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2 GREYC - Université de Caen - Ensicaen
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1 Terminology and Notation

In the whole paper q denotes some prime power and we denote by Fq the finite field with q elements.
Let n be a non-negative integer. The set of integers i such that 1 6 i 6 n is denoted by 1n. The
cardinality of a set A is denoted by A. The concatenation of the vectors x = (x1, . . . , xn) and

y = (y1, . . . , ym) is denoted by (x||y)
def
= (x1, . . . , xn, y1, . . . , ym). The support supp(x) of x ∈ Fnq

is the set of i’s such that xi 6= 0. The (Hamming) weight wt(x) is the cardinality of supp(x). For
a vector x = (xi) and a subset I of indices of x, we denote by xI its restriction to the indices of
I, that is:

xI
def
= (xi)i∈I .

We will also use this notation for matrices, in this case it stands for the submatrix formed by the
columns in the index set, i.e. for any k × n matrix H

HJ
def
= (hij)16i6k

j∈J
.

A linear code C of type [n, k, d] over Fq is a linear subspace of Fnq of dimension k and minimum

distance d where by definition d
def
= min{wt(x) : x ∈ C and x 6= 0}. The elements of C are

codewords. A linear code can be defined either by a parity check matrix or a generator matrix. A
parity check matrix H for C is an (n− k)× n matrix such that C is the right kernel of H:

C = {c ∈ Fnq : HcT = 0}

where xT denotes the transpose of x. A generator matrix G is a k×n matrix formed by a basis of
C . We say that G is in systematic form if there exists a set J such that GJ = Ik. The syndrome

u by H of x ∈ Fnq is defined as uT
def
= HxT . A decoding algorithm for H is an algorithm such

that, given u in Frq, finds a vector e of minimum weight whose syndrome is u.

2 The McEliece scheme based on convolutional codes

The scheme can be summarized as follows.

Secret key.
– G is a generator matrix which has a block form specified in Figure ??

–
def
= + where is an n× n permutation matrix,

– is a rank-one matrix over such that is invertible,
– S is a k × k random invertible matrix over .

Public key.
def
= S−1−1.

Encryption. The ciphertext c ∈n of a plaintext ∈k is obtained by drawing at random e in n of

weight less than or equal to n−k
2 and computing c

def
= +e.

Decryption. It consists in performing the three following steps:
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Fig. 1. The secret generator matrix.



1. Guessing the value of e;

2. Calculating c′
def
= c− e = S−1 + e− e = S−1 + e and using the decoding algorithm of the

generalized Reed-Solomon code to recover S−1 from the knowledge of c′;
3. Multiplying the result of the decoding by S to recover .

This section is devoted to the description of two code-based signature schemes proposed in
[KKS97] and more recently in [BMJ11], where the latter can be viewed as a “noisy” version of
the former [KKS97]. Our presentation presents the main ideas without giving all the details which
can be found in the original papers. We first focus on the scheme of [KKS97] whose construction
relies on the following ingredients:

1. a full rank binary matrix H of size (N −K)×N with entries in a finite field Fq.
2. a subset J of {1, . . . , N} of cardinality n,
3. a linear code over Fq of length n 6 N and dimension k defined by a generator matrix G of

size k × n. Let t1 and t2 be two integers such that with very high probability, we have that
t1 6 wt(u) 6 t2 for any non-zero codeword u ∈.

The matrix H is chosen such that the best decoding algorithms cannot solve the following search
problem.

Problem 1. Given the knowledge of u ∈ FN−Kq which is the syndrome by H of some e ∈ FNq
whose weight lies in t1t2, find explicitly e, or eventually x in FNq different from e sharing the same
properties as e.

Finally let F be the (N−K)×k matrix defined by F
def
= HJG

T . The Kabatianskii-Krouk-Smeets
(KKS) signature scheme is then described in Figure 1.

Fig. 2. Description of the KKS scheme given in [KKS97].

