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Abstract 

In this note we show how to improve and generalize some calculations of diameters and 
distances in sufficiently symmetrical graphs, by taking all the eigenvalues of the adjacency matrix 
of the graph into account. We present some applications of these results to the problem of finding 
tight upper bounds on the covering radius of error-correcting codes, when the weight distribution 
of the code (or the dual code) is known. 

1. Generalities 

We aim here at improving known bounds linking the diameter of a graph (or more 

generally distances between subsets of vertices of the graph) and eigenvalues of the 

graph. Our main result is when mild symmetry requirements are fulfilled (such as vertex 
transitivity) then using the whole spectrum of the graph, one can improve substantially 
the known bounds. This approach has applications to coding theory, when one wishes 
to obtain an upper bound on the covering radius of a code. Indeed in this case it 
is known that for a linear code one can associate a Cayley graph whose diameter is 
the covering radius of the code, and its spectrum can be computed from the weight 
distribution of the dual code. In this case when this distribution is known (and there 
are examples for which this is the case) one can obtain a rather sharp bound on the 
covering radius of the code. 

First of all let us recall a few graph theoretical concepts that we are going to use. 
Let V be the vertex set of a graph G, and E its set of edges. The graphs we are going 
to consider are all undirected. This implies that their adjacency matrix A is symmetric 
(which is a square matrix indexed by the vertices of the graph and aV+ = 1 if there is 
an edge between v and w, and 0 otherwise). The eigenvalues of the graph are defined 
as the eigenvalues of this matrix. 

This matrix can be viewed as a linear operator on the vector space of functions 
V + R. We denote by {lc}cE~ the canonical basis of this vector space, i.e. I,. has 
only zero entries except for v where the corresponding entry is equal to 1. This space 
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is given the (usual) inner product (f 1 g) = C, f(v)g(v). It is readily seen that 

A J-(a) = &&E f(w). 
A is symmetric, so that the eigenvalues of A are real and each function f is a sum 

C;, fan, f;L being the orthogonal projection of f on the eigenspace associated to the 
eigenvalue 1. All these components f;, are mutually orthogonal. 

It is well known that the entry aif,, of the Zth power of A represents the number of 
walks of length 1 going from v to w. Therefore the value at vertex t of the function 
A’( 1,) (in other words the inner product (1,I A’( IS))) is the number of paths of length 1 
between s and t. 

The key fact which explains how we will bring in linear algebra is the simple remark 

(see [31) 

Fact 1. Zf (It 1 Ad(ls)) # 0 then the distance between t and s is at most d. 

It has been noticed by several authors [4,7,9- 11,14,18] that one can improve on 
this approach by using instead of Ad a linear combination of the Al’s 

Fact 2. Zf some polynomiul P of degree d satisfies (It 1 P(A)( 1,)) # 0 then the dis- 
tance between t und s is at most d. 

The term (It 1 P(A)(l,)) # 0 is s h own to be different from 0 by simple considerations 
on the spectrum of the graph. Recall that this spectrum is defined as the spectrum of the 
adjacency matrix, and that if the graph is connected and not bipartite, the eigenvalue 
with largest modulus k is unique and has an eigenspace of dimension one, generated by 
a positive function f. This is Perron-Frobenius theorem (see [ 171). Of course one may 
choose f of norm 1. If n is big enough, the component k”( f j lS) f of An( 1,) becomes 
so large that its inner products with lt cannot be cancelled by the inner products of 
the other components of A”( 1,) with lt. Hence such a number n is an upper bound on 
the diameter. 

More generally, if one replaces A” by some polynomial P(A) such that 

P(k)(f I ls)(f I L) ’ lF’cl.)lj/~~~ 
then for any eigenvalue /? # k, the distance between s and t is at most the degree 
of P. 

In particular, the diameter of G is less than the number of eigenvalues of G. This 
can be obtained from P(X) = nTLfk(X - 2). See [ 1, Corollary 2.71 for a direct proof. 

A drawback of all these known results is that even if these bounds can be tight for 
certain graphs (see [ 111) they are not in general, and there is definitely a gap between 
these upper bounds on the diameter (and this even with ‘optimal’ eigenvalues) and 
the Moore bound (for example all the results given in [4,3,11,14,18] miss the Moore 
bound by a multiplicative factor which is at least 2). Let us consider the following 
graph for instance. 



Degree [41 [1W 

I X-I 5:3 .Y I 5 j 
2 (X ~ I )? - ; 41 9 (X ~ I )Z ~ 5 i 
3 (A’ ~ 1)’ - (27/4)(X - I) 365/27 (X - I)” -7(X - I) I5 
4 (x-l)~~9x*+81.‘4 3281,81 (.Y ~ 4)(X - 2)X(X + 7) ‘1 

Fig. I. The line graph of the cube and the diameter of its line-graph 

Example 1. The line-graph of the line-graph of the cube Q3 has spectrum 6’, 4”, 2”. 
05, -2” where the bold exponents show the multiplicities of the eigenvalues. Since the 
graph is regular, the function .f is constant and (,f 1 1,) = dm for each vertex s. 
The length of the part of 1, orthogonal to ,f is ,/m. The projection of f‘ on 
each 1, has length ,,/m, and the projection of any vector of length 1 orthogonal 
to ,f’ on lt has length < d(m. 

The polynomials used to bound the diameter, according to [4] (adjusted Tchebychev 
polynomials) or [lo] (optimized polynomials) are given in Table 1 with the ratio 
P(k)/max 1P(j,)]. These methods give D<4. The diameter is in Fact 3. This can be 
checked on Fig. 1. 

2. Using the multiplicities 

We can refine the previous calculations when the graph displays some symmetries. 
Basically the idea is that if the graph is vertex transitive, one can easily calculate the 
lengths of the projection of a vector l,, on all the eigenspaces E; of the operator .4. 
and use them in order to study the inner product (P(A)( l,Y) 1 lr). 
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This is done by calculating in two ways the trace of A2’. Denote by rniL the dimension 
of E;.. Clearly 

Tr(A2’) = c m;,12’. 

