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We derive improved isoperimetric inequalities for discrete product measures on the n-
dimensional cube. As a consequence, a general theorem on the threshold behaviour of
monotone properties is obtained. This is then applied to coding theory when we study the
probability of error after decoding.

1. Introduction

Consider the n-cube, or binary Hamming space Hn = {0, 1}n of dimension n, and denote

by |x| the weight
∑n

i=1 xi of a binary vector x = (x1, x2, . . . , xn) ∈ Hn. For 0 < p < 1 let µp
denote the product measure on Hn defined for any subset Ω ⊂ Hn by

µp(Ω) =
∑

x∈Ω

p|x|(1 − p)n−|x|.

Let us write x % y if for any i = 1, 2, . . . , n we have xi ! yi. We shall say that Ω is

increasing if, for any x ∈ Ω, x % y implies that y is also in Ω.

The theory of random graphs has been concerned with many increasing sets Ω and

with the behaviour of the function f(p) = µp(Ω). Quite often a threshold phenomenon is

observed: f(p) jumps from near 0 to near 1 in a short interval that shrinks as n grows.

In many cases this threshold behaviour can be proved by a direct study of f(p). This

has not always been successful, however, and the following indirect strategy has been

investigated by a number of authors, including [4, 8, 12, 13, 14, 15, 16]: find conditions

on Ω which are easy to check and which imply that µp(Ω) satisfies a differential inequality
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of the form

dµp(Ω)

dp
" a(n)b(p)c(µp(Ω)) (1.1)

where b and c are positive and continuous functions on (0, 1), and a(n) → ∞ when n → ∞.

Then, the integration of such a differential inequality shows that µp(Ω) behaves like a

threshold function.

One example of a famous problem that has long eluded the direct approach and has

recently been solved by techniques of this kind is the phase transition phenomenon for

the k-SAT problem for k " 3 [7].

In this paper we are concerned with the isoperimetric method for obtaining inequalities

of type (1.1). This originates in [12] and involves the quantity

hΩ(x) = 0, if x (∈ Ω,

hΩ(x) = card{y (∈ Ω, d(x, y) = 1}, if x ∈ Ω,

where d(x, y) denotes the Hamming distance between x and y, that is, the number of

coordinates i such that xi (= yi.

Crucial to the isoperimetric method is the Margulis–Russo identity for increasing sets

(see [12]):

dµp(Ω)

dp
=

1

p

∫

Ω
hΩ(x)dµp(x). (1.2)

This means that to obtain a differential inequality of type (1.1) one need only lower-bound∫
Ω hΩ(x)dµp(x) by a function of µp(Ω). Such an inequality can be named isoperimetric,

because the above integral can be thought of as measure of the ‘boundary’ of Ω, and

µp(Ω) is its ‘volume’.

Margulis brought in the quantity

∆ = inf
ω∈∂Ω

hΩ(ω),

where ∂Ω = {ω, hΩ(ω) (= 0}, and noticed that any increasing set satisfies a differential

inequality of form (1.1) with a =
√

∆. In words, increasing sets with large ∆ have a sharp

threshold. Talagrand improved Margulis’ original isoperimetric inequalities in [14] and

these were further refined by Bobkov and Goetze in [2].

In this paper our purpose is twofold.

1. We shall further improve the isoperimetric inequalities of Margulis, Talagrand, Bobkov

and Goetze. This will yield improved criteria for the threshold behaviour of monotone

sets.

2. We shall extend the scope of the method which Margulis originally devised to prove the

threshold behaviour of the probability of disconnecting a graph. We apply it to coding

theory, namely we prove and measure the threshold behaviour of the probability of

a decoding error. This approach to coding was initiated in [17], and is significantly

improved here.

The next section highlights the main results.
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2. Main results

2.1. Discrete isoperimetric inequalities

The additional condition on Ω (i.e, hΩ(x) is either zero or greater than ∆) brought in by

Margulis might seem somewhat mysterious. Let us remind the reader of the idea behind

this condition.

Assume we have an increasing set Ω. The issue is: what would be an additional constraint

on Ω that would make the measure of its boundary
∫
hΩ(x)dµp ‘large’? It turns out that

among increasing sets Ω with measure equal to that of a given Hamming ball B centred

on (1, 1, . . . , 1), the largest boundary is achieved by B, that is,
∫
hΩ(x)dµp !

