
MDPC-McEliece: New McEliece Variants from
Moderate Density Parity-Check Codes

Rafael Misoczki1 and Jean-Pierre Tillich1 and
Nicolas Sendrier1 and Paulo S. L. M. Barreto2

1 Project SECRET, INRIA-Rocquencourt, France
2 Escola Politécnica, Universidade de São Paulo, Brazil

Abstract. In this work, we propose two McEliece variants. One from
Moderate Density Parity-Check (MDPC) codes and other from quasi-
cyclic MDPC codes. MDPC codes are LDPC codes of higher density than
what is usually adopted for telecommunication applications, providing
an worse error-correction capability. However, in cryptography, we are
not necessarily interested in correcting many errors, but only a number
which ensures an adequate security level, a condition satisfied by MDPC
codes. The benefits of their employment are many. Under a reasonable
assumption, MDPC codes reduce the key-distinguishing McEliece prob-
lem to the problem of decoding a linear code. This leads the security of
our variant to rely only on a single, well studied coding-theory problem.
Furthermore, in the quasi-cyclic case, our proposal provides extremely
compact-keys (for 80-bits of security, public-keys have only 4800 bits).

Keywords: post-quantum cryptography, code-based cryptography, coding-
theory, LDPC codes.

1 Introduction

Code-Based Cryptography. All cryptosystems based on the hardness of factoring
or discrete logarithm can be attacked [37] in polynomial time with a quan-
tum computer (see [10] for an extensive report). This threatens most if not all
public-key cryptosystems deployed in practice, such as RSA [34] or DSA [23].
Code-based cryptography is believed to be quantum resistant and is therefore
considered as a viable replacement for those schemes in future applications. Yet,
independently of their so-called “post-quantum” nature, code-based cryptosys-
tems offer other benefits even for present-day applications due to their excellent
algorithmic efficiency, which is up to several orders of complexity better than
traditional schemes.

The McEliece cryptosystem [26] is the first code-based cryptosystem, origi-
nally proposed using Goppa codes. Its security is based on two assumptions, the
indistinguishability of the code family and the hardness of decoding a generic lin-
ear code. It is namely proved in [13] that if an adversary is not able to distinguish
a Goppa code from a random code, then he is challenged to decode a generic
linear code, a problem proved to be NP-complete [8]. However in [15] a distin-
guisher for Goppa codes of high rate (like those originally suggested for CFS

signature [13] and for some realistic secure parameters of McEliece cryptosys-
tems) is presented. Although this fact does not represent an effective attack, it
would be more satisfactory to use other code families which have less remarkable
algebraic structure.

Although efficient, this cryptosystem suffers from an extremely large key size.
There is a way to reduce considerably the key size which consists in choosing
codes with a large automorphism group, such as quasi-cyclic codes [18]. It has
been followed by several other proposals such as [27, 7]. However, an structural
algebraic attack [16] succeeds in breaking many of them (except the binary
case of [27]). The underlying codes of these proposals, subfamilies of alternant
codes, come with an algebraic structure which allows a cryptanalysis consisting in
setting up an algebraic system of equations. This system is based on the alternant
description of the code and can be solved with Gröbner bases techniques. Several
particular features of the algebraic system make this attack feasible: the system is
bihomogeneous and bilinear and most importantly the quasi-cyclic or the quasi-
dyadic structure of these schemes allows a drastic reduction of the number of
unknowns in the system. This kind of attack is exponential in nature and can
be easily prevented by choosing more conservative parameters. However codes
without any algebraic code structure would thwart completely this approach.

Related work. Low-Density Parity Check (LDPC) codes [19] are good can-
didates for this purpose. These are codes with no algebraic structure which meet
a very simple combinatorial property: they admit a sparse parity-check matrix.
This sparsity is used for decoding. They have been repeatedly suggested for the
McEliece scheme [28, 4, 5, 3, 2]. The very first proposal [28] analyzes the use of
a simple LDPC code in the original setup of McEliece: the private-key is the
sparse parity-check matrix H of constant row weight w of a code C and the
public-key is a dense generator matrix G′ = S · G · P of a code C′, where S
is a scrambling matrix, G is a generator matrix for C and P is a permutation
matrix. However, finding low-weight codewords in the dual of C′ is feasible and
enough to reconstruct a sparse parity-check matrix which efficiently decodes.
In [3], a proposal to fix this problem is suggested. It consists in replacing the
permutation matrix P by an invertible matrix Q of some small constant row
weight m and choosing S sparse. Properly choosing w and m, finding codewords
of weight wm in C′ is unfeasible. Nevertheless, the unfortunate choices for the
structure of these matrices allowed to successfully cryptanalyze the scheme [30].
In [2], proposing a dense matrix S and a more general construction for Q, the
variant seems to be immune against the attack suggested in [30]. The authors
also suggest a quasi-cyclic structure achieving compact keys. For 80-bits of se-
curity, the authors suggest public-keys composed by 3 rows of 4 circulant blocks
of size 4032× 4032. This implies in a public-key of 3× 4× 4032 = 48384 bits3.