On the other hand, this trace is readily seen to be the sum of the squared entries of 
A’, since this sum is the trace of the matrix (,*)‘A’ (A* denotes the transpose of A), 
which is A2’ for A is symmetric. Note that this sum of these squared entries is just the 
sum of the squared norms of the columns of A’. Therefore 

Tr(A”) = c IA/( l,>12. 
SE v 

All these lA’(1,)12 are equal because the graph is vertex transitive (this follows easily 
from the combinatorial interpretation of the entries of the 
these two different expressions of the trace we obtain 

This innocent looking equality (1) is in fact surprisingly powerful. It is the key fact 
used in [8] for example (see Lemma 1 Ch. 3B) in order to find tight upper bounds 

vector A’( 1,)). Comparing 

(1) 

on the rate of convergence of random walks over Cayley graphs towards the uniform 
distribution. This is proved in this setting by using Fourier analysis on groups, and 
more precisely the Plancherel theorem. The proof technique used above would have 
yielded a much simpler proof of this Lemma 1 in Ch. 3B. 

A consequence of this equality is 

Proposition 1. Zf the graph is vertex transitive, the projection ~1, of 1, on the eigen- 
space E;, has length m h w ere WI;, is the multiplicity of 1, and N the number of 
vertices in the graph. 

Proof. We have for every 1 

IA’( 1,)12 = C Is;,~~A~’ 

By comparing this with equality 1, we obtain that l.s;12 = %. 0 

Corollary 1. Let G be a connected vertex-transitive graph of degree k. Zf /P(k)1 > 
Cn,k IP(2)lm;. then the diameter of G is at most the degree of P. 

Proof. Consider P(A)( 1,). The inequality ensures that the projection on lt of its com- 
ponent in & cannot be cancelled by the projections of the other components. More pre- 
cisely assume that (P(A)l, I It) = 0, since V’(A)l, / II) =c;,f’(A)(si~ I t;) and (Sk 1 tk) = 

b one has 
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Then by the Cauchy-Schwartz inequality 

175 

This is impossible, and we conclude the proof by using Fact 2. Ci 

Example 2. With the graph of Example 1, we choose P = (X - 4)(X - 1)(X + 2) 
and observe the inequality P(6) > 3]P(4)l +3/P(2)] + 5(P(O)] + 12/P(+2)l. This gives 
063, which is the actual value. 

Remark. The replacement of the sum on the set of vertices by N times the term 
corresponding to a vertex holds also if the graph is walk-regular; i.e. for every n the 
number of walks of length n with both endpoints at s does not depend on s. In other 
words, any power Ak has its diagonal entries all equal to Tr(Ak)N. We will show 
later that this property is indeed a characterization of walk-regular graphs. This class 
of walk-regular graphs contains the class of vertex transitive graphs and the class of 
distance-regular graphs. 

The class of matrices for which each power of a matrix of this set has diagonal 
entries which are all equal is stable by Kronecker products or polynomial transfor- 
mations. Hence the class of walk-regular graphs is also stable under miscellaneous 
operations like Cartesian products, Cartesian sums, strong products and other so-called 
NEPS (a multilingual acronym), see [6]. Therefore it contains graphs that are neither 
vertex-transitive nor distance-regular; it is well-known that some distance-regular graph 
are not vertex-transitive (the trivalent bipartite graph of diameter 6 on 126 vertices de- 
scribed in [I] is an example). This implies that the Cartesian sum of this graph and K? 
is neither vertex-transitive nor distance-regular. 

3. Optimization and relationship with linear programming 

We may improve on this method by giving various weights to the edges. If the 
weights are positive and preserve the vertex transitivity, i.e. for each pair of vertices 
u and c’, there is an automorphism Y which maps u to II and preserves the weights, 
w(zsat) = w(st) for every pair of adjacent vertices {s, r}, then our method is still valid. 
The matrix A is replaced by A,,. where the (u. c)-entry is the weight of the edge UC if 
it exists, and 0 otherwise. 

Corollary 1 holds even if the weighted graph is walk regular in the following sense: 
any walk has a weight which is the product of the weights of the edges it uses (e.g. 
w(abac) = w2(ab)w(ac) if the vertex a is adjacent to vertices b and c), and entry (14, c) 
of A’ is the sum of the weights of the walks of length k from u to L’. We say that the 
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weighted graph is walk regular iff for every 1 the total weight of all closed walks of 
length 1 starting at some given vertex v does not depend on the chosen vertex U. 

Proposition 2. Let A be a symmetric mutrix. If the diuyonal entries for each polver 
of A are all equal, then the projections of the IV’s on each eigenspace E;, have the 
same length and conversely. 

Proof. If the diagonal entries are equal for powers, they are also for polynomials. 
Among these we can look at 

This idempotent operator is just the projection on the eigenspace E,. Computing 
(1, 1 B,( 1 c)), which is the vth diagonal entry of B,, we see that this quantity is just 
the square of the length of the projection of 1, on E,,. 

On the other hand, if these lengths depend only on 3,, then the diagonal entry (v, v) 
of Ak is (1 c 1 Ak lo) = z,, Rk (pi.1 pjL), where p;, is the projection of 1 I! on E;,, and does 
not depend on v. 0 

Therefore, Corollary 1 holds for walk regular weighted graphs too. The point is that 
a convenient choice of weights can decrease the number of eigenvalues, or increase 

the ratio P(k)/ Cnik lP(A)lm~,, k being the largest eigenvalue of the adjacency matrix 
of the weighted graph. 

Example 3. The Cartesian sum of t complete graphs K,, , K,:, . , Ka, has clearly di- 
ameter t. This can be obtained by our method too, by letting the weight l/a on the 
edges that come from a K,. Then there are only t+ 1 eigenvalues, namely A,A + l,A+ 
2,. . ,A + t, where A = - xi=, l/ai. And therefore by using a polynomial of degree 
t whose zeros are A, A + 1,. , A + t - 1 we obtain that the diameter of the graph 
is at most t. Without optimizing the weights of edges, there may be up to 2’ eigen- 
values. 