∫
hB(x)dµp

(see Lemma 5.1 in [8] for instance). So, one way of forcing Ω to have a large boundary

is to make it ‘look like’ a Hamming ball, and this is exactly what Margulis’ condition

achieves. There are other conditions for which Ω tends to ‘look like’ a Hamming ball and

which force the boundary of Ω to be large, for instance the fact that Ω is invariant under

a subgroup of Sn (see [3, 4, 7, 11, 15, 16]). This is relevant to the probability of a decoding

error for cyclic codes.

Unfortunately, given that Ω is increasing and that hΩ(x) is either zero or greater than

∆, proving a sharp lower bound on the quantity
∫
hΩ seems difficult to obtain directly by

induction on the dimension n.

One of the ideas brought in by Talagrand in [14] is to use instead a modified measure

of the boundary of Ω, namely the quantity
∫ √

hΩdµp, then prove (by induction on the

dimension n) a general isoperimetric inequality (which holds for any subset Ω), and notice

that by the Cauchy–Schwartz inequality any inequality of the form
∫ √

hΩdµp " f(µp(Ω))

implies that ∫
hΩdµp "

√
∆f(µp(Ω)).

This follows from the chain of inequalities

1√
∆

∫
hΩdµp =

√∫
hΩdµp

√∫
hΩdµp
∆

"

√∫
hΩdµp

√∫

∂Ω
dµp

"
∫ √

hΩdµp " f(µp(Ω)).

His isoperimetric inequalities were improved by Bobkov and Goetze [2], who obtain, for

any increasing Ω: ∫ √
hΩdµp "

1

12
√

ln 1
p(1−p)

J(µp(Ω)) (2.1)

where

J(x) = x(1 − x)

√

ln

(
1

x(1 − x)

)
.

In this paper we further improve on this by considering another function on the right-
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hand side of this inequality, namely Ψ(x), which is defined on (0, 1) by Ψ(x) = φ(Φ−1(x))

and extended by continuity on [0, 1] with Ψ(0) = Ψ(1) = 0, where

• φ denotes the normal density, i.e., φ(t) = 1√
2π
e−t2/2,

• Φ stands for the Gaussian cumulative distribution, i.e., Φ(x) =
∫ x

−∞ φ(t)dt.

We obtain the following result.

Theorem 2.1. For any increasing set Ω we have
∫ √

hΩdµp "
1√

2 ln 1/p
Ψ(µp(Ω)). (2.2)

Comments.

1. When µp(Ω) tends to 0, it can be checked that the lower bound in the above theorem

is equivalent to

1√
ln 1/p

J(µp(Ω))

(see Lemma 3.1 below). This improvement is more significant than it looks: see the

comment that follows Theorem 2.2. Also, replacing J by Ψ will make the integration

of the inequality more precise.

2. The isoperimetric inequality in Theorem 2.1 is quite sharp for small sets, and this is

true for any p. This can be tested on subsets of small size of the form

Ω = {x|x1 = · · · = xk = 1}

(in other words subcubes of codimension k that contain the point (1, 1, . . . , 1)). First of

all let us note that µp(Ω) = pk . We choose k as an increasing function of n such that

pk = o(1). Moreover hΩ(x) = k for every x ∈ Ω. Therefore
∫ √

hΩ(x)dµp =
√
kµp(Ω).

On the other hand, Ψ(µp(Ω)) is asymptotically equivalent (as n goes to infinity) to

µp(Ω)
√

−2 ln µp(Ω) = µp(Ω)
√

−2k ln p by property (iv) of Lemma 3.1 in Section 3.

In other words, for these sets the right-hand side and the left-hand side of the

isoperimetric inequality of Theorem 2.1 are asymptotically equivalent. However, this

inequality is by no means sharp for sets of measure 1/2, for instance. For these sets

it might well be that the increasing sets Ω with the smallest boundary (measured by∫ √
hΩ) are Hamming balls of measure 1/2 centred around (1, 1, . . . , 1). We are not

aware of any isoperimetric inequality that would prove this conjecture.