– Setup.
1. The signer S chooses N , K n, k, t1 and t2 according to the required security level.
2. S draws a random (N −K)×N matrix H.
3. S randomly picks a subset J of {1, . . . , N} of cardinality n.
4. S randomly picks a random k × n generator matrix G that defines a code such that with high

probability t1 6 wt(u) 6 t2 for any non-zero codeword u ∈.

5. F
def
= HJG

T where HJ is the restriction of H to the columns in J .
– Keys.
• Private key. J and G
• Public key. F and H

– Signature. The signature σ of a message x ∈ Fk
q is defined as the unique vector σ of FN

q such that
σi = 0 for any i 6∈ J and σJ = xG.

– Verification. Given (x, σ) ∈ Fk
q × FN

q , the verifier checks that t1 6 wt(σ) 6 t2 and HσT = FxT .

The scheme was modified in [BMJ11] to propose a one-time signature scheme by introducing
two new ingredients, namely a hash function f and adding an error vector e to the signature. It
was proved that such a scheme is EUF-1CMA secure in the random oracle model. The description
is given in Figure ??.

3 Description of the Attack

The purpose of this section is to explain the idea underlying our attack which aims at recovering
the private key. The attack is divided in two main steps. The first step consists in a (partial) key



Fig. 3. Description of the scheme of [BMJ11].

– Setup.
1. The signer S chooses N , K n, k, t1 and t2 according to the required security level.
2. S chooses a hash function f : {0, 1}∗ × FN−K

2 −→ Fk
2 .

3. S draws a random binary (N −K)×N matrix H.
4. S randomly picks a subset J of {1, . . . , N} of cardinality n.
5. S randomly picks a k × n generator matrix G that defines a binary code such that with high

probability t1 6 wt(u) 6 t2 for any non-zero codeword u ∈.

6. F
def
= HJG

T where HJ is the restriction of H to the columns in J .
– Keys.
• Private key. J and G
• Public key. F and H

– Signature. The signature of a message x ∈ {0, 1}∗ is (h, σ) defined as follows:
• S picks a random e ∈ FN

2 such that wt(e) = n.

• Let h
def
= f(x,HeT ) and y be the unique vector of FN

2 such that (i) supp(y) ⊂ J , (ii) yJ = hG.

The second part of the signature σ is then given by σ
def
= y + e.

– Verification. Given a signature (h, σ) ∈ Fk
2 × FN

2 for x ∈ {0, 1}∗, the verifier checks that wt(σ) 6 2n
and h = f(x,HσT + FhT ).

recovery attack aiming at unraveling the convolutional structure. The second part consists in a
message recovery attack taking advantage of the fact that if the convolutional part is recovered,
then an attacker can decrypt a message if he is able to solve the following decoding pro

First, we produce a valid signature for some message using only the public key. To do so, we
define a certain code from matrices H and F . It turns out that low weight codewords of this
code give valid message-signature pairs. Then we just apply Dumer’s algorithm [?] in order to
find these low weight codewords. This attack can even be refined in the following way. Whenever
we are able to produce one valid message-signature pair, and since each signature reveals partial
information about the private key (especially about J as explained further in this section), we can
use it to get another valid message-signature pair revealing more information about J . We repeat
this process a few times until we totally recover the whole private key. More details will be given
in the following sections.

In what follows, we make the assumption that all the codes are binary because all the concrete
proposals are of this kind. The non-binary case will be discussed in the conclusion.

3.1 An auxiliary code

We give here the first ingredient we use to forge a valid message/signature pair for the KKS scheme
just from the knowledge of the public pair H,F . This attack can also be used for the second
scheme given by Figure ??. In the last case, it is not a valid message/signature pair anymore but
an auxiliary quantity which helps in revealing J . This ingredient consists in a linear code Cpub of

length N + k defined as the kernel of Ĥ which is obtained by the juxtaposition of the two public
matrices H and F as given in Figure ??. The reason behind this definition lies in the following
Fact ??.