The issue of finding a polynomial of degree at most d which maximizes 

P(k)/ C/r\k IP(i)lm;~ 1s indeed a linear programming problem, with the constraints 

c n,k ~#(3.)m; < 1, where ~1, takes its values in (-1, l} (i.e. 2#(“ik) constraints), and 
the objective function P(k). The constraints and the objective function are linear with 
respect to the d + 1 coefficients of the polynomial P of degree <d. 

First of all let us notice that 

Proposition 3. The ratio P(k)/C,,, IP(3.)[ ;. m IS maximized over all polynomials of 

degree d by some polynomial P(X) = I$,(X - Ai), where the ibi’s ure d d@erent 
eigenvalues chosen from A \ k. 
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A proof of this proposition will be given in what follows. Therefore a straightforward 
algorithm to find this polynomial P(X) could be 

Step 1: Choose an initial polynomial P(X) = nf=~, (X - ;,), where the i.,‘s are 
d different eigenvalues chosen from n \ k. 

Step 2: Compute P(k)/ Cn,k lP(i,)(m,. 
Step 3: Replace one of these i,‘s by a new eigenvalue i, which increases the value 

obtained at step 2. 
Step 4: Iterate step 3 till it becomes impossible to increase the ratio P(k )/ 

CA),/; P(j.)lm,.. Th e maximum of P(k)/ C,,,k IP(i,)lnr; is obtained by this polynomial 
P which we cannot modify anymore. 

All what we have to do in order to prove that this polynomial yields the biggest 
ratio P(k)/ C,,k iP(A)lm;., is to prove the following lemma about the set of extreme 

points of the convex region ‘6 in iw ” ’ defined by the set of points (~0, uI , , N,/ ) for 
which the polynomial P(x) = ao + a1.r + + adxd satisfies x,,,a IP(l. < I 

Lemma 1. When d is less thun the rzumbrr of r1emeut.s of’ A \ k the rxtreme points 
of’ ‘6 correspond to polynomiuls qf dqree d ~vhow roots cw d distinct ei~gemul- 
ues 2,‘s. When d is equul to the curdinulity of’ A \, k the srt % bus no c.www 
points. 

Indeed we have to find the maximum of a linear function (in the coefficients of 
the polynomial) P(k) in this polyhedron G4 of R““. The maximum occurs therefore 
at one of the finite number of extreme points of ‘6 (see [.5, Ch. 2, Section I]). To 
find this maximum we can use the simplex algorithm. That is, start at some extreme 
point, compute the value of the objective function at this point. Find a neighbouring 
extreme point for which the value of the objective function is larger and iterate this 
process until an extreme point for which the value of the objective function cannot be 
increased by choosing another neighbouring extreme point is reached. It can be proved 
that this extreme point is the global maximum of the objective function on % (see (5. 
Chs. 2 and 31). 

The aforementioned algorithm is just the simplex algorithm. It remains to prove our 
claim about the extreme points of 95. An extreme point of a convex region % is a point 
p for which the equality p = (x + ~):/2, where .Y and y are two points in %, can be 
achieved only if p = x = y. 

Proof of Lemma 1. In order to avoid cumbersome statements, we will identify from 
now on a polynomial with its image in I?“’ given by its (d + I )-tuple of coefficients. 
Let us first prove that every extreme point P(x) of % is necessarily a polynomial which 
has d distinct roots among (1. We proceed by contradiction. Let ii, j-2.. .i, be the 
roots of P belonging to n (there may be none), and assume that s < d. Call this set 
of roots /I’. Let Q(X) = nf==,(x - Ri)R(x) where R(x) is an unspecified polynomiali 
of degree d - s. We will show that there exists such a polynomial R(x) and a real 
a>0 such that when E is small enough and for all i. not belonging to the set of the i.,‘s, 



178 C. Delorme, J. P. Tillich I Discrete Mathematics 1651166 (1997) 171-194 

the sign of P(n) i &Q(A) is equal to the sign of P(1,). For such an E we have 

= C lP(A)lm; f E C sign(P(%))Q(A)m;,. 
iE(A\k) iE(/l\k)\A’ 

R(x) can be chosen such as to make the sum C &(,,\k)\n’ skW(~b>)Q(~h equal 0 

(and this without being equal to 0 itself). With this choice of R(x) it appears that 
P(x) + &Q(x) and P(n) - &Q(x) both belong to ‘%. Therefore such a polynomial P(X) 
is not an extreme point of V. 

Let us prove now that every polynomial P(x) = c&‘~=,(x - 2bi) for distinct %i’s 
in A \ k and for a suitable a (i.e. such that Cn,k lP(2)Jm;. = 1) is an extreme 
point of %; and this unless the set A’ = {Al, 22,. . . , &} is equal to A \ k. In this 
case it is straightforward to check that there are no extreme points in V, because 
the infinite line generated by nA\k(x - 2) belongs to V and adding to every point 
of %? a point of this line yields another point of %?. If P(X) is not an extreme 
point there exists a polynomial Q(x) of degree at most d such that for every 
& E [-l,l] : 

C /P(l) + ~Q(A)lm;h d 1. 
A\k 

When the absolute value of E is small enough the sign of P(2) + &Q(A) is given by 
the sign of P(A), and this for every A which does not belong to A’. Therefore for such 
values of 8 

5 I&Q(A)w,I < --E C sign(E’(3,))Q(3,)m~,. 
i=l iE(A\k)\A’ 

This implies that C;,ECn,kj,n, sign(P(A))Q(/l)m;, = 0, and therefore Cf=, ]sQ(Ai)m;., / = 0 

and thus Q(x) is proportional to n$,(x - Ai). This can only happen if Q(x) = 0, and 
this means that P(x) is an extreme point. 0 

4. Subsets with no short distance 

The technique we used to find upper bounds on the diameter of a graph can be used 
in a similar setting where we want to find upper bounds on the number of vertices of 
a k-regular vertex transitive graph, which are all at distance d from each other. 
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Proposition 4. Ij’vtv have n vertices ofsuch a gruph w?th mutual distances >d. arid P 
u polynomial of‘ degree d with P(k) > 0, the followiny inequality hol~ls. 