Our contribution. Our first observation is that it is not necessary to replace
the permutation matrix by a matrix of some small constant row weight to use
LDPC codes into the McEliece scheme. Simply by increasing enough the length

3 The authors did not consider a CCA-2 secure conversion, which would allow public-
keys in systematic form, reducing the key size to 12096 bits.

and the row weight of the secret sparse parity-check matrix allows to avoid all
known message (using standard decoding algorithms) and key recovery attacks
(aiming at finding low weight codewords in the dual of the public code). For
instance, for a code rate 1

2 and 80 bits of security, we chose the secret parity-
check matrix to be of size 4800 × 9600 and rows of weight 90 (whereas the
LDPC codes used in practice for error correcting purposes have much lower row
weights, typically less than 10). We call them MDPC codes4 (which stands for
Moderate Parity Check Codes) to insist on the fact that they admit a parity-
check which is only moderately sparse. However the error correction performance
of MDPC codes degrades significantly when compared to standard LDPC codes.
For instance, we correct for the aforementioned example only 84 errors, whereas
any decent LDPC code of same size would correct about 700-800 errors. Despite
this fact, this number of errors is still large enough so that standard decoding
algorithms for correcting errors in a generic linear code are thwarted by such
parameters. Furthermore, our proposal is scalable for any security level and
code rate so that standard attacks completely fail.

We also give a quite satisfactory security reduction towards a well studied
coding-theory problem, namely decoding random linear codes. To achieve this
goal, we make a single, natural assumption: distinguishing an MDPC code from
a random linear code amounts to being able to ascertain the existence of low
weight codewords in its dual code. This provides a strong argument in favor of
the security of our scheme. Besides, adding a quasi-cyclic structure, our proposal
provides extremely compact keys. The aforementioned example, for 80-bits of se-
curity, has a public-key of only 4800 bits. Note that the state of the art indicates
that a quasi-cyclic structure, by itself, does not imply a significant improvement
for an adversary. All previous attacks on McEliece schemes are based on the
combination of a quasi-cyclic/dyadic structure with some algebraic code infor-
mation.

2 Preliminaries

We gather here a few basic definitions which are used in this paper.

Definition 1 (Hamming distance and weight). The Hamming weight (or
simply weight) of a vector x ∈ Fn2 is the number wt(x) of its nonzero components.

Definition 2 (Linear codes). A binary (n, r)-linear code C of length n, dimen-
sion n− r and codimension r, is a (n− r)-dimensional vector subspace of Fn2 . It

is spanned by the rows of a matrix G ∈ F(n−r)×n
2 , called a generator matrix of C.

Equivalently, it is the kernel of a matrix H ∈ Fr×n2 , called a parity-check matrix

4 This terminology has already been proposed in the communications theory literature
before for the very same concept [31]. The authors showed that certain quasi-cyclic
MDPC codes may perform well at moderate lengths for correcting a rather large
number of errors by using a variation of the standard belief propagation taking
advantage of the quasi-cyclic structure.

of C. The codeword c ∈ C of a vector m ∈ F(n−r)
2 is c = mG. The syndrome

s ∈ Fr2 of a vector e ∈ Fn2 is s = HeT . The dual C⊥ of C is the linear code
spanned by the rows of any parity-check matrix of C.

Definition 3 (Quasi-cyclic code). An (n, r)-linear code is quasi-cyclic (QC)
if there is some integer n0 such that every cyclic shift of a codeword by n0 places
is again a codeword.

When n = n0p, for some integer p, it is possible and convenient to have both
generator and parity check matrices composed by p× p circulant blocks. A cir-
culant block is completely described by its first row (or column) and the algebra
of p × p binary circulant matrices is isomorphic to the algebra of polynomials
modulo xp − 1 over F2.

Definition 4 (MDPC codes). An (n, r, w)-MDPC code is a linear code of
length n, codimension r admitting a parity check matrix with constant row weight
w.

When they are also quasi-cyclic, we call them (n, r, w)-QC-MDPC codes.
LDPC codes have typically small constants row weights (usually, less than 10).
For MDPC codes, we assume row weights which scale in O(

√
n log n).

3 Moderate Density Parity-Check McEliece variants

In this section, we present the construction of our codes and the description of
our variant.

