) =

(
a b
c d

)
. This variant was introduced in [5] by Petit et al.

but without a proof of its equivalence to the original function. Alternatively,
we may parameterize the function hvec

ZT by an initial vector (a0 b0) 6= (0 0) as
h

vec,(a0 b0)
ZT (m) := (a0 b0)hZT (m). Clearly, the output has 2n bits.

Finding a collision for this variant corresponds to finding two messages m
and m′ such that (a0 b0)hZT (m) = (a0 b0)hZT (m′), in particular it is enough to
find one message m such that (a0 b0)hZT (m) = (a0 b0) (we call such a collision
a cyclic collision). Finding a preimage to a vector (a b) is finding a message m
such that (a0 b0)hZT (m) = (a b).

The following proposition shows that hvec
ZT is collision resistant if and only if

the original function hZT is collision resistant.

Proposition 4 If there exists a ppt (probabilistic polynomial time) algorithm
that for randomly chosen starting vectors (a0 b0) 6= (0 0) finds a collision on
h

vec,(a0 b0)
ZT , then there exists a ppt algorithm finding collisions for the original

Zémor-Tillich function.

Proof: Given a ppt algorithm Avec finding collisions for the vectorial ver-
sion, we build a ppt algorithm Amat finding collisions for the original matrix
version. The algorithm Amat first picks a random matrix M0 :=

(
a0 b0
c0 d0

)
∈

SL(2,F2n) and runs Avec on (a0, b0) to get two messages m10 and m11 cor-
responding to matrices M10 and M11 such that (a0, b0)M10 = (a0, b0)M11 =
(a1, b1). Without loss of generality, we can assume that (a1, b1) is randomly uni-
formly distributed (otherwise we may just append the same randomly chosen
sequence of bits to both messages). Algorithm Amat then calls again Avec on
(a1, b1) to get two matrices M20 and M21, etc. It repeats this operation n + 1
times.

Let vi := (ai bi) and ṽi :=
(

bi
ai

)
. According to Proposition 1(a), the matrices

Mij write down as

Mij =
(
a−1

i−1 bi−1

0 ai−1

)(
ai bi
0 a−1

i

)
+ εij ṽi−1vi

for some εij ∈ F2n . Applying Proposition 1(b) recursively, for any e = e1...en+1 ∈
{0, 1}n+1, we have

n+1∏
i=1

Miei =
(
a−1
0 b0
0 a0

)(
an+1 bn+1

0 a−1
n+1

)
+

(
n+1∑
i=1

εiei

)
ṽ0vn+1.

For 1 ≤ i ≤ n+1, let εi := εi0+εi1. Seeing each εi as a binary vector of length
n over F2, these vectors are linearly dependent. Moreover, finding a subset I of
{1, ..., n + 1} such that

∑
i∈I εi = 0 simply amounts to invert a binary linear

system, which is cubic in n+ 1.

We now conclude the description of Amat. After computing I ⊂ {1, ..., n+ 1}
such that

∑
i∈I εi = 0, the algorithm Amat returns m = m10||m20||...||mn+1,0

and m′ = m1e1 ||m2e2 ||...||mn+1,en+1 where ei = 1 if and only if i ∈ I. By the
discussion above, it is clear that

hmat
ZT (m) = hmat

ZT (m′) =
(
a−1
0 b0
0 a0

)(
an+1 bn+1

0 a−1
n+1

)
+

(
n+1∑
i=1

εi0

)
ṽ0vn+1.

�

The reduction of Proposition 4 is polynomial but not completely tight: the
algorithm Amat runs n + 1 times the algorithm Avec. Note that if instead of
Avec we have an algorithm A′vec returning a message m corresponding to a cycle
for the vectorial version, then the message m||m is a collision for the matrix
version. Indeed, if (a b)M = (a b) Proposition 1(a) shows that M writes down
as M =

(
a−1 b
0 a

) (
a b
0 a−1

)
+ ε (b

a) (a b) = I + ε (b
a) (a b) hence M2 = I.