Theorem 2.1 can be ‘integrated’ to yield the following.

Theorem 2.2. Let Ω ⊂ Hn be an increasing set, let f(p) = µp(Ω) and let θ be defined by

f(θ) = 1/2. Then f(p) satisfies

f(p) ! Φ
(√

2∆(
√

− ln θ −
√

− ln p)
)

for 0 < p < θ, (2.3)

f(p) " Φ
(√

2∆(
√

− ln θ −
√

− ln p)
)

for θ < p < 1. (2.4)
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Comment. For fixed p < θ and for large ∆ the lower bound is equivalent to

1√
2πu

e−u2/2

where u =
√

2∆(
√

− ln θ −
√

− ln p). It should be noted that applying the aforementioned

isoperimetric inequalities of [14, 2] would also yield similar exponential bounds of the

form e−αu2/2 (see [17]). However, the constant α we get in the exponent in this case

turns out to be quite small. For instance, the constant α obtained by using inequality

(2.1) is equal to 1
144 . This comes from the fact that after integration any constant K in

the right-hand side of the isoperimetric inequality gets squared in the exponent of the

corresponding lower bound of f(p).

2.2. Applications to the probability of a decoding error

Let C ⊂ Hn be a linear code of minimal Hamming distance

d = min
c∈C,c (=0

|x|.

Suppose a codeword c is transmitted over the binary symmetric channel with transition

probability p. This means that the received vector v = (v1, v2, . . . , vn) is such that vi =

ci + ei mod 2 where the ei are independent {0, 1} random variables with P (ei = 1) = p.

The decoder decodes v by choosing the closest codeword x for the Hamming distance;

and if there are several codewords equally distant from v he picks one according to some

predefined scheme. This is a maximum-likelihood decoding scheme. We define it in this

way so as to have a fixed set of error vectors for which decoding fails. The decoder

succeeds if x = c. The associated decoding region is the set Ω ⊂ Hn of those vectors ω

such that the vector v = c+ω is decoded back into c. We are interested in the probability

that a decoding error occurs, which can be expressed as the function

fe(p) = 1 − µp(Ω).

Define the threshold probability as the transition probability θe such that fe(θe) = 1/2. In

words, this is the channel error probability for which the ‘maximum-likelihood decoder’

defined above fails with probability 1/2. Our main result is as follows.

Theorem 2.3. Let C be a binary linear code of any length, and minimum distance d. Over

the binary symmetric channel with transition probability p, the probability of decoding error

fe(p) associated with C and any transmitted codeword c satisfies

fe(p) ! 1 − Φ
[√

d
(√

− ln(1 − θe) −
√

− ln(1 − p)
)]

for 0 < p < θe,

fe(p) " 1 − Φ
[√

d
(√

− ln(1 − θe) −
√

− ln(1 − p)
)]

for θe < p < 1.

Comments.

1. Theorem 2.3 displays the threshold behaviour of fe(p): the larger the minimum

distance, the sharper the jump from almost zero to almost one.

2. The upper bound in Theorem 2.3 is of the form fe(p) ! exp(−dg(θe, p)) where

g(θe, p) > 0 for p < θe, that is, fe(p) is exponentially small in d. In particular, families
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of codes with minimal distance growing linearly with their length n have a probability

of decoding error which decreases exponentially with n, as long as θe−p stays bounded

below by some ε > 0. Such a behaviour for fe(p) is known to hold asymptotically for

almost all codes; Theorem 2.3 holds for all linear codes.

3. This seems to be the first upper bound on the decoding error probability involving

only p, the minimum distance of the code and θe, which is exponential in d when

p is bounded away from θe. This result is essentially best possible up to numerical

constants in the exponent.

4. Theorem 2.3 is really an application of the very general upper bound on the probability

of a monotone property stated in Theorem 2.2. It is quite surprising that such a general

approach yields bounds with reasonable constants! It seems to us that there should

be other interesting consequences. We will give another application, also in the field

of coding theory, but which concerns the erasure channel.

The paper is organized as follows. In Section 3 we translate Theorem 2.1 into a general

result on the threshold behaviour of monotone properties. Then we show how this leads

to Theorem 2.3. In Section 4 we prove Theorem 2.1. In Section 5 we discuss results of a

similar nature for the erasure channel.