(n, r, w)-MDPC code construction. A random (n, r, w)-MDPC code is eas-
ily generated by picking a random r × n matrix with rows of weight w:

1. Generate r vectors (hi ∈ Fn2)0≤i<r, of weight w uniformly at random.
2. The (n, r, w)-MDPC code is defined by a parity-check matrix H ∈ Fn2 of i-th

row hi.

With overwhelming probability this matrix is of full rank and the rightmost
r × r block is always invertible after possibly swapping a few columns.

(n, r, w)-QC-MDPC code construction. We are specially interested in (n, r, w)-
QC-MDPC codes, where n = n0p and r = p. This means that the parity-check
matrix has the form H = [H0|H1| . . . |Hn0−1]. Basically, we pick one random
word of length n = n0p and weight w. The other r − 1 rows are obtained from
r − 1 quasi-cyclic shifts.

1. Generate a vector h ∈ Fn2 of weight w uniformly at random.
2. The (n, r, w)-QC-MDPC code is defined by a quasi-cyclic parity-check matrix
H ∈ Fn2 of first row h.

3. The other r − 1 rows of H are obtained from the r − 1 quasi-cyclic shifts of
h.

Each block Hi has row weight wi, such that w =
∑n0−1
i=0 wi. In general, a

smooth distribution is expected for the sequence of wi’s. A generator matrix G
in row reduced echelon form can be easily derived from the Hi’s blocks: assuming
Hn0−1 is non-singular (this particularly implies wn0−1 odd, otherwise the rows
of Hn0−1 would sum up to 0), we compute:

G =

 I

(H−1n0−1 ·H0)T

(H−1n0−1 ·H1)T

...
(H−1n0−1 ·Hn0−2)T


This generation algorithm supports the security reduction presented in Sec-

tion 5.1, providing a strong argument in favor of the security of our scheme.
However, it also leads to an worse error-correction capability due to the exis-
tence of short cycles in the Tanner graph associated to the code5.

Key-Generation.

1. Generate a parity-check matrix H ∈ Fr×n2 of a t-error-correcting (n, r, w)-
MDPC or (n, r, w)-QC-MDPC code, as described above.

2. Generate its corresponding generator matrix G ∈ F(n−r)×n
2 in row reduced

echelon form.

The public key is G and the private key is H.

Encryption. To encrypt a plaintext m ∈ F(n−r)
2 into x ∈ Fn2 :

1. Generate e ∈ Fn2 of wt(e) ≤ t at random.
2. Compute x← mG+ e.

Decryption. Let ΨH be an LDPC decoding algorithm equipped with the knowl-

edge of the sparse parity-check matrix H. To decrypt x ∈ Fn2 into m ∈ F(n−r)
2 ,

1. Compute mG← ΨH(mG+ e).
2. Extract the plaintext m from the first (n− r) positions of mG.

Note that this description gets rid6 of the usual scrambling matrix S and
permutation matrix P . Note also that the use of a CCA2-secure conversion, e.g.

5 In [4], a construction based on random difference families avoids such a problem at
the price of adding an algebraic relation on how the weight is distributed.

6 A folklore reasoning assigns security functions to those matrices. However it is enough
that the public-key does not reveal any useful information for decoding, a condition
satisfied by the dense public matrix.

[22], allows for G in systematic-form, without bringing any security-flaw. Thus
the QC-MDPC variant has public-key of size (n− r) and the MDPC variant of
size r(n − r). In practice, the MDPC variant obtains huge keys whilst the QC-
MDPC allows for extremely compact keys. Regarding the QC case, note that the
state of the art indicates that a quasi-cyclic structure, by itself, does not imply
a significant improvement for an adversary. All previous attacks on McEliece
schemes are based on the combination of a quasi-cyclic/dyadic structure with
some algebraic code information.

4 Decoding MDPC codes

Our approach is to decode MDPC codes using the same decoding framework
available for LDPC codes. These decoding algorithms are iterative and provide
an error correction capability which increases linearly with the code-length and
which decreases when the row weight of the parity-check matrix increases. Thus
a degradation in the error correction capability is expected when using such
algorithms for MDPC decoding.

4.1 Decoding algorithm

Basically, we can divide LDPC decoding algorithms in two groups. The first one
gathers simple and fast algorithms, e.g. the bit-flipping algorithm [19]. These
algorithms do not achieve optimal error correction capability. The second group
gathers more involved algorithms with better error-correction capability, e.g.
the Sum-Product algorithm [20]. For MDPC codes, the first kind of algorithm
seems to be much more appropriate: the gain in decoding complexity more than
outweighs the slight improvement in error correction capability of the second
group.