(n - I )P(k) + C &;.P(l)m;. 90. 
A\k 

where L,_ = n - 1 iJ‘ P(;) < 0, and E;. = - 1 if P(l) > 0 (the value of’ 1:; bus HO 
irzjluence on the sum tf P(2) = 0). 

Proof. Let ‘6 = {w(’ ), nJ2) , . , IV(~)} be this set of vertices, and S, = S \ M’(‘). We have 

(P(l,,~I’) 11’6,) = 0, 

(P( I,,&) / 1xJ = 0, 

. 

(P( l,,iMi) / Ix,,) . 0. 

Therefore c:=, (P( l”,) 1 lfd,) = 0. Decompose now each vector 1 ,,.Ilg as the sum of its 
projections n$” onto the eigenspaces E;,. This implies 

c P(j”) c (wji) 1 w;q = 0. 
i ii/ 

(2) 

For the eigenspace of dimension 1 corresponding to k we have ~,,,(w~’ 1 w$“) = 
n(n - 1 )/N. Note that if we have n unit vectors c’i, then the squared length of XI ~, ~,, c, 
lies between 0 and n*, and therefore -n < Cifi(r; 1 c,) <n(n- 1). From this and Propo- 
sition 1 we deduce that 

n;.i d  c (w;;) , ,;.i)) d n(n -N1 jrn;. 
Iii 

By using this information in Eq. 2 we obtain our inequality. 0 

This proposition enables us to give upper bounds on the stability number of the nth 
power of a graph. In particular, if p is the lowest eigenvalue, the polynomial X - LI 
gives the Lo&z bound for the usual stability number x, namely r < -@i(k - p) (131. 
This proposition can be improved a little bit when the dimension of the eigenspace E, 
is 1, and n is odd. In this case 

(1 - n)m;. <c (w;y) 
N 

Iwy)d n(n - 1)m; 

iii 
N . 

Example 4. Let G be the circulant graph with 12 vertices labelled with the congruence 
classes module 12, each vertex x being adjacent to x + 2, x - 2, x + 3, x - 3. 

Edges {x,x + 2) are given weight 1, and edges {x,x + 3) are given weight f The 
spectrum is 3’, 15, O’, (-2)4, the polynomial X+2 gives 4.5+(-1).3.5+(-1).2.2 > 0, 
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Fig. 2. A circulant graph and a maximum stable set 

hence the maximum stable set in G has at most 4 vertices. This is the actual value, as 
can be checked from Fig. 2. 

Example 5. Let G be the bipartite double cover of the Petersen graph. It can be 
regarded as the set of the 20 subsets on 2 or 3 elements of a set on 5 elements, say 
{a, b, c, d, P}, with adjacency representing strict inclusion. 

This graph G has spectrum 3’, 24, 15, (-l)“, (-2)4, (-3)‘. The sets of vertices with 
mutual distance 3 can be shown to have at most 5 vertices, owing to the polynomial 
P=(X+2)(X+l),thatyields(n-l)P(3)-4P(2)-5P(l)-P(-3)=Oforn=5. 

This complies with the Lovasz bound for the stability number of the square of G, 
where the weights 3 and 1 are attributed to the edges in G and the edges in G2 out 
of G, respectively, in order to optimize the ratio between the smallest eigenvalue, and 
the difference of extreme eigenvalues. The smallest eigenvalue is -5 and the largest 15, 
whence the bound 20(5/20) = 5 for the stability number of G2. 

But then we have n(n - l)P(3) - 4nP(2) - 5nP(l) - (II - l)P(-3) > 0, thus there 
are at most 4 vertices at distance 33. Such a subset of vertices exists, e.g. abc, ade, 
cd, be. 

5. Some examples with line-graphs of bipartite graphs 

It is well known that the spectrum A(LG) of the line-graph LG of a k-regular 
graph G on N vertices is easily obtained from the spectrum A(G) of the graph itself. 
The cases k < 2 are not interesting. For k > 3 we have for each 1, # -d in A(G), the 
eigenvalue i + d - 2 with the same multiplicity in A(LG), and -2 is an eigenvalue 
of LG with multiplicity E - N + mc(-d) where rn~(i~) is the multiplicity of the 
eigenvalue ;1 in the spectrum of G, or 0 if i. is not an eigenvalue of G and E is the 
number of edges in G (see [5]). 



To prove this we consider the edge-vertex incidence matrix B = (h,,) of G with ,% 
columns and E rows, where b,, = 1 if edge i is incident to vertex ,j. Then BB’ := 
21~ + A(LG) and BTB = kl,v + A(G) have the same spectrum but for the multiplicity 
of 0. A(G) and A(LG) denote, respectively, the adjacency matrices of G and LG. 

Now we adapt this proof to simple connected biregular bipartite (kl, kz) graphs. This 
notation means that there is a partition of the vertices of the graph into blocks. such 
that all the vertices in the first block of size NI have ki neighbours which are all in 
the second block, whereas the vertices of the second block of size Nz have all their k2 
neighbours in the first block. This implies that E = NI k, = N~k2. This partition splits 
the edge-vertex incidence matrix B into two blocks B = [ BI B? ]. WC will actually 
consider a weighted version B,,. = [ ,,;KBl fiB2] of B. 

The case of non-connected graphs is a straightforward extension of this one. 
The equality BBT = 21, + M(LG) becomes B,,BT = (.SI + sz)I, + M,,(LG), where 

M>,(LG) is the adjacency matrix of the line-graph, with weights sl or sz on the edge pq 

of the line-graph according to the stable component that contains the common vertex 
of edges p and q of G. 

This a mere generalization of Theorem 2.16 in [5] where the case of the unwcighted 
line-graph is described. 