Fact 1. Let x′ be in FN+k
2 and set (σ||x)

def
= x′ with σ in FN2 and x in Fk2 . Then σ is a signature

of x if and only if:

1. Ĥx′T = 0
2. t1 6 wt(σ) 6 t2.

The code Cpub is of dimension k + K, and of particular interest is the linear space Csec ⊂ Cpub

that consists in words that satisfy both conditions of Fact ?? and that are obtained by all pairs



Fig. 4. Parity-check matrix Ĥ of the code Cpub
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(σ,x) of valid message-signature pairs which are obtained by the secret signature algorithm, that
is to say:

Csec
def
=
{

(σ||x) ∈ FN+k
2 : x ∈ Fk2 , σ ∈ FN2 , σJ = xG, σ1N\J = 0

}
. (1)

Clearly, the dimension of Csec is k. Additionally, we expect that the weight of σ is of order n/2 for
any (σ,x) in Csec, which is much smaller than the total length N . This strongly suggests to use
well-known algorithms for finding low weight codewords to reveal codewords in Csec and therefore
message-signature pairs. The algorithm we used for that purpose is specified in the following
subsection.

3.2 Finding low-weight codewords

We propose to use the following variation on Stern’s algorithm due to [?] (See also [?]). The de-
scription of the algorithm is given in Algorithm 1. It consists in searching for low-weight codewords
among the candidates that are of very low-weight 2p ( where p is typically in the range 1 6 p 6 4)
when restricted to a set I of size slightly larger than the dimension k + K of the code Cpub, say
|I| = k+K+ l for some small integer l. The key point in this approach is to choose I among a set
S of test positions. The set S will be appropriately chosen according to the considered context. If
no signature pair is known, then a good choice for S is to take:

S = [1 · · ·N ]. (2)

This means that we always choose the test positions among the N first positions of the code Cpub

and never among the k last positions. The reason for this choice will be explained in the following
subsection.
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Fig. 5. A parity-check matrix for Cpub in quasi-systematic form.



Algorithm 1 KKSforge: algorithm that forges a valid KKS signature.

PARAMETERS:

r : number of iterations,
l : small integer (l 6 40),
p : very small integer (1 6 p 6 4).
S : a subset of 1N from which in each iteration a subset of cardinality K + k + l will be randomly
chosen.

INPUT: Ĥ
OUTPUT: a list L containing valid signature/message pairs (σ,x) ∈ FN

2 ×Fk
2 .

1: L ← ∅.
2: for 1 6 t 6 r do
3: Step 1: Randomly pick K + k+ l positions among S to form the set I. This set is partitioned into

I = I1 ∪ I2 such that ||I1| − |I2|| 6 1.
4: Step 2: Perform Gaussian elimination over the complementary set {1, 2, . . . , N + k} \ I to put Ĥ

in quasi-systematic form (as shown in Figure 2).
5: Step 3:
6: Generate all binary vectors x1 of length b(K + k+ l)/2c and weight p and store them in a table at

the address H1 xT
1

7: for all binary vectors x2 of length d(K + k + l)/2e and weight p do
8: for all x1 stored at the address H2 xT

2 do

9: Compute x3
def
= (x1||x2)HT

3 and form the codeword x
def
= (x1||x2||x3) of Cpub

10: if t1 6 wt(x1N ) 6 t2 then
11: L ← L ∪ {x}
12: end if
13: end for
14: end for
15: end for
16: return L

3.3 Explaining the success of the attack

It turns out that this attack works extremely well on all the parameter choices made in the
literature, and this even without knowing a single message-signature pair which would make life
much easier for the attacker as demonstrated in [COV07]. In a first pass, the attack recovers
easily message-signature pairs for all the parameters suggested in [BMJ11,KKS97,KKS05]. Once
a signature-message pair is obtained, it can be exploited to bootstrap an attack that recovers the
private key as we will explain later.