Next, we propose a variant of Gallager’s bit-flipping algorithm suitable for
MDPC decoding. At first, we describe the idea on how bit-flipping works in
general. At each iteration, the syndrome of the message is computed and the
number of unsatisfied parity-check equations associated to each bit of the mes-
sage is computed. Each bit associated to more than b unsatisfied equations is
flipped. This process is repeated until either the syndrome becomes a zero-vector
or after a maximum number of iteration. The difference in our variant regards
how the threshold value b is chosen. Below three approaches are described.

I. Gallager precomputes a value for b at each iteration (see Inequality 4.16,
page 46 of [19]);

II. In [21], b is taken as the maximum number Maxupc of unsatisfied parity-check
equations;

III. Our approach: b = Maxupc − δ, for a small positive integer δ.

Approach II leads to better error-correcting capability when compared to I,
at the price of an increased number of iterations. Approach III combines the

benefits of I and II. It reduces the overall number of iterations obtained by
Approach II since much more bits are flipped at each iteration. If the algorithm
fails to decode, the value of δ is decreased by 1 and the process is restarted.
Obviously when δ = 0, we are back to Approach II, ensuring at least its error-
correcting capability. The actual, optimal value of δ is determined empirically.
For the parameters suggested in Section 6, choosing δ ≈ 5 is usually fine, reducing
the number of iterations from ∼ 65 to . 10. Algorithm 1 describes our decoding
approach. “U.p.c.” is the abbreviation for “unsatisfied parity-check” and 0 stands
to a zero-vector of length r.

Algorithm 1 A variant of the bit-flipping algorithm suitable for MDPC codes.

Input: Maxit ∈ N∗,
δ ∈ N,
y ∈ Fn

2 ,
H ∈ Fr×w

2 . // H stores the non-zero positions of a sparse matrix in Fr×n
2 .

Output: c ∈ Fn
2 , such that HcT = 0, or FAIL.

1: while δ ≥ 0 do
2: c← y; Iteration← 0;
3: while Iteration < Maxit do
4: Maxupc ← 0
5: (counteri ← 0)1≤i≤n // “counter” stores the number of u.p.c. for each bit.
6: s← HcT

7: for i = 1 to (r) do
8: if s[i] = 1 then
9: for j = 1 to (w) do

10: counterH[i][j] = counterH[i][j] + 1 // Counting the u.p.c. for each bit.
11: end for
12: end if
13: end for
14: for i = 1 to (n) do
15: if Maxupc > counteri then
16: Maxupc ← counteri // Defining the maximal number of u.p.c.
17: end if
18: end for
19: for i = 1 to (n) do
20: if counteri ≥ (Maxupc − δ) then
21: Flip ci // Flipping the appropriate bits.
22: end if
23: end for
24: if HcT = 0 then
25: return c
26: end if
27: end while
28: δ ← δ − 1 // In case of decoding failure, δ is decreased.
29: end while
30: return FAIL

It is easy to see that Algorithm 1 has complexity O(nwI), where I stands for
the average number of iterations. Note that Maxupc tends to decrease at each
iteration. Another variant might use this information to avoid the computation of
the maximal number of unsatisfied parity-check equations. This would eliminate
the first and second for-loops at the price of an increased number of iterations.

4.2 Error-correction capability estimation

The error correction capability estimation for LDPC (or MDPC) codes is a hard
task. In general, two steps are needed. The first one provides what is known
as the waterfall threshold, an asymptotic estimation of the maximal number
of errors from which reliable decoding can be expected (i.e. correct decoding
is achieved when the code-length goes to infinity). In Appendix A, a way to
compute this initial threshold value, inspired in [19], is described. A second step
is based on exhaustive decoding simulation, providing a decoding failure rate.

Thus a valid approach for choosing code parameters is to evaluate the failure
decoding rate for a code trying to correct the initial number of errors computed
by the waterfall threshold. If the decoding failure rate is not satisfactory, then the
number of errors is decreased until a negligible decoding failure rate is reached.
Using our bit-flipping variant, the parameters suggested in Section 6 reach a
decoding failure rate of at most 10−7, verified through exhaustive simulation.

4.3 Dealing with decoding failures

In cryptography, a non-zero probability of decoding failure requires some special
treatment. We present three approaches to deal with this problem.

A. The first approach consists in conservatively choosing the number of errors
compared to the code-length so that the decoding failure rate is negligible.
An approach adopted by error-correcting applications is in scaling this de-
coding failure rate to be smaller than the failure rate of the machine where
the system is deployed.

B. A second approach deals with these unlikely events on the fly. In the case of
a decoding failure, more sophisticated decoding algorithms with better error
correction capability are applied, e.g. the Sum-Product algorithm [20].