Proof. The adjacency matrix of G is in a natural way split into blocks of sizes 1.1 and 
~‘2 as follows: 

We have 

and hence (Bi,B,,.)’ ~ (sldl +.s2d~)B~,B,,. = SIS~(M’ ~ dld2/,, _,!) 
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We then see that if 

stdtlv, u 
UT sz&Ivz I 

has eigenvalue x with eigenvector 

XI 

[ I x2 

then it has also eigenvalue sldl + s2d2 - x with eigenvector 

(x - stdl )x1 1 W2 - ~)x2 ’ 
0 

Example 6. The complete bipartite graph Kd*,d, has spectrum @&‘, 0d2+dl-2, 

-&&‘. 
Its line-graph has spectrum (dZ+dl -2)‘, (d2 -2)dl-1, (d, -2)dz-1, (-2)d2dl-d~-dl+1; 

this spectrum could also be computed from the remark that this line-graph is also the 
Cartesian sum of Kdz and Kd,. 

In the same way, we could compute the spectrum of the weighted line-graph, namely 
(s,(dl-l)+s2(d2-1))1, (s,(d,-l)-~~)~z-l, (-s,+~~(d~-l))~l-~, (-s,-s~)~~~~-~~-~~+‘. 

Example 7. The subdivision of 15 has 6 vertices of degree 2 and 4 vertices of de- 

gree 3. The spectrum is A’, fi3, O*, (-&)3, (-&)I. 
The spectrum of the line-graph is 3l, 23, O’, (- 1)3, (-2)3, the weighted spectrum is 

(--a - s2j3, ( s: + J9s;’ - 4s;s; + 4s; 
3 

(2Sl + s2)‘, (es1 + 2s212, 2 )? 
( s: - J9sT - 4s:s; + 4s; 

3 

2 ). 
This line-graph has diameter 63, as one sees with the polynomial P = (X-2)(X+ 1) 

(X +2) that gives P(3)+2P(O) > 0 and at most 3 vertices can have mutual distance 3, 
as one can see with the polynomial P = (X + 2)(X + 1) that gives 3P(3) - 3P(2) - 
2P(O) > 0. 

These are the actual values, see Fig. 3. 

Example 8. The rhombic dodecahedron has 8 vertices of degree 3 and 6 vertices of 
degree 4. It is also the 4-cube with 2 opposite vertices removed, or the incidence graph 

of faces and vertices of the 3-cube. The spectrum is v@, 23, 06, (-2)3, -fi’. 
The spectrum of its line-graph is 

___ 3+fl 

3 

9, ( ) 22, 

14 d 3-m 

2 ) 
2 

) 

3 
’ (-2)“. 



IX3 

Fig. 3. The line-graph of the subdiwslon of KJ 

Fig. 4. The line-graph of the rhombic dodecahedron 

The diameter is at most 4 (use the polynomial P = (A’ + 2)(X - 1 )(X2 ~ 3X -- 2) 
and the inequality P(5) + 2P(2) > 0), and there are at most 3 vertices with mutual 
distance 33 (use P = (X + 2)(X -. 1) and 3(P(5) + 3P((3 - J1’7)/2)) > 2P(2) + 
3P((3 + fl)/2)). These are the true values, see Fig. 4. 

6. Distance to a set of vertices 

Stronger results on distances between the set of vertices of a graph can be obtained. 
when the graph is distance-regular. In this case good bounds can be given on the 
distance between a vertex c’ and a set of vertices C (defined as the length of a shortest 
path connecting t‘ to a vertex of C). 

For that purpose we need some facts from [l]. A distance regular graph is a graph 
such that for every couple of vertices (~1. c) at distance j the following holds (see 1, 
Ch. 20): 

(1) the number of vertices at distance j - 1 from c adjacent to u is always c, a 
number which depends only on j; 
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(2) the number of vertices at distance j + 1 from 2: adjacent to LI is always b.i; 
(3) the number of vertices at distance j from r adjacent to u is always aj some 

number depending only on j. 
It is straightforward to check that for every eigenvalue i of a distance-regular graph, 

the inner product (sj, 1 tj,) depends only on 3. and the distance n of s and t. It can be 
computed by 

,f (& n) = $ g 
n 

where R, is the polynomial given by R- 1 = 0, Ro = 1, RD+, = 0 and XR, = anRn + 
c,+l R,,+l + b,_l R,,_l for 0 <n ,<D where D is the diameter of the graph. 

Thus, if the graph is distance-regular, one can compute the lengths of the projections 
C;_ on the eigenspaces from the distance distribution inside V. 

where T, is the number of couples inside C with distance n. 
Now let 1~ be the characteristic function of C, in other words xatC 1,. Then the 

distance between C and s is also the smallest integer m 2 0 such that (1 c 1 Am( Is)) # 0; 
and if Q is a polynomial of degree d such that (1~ I Q(A)l,) > 0 then the distance 
between C and s is at most d. If this inner product is equal to zero, then this means 
that (the sum being on all eigenvalues i of the regular graph we consider) 

c (C;. I e<~~>v;., = 0. 

Let us notice that a distance-regular is always regular - say that in our case the degree 
is k. Here (C, 1 sk) = ICI/N, so the sum of inner products in expression (3) cannot be 
equal to 0 if 

Using the Cauchy-Schwartz inequality (C;, I ~1~) < 1 CI~/ Is; I and Proposition 1 (a distance- 
regular graph is necessarily vertex transitive) we see that if 

gp > c lQ(A)l lC;.lfi 
&A\k 

we necessarily have (1~ I Q(A)ls) > 0. From this we deduce 

Proposition 6. Let G be a connected distance-regular graph of degree k, and C a 
subset of vertices of G. If there is a polynomial Q of degree d such that 

F > C lQ(ib)l lCj,,E 

it A/k 

then the distance between C and any vertex of G is at most d. 
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We will see in the next section how this proposition can be improved when G is a 
Cayley graph, and C a subgroup of G. 