8 Projective Version of Zémor-Tillich

Our second variant hproj,(a0 b0)
ZT exploits even further Proposition 3. We define

h
proj,(a0 b0)
ZT := [a : b]

where (a b) := h
vec,(a0 b0)
ZT (m) and [a : b] ∈ P1(F2n). Finding a collision for

h
proj,(a0 b0)
ZT is finding two messages m and m′ such that (a0 b0)hZT (m) =
λ (a0 b0)hZT (m′) for some λ, in particular it is enough to find a cyclic colli-
sion which is a message m such that (a0 b0) is a left eigenvector of hZT (m).

The output of hproj,(a0 b0)
ZT is very close to n bits. For the parameters sug-

gested by Tillich and Zémor, its collision resistance is equivalent to the collision
resistance of the original function.

Proposition 5 If there exists an algorithm that finds collisions on hproj,(a0 b0)
ZT ,

there exists an algorithm finding collisions on h
vec,(a0 b0)
ZT , assuming that for

some n′ > n it is feasible to compute n′ discrete logarithms in F∗2n and one sub-
set sum problem of size n′.
If we denote by tproj, tDL and tSS(n′) the times needed respectively to find col-
lisions on the projective version, to solve one discrete logarithm problem in F∗2n

and to solve a subset sum problem of size n′, collisions on the vectorial version
can be found in time n′(tproj + tDL) + tKN (n′).

Proof: Given an algorithm Aproj finding collisions for the projective version, we
build an algorithm Aproj finding collisions for the vectorial version. Receiving an
initial vector v0 = (a0, b0), Avec forwards it to Aproj and receives two messages
m10,m11. To the two messages correspond two vectors (a10, b10) and (a11, b11) =
λ1(a10, b10) for some λ1. The algorithm Avec computes the discrete logarithm
d1 of λ1 with respect to some generator g of F∗2n . The algorithm Avec then runs
Aproj on the projective point (a10, b10) and computes d2 similarly, etc.

After n′ steps, the algorithm Avec computes a subset I ⊂ {1, ..., n′} such
that

∑
i∈I di = 0 mod 2n − 1. By concatenating the paths miei

where ei = 1
if i ∈ I and ei = 0 otherwise, algorithm Avec produces a collision with the
message m10||...||mn′0 for the vectorial version. The output is correct because
both messages lead to the vector

(∏
i∈I λi

)
(an′0, bn′0) = g

∑
i∈I di(an′0, bn′0) =

(an′0, bn′0).
The claim on the running time follows straightforwardly. �

The best choice for n′ depends on the exact values of tproj , tDL and tSS(n′).
Solving discrete logarithms problems is believed to be hard but is definitely
feasible in F∗2n if n < 170. Computing I ⊂ {1, ..., n′} such that

∑
i∈I di =

0 mod 2n−1 is related to the subset sum problem which is NP-hard but usually
easy in average. For the parameters proposed by Zémor-Tillich, lattice reduction
algorithms like LLL will probably succeed to perform the reduction. Another
method is to use Wagner’s “k-lists” algorithm [10] for solving the subset sum
problem. This algorithm can solve the subset sum problem in time and space
k2n/(1+log k) which for k ≈

√
n is roughly 22

√
n which is about 226 for n = 170.

The drawback with this method is that n′ must also increase to 22
√

n hence the
discrete logarithm costs increase and the quality of the reduction decreases.

Assuming the existence of an algorithm A′proj computing cyclic collisions
on the projective version (messages mi such that (a0, b0)hmat(mi) = λi(a0, b0)
for some λi) the reduction improves slightly. Indeed, Avec must only compute
a small integer solution (x1, ..., xn′) to

∑
i xidi = 0 mod 2n − 1 instead of a

binary solution. The reduction algorithm still has to compute discrete logarithm
problems but it must not solve any subset sum problem.

9 Conclusion

We have given new algorithms for computing collisions for the Zémor-Tillich
hash function in a time equal to the cubic root of the birthday bound. Our
attacks are the first generic ones in the sense that unlike previous attacks they

work for any parameters n and Pn(X) of the function. Moreover, they are very
close to being practical for the parameters n ∈ [130, 170] initially suggested in
[9].