The reason why the attack works much better here than for general linear codes comes from
the fact that Ĥ does not behave like a random matrix at all even if the two chosen matrices for
the scheme, namely H and G are chosen at random. The left part and the right part H and F
are namely related by the equation:

F = HJG
T .

Indeed, the parity-check matrix Ĥ displays peculiar properties: Cpub contains Csec as a subcode
and its codewords represent valid message-signature pairs. This subcode has actually a very specific
structure that helps greatly the attacker:

1. There are many codewords in Csec, namely 2k.
2. The support of these codewords is included in a fixed (and rather small) set of size k + n.
3. k positions of this set are known to the attacker.
4. These codewords form a linear code (of dimension k).

Because of all these properties, the aforementioned attack will work much better than should be
expected from a random code. More precisely, let us bring in:

I ′
def
= I ∩ J.



Notice that the expectation E {I ′} of the cardinality of the set I ′ is equal to:

E {|I ′|} =
n

N
(k +K + l) = (R+ αρ+ λ)n (3)

where we introduced the following notation:

R
def
=

K

N
, ρ

def
=

k

n
, α

def
=

n

N
and λ

def
=

l

N
.

The point is that whenever there is a codeword c in Csec which is such that wt(cI′) = 2p
we have a non-negligible chance to find it with Algorithm 1. This does not hold with certainty
because the algorithm does not examine all codewords x such that wt(xI) = 2p, but rather
it consists in splitting I in I1 and I2 of the same size and looking for codewords x such that
wt(xI1) = wt(xI2) = p. In other words, we consider only a fraction δ of such codewords where:

δ =

(
(K+k+l)/2

p

)(
(K+k+l)/2

p

)(
K+k+l

2p

) ≈

√
(K + k + l)

πp(K + k + l − 2p)
.

We will therefore obtain all codewords c in Csec which are such that wt(cI1) = wt(cI2) = p.
Consider now the restriction C ′sec of Csec to the positions belonging to I ′, that is:

C ′sec =
{

(xi)i∈I′ : x = (xi)i∈1N+k ∈ Csec

}
. (4)

The crucial issue is now the following question:

Does there exist in C ′sec a codeword of weight 2p?

The reason for this is explained by the following proposition.

Proposition 1. Let I ′s
def
= Is ∩ J for s ∈ {1, 2}. If there exists a codeword x′ in C ′sec such that

wt(x′I′1
) = wt(x′I′2

) = p, then it will be the restriction of a codeword x in Csec which will belong to

the list L output by Algorithm 1.

Proof. Consider a codeword x′ in C ′sec such that wt(x′I′1
) = wt(x′I′2

) = p. For s ∈ {1, 2}, extend

xI′s with zeros on the other positions of Is and let xs be the corresponding word. Notice that
x1 and x2 will be considered by Algorithm 1 and x1 will be stored at the address H1x

T
1 . By

definition of x′, (x1||x2) is the restriction of a codeword x of Csec to I, say x = (x1||x2||y) with

y ∈ FN−K−l2 . Since Csec ⊂ Cpub we have ĤxT = 0. Let Ĥ
′

be the matrix obtained from Ĥ
put in quasi-systematic form through a Gaussian elimination as given in Figure 2. We also have

Ĥ
′
xT = 0 and hence:

H1x
T
1 + H2x

T
2 = 0 (5)

and
H3(x1||x2)T + yT = 0. (6)

Equation (5) shows that x1 is stored at address H2x
T
2 and will be considered at Step 8 of the

algorithm. In this case, x will be stored in L. ut

We expect that the dimension of C ′sec is still k and that this code behaves like a random
code of the same length and dimension. Ignoring the unessential issue whether or not x′ satisfies
wt(x′I′1

) = wt(x′I′2
) = p, let us just assume that there exists x′ in C ′sec such that |x′| = 2p. There

is a non negligible chance that we have wt(x′I′1
) = wt(x′I′2

) = p and that this codeword will be

found by our algorithm. The issue is therefore whether or not there is a codeword of weight 2p in
a random code of dimension k and length I ′. This holds with a good chance (see [?] for instance)
as soon as:

2p > dGV(I ′, k) (7)



where dGV(I ′, k) denotes the Gilbert-Varshamov distance of a code of length I ′ and dimension k.
Recall that [?]:

dGV(I ′, k) ≈ h−1 (1− k/I ′) I ′

where h−1(x) is the inverse function defined over [0, 12 ] of the binary entropy function h(x)
def
=

−x log2 x− (1− x) log2(1− x). Recall that we expect to have:

I ′ ≈ (R+ αρ+ λ)n,

which implies
k

I ′
≈ ρ

R+ αρ+ λ
≈ ρ

R

when α and λ are small. Roughly speaking, to avoid such an attack, several conditions have to be
met:

1. ρ has to be significantly smaller than R,
2. n has to be large enough.

This phenomenon was clearly not taken into account in the parameters suggested in
[KKS97,KKS05,BMJ11] as shown in Table 1. The values of dGV(I ′, k) are extremely low (in the
range 1− 6). In other words, taking p = 1 is already quite threatening for all these schemes. For
the first parameter set, namely (k, n,K,N) = (60, 1023, 192, 3000), this suggests to take p = 3.
Actually taking p = 1 is already enough to break the scheme. The problem with these low values
of p comes from the dependency of the complexity in p as detailed in the following section. For
instance as long as p is smaller than 3 the complexity of one iteration is dominated by the Gaussian
elimination Step 2.

Finally, let us observe that when this attack gives a message/signature pair, it can be used as
a bootstrap for an attack that recovers the whole private key as will be explained in the following
subsection.

Table 1. KKS Parameters with the corresponding value of dGV(n′, k).

Article ρ n l n′
def
= E {I ′} R N dGV(n′, k)

[KKS97] 60
1023
≈ 0.059 1,023 8 89 192

3000
≈ 0.064 3,000 6

[KKS05] 48
255
≈ 0.188 255 8 65 273

1200
≈ 0.228 1,200 5

[KKS97] 48
180
≈ 0.267 180 8 64 335

1100
≈ 0.305 1,100 4

[BMJ11] 1/2 320 12 165 1/2 11,626 1

[BMJ11] 1/2 448 13 230 1/2 16,294 1

[BMJ11] 1/2 512 13 264 1/2 18,586 1

[BMJ11] 1/2 768 13 395 1/2 27,994 2

[BMJ11] 1/2 1,024 14 527 1/2 37,274 2

3.4 Exploiting a signature for extracting the private key

If a signature σ of a message x is known, then y
def
= (σ,x) is a codeword of Csec which has weight

about n/2 when restricted to its N first positions. This yields almost half of the positions of J .
This can be exploited as follows. We perform the same attack as in the previous subsection, but we

avoid choosing positions i for which σi = 1. More precisely, if we let Jσ
def
= supp(σ) = {i : σi = 1},

then we choose K + k + l positions among 1N \ Jσ to form I. The point of this choice is that we

have more chances to have a smaller size for I ′ = I ∩ J . Let n′
def
= I ′, we have now:

E {n′ |Jσ } =
n− |Jσ|
N − |Jσ|

(k +K + l) (8)



E {I ′} = E {E {n′ |Jσ }} ≈
n/2

(N − n/2)
(k +K + l). (9)

The last approximation follows from the fact that the weight wt(σ) is quite concentrated around
n/2. The same reasoning can be made as before, but the odds that the algorithm finds other valid
signatures are much higher. This comes from the fact that the expectation I ′ is half the expected

size of I ′ in the previous case as given in Equation (3). Previously we had E
{
I ′

k

}
≈ R

ρ
, whereas

now we have:

E
{
I ′

k

}
≈ R

2ρ
.