3. From Theorem 2.1 to Theorem 2.3

Let us first gather here a few properties on Φ and Ψ which are very useful for proving

several facts and propositions of this paper (for a proof of these statements see, for

instance, [5, Lemma 5.2, p. 88]).

Lemma 3.1.

(i) Ψ is a positive and concave function on (0, 1), and Ψ(x) = Ψ(1−x) for every x ∈ (0, 1),

(ii) Ψ′ = −Φ−1,

(iii) ΨΨ′′ = −1 on (0, 1),

(iv) lims→0+
Ψ(s)

s
√

−2 ln s
= lims→0+

−Φ−1(s)√
−2 ln s

= 1,

(v) lims→−∞
−sΦ(s)
φ(s) = lims→∞

s(1−Φ(s))
φ(s) = 1.

These properties can be used to derive Theorem 2.2 from Theorem 2.1.

Proof of Theorem 2.2. First note that the Cauchy–Schwartz inequality gives us

∫ √
hΩ(x)dµp !

(
µp(∂Ω)

∫
hΩ(x)dµp

)1/2

and, since
∫
hΩ(x)dµp "

∫
∂Ω ∆dµp = ∆µp(∂Ω) by definition of ∆, we get
∫

hΩ(x)dµp "
√

∆

∫ √
hΩ(x)dµp. (3.1)
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Next apply Margulis and Russo’s formula (1.2) which, together with (3.1) and Theorem 2.1,

gives us

f′(p) "

√
∆

p
√

2 ln 1/p
Ψ(f(p)).

Apply property (iii) of Lemma 3.1, − 1
Ψ(s) = Ψ′′(s), to obtain

− Ψ′′(f(p))f′(p) "

√
∆

p
√

2 ln 1/p
. (3.2)

Next, multiply by −1 and integrate: we get, for p < θ,
∫ θ

p

Ψ′′(f(s))f′(s)ds !
∫ θ

p

−
√

∆

s
√

−2 ln s
ds,

that is,

Ψ′(θ) − Ψ′(p) !
[√

−2∆ ln s
]θ
p
.

Then we use the the fact that Ψ′(f(θ)) = Ψ′(1/2) = 0 and −Ψ′(f(p)) = Φ−1(f(p)) by

property (ii) of Lemma 3.1. The left-hand side of the last inequality is therefore simply

Φ−1(f(p)). Since Φ is increasing, apply Φ to obtain (2.3). To obtain (2.4), integrate (3.2)

between θ and p.

Maximum-likelihood decoding

Let C ⊂ Hn be a linear code of dimension k and minimum distance d. Let r = n − k. Let

H be a parity-check matrix for C and for any x ∈ Hn define its syndrome σ(x) = H.tx. To

every one of the 2r possible syndromes s associate an ω ∈ Hn of minimum weight such that

σ(ω) = s. Let Ω be the set of all those ω s, so that σ is a one-to-one correspondence between

Ω and the set S of syndromes. The set Ω is a decoding region for the zero codeword, that

is, a set of correctable error-patterns. A maximum-likelihood decoding scheme consists of

adding to the received vector v the vector ω ∈ Ω, such that σ(ω) = σ(v). A decoding error

occurs if the codeword thus obtained is not the original codeword, that is, if the error

vector is not in Ω. This happens with probability

fe(p) = 1 − µp(Ω).

Remark. The set Ω is decreasing, that is, x ∈ Ω and y % x implies y ∈ Ω.

We have the following result.

Proposition 3.2. If Ω is a decoding region for the zero codeword of C , and if ∆ =

infω∈∂Ω hΩ(ω), then

∆ " d/2.

Proof. Let ω ∈ ∂Ω. This means that no codeword is nearer to ω than the zero codeword

(ω ∈ Ω), and that there exists c ∈ C such that changing one ‘0’ coordinate of ω to ‘1’ will
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change ω into a vector closer to c than to zero (ω is on the frontier). But then there must

be at least |c|/2 ‘0’ coordinates of ω that, when changed to ‘1’, change ω into a vector

closer to c than to zero. Otherwise ω + c would be a vector of weight strictly less than ω

and with the same syndrome. This contradicts the definition of Ω.