Interestingly, we could extend our collision attacks to new preimage attacks
with the same complexity due to the inherent possibility of “meet-in-the-middle”
attacks in Zémor-Tillich and the fact that our collision attacks use a subgroup
structure that preserves this possibility.

Our attacks exploit a separation of the collision problem into an easy and a
hard component, and suggest that the output of Zémor-Tillich should be of n
bits rather than 3n bits. We have consequently introduced two variants of this
function, the vectorial and the projective versions, with reduced output sizes of
respectively 2n and n bits. We have proved that the original function is collision
resistant if and only if the vectorial variant and ((for small n) if and only if the
projective variant are collision resistant.

Acknowledgements We thank Nicolas Veyrat-Charvillon and Giacomo De-
meulenaer for interesting discussions related to this paper. We thank Martijn
Stam for a remark on the Zémor-Tillich hash function that motivated the algo-
rithm of Section 5. We thank Phong Nguyen for pointing us out reference [10].
Finally, we would like to thank an anonymous referee of CT-RSA for his very
useful comments that considerably improved the paper.

References

1. K. S. Abdukhalikov and C. Kim. On the security of the hashing scheme based on
SL2. In FSE ’98: Proceedings of the 5th International Workshop on Fast Software
Encryption, pages 93–102, London, UK, 1998. Springer-Verlag.

2. C. Charnes and J. Pieprzyk. Attacking the SL2 hashing scheme. In ASIACRYPT
’94: Proceedings of the 4th International Conference on the Theory and Applica-
tions of Cryptology, pages 322–330, London, UK, 1995. Springer-Verlag.

3. W. Geiselmann. A note on the hash function of Tillich and Zémor. In D. Goll-
mann, editor, Fast Software Encryption, volume 1039 of Lecture Notes in Computer
Science, pages 51–52. Springer, 1996.

4. H. W. J. L. L. Lenstra, A. K.; Lenstra. Factoring polynomials with rational coef-
ficients. Mathematische Annalen, 261(5):515–534, 1982.

5. C. Petit, N. Veyrat-Charvillon, and J.-J. Quisquater. Efficiency and Pseudo-
Randomness of a Variant of Zémor-Tillich Hash Function. In IEEE International
Conference on Electronics, Circuits, and Systems, ICECS2008, 2008.

6. J.-J. Quisquater and J.-P. Delescaille. How easy is collision search? application to
des (extended summary). In EUROCRYPT, pages 429–434, 1989.

7. A. Shamir. Random graphs in cryptography. Invited talk at Asiacrypt 2006, 2006.
8. R. Steinwandt, M. Grassl, W. Geiselmann, and T. Beth. Weaknesses in the

SL2(F2n) hashing scheme. In Proceedings of Advances in Cryptology - CRYPTO
2000: 20th Annual International Cryptology Conference, 2000.

9. J.-P. Tillich and G. Zémor. Hashing with SL2. In Y. Desmedt, editor, CRYPTO,
volume 839 of Lecture Notes in Computer Science, pages 40–49. Springer, 1994.

10. D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO, volume
2442 of Lecture Notes in Computer Science, pages 288–303. Springer, 2002.

11. G. Yuval. How to swindle Rabin. Cryptologia, 3:187–189, 1979.

A Graphical Interpretation of Proposition 3

The part of Proposition 3 concerning Lv and Rv has interesting graph interpre-
tations. To the Zémor-Tillich hash function is associated a Cayley graph ZT , in
which each vertex corresponds to a matrix M ∈ SL(2,F2n) and each edge to a
couple (M1,M2) ∈ SL(2,F2n)2 such that M2 = M1A0 or M2 = M1A1 [9].