In other words, in order to avoid the previous attack we had to take ρ significantly smaller than R
and now, we have to take ρ significantly smaller than R/2. For all the parameters proposed in the
past, it turns out that dGV(I ′, k) is almost always equal to 1, which makes the attack generally
successful in just one iteration by choosing p = 1.

Moreover, if another valid signature σ′ is obtained and by taking the union Jσ ∪ Jσ′ of the
supports, then about 3/4 of the positions of J will be revealed. We can start again the process
of finding other message/signature pairs by choosing K + k + l positions among {1, 2, . . . , N} \
(Jσ ∪ Jσ′) to form the sets I. This approach can be iterated as explained in Algorithm ??. This
process will quickly reveal the whole set J and from this, the private key is easily extracted as
detailed in [COV07].

Algorithm 2 Recovering the private key from t > 1 signatures.

PARAMETERS:

r : number of iterations
l : small integer (l 6 40)
p : very small integer (1 6 p 6 4).

INPUT:

Ĥ : public matrix as defined in Figure ??
{σ1, . . . , σt} : list of t > 1 valid signatures

OUTPUT: J ⊂ 1N of cardinality n

1: J ← ∪t
i=1supp(σi)

2: repeat
3: S ← 1N \ J
4: L ← KKSforge(r,l,p,S,Ĥ)
5: for all σ ∈ L do
6: J ← J ∪ supp(σ)
7: end for
8: until J = n
9: return J

Finally, let us focus on the variant proposed in [BMJ11]. In this case, we have slightly less
information than in the original KKS scheme. This can be explained by the following reasoning. In

this case too, we choose S again as [1 · · ·N ]\Jσ, where as before Jσ is defined as Jσ
def
= {i : σi = 1}.

However this time, by defining n′ again as n′
def
= I ′, we have

E {n′ |Jσ } =
|J ′σ|

N − |Jσ|
(k +K + l)

where
J ′σ = J \ Jσ.



However, this time due to the noise which is added, |Jσ| is expected to be larger than before

(namely of order n
2 + (N−n)n

N ).

4 Analysis of the Attack

The purpose of this section is to provide a very crude upper-bound on the complexity of the attack.
We assume here that the code Crand of length n which is equal to the restriction on J of Csec:

Crand
def
=
{

(xj)j∈J : x = (x1, . . . , xN+k) ∈ Csec

}
behaves like a random code. More precisely we assume that it has been chosen by picking a random
parity-check matrix Hrand of size (n− k)×n (by choosing its entries uniformly at random among
F2). This specifies a code Crand of length n as Crand = {x ∈ Fn2 : Hrandx

T = 0}. We first give in
the following section some quite helpful lemmas about codes of this kind.

4.1 Preliminaries about random codes

We are interested in this section in obtaining a lower bound on the probability that a certain
subset X of Fn2 has a non empty intersection with Crand. For this purpose, we first calculate the
two following probabilities. The probabilities are taken here over the random choices of Hrand.

Lemma 1. Let x and y be two different and nonzero elements of Fn2 . Then

prob(x ∈ Crand) = 2k−n (10)

prob(x ∈ Crand,y ∈ Crand) = 22(k−n) (11)

To prove this lemma, we will introduce the following notation and lemma. For x = (xi)16i6s
and y = (yi)16i6s being two elements of Fs2 for some arbitrary s, we define x · y as

x · y =
∑

16i6s

xiyi,

the addition being performed over F2.

Lemma 2. Let x and y be two different and nonzero elements of Fn2 and choose h uniformly at
random in Fn2 , then

prob(x · h = 0) =
1

2
(12)

prob(x · h = 0,y · h = 0) =
1

4
(13)

Proof. To prove Equation (12) we just notice that the subspace {h ∈ Fn2 : x·h = 0} is of dimension
n− 1. There are therefore 2n−1 solutions to this equation and

prob(x · h = 0) =
2n−1

2n
=

1

2
.