C. A third approach consists in using a CCA-2 secure conversion [22]. In short, a
CCA2-secure conversion uses hash functions and random sequences to ensure
the indistinguishability of the encrypted messages. Thus after a decoding
failure, when the application allows it, a new encryption is requested. Since
the encrypted messages behave like random sequences, the adversary would
not be able to extract any information from this redundancy.

5 Security Assessment

The security assessment of our proposal is divided in two parts: its security
reduction and the practical security assessment.

5.1 Security reduction

By security reduction, we mean a proof that an adversary able to attack the
scheme is able to solve some (presumably hard) computational problem with a
similar effort.

We start by giving the generic security reduction presented in [35] for the
Niederreiter cryptosystem [29]. This scheme is equivalent in terms of security to
the McEliece cryptosystem [24]. It is easy to see that this security reduction also
holds for the McEliece scheme, at the price of more involved probability space
and statements. After the generic security reduction, we provide the discussion
regarding our proposal.

Notation:

– Fn,r,w: a t-error correcting code family which can be either
(n, r, w)-MDPC or (n, r, w)-QC-MDPC. We assume the public key
is a parity check matrix of some code in Fn,r,w.

– Kn,r,w: the key space of Fn,r,w.

– Hn,r ⊃ Kn,r,w: the apparent key space of Fn,r,w:

• MDPC case: Hn,r is the set of all full rank matrices in Fr×n2 .
• QC-MDPC case: Hn,r is the set of all full rank matrices in
Fr×n2 , restricted to block circulant matrices.

Note that all the statements in this section are valid in both (MDPC and
QC-MDPC) cases.

Generic Reduction. Let Sn(0, t) denote the sphere centered in zero of radius
t in the Hamming space Fn2 and let Ω denote the probability space consisting
of the sample space Hn,r × Sn(0, t) equipped with a uniform distribution. We
define:

Distinguisher. A program D : Hn,r −→ {0, 1} is a (T, ε)-distinguisher for
Kn,r,w (vs. Hn,r) if it runs in time at most T and the advantage of D for
Kn,r,w

Adv(D,Kn,r,w) = |Pr
Ω

[D(H) = 1 | H ∈ Kn,r,w]− Pr
Ω

[D(H) = 1]|

is greater than ε.

Decoder. A program φ : Hn,r × Fr2 −→ Sn(0, t) is a (T, ε)-decoder for (Hn,r, t)
if it runs in time at most T and its success probability

Succ(φ) = Pr
Ω

[φ(H, eHT) = e]

is greater than ε.

Adversary. A program A : Hn,r ×Fn2 −→ Sn(0, t) is a (T, ε)-adversary against
Kn,r,w-Niederreiter if it runs in time at most T its success probability

Succ(A,Kn,r,w) = Pr
Ω

[A(H, eHT) = e | H ∈ Kn,r,w]

is greater than ε.

An adversary against Kn,r,w-McEliece could be defined as a program Hn,r ×
Fn2 → F(n−r)

2 ×Sn(0, t) of probability space Ω and sample set Hn,r×Fk2×Sn(0, t).
As stated before, this setup would only make all the statements and proofs
more cumbersome. Next, the proposition from [35] which supports the security
reduction.

Proposition 1 ([35]). Given the security parameters (n, r, w) and t, if there
exists a (T, ε)-adversary against Kn,r,w-Niederreiter, then there exists either a
(T, ε/2)-decoder for (Hn,r, t) or a (T + O(n2), ε/2)-distinguisher for Kn,r,w vs.
Hn,r.

Proof. Let A : Hn,r × Fr2 → Sn(0, t) be a (T, ε)-adversary against Kn,r,w-
Niederreiter. We define the following distinguisher:

D: input H ∈ Hn,r.
e← Sn(0, t) //pick randomly and uniformly

if (A(H, eHT) = e) then return 1 else return 0.

which implies:

Pr
Ω

[D(H) = 1] = Pr
Ω

[A(H, eHT) = e]

= Succ(A)

Pr
Ω

[D(H) = 1 | H ∈ Kn,r,w] = Pr
Ω

[A(H, eHT) = e | H ∈ Kn,r,w]

= Succ(A,Kn,r,w)

thus Adv(D,Kn,r,w) = |Succ(A,Kn,r,w)− Succ(A)| and particularly:

Adv(D,Kn,r,w) + Succ(A,Kn,r,w) ≥ Succ(A)

Since Succ(A,Kn,r,w) ≥ ε, we either have Adv(C,Kn,r,w) or Succ(A) greater
or equal to ε/2 (recall that both are positive). The running time of D is equal
to the running time of A increased by the cost for picking e and computing the
product eHT, which cannot exceed O(n2). So either A is a (T, ε)-decoder for
(Hn,r, t) or D is a (T +O(n2), ε/2)-distinguisher for Kn,r,w. ut

A distinguisher for Kn,r,w vs. Hn,r and a decoder for (Hn,r, t) provide a
solution respectively to the two following problems:

Problem 1 (Code distinguishing problem).
Parameters: Kn,r,w, Hn,r.
Instance: a matrix H ∈ Hn,r.
Question: is H ∈ Kn,r,w?