We now construct the graphs ZT vec and ZT proj as follows. For ZT vec,
associate a vertex to each row vector (a b) ∈ F1×2

2n \{(0 0)} and an edge to
each couple of such vectors ((a1 b1) , (a2 b2)) satisfying (a2 b2) = (a1 b1)A0 or
(a2 b2) = (a1 b1)A1. Alternatively, the graph ZT vec can be constructed from
the graph ZT by identifying two vertices M1 =

(
a1 b1
c1 d1

)
and M2 =

(
a2 b2
c2 d2

)
when

(a1 b1) = (a2 b2). An example of such a graph is shown in Figure 4.
Similarly, we associate a vertex of ZT proj to each projective point qi = [ai :

bi] ∈ P1(F2n) and an edge to each couple (q1, q2) such that λ (a2 b2) = (a1 b1)A0

or λ (a2 b2) = (a1 b1)A1 for some λ ∈ F∗2n . Alternatively, the graph ZT proj may
be constructed from the graph ZT vec by identifying two vertices (a1 b1) and
(a2 b2) when (a1 b1) = λ (a2 b2) for some λ ∈ F∗2n .

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)

(7, 0)

(8, 0)

(9, 0)

(10, 0)

(11, 0)

(12, 0)

(13, 0)

(14, 0)

(15, 0)
(16, 0)

(17, 0)

(18, 0)

(19, 0)

(20, 0)

(21, 0)

(22, 0)

(23, 0)

(24, 0)

(25, 0)

(26, 0)

(27, 0)

(28, 0)

(29, 0)

(30, 0)

(31, 0)

(0, 1)

(1, 1)

(2, 1)(3, 1)

(4, 1)

(5, 1)

(6, 1)

(7, 1)

(8, 1)

(9, 1)

(10, 1)

(11, 1)

(12, 1)

(13, 1)

(14, 1)

(15, 1)

(16, 1)

(17, 1)

(18, 1)

(19, 1)

(20, 1)

(21, 1)

(22, 1)

(23, 1)

(24, 1)

(25, 1)

(26, 1)

(27, 1)

(28, 1)

(29, 1)

(30, 1)

(31, 1)

(0, 2)

(1, 2)

(2, 2)

(3, 2)

(4, 2)

(5, 2)

(6, 2)

(7, 2)

(8, 2)

(9, 2)

(10, 2)

(11, 2)

(12, 2)

(13, 2)

(14, 2)

(15, 2)

(16, 2)

(17, 2)

(18, 2)

(19, 2)

(20, 2)

(21, 2)

(22, 2)

(23, 2)

(24, 2)

(25, 2)

(26, 2)

(27, 2)

(28, 2)

(29, 2)

(30, 2)

(31, 2)

(0, 3)

(1, 3)

(2, 3)

(3, 3)

(4, 3)

(5, 3)(6, 3)

(7, 3)

(8, 3)

(9, 3)(10, 3)
(11, 3)

(12, 3)

(13, 3)
(14, 3)

(15, 3)

(16, 3)

(17, 3)

(18, 3)

(19, 3)

(20, 3)

(21, 3)

(22, 3)

(23, 3)

(24, 3)

(25, 3)

(26, 3)

(27, 3)

(28, 3)

(29, 3)

(30, 3)

(31, 3)

(0, 4)

(1, 4)

(2, 4)

(3, 4)

(4, 4)

(5, 4)

(6, 4)

(7, 4)

(8, 4)

(9, 4)

(10, 4)

(11, 4)

(12, 4)

(13, 4)

(14, 4)

(15, 4)

(16, 4)

(17, 4)

(18, 4)

(19, 4)

(20, 4)

(21, 4)

(22, 4)

(23, 4)

(24, 4)

(25, 4)

(26, 4)

(27, 4)

(28, 4)

(29, 4)

(30, 4)

(31, 4)

(0, 5) (1, 5)

(2, 5)

(3, 5)

(4, 5)

(5, 5)

(6, 5) (7, 5)

(8, 5)

(9, 5)

(10, 5)

(11, 5)

(12, 5)

(13, 5)

(14, 5)

(15, 5)

(16, 5)

(17, 5)

(18, 5)

(19, 5)

(20, 5)

(21, 5)

(22, 5)

(23, 5)

(24, 5)