On the other hand, the hypothesis made on x and y implies that x and y generate a subspace of
dimension 2 in Fn2 and that the dual space, that is {h ∈ Fn2 : x · h = 0,y · h = 0} is of dimension
n− 2. Therefore

prob(x · h = 0,y · h = 0) =
2n−2

2n
=

1

4

ut



Proof (of Lemma 1). Let h1, . . . ,hn−k be the n− k rows of Hrand. Then

prob(x ∈ Crand) = prob(Hrandx
T = 0)

= prob(h1 · x = 0, . . . ,hn−k · x = 0)

= prob(h1 · x = 0) . . .prob(hn−k · x = 0) (14)

= 2k−n (15)

where Equation (14) follows by the independence of the events and Equation (15) uses Lemma 2.
Equation (11) is obtained in a similar fashion. ut

Lemma 3. Let X be some subset of Fn2 of size m and let f be the function defined by f(x)
def
=

max
(
x(1− x/2), 1− 1

x

)
. We denote by x the quantity m

2n−k , then

prob(X ∩ Crand 6= ∅) ≥ f(x).

Proof. For x in X we define Ex as the event “x belongs to Crand” and we let q
def
= 2k−n. We first

notice that

prob(X ∩ Crand 6= ∅) = prob

( ⋃
x∈X

Ex

)
.

By using the Bonferroni inequality [Com74, p. 193] on the probability of the union of events we
obtain

prob

( ⋃
x∈X

Ex

)
≥
∑
x∈X

prob(Ex)−
∑

{x,y}⊂X

prob(Ex ∩ Ey) (16)

≥ mq − m(m− 1)

2
q2 (17)

≥ mq − m2q2

2
≥ mq(1−mq/2),

where (17) follows from Lemma 1. This bound is rather sharp for small values of mq. On the
other hand for larger values of mq, another lower bound on prob(X ∩Crand 6= ∅) is more suitable
[dC97]. It gives

prob

( ⋃
x∈X

Ex

)
≥
∑
x∈X

prob(Ex)2∑
y∈X prob(Ex ∩ Ey)

(18)

≥ mq2

q + (m− 1)q2
(19)

≥ mq2

q +mq2
(20)

≥ 1

1 + 1
mq

≥ 1− 1

mq
,

By taking the maximum of both lower bounds, we obtain our lemma. ut



4.2 Estimating the complexity of Algorithm 1

Here we estimate how many iterations have to be performed in order to break the scheme when
no signature is known and when S = [1 · · ·N ]. For this purpose, we start by lower-bounding
the probability that an iteration is successful. Let us bring the following random variables for
i ∈ {1, 2}:

I ′i
def
= Ii ∩ J and Wi

def
= |I ′i| .

By using Lemma 1, we know that an iteration finds a valid signature when there is an x in Csec

such that
|xI′1 | = |xI′2 | = p.

Therefore the probability of success Psucc is lower bounded by

Psucc ≥
∑

w1,w2:w1+w26n

prob(W1 = w1,W2 = w2)prob
{
∃x ∈ Csec : |xI′1 | =

∣∣xI′2 | = p|W1 = w1,W2 = w2

}
(21)

On the other hand, by using Lemma 3 with the set

X
def
=
{
x = (xj)j∈J : |xI′1 | =

∣∣xI′2 | = p
}

which is of size
(
w1

p

)(
w2

p

)
2n−w1−w2 , we obtain

prob
{
∃x ∈ Csec : |xI′1 | =

∣∣xI′2 | = p|W1 = w1,W2 = w2

}
≥ f(x). (22)

with

x
def
=

(
w1

p

)(
w2

p

)
2n−w1−w2

2n−k
=

(
w1

p

)(
w2

p

)
2k−w1−w2

The first quantity is clearly equal to

prob(W1 = w1,W2 = w2) =

(
n
w1

)(
n−w1

w2

)(
N−n

(K+k+l)/2−w1

)(
N−n−(K+k+l)/2+w1

(K+k+l)/2−w2

)(
N

(K+k+l)/2

)(
N−(K+k+l)/2
(K+k+l)/2

) . (23)

Plugging in the expressions obtained in (??) and (??) in (??) we have an explicit expression
of a lower bound on Psucc. The number of iterations for our attack to be successful is estimated
to be of order 1

Psucc
. We obtain therefore an upper-bound on the expected number of iterations,

what we denote by UpperBound. Table ?? shows for various KKS parameters, p and l the expected
number of iterations.