For any vector x = (xi)1!i!n of Hn, let x = (1 − xi)1!i!n. Note that Ω is an increasing

set, that hΩ(x) = hΩ(x), and that

µp(Ω) = µ1−p(Ω).

Theorem 2.3 follows therefore from Theorem 2.2 applied to Ω.

4. Proof of Theorem 2.1

To prove Theorem 2.1 we proceed as in [2] and first prove an inequality for increasing

functions on Hn which implies Theorem 2.1 when applied to the characteristic function

1Ω of an increasing set Ω. The point is that this more general inequality can be proved by

induction on n (whereas we do not know how to prove Theorem 2.1 by induction on n).

As in [2, 14] we will work with the quantity

Mf(x) =

√ ∑

d(x,y)=1

((f(x) − f(y))+)2,

which is defined for any real function f on Hn, and where a+ = max(a, 0). Note that for

any subset Ω we have M1Ω =
√
hΩ.

Here and henceforth we denote by Ef the quantity
∫
fdµp and by Fn the set of

functions defined over Hn which take on values only on [0, 1] and which are increasing

with respect to the partial order %: whenever x % y we have f(x) ! f(y). Note that any

characteristic function of an increasing set of Hn is in Fn.

Lemma 4.1. For any function f in Fn:

E

(√
2 ln 1/p(Mf)2 + Ψ(f)2

)
" Ψ(Ef). (4.1)

The proof of this lemma is by induction on n and borrows many ideas from [1, 2].

Before we give its proof let us show how it implies Theorem 2.1.

Proof of Theorem 2.1. Let f = 1Ω; then Ef = µp(Ω). Moreover, since Ψ(0) = Ψ(1) = 0

and M1Ω =
√
hΩ, we have

E

(√
2 ln 1/p(M1Ω)2 + Ψ(1Ω)2

)
=
√

2 ln 1/pE(
√
hΩ) =

√
2 ln 1/p

∫ √
hΩdµp,

and this gives Theorem 2.1.

We will now prove Lemma 4.1 by induction on n. The first step is to prove that it holds

for n = 1. In this case it boils down to the following.
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Lemma 4.2. Let q = 1 − p. For any x in [0, 1] and h in [0, 1 − x] we have

(Ψ(x + ph) − qΨ(x))2 − 2p2 ln(1/p)h2 − p2 (Ψ(x + h))2 ! 0.

Indeed, when n = 1 we should prove that for any function f ∈ F1 we have

qΨ(f(0)) + p
√

Ψ(f(1))2 + 2 ln 1/p(f(1) − f(0))2 " Ψ (qf(0) + pf(1))) . (4.2)

Let x = f(0), and h = f(1) − f(0). Note that x and h both belong to [0, 1], and

so does x + h = f(1). This gives the aforementioned range for x and h. Moreover

qf(0) + pf(1) = x + ph. An equivalent form for (4.2) is therefore

p
√

Ψ(x + h)2 + 2 ln(1/p)h2 " Ψ(x + ph) − qΨ(x). (4.3)

Note that Ψ is concave and nonnegative (property (i) of Lemma 3.1) and therefore

Ψ(x+ph)−qΨ(x) " pΨ(x+h) " 0. We can square both sides of (4.3) to get an equivalent

inequality, and rearrange terms to obtain the inequality of Lemma 4.2.

Proof of Lemma 4.2. Fix x and let F(h) = (Ψ(x + ph) − qΨ(x))2 − 2p2 ln(1/p)h2 −
p2Ψ(x + h)2. We will prove Lemma 4.2 by noticing that for any choice of x we have

F(0) = F ′(0) = 0 and for any h in the range (0, 1 − x]: F ′′(h) ! 0. Note that F(0) = 0 and

that, for h ∈ (0, 1 − x],

F ′(h)/2 = pΨ′(x + ph) (Ψ(x + ph) − qΨ(x)) − 2p2 ln(1/p)h − p2Ψ′(x + h)Ψ(x + h).