(25, 5)

(26, 5)

(27, 5)

(28, 5)

(29, 5)

(30, 5)

(31, 5)

(0, 6)

(1, 6)

(2, 6)

(3, 6)

(4, 6)

(5, 6)

(6, 6)

(7, 6)

(8, 6)

(9, 6)

(10, 6)

(11, 6)

(12, 6)

(13, 6)

(14, 6)

(15, 6)

(16, 6)

(17, 6)

(18, 6)

(19, 6)

(20, 6)

(21, 6)

(22, 6)

(23, 6)

(24, 6)

(25, 6)

(26, 6)

(27, 6)

(28, 6) (29, 6)

(30, 6)
(31, 6)

(0, 7)

(1, 7)

(2, 7)
(3, 7)

(4, 7)

(5, 7)

(6, 7)

(7, 7)

(8, 7)

(9, 7)

(10, 7)

(11, 7)

(12, 7)

(13, 7)

(14, 7)

(15, 7)

(16, 7)

(17, 7)

(18, 7)

(19, 7)
(20, 7)

(21, 7)

(22, 7)

(23, 7)

(24, 7)

(25, 7)

(26, 7)(27, 7)

(28, 7)

(29, 7)

(30, 7)

(31, 7)

(0, 8)

(1, 8)

(2, 8)

(3, 8)

(4, 8)

(5, 8)

(6, 8)

(7, 8)

(8, 8)

(9, 8)

(10, 8)

(11, 8)

(12, 8)

(13, 8)

(14, 8)

(15, 8)

(16, 8)

(17, 8)

(18, 8)

(19, 8)

(20, 8)

(21, 8)

(22, 8)

(23, 8)

(24, 8)

(25, 8)

(26, 8)

(27, 8)

(28, 8)

(29, 8)

(30, 8)

(31, 8)

(0, 9)

(1, 9)

(2, 9)

(3, 9)

(4, 9)

(5, 9)

(6, 9)

(7, 9)

(8, 9)

(9, 9)

(10, 9)

(11, 9)

(12, 9)

(13, 9)

(14, 9)

(15, 9)

(16, 9)

(17, 9)

(18, 9)

(19, 9)

(20, 9)

(21, 9)

(22, 9)

(23, 9)

(24, 9)

(25, 9)

(26, 9)

(27, 9)

(28, 9)

(29, 9)

(30, 9)
(31, 9)

(0, 10)

(1, 10)

(2, 10)

(3, 10)

(4, 10)

(5, 10)

(6, 10)

(7, 10)

(8, 10)

(9, 10)

(10, 10)

(11, 10)

(12, 10)

(13, 10)

(14, 10)

(15, 10)

(16, 10)

(17, 10)

(18, 10)

(19, 10)

(20, 10)

(21, 10)

(22, 10)

(23, 10) (24, 10)

(25, 10)

(26, 10)

(27, 10)

(28, 10)

(29, 10)

(30, 10)

(31, 10)

(0, 11)

(1, 11)

(2, 11)

(3, 11)

(4, 11)

(5, 11)

(6, 11)

(7, 11)

(8, 11)

(9, 11)

(10, 11)

(11, 11)

(12, 11)

(13, 11)

(14, 11)

(15, 11)

(16, 11)

(17, 11)

(18, 11)

(19, 11)

(20, 11)(21, 11)

(22, 11)

(23, 11)

(24, 11)

(25, 11)

(26, 11)

(27, 11)

(28, 11)

(29, 11)

(30, 11)

(31, 11)

(0, 12)

(1, 12)

(2, 12)

(3, 12)
(4, 12)

(5, 12)

(6, 12)

(7, 12)

(8, 12)

(9, 12)

(10, 12)

(11, 12)

(12, 12)

(13, 12)

(14, 12)

(15, 12)

(16, 12)

(17, 12)

(18, 12)

(19, 12)

(20, 12)

(21, 12)

(22, 12)

(23, 12)

(24, 12)

(25, 12)

(26, 12)

(27, 12)

(28, 12)

(29, 12)