Problem 2 (Computational syndrome decoding problem).
Parameters: Hn,r, an integer t > 0.
Instance: a matrix H ∈ Hn,r and a vector s ∈ Fr2.
Problem: find a vector e ∈ Sn(0, t) such that eHT = s.

Thus, from Proposition 1, it is enough to assume that none of those problems
can be solved efficiently to ensure that no efficient adversary against the scheme
exists.

The MDPC and the QC-MDPC cases. We introduce an additional problem
which consists in deciding the existence of words of given weight in a given linear
code. Note that the code we consider below has a generator matrix H ∈ Hn,r, it
is thus the dual of a code in Fn,r,w.

Problem 3 (Codeword existence problem).
Parameters: Hn,r, an integer w > 0.
Instance: a matrix H ∈ Hn,r.
Question: is there a codeword of weight at most w in the code of generator
matrix H?

Ideally, we would like to replace Problem 1 by Problem 3 in Proposition 1.
Unfortunately, one would need to replace the distinguisher advantage by the
quantity:

Adv(E ,Kn,r,w) = |Pr
Ω

[E(H) = 1 | H ∈ Kn,r,w]− Pr
Ω

[E(H) = 1]|

where E denotes a program deciding the existence of a word of weight w in a given
code. However this quantity is not directly related to the hardness of Problem 3
and therefore cannot be considered. Nevertheless we reach our purpose if we
assume the following assumption.

Assumption 1 Solving Problem 1 for parameters (Hn,r,Kn,r,w) is not easier
than solving Problem 3 for the parameters (Hn,r, w).

Within this assumption we could modify the reduction to a claim that the
Kn,r,w-McEliece scheme is at least as hard as either Problem 2 and Problem 3.
However we can do much better. Consider the computational problem associated
to Problem 3 and the two following lemmas:

Problem 4 (Codeword finding problem).
Parameters: Hn,r, an integer w > 0.
Instance: a matrix H ∈ Hn,r.
Problem: find a codeword of weight at most w in the code of generator matrix
H.

Lemma 1. Problem 3 is polynomially equivalent to Problem 4.

Proof. Let Gn,k denote a subset of Fk×n2 composed by full rank matrices. A
matrix G ∈ Gn,k is the generator matrix of some binary linear code C of length
n and dimension k. For any 1 ≤ i ≤ n, we denote Ci the code shortened at i,
that is

Ci = {c = (c1, . . . , cn) ∈ C | ci = 0}.

We will denote by Gi a generator matrix of Ci. We assume we have a solution
to Problem 3, that is a program E : Gn,k → {0, 1} such that E(G) = 1 if and
only if there exists a word of weight w in the code spanned by G. The following
program called on input G such that E(G) = 1

A: input G ∈ Gn,k
for i from 1 to n while G has a rank > 1
if E(Gi) = 1 then G← Gi // false at most w times

return the first row of G of weight at most w

will return a word of weight at most w in the code spanned by G. It calls
the program E at most n times. Conversely a solution to Problem 4 obviously
provides a solution to Problem 3.

ut

Lemma 2. Problem 4 is polynomially equivalent to Problem 2.

Proof. For a matter of simplicity, we rewrite Problem 4 (codeword finding) to re-
ceive as input the parity-check matrix of the code, instead of its generator-matrix.
Obviously, both descriptions are polynomially equivalent since one matrix can
be obtained from the other in polynomial time. Let Hn,r denote a subset of Fr×n2

composed by full rank matrices. A matrix H ∈ Hn,r is the parity check matrix
of some binary linear code C of length n and dimension k = n− r.

Problem 4 (Codeword finding problem).
Parameters: Hn,r, an integer w > 0.
Instance: a matrix H ∈ Hn,r.
Problem: find a codeword of weight w in the code of parity check matrix H.

1. Let us assume that we have a program B which solves the Problem 4 for
parameters (Hn+1,r, w + 1), we define the following program

A: input H ∈ Hn,r, s ∈ Fr2
H ′ ← (H | sT) // s serves as (n+ 1)-th column of H ′

e← B(H ′) // e = (e1, . . . , en, en+1)
if en+1 = 1 then return (e1, . . . , en) else fail

If w + 1 is smaller than the minimum distance of the code of parity check
matrix H, the call A(H) will never fail. This provides a solution to Problem 2
with parameters (Hn,r, w).