Table 2. KKS Parameters with the corresponding value of 1
Psucc

.

Article ρ n l p n′
def
= E {|I ′|} R N UpperBound

[KKS97] 60
1023
≈ 0.059 1,023 8 1 91 192

3000
≈ 0.064 3,000 111.26

60
1023
≈ 0.059 1,023 14 2 91 192

3000
≈ 0.064 3,000 14.17

[KKS05] 48
255
≈ 0.188 255 8 1 66 273

1200
≈ 0.228 1,200 26.41

48
255
≈ 0.188 255 14 2 66 273

1200
≈ 0.228 1,200 4.37

[KKS97] 48
180
≈ 0.267 180 8 1 65 335

1100
≈ 0.305 1,100 6.07

48
180
≈ 0.267 180 15 2 65 335

1100
≈ 0.305 1,100 1.82

[BMJ11] 1/2 320 12 1 165 1/2 11,626 1.24

[BMJ11] 1/2 448 13 1 230 1/2 16,294 1.34

[BMJ11] 1/2 512 13 1 264 1/2 18,586 1.39

[BMJ11] 1/2 768 13 1 395 1/2 27,994 1.61

[BMJ11] 1/2 1,024 14 1 527 1/2 37,274 1.85



4.3 Number of operations of one iteration

The complexity of one iteration of Algorithm 1 is C(p, l) = CGauss + Chash + Ccheck where CGauss

is the complexity of a Gaussian elimination, Chash is the complexity of hashing all the x1’s and
Ccheck is the complexity of checking all the x2’s with the following expressions:

CGauss = O
(

(N + k)(N − k)(N − k − l)
)

= O(N3) (24)

Chash = O

((
(K + k + l)/2

p

))
(25)

Ccheck = O

(
1

2l
(N −K − l)2

(
(K + k + l)/2

p

)2
)

(26)

The last expression giving Ccheck comes from the fact that the algorithm considers
(
(K+k+l)/2

p

)
elements x2, and for each of these candidates, we check about O

(
1
2l

(
(K+k+l)/2

p

))
elements x1’s,

which involves a matrix multiplication in Step 9. Let us note that l will be chosen such that Chash

and Ccheck are roughly of the same order, say 2l ≈
(
(K+k+l)/2

p

)
.

Table 3. KKS Parameters.

Scheme Version k n t1 t2 N −K N Security

KKS-2
[KKS97] 60 1,023 352 672 2,808 3,000 36
[KKS05] 48 255 48 208 927 1,200

KKS-3
[KKS97] 60 280 50 230 990 1,250 17
[COV07] 160 1,000 90 110 1,100 2,000 80

KKS-4 [KKS97] 48 180 96 96 765 1,100 53

Table 4. Parameters proposed in [BMJ11]

k n t1 t2 N −K N Security

160 320 100 177 5,813 11,626 80
224 448 133 243 8,147 16,294 112
256 512 149 275 9,293 18,586 128
384 768 214 405 13,997 27,994 192
512 1,024 278 535 18,637 37,274 256

Table 5. Parameters proposed in [BMJ11] with t1 = n/2− 3
√
n/2 and t2 = n/2 + 3

√
n/2.

k n t1 t2 N −K N Security

160 320 133 187 5,813 11,626 80
224 448 192 256 8,147 16,294 112
256 512 222 290 9,293 18,586 128
384 768 342 426 13,997 27,994 192
512 1,024 464 560 18,637 37,274 256
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