(30, 12)

(31, 12)

(0, 13)

(1, 13)

(2, 13)

(3, 13)

(4, 13)

(5, 13)

(6, 13)

(7, 13)

(8, 13)

(9, 13)

(10, 13)

(11, 13)

(12, 13)

(13, 13)

(14, 13)

(15, 13)
(16, 13)

(17, 13)
(18, 13)

(19, 13)

(20, 13)

(21, 13)

(22, 13)

(23, 13)

(24, 13)

(25, 13)

(26, 13)

(27, 13)

(28, 13)

(29, 13)

(30, 13)

(31, 13)

(0, 14)

(1, 14)

(2, 14)
(3, 14)

(4, 14)

(5, 14)

(6, 14)

(7, 14)

(8, 14)

(9, 14)

(10, 14)

(11, 14)

(12, 14)

(13, 14)

(14, 14)

(15, 14)

(16, 14)

(17, 14)

(18, 14)

(19, 14)

(20, 14)

(21, 14)

(22, 14)

(23, 14)

(24, 14)

(25, 14)

(26, 14)

(27, 14)

(28, 14)

(29, 14)

(30, 14)

(31, 14)

(0, 15)

(1, 15)

(2, 15)

(3, 15)

(4, 15)

(5, 15)

(6, 15)

(7, 15)

(8, 15)

(9, 15)

(10, 15)

(11, 15)

(12, 15)

(13, 15)

(14, 15)

(15, 15)

(16, 15)

(17, 15)

(18, 15)

(19, 15)

(20, 15)

(21, 15)

(22, 15)

(23, 15)

(24, 15)

(25, 15)

(26, 15)

(27, 15)

(28, 15)

(29, 15)

(30, 15)

(31, 15)

(0, 16)

(1, 16)

(2, 16)

(3, 16)

(4, 16)

(5, 16)

(6, 16)

(7, 16)
(8, 16)

(9, 16)

(10, 16)

(11, 16)

(12, 16)

(13, 16)

(14, 16)

(15, 16)

(16, 16)

(17, 16)

(18, 16)

(19, 16)

(20, 16)

(21, 16)

(22, 16)

(23, 16)

(24, 16)

(25, 16)

(26, 16)

(27, 16)

(28, 16)

(29, 16)

(30, 16)

(31, 16)

(0, 17)

(1, 17)

(2, 17)

(3, 17)

(4, 17)

(5, 17)

(6, 17)

(7, 17)

(8, 17)

(9, 17)

(10, 17)

(11, 17)
(12, 17)

(13, 17)

(14, 17)

(15, 17)

(16, 17)

(17, 17)

(18, 17)

(19, 17)

(20, 17)

(21, 17)

(22, 17)

(23, 17)

(24, 17)

(25, 17)

(26, 17)

(27, 17)

(28, 17)

(29, 17)

(30, 17)

(31, 17)

(0, 18)

(1, 18)

(2, 18)

(3, 18)

(4, 18)

(5, 18)

(6, 18)

(7, 18)

(8, 18)

(9, 18)

(10, 18)

(11, 18)

(12, 18)

(13, 18)

(14, 18)

(15, 18)

(16, 18)

(17, 18)

(18, 18)

(19, 18)

(20, 18)
(21, 18)

(22, 18)

(23, 18)

(24, 18)

(25, 18)

(26, 18)

(27, 18)

(28, 18)

(29, 18)

(30, 18)

(31, 18)

(0, 19)

(1, 19)

(2, 19)

(3, 19)

(4, 19)

(5, 19)

(6, 19)

(7, 19)

(8, 19)

(9, 19)

(10, 19)

(11, 19)

(12, 19)

(13, 19)

(14, 19)

(15, 19)

(16, 19)

(17, 19)

(18, 19)

(19, 19)

(20, 19)

(21, 19)

(22, 19)

(23, 19)

(24, 19)

(25, 19)

(26, 19)

(27, 19)

(28, 19)

(29, 19)

(30, 19)

(31, 19)

(0, 20)

(1, 20)

(2, 20)