2. Conversely, let us assume that we have a program A which solves the Prob-
lem 2 for parameters (Hn,r+1, w)

B: input H ∈ Hn,r
(g1, . . . , gk)← a basis of C // where C is the code of parity check matrix H
for j from 1 to n
H ′ ← parity check matrix of

⊕
i6=j〈gi〉 // subcode of C without gj

if A(H ′, gjH
′T) 6= fail then

z ← A(H ′, gjH
′T)

return z + gj
fail // A fails to decode for all j

If there exists a codeword of weight w, the decoder A will succeed for at
least one value of j. The above program provide a solution to Problem 4 for
parameters (Hn,r, w).

ut

Within Assumption 1, Lemma 1 and Lemma 2, we are able to produce strong
security statements.

Proposition 2. Given Assumption 1:
– Breaking the MDPC variant of McEliece or Niederreiter is not easier

than solving the syndrome decoding problem for a random code.
– Breaking the QC-MDPC variant of McEliece or Niederreiter is not easier

than solving the syndrome decoding problem for a random quasi-cyclic
linear code.

Proof. This follows directly from Lemma 1 and Lemma 2.
ut

5.2 Practical security

In this section, we analyze the practical attacks against the proposed scheme.
Key attacks aim either at recovering the secret decoder or simply distinguish
the public key from a random matrix (what invalidates the security reduction).
Message attacks try to decode one particular message considered as a noisy
codeword.

Consider the system as an instantiation of the McEliece (or Niederreiter)
scheme with an (n, r, w)-MDPC code, possibly quasy-cyclic, correcting t errors.
We denote C the hidden MDPC code defined by the public key (a generator
matrix of C for McEliece or a parity check matrix of C for Niederreiter). We
claim that the best attacks for each scenario are:

– Key distinguishing attack: exhibit one codeword of C⊥ of weight w.
– Key recovery attack: exhibit r codewords of C⊥ of weight w.
– Decoding attack: decode t errors in an (n, n− r)-linear code.

For all those attacks we have to solve either the codeword finding problem
or the computational syndrome decoding problem. For both those problems and
for the considered parameters the best technique currently known is information

set decoding (ISD) [32]. In today’s state-of-the-art the best variants derive from
Stern’s collision decoding algorithm [38]. There have been numerous contribu-
tions and improvements [14, 12, 11, 17, 9] until the recent asymptotic improve-
ments [25, 6]. For selecting our parameters, we have analyzed all of them and
an unpublished non-asymptotic analysis of [6] gives slightly lower workfactors
(closed formulas7 in Appendix B). ISD workfactors are commonly used to esti-
mate the practical security of code-based schemes. However there is a novelty
related to the practical security of our proposal. The problem of finding a single
low weight codeword in an MDPC code may admit many solutions.

We denote by WFisd(n, r, t) the cost for decoding t errors (or finding a code-
word of weight t) in an (n, r)-binary linear code when there is a single solution of
the problem. We start by giving a rough description of the ISD algorithms. These
algorithms assume a pattern for the sought error vector and it proceeds analyz-
ing a certain set of candidates until a solution is found. This set of candidates
is usually stored in lists of a certain size L and each candidate has a probabil-
ity P to produce the solution. When the parameters algorithm are optimal, the
workfactor WFisd(n, r, t) matches the ratio L/P , up to a small factor.

In [36], also mentioned by Decoding One Out of Many setting (DOOM), it
is analyzed the gains when the decoding problem have multiple solutions and
the adversary is satisfied with a single solution. In short, when the problem has
Ns solutions, the probability of success P increases by a factor Ns (as long as
NsP � 1) and when Ni instances are treated simultaneously the list size L
increases at most by a factor

√
Ni. Thus the DOOM technique [36] provides

a gain8 of Ns/
√
Ni. This gain impacts on the practical security of our MDPC

and QC-MDPC McEliece variants. Below we discuss the DOOM technique gain
regarding each kind of attack against our scheme.

Key Distinguishing Attack. To distinguish a public key from a random matrix,
it is enough to produce a word of weight w in the dual code C⊥. In this scenario,
an adversary applying ISD to the all-zero syndrome will face a problem with
r solutions (the r rows of the sparse parity check matrix). Then Ns = r and
Ni = 1 and the distinguishing attack cost drops by a factor of r:

WFdist(n, r, w) =
WFisd(n, n− r, w)

r
.

In the quasi-cyclic case, there is no obvious speedup and the distinguishing attack
has the same cost as above.