Example 9. Petersen graph has spectrum 3’, 15, ((2)‘. We can compute (s; / t;) as a 
function of i. and the distance n of s and t. 

j.\n 0 1 2 

Let us consider a subset C consisting of 4 vertices with mutual distances 2 and let 
us compute the lengths of the components of lc 

Using Proposition 6 and the polynomial Q = X + 1 we obtain 

Q(3); > lQ(l>llcll ; + lQ(~2)lIC-21 ;. 
c J 

Hence each vertex of the graph is at most distance 1 from C 

7. Application to codes 

There are several applications of these results to coding theory. For example 
Sections 2 and 6 can be used in order to obtain an upper bound on the covering 
radius of a code, when the weight distribution of the codewords is known. Section 4 
is relevant to the problem of obtaining upper bounds on the cardinality of a code with 
a given maximum distance. We bring in our graph-theoretic results by observing that 
a code of length n on Fq (the finite field of q elements) - in other words a subset 
of F; can be viewed as a subset of vertices of the Hamming graph H(n,q) which 
is the Cartesian sum of n complete graphs with q vertices each. An equivalent defini- 
tion of H(n,q) is to say that the set of vertices of this graph is F,“, and two vertices 

(xI,YI,...,x,,) and (YI,Y~,..., y,) are adjacent iff they differ by exactly one coordinate. 
In this case the usual Hamming distance between two codewords (i.e. the number of 
places where they differ) is exactly the distance between the two corresponding vertices 
in H(n,q). 
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An interesting feature of these graphs H(n,q) is that they are distance-regular, and 
that their spectrum is well known (see [2]) 

Proposition 7. H(n,q) is a distance-regular graph and the associated polynomial 
Ro(x),Rl(x), . . . ,R,(x) (see Section 6) are given by 

R&C) = Pen (yn- z), 

where Pp” is the Krawtchouk polynomial of degree k, associated to q and n (see [ 15, 
Ch. 51). These polynomials are defined by 

(1 + (q - l)z)“-“(1 -zr = kgOP;n(x)zk. 

The eigenvalues of this graph are ;I, = (q - 1)n - qi, O<i<n, with multiplicities 
mi = (?)(q - 1)‘. The eigenspace associated to the eigenvalue 2, = (q - l)n - qi is 
obtained from a primitive qth root of unity i; as the vector space spanned by the 
vectors 

e, = 

u running over the set of vectors of weight i, where VI,V~, . . .,vqii are the vectors 
representing the vertices of the Hamming graph H(n,q), and ( 1) the usual inner 
product of two vectors of length n over F4. 

7.1. An upper bound on the cardinality of a code of minimum distance 3 

By viewing a code as a subset of vertices of H(n, q), it becomes obvious that a binary 
code of length n of minimum distance d, is a set of vertices of the n-cube which are 
at distance at least d apart. A subset of vertices of this graph whose mutual distances 
are at least 3 can be seen to have a cardinality smaller than or equal to 2”/(n + 1) for n 
odd, by using Proposition 4 with the polynomial (x + 1)2, and smaller than or equal 
to 2”/(n + 2) for n even. This is essentially equivalent to the sphere-packing bound 
(see [15, Theorem 12, Ch. 17, Section 31). 

7.2. Mac Williams identities 

Before we see how to use the results of Section 6 in order to get upper bounds 
on the covering radius of a graph, it might be insightful to observe that the lengths 
of the projections C;~ have a simple combinatorial interpretation when C is a subset 
of vertices of the Hamming graph H(n,q), and represents therefore a q-at-y code of 
length n. 
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Indeed we can use Proposition 7 and calculate from that 

(N(M) denotes here the weight of vector u). It is readily seen that the last sum is 
equal to (iC~2/q”)B~, Bi denoting here the transform of the distance distribution of C 
corresponding to the weight i (see [15, Ch. 5, Section 51). When the code C is linear 
this number has an interesting combinatorial interpretation, for it is straightforward to 
check that Ct,EC _ t(” 1’) = 0 when (U / v) # 0 for some 2: in C, and EVE<. 5”” 1’) = ICI 
if (U / z.) = 0 for all z’ E C. Therefore ICt4_~)n_y;12 is equal to IC12/q” times the number 
of codewords of weight i in the dual of C. So that when C is linear, Bi is just the 
number of codewords of weight i in dual the Cl of C. 

By using the results of Section 6 we can calculate in another way the lengths of 
these projections C;,, by doing this we obtain the MacWilliams identities in coding 
theory (see [15, Ch. 51). From Proposition 7 (Ti denotes the number of couples of 
codewords which are at distance j) 

We recall two well-known facts about Krawtchouk polynomials 

P,(i) __ = z and P;(O) = 1 (q - 1)‘. 
P,(O) I 0 

Hence 

(5) 

Comparing expressions (4) and (5) we get 

This is the generalized MacWilliams identity (see [15, Theorem 51). Let us denote by 
B; the number of codewords of weight i in C, when C is a linear code, Ti = ICIB,, 

and therefore we obtain the usual MacWilliams identity for linear codes 
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7.3. The covering radius of a code 

7.3.1. The covering radius of a linear code 
Two different approaches may be used to obtain an upper bound on the covering 

radius of a code. The obvious approach is to use Proposition 6. However when the 
code C is linear it is better to use Corollary 1. This is done by associating to a linear 
code a Cayley graph - the so-called coset graph of the code. Let us recall here - 
for more details see Chapter 11 in [2] for example - that given a linear code C over 
F4 (the field of order q) of length n, i.e. a vector subspace of FJ?, one can construct 
the coset graph T(C) of this code as follows: 

?? the set of vertices is Fi/C, 
?? two vertices x and y are joined by an edge if and only if the coset x - y contains 

a vector of Fq” with exactly one non-zero coordinate. 
This graph is sometimes called the syndrome graph associated to the linear code 

C for it can be described from a parity-check matrix of the code as follows.. Let us 
recall that, given a r x n parity-check matrix H of rank Y which defines the code C as 
the set of vectors x E F: satisfying Hx = 0, the syndrome of a vector x E F: is Hx. 
It can be checked that the coset graph is isomorphic to the graph with vertex set the 
set of syndromes, and there is an edge between two different syndromes y and y’ iff 
there is a vector e of weight 1 such that y - y’ = He. Viewing these vectors y and y’ 
as column vectors, they differ in this case by a vector proportional to a column of H. 