(3, 20)(4, 20)

(5, 20)

(6, 20)

(7, 20)

(8, 20)

(9, 20)

(10, 20)

(11, 20)

(12, 20)

(13, 20)

(14, 20)

(15, 20)

(16, 20)

(17, 20)

(18, 20)

(19, 20)

(20, 20)

(21, 20)

(22, 20)

(23, 20)

(24, 20)

(25, 20)

(26, 20)

(27, 20)

(28, 20)

(29, 20)
(30, 20)

(31, 20)
(0, 21)

(1, 21)

(2, 21)

(3, 21)

(4, 21)

(5, 21)

(6, 21)

(7, 21)

(8, 21)

(9, 21)

(10, 21)

(11, 21)

(12, 21)

(13, 21)

(14, 21)

(15, 21)

(16, 21)

(17, 21)

(18, 21)

(19, 21)

(20, 21)

(21, 21)

(22, 21)

(23, 21)

(24, 21)

(25, 21)

(26, 21)

(27, 21)

(28, 21) (29, 21)

(30, 21)

(31, 21)

(0, 22)

(1, 22)

(2, 22)

(3, 22)

(4, 22)

(5, 22)

(6, 22)

(7, 22)

(8, 22)

(9, 22)

(10, 22)

(11, 22)

(12, 22)

(13, 22)

(14, 22)

(15, 22)

(16, 22)

(17, 22)

(18, 22)

(19, 22)

(20, 22)

(21, 22)

(22, 22)

(23, 22)

(24, 22)

(25, 22)

(26, 22)

(27, 22)

(28, 22)

(29, 22)

(30, 22)

(31, 22)

(0, 23)

(1, 23)

(2, 23)

(3, 23)

(4, 23)

(5, 23)

(6, 23)

(7, 23)

(8, 23)

(9, 23)

(10, 23)

(11, 23)

(12, 23)

(13, 23)

(14, 23)

(15, 23)

(16, 23)

(17, 23)

(18, 23)

(19, 23)

(20, 23)

(21, 23)

(22, 23)

(23, 23)

(24, 23)
(25, 23)

(26, 23)

(27, 23)

(28, 23)

(29, 23)

(30, 23)

(31, 23)

(0, 24)

(1, 24)

(2, 24)

(3, 24)

(4, 24)

(5, 24)

(6, 24)

(7, 24)

(8, 24)

(9, 24)

(10, 24)

(11, 24)

(12, 24)

(13, 24)

(14, 24)

(15, 24)
(16, 24)

(17, 24)

(18, 24)

(19, 24)

(20, 24)

(21, 24)

(22, 24)

(23, 24)

(24, 24)

(25, 24)

(26, 24)

(27, 24)

(28, 24)

(29, 24)

(30, 24)

(31, 24)

(0, 25)

(1, 25)

(2, 25)

(3, 25)

(4, 25)

(5, 25)

(6, 25)

(7, 25)

(8, 25)

(9, 25)
(10, 25)

(11, 25)

(12, 25)

(13, 25)

(14, 25)

(15, 25)

(16, 25)

(17, 25)

(18, 25)

(19, 25)

(20, 25)

(21, 25)

(22, 25)

(23, 25)

(24, 25)

(25, 25)

(26, 25)

(27, 25)

(28, 25)

(29, 25)

(30, 25)

(31, 25)

(0, 26)

(1, 26)

(2, 26)

(3, 26)

(4, 26)

(5, 26)

(6, 26)

(7, 26)

(8, 26)

(9, 26)

(10, 26)

(11, 26)

(12, 26)

(13, 26)

(14, 26)

(15, 26)

(16, 26)

(17, 26)

(18, 26)

(19, 26)

(20, 26)

(21, 26)

(22, 26)

(23, 26)

(24, 26)

(25, 26)

(26, 26)

(27, 26)

(28, 26)

(29, 26)

(30, 26)

(31, 26)

(0, 27)

(1, 27)

(2, 27) (3, 27)

(4, 27)

(5, 27)

(6, 27)

(7, 27)