F is a continuous function and limh→0+ F ′(h) = 0, which implies F ′(0) = 0. Moreover,

F ′′(h)/2 = p2Ψ′′(x + ph) (Ψ(x + ph) − qΨ(x)) + p2Ψ′(x + ph)2

−2p2 ln 1/p − p2Ψ′′(x + h)Ψ(x + h) − p2Ψ(x + h)2

= p2
(
Ψ′(x + ph)2 − Ψ′(x + h)2

)
− 2p2 ln 1/p − p2qΨ(x)Ψ′′(x + ph).

We have used here property (iii) of Lemma 3.1. By using this property again we obtain

Ψ′(x + ph)2 − Ψ′(x + h)2 = 2

∫ x+ph

x+h

Ψ′(t)Ψ′′(t)dt

= −2

∫ x+ph

x+h

Ψ′(t)

Ψ(t)
dt

= 2 ln
Ψ(x + h)

Ψ(x + ph)
.

Hence, by substituting this expression into the calculation of F ′′(h) and using property (iii)

to get rid of Ψ′′(x + ph), we obtain

F ′′(h)

2p2
= 2 ln

(
pΨ(x + h)

Ψ(x + ph)

)
+

qΨ(x)

Ψ(x + ph)
. (4.4)

Let u = qΨ(x)
Ψ(x+ph) . We substitute for u into (4.4) and obtain

F ′′(h)

2p2
= 2 ln

(
pΨ(x + h) + qΨ(x)

Ψ(x + ph)
− u

)
+ u

! 2 ln(1 − u) + u.
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The last inequality follows from the fact that ln is increasing and

0 !
pΨ(x + h) + qΨ(x)

Ψ(x + ph)
! 1.

The last inequality is just a consequence of the positivity of Ψ on (0, 1) and its concavity:

Ψ(x + ph) " qΨ(x) + pΨ(x + h).

By the same arguments we also have

0 ! u =
qΨ(x)

Ψ(x + ph)
! 1.

Note that g(u) = 2 ln(1 − u) + u is decreasing on [0, 1) and that g(0) = 0: this implies that

F ′′(h) ! 0 on (0, 1 − x] and we are done.

It remains now to finish the proof of Lemma 4.1 by induction on n to prove that, if

Lemma 4.1 holds for n = 1, it holds for every n " 1.

Lemma 4.3. If (4.1) holds for any function belonging to Fn, then it also holds for every

function f ∈ Fn and any n " 1.

Proof. The proof follows an idea due to Bobkov and is basically the same as the proof

of Lemma 2.3 given in [2], with a slight modification of the induction hypothesis. We

assume that the lemma holds up to a given n " 1. Consider now a function f ∈ Fn+1.

We put f0(x) = f(x, 0) and f1(x) = f(x, 1) where x ∈ Hn. For g ∈ Fn we use the notation

Eng =
∫
gdµn. Note that

En+1f = (1 − p)Enf0 + pEnf1.

We apply this to
√

Ψ(f)2 + (Mf)2 and we obtain

En+1

√
Ψ(f)2 + (Mf)2 (4.5)

= (1 − p)En

√
Ψ(f(x, 0))2 + (Mf(x, 0))2 + pEn

√
Ψ(f(x, 1))2 + (Mf(x, 1))2

= (1 − p)En

√
Ψ(f0)2 + (Mf0)2 + pEn

√
Ψ(f1)2 + (Mf1)2 + (f1 − f0)2

" (1 − p)En

√
Ψ(f0)2 + (Mf0)2 +

p

√(
En

√
Ψ(f1)2 + (Mf1)2

)2
+ (En(f1 − f0))

2 (4.6)

" (1 − p)Ψ(Enf0) + p
√

Ψ(Enf1)2 + (Enf1 − Enf0)2 (4.7)

" Ψ(En+1f). (4.8)

• (4.6) is a consequence of the triangle inequality

∫ √
u2 + v2 "

√(∫
u

)2

+

(∫
v

)2

applied to u =
√

Ψ(f1)2 + (Mf1)2 and v = f1 − f0.

• Inequality (4.7) follows from the induction assumption applied to f0 and f1.
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• Inequality (4.8) follows from the same assumption applied to g which is defined by

g(0) = Enf0 and g(1) = Enf1 which clearly belongs to F1 and verifies E1g = En+1f.