It can be easily checked that this graph displays the following interesting features 
(for a proof see [2, Ch. 111): 

Proposition 8. 1. The coset graph is a (q - l)n-regular Cayley graph. 
2. The distance between the all-0 vector in Fi and a syndrome y is the least number 

of columns of H which generate y. 
3. Its diameter is equal to the covering radius of C. 
4. Its spectrum A can be described by using the dual code CL of C, more precisely 

A={n(q-I)-qw(x)/xEC’} 

where w(x) denotes the Hamming weight of the codeword x, i.e., the number of 
its non-zero coordinates, and the dual code of C is the set of vectors x such that 
(x 1 y) = 0 for every y in C, the inner product being performed in F4. 

Thus all what we need to obtain an upper bound on the covering radius is to know 
the weight-distribution of its dual code. Putting Proposition 8 and Corollary 1 together 
we get 

Proposition 9. Let C be a linear code of length n. If there is a polynomial Q of 
degree d such that 



(We apply Corollary 8 to the coset graph of the code ~ and we have a polynomial 
P of degree d which meets the condition given in the corollary, iff the polynomial 
Q(x) = P((q ~ 1 )n - qx)) of degree tl satisfies the aforementioned inequality). 

Remark. This proposition is actually an improved version of Proposition 6 when used 
for codes, and can be derived from the arguments given in Section 6 by modifying 
one of the characteristic vectors a little bit. Assume that vertex s is at some distance d 
from C in the graph H(n, q). When C is a linear code, C + s is at the same distance 
d from C. Therefore (1~ / P(A)1 v) = 0 iff (1~ 1 P(A)l(.+,V) = 0. Call Cj the projection 
on the eigenspace corresponding to 3, of the vector Ic’-,. If we replace the quantities 
s;. by C’j in the discussion given in Section 6, then whenever there is a polynomial P 
of degree d such that 

or if we let Q(X) = P((q - 1)n - qx), 

the covering radius of the code is less than or equal to the the degree of P. We can use 
the interpretation of ]C; /* given in the previous subsection, and notice that this gives 
us another proof of Proposition 9. Actually this trick can be used in a more general 
setting, and works for example when the graph is a Cayley graph, and the subset % a 
subgroup of the set of vertices. 

7.3.2. Covrring radius ctnd duul distance 
Now what if less is known about the 

esting results about the covering radius 
mate the minimum distance of the dual 

weight distribution of the dual Cl? Inter- 
may be obtained, if we can at least esti- 
code. The best of these upper bounds on 

the covering radius depending on the minimum distance can be found in [ 121 and 
can be easily derived by a graph-theoretic approach when the code is linear by using 
Proposition 8 and the main theorem given in [4], although it was obtained by other 
means in [ 121. Let us mention that these results can be obtained by our approach 
too. 

Indeed if we had a polynomial Q such that 

d’ denoting here the smallest i > 0 such that Bi # 0 (i.e. what is called the minimum 
distance of the dual code of C), and IC1l the number of codewords in the dual of C. 
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e.g CyZ,B:) then 

lQ(O)l > ,$ lQ<W:. 

This implies that the covering radius of C would be less than or equal to the degree of 
this polynomial Q, by using Proposition 9. It is well known (see [4] for example) that 
a polynomial Q(x) of a given degree d such that Q(0)/maxXtIdf,nl [Q(x)1 is maximum 
is proportional to Td((n + d’ - 2x)/(n - d’))/Td((n + d’)/(n - d’)), where Td(x) is the 
Tchebychev polynomial of the first kind of degree d, i.e. cosh(d coshh’(x)). The 
corresponding ratio is l/Td(n + d//n - d’). In other words if 

1 

( > 

> JCL1 (6) 
Td n+d’ 

n-d’ 

then the covering radius is less than or equal to d. When the dual code C’ has 

minimum distance d’, then it has asymptotically at most 2 n(1+o~I)M(l/2-~~) 

codewords, HZ(X) being --x log, x - (1 -x)Zogz( 1 -x) (this is the McEliece-Rodemich- 
Rumsey-Welch upper bound see [15, Ch. 17, Section 71). Denote by 6’ the ratio d’/n 
and by p the fraction R/n, where R is the covering radius of the code. Then inequality 
6 certainly holds for a Tchebychev polynomial of degree greater (asymptotically) than 

H2 (; - dm) 
n- 

log, e coshh’ 3 
( >‘ 

this implies that 

P<(l +o(l)) 
H2 (4 - dm) 

log, e cash -1(1+6’\ 
\I-h’j 

which is the bound given in [12]. 

7.3.3. The Delwrte bound 
Not so many upper bounds on the covering radius are known, and Propositions 6 

and 9 give here a new bound which is always at least as good as the Delsarte bound 
(which says that the covering radius is at most the number I of non-zero distinct 
weights WI, ~2,. . . , WI of the dual code). We just have to choose Q(X) in Proposition 
6 to be l&(X - wi). Proposition 6 sometimes gives results which are substantially better 
than the Delsarte bound, as shown by the following examples. 