(8, 27)

(9, 27)

(10, 27)

(11, 27)

(12, 27)

(13, 27)

(14, 27)

(15, 27)

(16, 27)

(17, 27)

(18, 27)

(19, 27)

(20, 27)

(21, 27)

(22, 27)

(23, 27)

(24, 27)

(25, 27)

(26, 27)

(27, 27)

(28, 27)

(29, 27)

(30, 27)

(31, 27)

(0, 28)

(1, 28)

(2, 28)

(3, 28)

(4, 28)

(5, 28)

(6, 28)

(7, 28)

(8, 28)

(9, 28)

(10, 28)

(11, 28)

(12, 28)

(13, 28)

(14, 28)

(15, 28)

(16, 28)

(17, 28)

(18, 28)

(19, 28)

(20, 28)

(21, 28)

(22, 28)

(23, 28)

(24, 28)
(25, 28)

(26, 28)

(27, 28)

(28, 28)

(29, 28)

(30, 28)

(31, 28)
(0, 29)

(1, 29)

(2, 29)

(3, 29)

(4, 29)

(5, 29)

(6, 29)

(7, 29)

(8, 29)

(9, 29)

(10, 29)

(11, 29)

(12, 29)

(13, 29)

(14, 29)

(15, 29)

(16, 29)

(17, 29)

(18, 29)

(19, 29)

(20, 29)

(21, 29)

(22, 29)

(23, 29)

(24, 29)

(25, 29)(26, 29)

(27, 29)

(28, 29)

(29, 29)

(30, 29)

(31, 29)

(0, 30)

(1, 30)

(2, 30)

(3, 30)

(4, 30)

(5, 30)

(6, 30)

(7, 30)

(8, 30)

(9, 30)

(10, 30)

(11, 30)

(12, 30)

(13, 30)

(14, 30)

(15, 30)

(16, 30)

(17, 30)

(18, 30)

(19, 30)

(20, 30)

(21, 30)

(22, 30)

(23, 30)

(24, 30)

(25, 30)

(26, 30)

(27, 30)

(28, 30)
(29, 30)

(30, 30)

(31, 30)

(0, 31)

(1, 31)

(2, 31)

(3, 31)

(4, 31)

(5, 31)

(6, 31)

(7, 31)

(8, 31)

(9, 31)

(10, 31)

(11, 31)

(12, 31)

(13, 31)

(14, 31)

(15, 31)

(16, 31)

(17, 31)

(18, 31)

(19, 31)

(20, 31)

(21, 31)

(22, 31)

(23, 31)

(24, 31)

(25, 31)

(26, 31)

(27, 31)

(28, 31)

(29, 31)

(30, 31)

(31, 31)

Fig. 4. ZT vec graph for parameter P5(X) = X5 + X2 + 1. The vertices are labeled
by matrices. Red (resp. blue) arrows correspond to multiplication by matrix A0 (resp.
A1). Each polynomial

∑
aiX

i is written as
∑

ai2
i.

Finding a cycle in ZT vec is just as hard as finding a cycle in ZT because if
(a b)M = (a b) then M2 = I. The radial symmetry in the graph ZT vec (Figure
4) is not surprising as it reflects the relation (a b)Ai = (a′ b′) ⇔ [λ (a b)]Ai =
[λ (a′ b′)]: multiplying each vertex of ZT vec by a constant λ is equivalent to a
rotation of the graph.

Roughly, a vertex in the graph ZT vec can be characterized by a radial and
an angular position. A cycle in the graph ZT proj induces a path in the graph
ZT vec from a vertex to another vertex with the same radial coordinate, but
not necessarily the same angular coordinate. Clearly, different such paths can
be combined to give a cycle in the graph ZT vec. According to Proposition 3
and its proof, this can be done if the discrete logarithm problem, hence the
representation problem, can be solved in F∗2n .

A cycle in ZT vec induces cycles in both radial and angular coordinates.
Proposition 3 means that solving the angular part of the representation problem
is easy once the radial part can be solved to produce various points with the
same radius.