5. The erasure channel

In this section we derive another application of Theorem 2.2 to coding in the context of

the erasure channel. Let C ⊂ ! n
q be a linear code over the finite field !q with q elements.

For x ∈ ! n
q we shall denote by xH the binary vector of Hn obtained from x by changing

its nonzero coordinates to ‘1’. We shall say that the binary vector v covers the q-ary vector

x if xH % v.

The erasure channel does not corrupt codewords by changing symbols but simply by

erasing them. For example, the message (3, 5, 1, 1, 2, 4, 4, 3, 1) is sent but what is received

is (3,−,−, 1, 2,−, 4,−, 1). More precisely, the erasure vector is a random binary vector

(e1, e2, . . . , en) of Hn where the ei are independent and equal to 1 with probability p: the

ith coordinate of a codeword x ∈ C is erased if and only if ei = 1. When the original

codeword x is not the only one that coincides with the partially erased message on the set

of non-erased coordinates, we shall say that ambiguous reception occurs. Because of the

linearity of C , an ambiguity occurs if and only if the erasure vector equals some ω ∈ Hn

such that

cH % ω

for some nonzero codeword c ∈ C . We see therefore that the probability of ambiguous

decoding equals

fa(p) = µp(Ω)

where Ω = {ω | ∃c ∈ C, c (= 0, cH % ω}. Clearly the set Ω is increasing so that Theorem 2.2

will apply. Furthermore, we have the following.

Lemma 5.1. Let ∂Ω = {ω, hΩ(ω) (= 0} and let ∆ = infω∈∂Ω hΩ(ω). We have ∆ = d, where

d is the minimum distance of code C .

Proof. Let ω ∈ ∂Ω. This means that there exists v ∈ Hn \ Ω such that d(ω, v) = 1. Let

i be the coordinate in which v and ω differ. Because Ω is increasing we have ωi = 1

and vi = 0. Suppose that ω covers two linearly independent codewords c and c′; in other

words, all codewords of a subcode C ′ of C of dimension 2. Then the linear mapping

C ′ → !q,

x ,→ xi

has nonzero kernel, the codewords of which must be covered by v. Therefore the set of

codewords covered by ω can only be a subcode of dimension 1. Therefore there are at

least d ways of changing a ‘1’ coordinate of ω to zero so that the resulting binary vector

covers no nonzero codeword.

Lemma 5.1 together with Theorem 2.2 yields the following.
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Theorem 5.2. Over the erasure channel with erasure probability p, the probability fa(p) of

ambiguous reception of a codeword belonging to a q-ary code C with minimum distance d

satisfies:

fa(p) ! Φ
(√

2d(
√

− ln θa −
√

− ln p)
)

for 0 < p < θa, (5.1)

fa(p) " Φ
(√

2d(
√

− ln θa −
√

− ln p)
)

for θa < p < 1, (5.2)

where θa is defined by fa(θa) = 1/2.

It might be argued that, if the erasure vector covers a subcode of dimension m, then

the receiver knows that the original codeword belongs to a certain coset of a subcode of

dimension m: in particular, he can recover it with probability at least 1/qm. If m is small,

then maybe that is not so bad, so that the receiver may still recover something even if

p > θa. Actually, this almost never happens: before giving this a precise meaning we need

a lemma.

Lemma 5.3. Define the sequence Ω1,Ω2, . . . ,Ωt . . . of subsets of Hn by Ω1 = Ω, Ω2 = Ω\∂Ω,

and inductively, Ωt+1 = Ω\∂Ωt. Then Ωt equals the set of binary vectors that cover a subcode

of dimension t.

Proof. The proof of Lemma 5.1 has already proved the result for t = 2 and the same

argument generalizes inductively. Indeed, if ω ∈ Ωt covers a subcode C ′ of dimension

t + 1, then because the linear mapping

C ′ → !q,

x ,→ xi

must have a kernel of dimension at least t, any v ∈ Hn at Hamming distance 1 from ω

must stay in Ωt.

The tth generalized Hamming weight of C is defined to be the smallest support dt of a

subcode of dimension t. Notice that ∆(Ωt) " dt " d.

Let ft be the function defined by ft(p) = µp(Ωt) and let θt be such that ft(θt) = 1/2.

We have the following result.