7.4. Exumples 

Example 10. It is well known that the Delsarte bound is not always tight (see [ 161 
for example). In [16] an alternative approach is used to find the covering radius of 
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Table 2 

ISI 

0 I I I I I I I I 

I 7 5 3 I -I -3 -5 -7 
2 21 9 I -3 -~3 I 9 21 

3 35 5 -5 -3 3 5 -5 -35 
4 35 -5 -5 3 .3 -5 -5 35 

5 21 -9 I 3 ~- 3 -I 9 -21 
6 7 -5 3 -I I 3 -5 7 

7 I -I I -I I -I I -I 

PI, I 7 21 35 35 21 7 I 

codes for which the bound of Delsarte fails to meet the actual value. In that article 
H.F Mattson considers for instance a code of parity-check matrix 

H= 0010001001 
0001000110 
0000100101 

.o 0 0 0 0 1 0 0 1 1 

The corresponding code C has length 10, dimension 4 and minimum distance 4. It 
can be checked that its dual D has the following weight distribution: 

-1000001100 
0100001010 

Weight 0 3 4 5 6 I 10 
Number of words 1 10 15 12 15 10 1 

The Delsarte bound shows that the covering radius of C is less than or equal to 
6, the number of distinct nonzero weights of codewords of D. Nevertheless, it can be 
proved that the covering radius is 4 [ 161. Let us show that this result can be obtained 
from our approach too. From Proposition 9, and by choosing Q(X) = (X - 3)(X - 4 ) 
(X - 6)(X - 10) it can be shown that the covering radius of C is at most 4 (since 
Q(0) > 12Q(5)+1OQ(7)). The covering radius is 4 because the syndrome (1. 1, I, 1,l. 1) 
(considered as a column vector) is neither the sum of two columns of H, nor the sum 
of an odd number of columns of H (by an obvious parity argument). Therefore, it is 
the sum of at least 4 columns of H, and we conclude by using Proposition 8. 

Example 11. The ambiant graph is the ‘-i-cube K;. 
The eigenvalues, their multiplicities and the value of R,(A) appear in Table 2. 
The cyclic linear binary code of length 7 generated by 1001011 has 8 vectors, with 

distance 0 occurring 8 times and distance 4 occurring 56 times. Thus the lengths of 
the components C;, of this code are given by Table 3. 
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Table 3 

i 7 5 3 I -1 -3 -5 -7 

8X 1 7 21 35 35 21 7 I 

56X I -1 -3 3 3 -3 -1 I 
NlC.1” 64 0 0 448 448 0 0 64 

Table 4 

i 7 5 3 I -1 -3 -5 -7 

Table 5 

fCjJ2 1; 3 0 4 1 -1 0 -3 I8 -5 0 
hi I2 1 5 10 10 5 1 
I C/G;. I I 0 <2 0 <3 0 

From this we can estimate I(S). ) C;,) 1 (see Table 4). 
Hence 2( 1~ j (A3 + A2)( lx)) 2392 - 146 - 294 > 0, and the maximum distance is 

at most 3 (this is the actual value). 

Example 12. The ambiant graph is the 5-cube. The nonlinear code formed by all words 
of length 1 or 4 has weight distribution proportional to 1,0,4,4,0,1. Thus the squares 
of the lengths of the vectors C;, and zi. and their inner products are proportional to the 
values in the following Table 5. 

Thus if Q(5) > 21Q(l)l + 3jQ(-3)1 the covering radius is at most the degree of 
Q. For Q = (X - 1)(X + 3) the relation obviously holds. For Q = X + 3, we have 
only Q(5) = 2Q( 1). Thus the vertices z such that the vectors ZI and Ci have opposite 
directions are at most at distance 1 from C. In fact the covering radius is easily seen 
to be 1 from the definition of the code. 

Example 13. For the linear code C with length 15 and weight distribution [ 151 given 
in Table 6 we obtain the squares of the lengths of the vectors C,; those which are not 
equal to 0 are proportional to values given in Table 7. 

This also gives the weight distribution of its dual D (see Table 8). 
From the number of eigenvalues giving a nonnull component C;. or D)., we see that 

the covering radius of D is at most 5 and the one of C is at most 7. 
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Table 6 

Weight 0 3 6 8 IO I2 

Number of words I 15 100 75 60 5 

Table 7 

1. fl5 15 +3 fl 

Squared length I 18 30 15 

Table 8 

Weight 0 5 6 7 8 9 IO I5 

Number of words I 18 30 15 I5 30 18 I 

To improve the first bound by our method, we have to find a polynomial Q,, of 
degree 4 or less such that 

QD(l5) > J15x13651QD(7>1+ V’IOO x 50051QD(3)1 + J75 x 64351QfI-1)l 

+mjQ~(-5)1 + J5x455/Q1,(-9)1. 

This is impossible, this polynomial Q being optimal as can be checked by using the 
algorithm given in Section 3. 

The calculation can be made simpler in the case of a binary code C where all thr: 
weights are even. Indeed, if z is at even distance from all points of the code c‘, WC 
have (1 c 1 A”( 1 c)) = 0 for all odd exponents 11, and if z is at odd distance from all 
points of C. then (1~ 1 An( 1~)) = 0 for all even exponents n. This shows that (C, 12, :) 
and (C_;. / ZL,) are equal in the first case and opposite in the second case for each 
eigenvalue 3”. 

With z at odd distance from C the odd polynomial Q(. = X((X’ ~ 13)’ -- 80) gives 
the sum of the equal quantities (Cl5 / Qc(A)(zls)) and (C-15 / Qc,(A)(z_15)) larger 
than the remaining part of (1~ 1 Qc(A)( I;)), since Qc(l.5) > lQ~(5)IJl8 x 3003 $- 
lQ(.(3)ldm + iQc(l)ldm. This shows that the covering radius is at 
most 6. 

We can improve on these results by using Proposition 9. The spectrum of the coset 
graph of C is &15’, &5”, 1t3~O, fl’“. Th e polynomial P = (X - 3)(X - 1 )(X + 5) 
(X + 15) takes only positive values on the other eigenvalues, and we have P( 15) =I 
100 800 > 52 800 = 18P(5) + 15P( - 1) + 3OP( -3). Hence the diameter of the coset 
graph of C is at most 4 as well as the covering radius of C. 

In the same way the spectrum of the coset graph of D shows that it contains at most 
2 vertices at distance > 4, owing to the polynomial P = (X - 3)(X + 1 )(X + 5)(X + 9) 
for which P( 15) = 15P(7) > 0. 
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