Proposition 5.4. The quantity θt+1 − θt is bounded above by a function of the minimum

distance d which goes to zero as d grows to infinity.

Proof. Suppose the contrary. Then there exists γ > 0 and some sequence of codes with

d growing to infinity for which we always have θt+1 − θt " γ. By Theorem 2.2, we

have, when d grows to infinity, ft(θt + γ/4) → 1, ft+1(θt+1 − γ/4) → 0; and, because

µp(∂Ωt) = µp(Ωt) − µp(Ωt+1), for all p such that θt + γ/4 ! p ! θt+1 − γ/4,

µp(∂Ωt) → 1

independently of p because ft and ft+1 are increasing functions.
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Now, Margulis and Russo’s formula (1.2) and ∆(Ωt) " dt " d imply

f′
t(p) "

d

p
µp(∂Ωt)

for all θt + γ/4 ! p ! θt+1 − γ/4. But then ft(p) " dγ/2(1 + ε(d)), where ε(d) → 0 when

d → ∞. This contradicts ft(p) ! 1.

Let g(p) be the probability of error if the receiver chooses at random one of the

codewords that coincides with the received message on the set of non-erased positions.

What the above discussion shows is that, when d grows to infinity (however slowly), not

only does fa(p) jump suddenly from almost zero to almost one, but so does g(p).

Proposition 5.4 has another interesting consequence. Theorem 2.2 gives bounds on µp(Ω)

involving only the parameters ∆ and θ, but it is usually difficult to make them explicit

when only ∆ is known. Since the ball centred on zero and of radius ∆ − 1 must lie totally

outside Ω, one can argue that, as n grows, θ must stay at least as large as lim infn→∞ ∆/n.

This can not be improved without further information because Ω might very well be the

set of vectors of weight " ∆. In the present case, however, it is possible to derive a better

asymptotic bound on θa, namely the following.

Proposition 5.5. For a linear q-ary code C of length n and minimum distance d we have

θa "
q

q − 1
δ(1 + ε(d)),

where ε(d) → 0 when d → ∞.

Proof. Denote by δt = dt/n the normalized generalized Hamming weights of C . Because

∆(Ωt) = dt we must have θt " δt(1 + ε(d)). But Griesmer’s bound implies dt " d1(1 + 1
q +

· · · + 1
qt−1 ); hence the result, by Proposition 5.4.

6. Concluding remarks

Generalization to nonlinear codes

Linearity is not really crucial to Theorem 2.3, but expressing the result gets messy without

this hypothesis. Linearity is crucial in Theorem 5.2, though.

Other decoding schemes

We have focused on maximum-likelihood decoding. But Theorem 2.2 could be applied in

principle to any decoding scheme with monotone decoding regions.

Locating θe

Since it is not always clear what the value of θe is for a given code, it would be interesting

to determine an asymptotic lower bound on θe as a function of the relative minimum

distance δ = d/n. It is not clear to us what the best lower bound is, but let us sketch

one possible argument. Let v be a vector of weight z = ζn. For α ! 2, let N(v, α) be the
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number of codewords of weight αz and at distance z from v. Let N(α) be the average

value of N(v, α) when v runs over all vectors of weight z, that is,

N(α) =

(
n

z

)−1 ∑

|v|=z

N(v, α).

Denote by A(n, w, d) the maximum size of a binary code of length n, constant weight w

and minimum distance d. The number of vectors of weight z and at distance z from a

codeword of weight αz is less than 2αz
(

n−αz
(1−α/2)z

)
; hence N(α) ! B(α), where

B(α) = A(n, αz, d)

(
n

z

)−1

2αz
(

n − αz

(1 − α/2)z

)
.

Whenever B(α) is exponentially small for all possible values of α, then a random vector

of weight z will, with overwhelming probability, be closer to the zero codeword than to

any other; therefore we must have θe > ζ for n large enough. Denoting by

R(ω, δ) = lim inf
n→∞

1

n
log2 A(n,ωn, δn),

and taking exponents, we get that θe > ζ whenever

0 > max
α!2

[
R(αζ, δ) + αζ + (1 − αζ)H

(
(1 − α/2)ζ

1 − αζ

)
− H(ζ)

]
,

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function.
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