Key Recovery Attack. To recover an equivalent private key, it is enough to re-
cover all (or almost all) low weight parity check equations. All ISD variants are
randomized and thus we can make r independent calls to a codeword finding al-

gorithm. Each call costs on average WFisd(n,n−r,w)
r because there are r codewords

7 This is part of an unpublished work in progress.
8 In general, the real gain is in fact slightly smaller because these algorithms depend

on optimal parameters which are not the same for multiple instances.

of weight w. Therefore on average, recovering all equations will cost:

WFreco(n, r, w) = r · WFisd(n, n− r, w)

r
= WFisd(n, n− r, w).

In the quasi-cyclic case, any word of low weight will provide the sparse matrix
(the sparse parity check matrix is the concatenation of several r × r circulant
blocks) and thus the key recovery attack is no more expensive than the key
distinguishing attack.

WFQC
reco(n, r, w) = WFQC

dist(n, r, w) =
WFisd(n, n− r, w)

r
.

Decoding Attack. In the MDPC (i.e. non quasi-cyclic) case, the message security
is related to the hardness of decoding t errors in a seemingly random binary linear
code of length n and codimension r:

WFdec(n, r, t) = WFisd(n, r, t).

In the quasi-cyclic case, any cyclic shift of the target syndrome s ∈ Fr2 provides
a new instance whose solution is equal to the one of the original syndrome, up to
a block-wise cyclic shift. The number of instances and the number of solutions
are thus Ni = Ns = r. Therefore a factor

√
r is gained:

WFQC
dec(n, r, t) ≥ WFisd(n, r, t)√

r
.

MDPC QC-MDPC

Key distinguishing
1

r
WFisd(n, n− r, w)

1

r
WFisd(n, n− r, w)

Key recovery WFisd(n, n− r, w)
1

r
WFisd(n, n− r, w)

Decoding WFisd(n, r, t)
1√
r

WFisd(n, r, t)

Table 1. Best attacks for code-based encryption schemes using t-error correcting
(n, r, w)-MDPC (or QC-MDPC) codes

Thus to compute the cost of each attack, we have considered the non-asymptotic
analysis of [6] decreased by the possible gains obtained by the DOOM technique.
Note that the complex structure of the ISD variant [6] (an increased number of
initial lists, pairs of non-disjoint lists and the probability of overlapped positions)
might prejudice the maximal gain claimed for DOOM: Ns/

√
Ni. However since

the difference of the work-factor obtained for the ISD variant [6] to the work-
factor of less complex variants (which achieve the maximal gain for DOOM) is
marginal, it is reasonable to use it as a secure lower bound.

Example. Let n0 = 2, n = 9600, r = 4800, w = 90, t = 84. The non-
asymptotic analysis of [6] gives a cost of 292.70 for key-recovery and 287.16 for
decoding attacks. Decreasing it by the gains of the DOOM setting (a factor of
4800 and

√
4800), the final workfactors are 280.47 and 281.04.

6 Practical application

In this section, we provide practical parameters and discuss the practical appli-
cability of our scheme. Table 2 summarizes the parameters for our quasi-cyclic
variant, the most relevant for practical applications. For each security level, we
propose three parameter sets, for n0 = 2, n0 = 3 and n0 = 4, leading to different
code rates: 1/2, 2/3, 3/4, respectively.

The security assessment is based on the ISD variant [6] decreased by the
possible gains obtained by the DOOM setting [36]. The codes suggested attain
decoding failure rates below 10−7 for the QC-MDPC case, using our bit-flipping
variant. Note that, for the same parameters, the MDPC variant might present
an worse error correction capability due to the non-regularity of the column
weights, but significant improvements can be obtained with slightly increased
code-lengths.

In practice, the MDPC variant obtains huge keys of r(n− r) bits, whilst the
QC-MDPC allows for extremely compact keys of (n − r) bits. For n0 = 2, we
achieved the smallest key-sizes. Note that, increasing n0, better code rates are
obtained at the price of less compact key sizes. Table 3 provides a comparison of
the key-sizes of our QC-MDPC proposal and the potential9 key size of the QC-
LDPC variant [2], the key size of the Quasi-Dyadic Goppa McEliece variant [27]
and the original McEliece scheme using updated parameters [11]. The column r
also gives the syndrome size in bits.

Regarding the complexity efficiency of our proposal, the key-generation step
depends only on the generation of random word(s), for the private-key, and on
the product of (quasi-cyclic) blocks, for the public key. The encryption reduces to
a matrix-vector product and a vectors addition. For decryption, a non-optimized
C++ implementation running at an Intel Xeon CPU @3.20GHz decrypts in less
than 3 milliseconds for parameters of 80-bits of security. Encryption and key-
generation are reduced to simple product of (quasi-cyclic) blocks. We prefer to
omit these timings since serious optimizations may lead to much better results.

Note that our system can be scaled to meet arbitrarily large security require-
ments. It is rather straightforward to prove that the number of errors which can

be corrected by the bit flipping algorithm is of order n(1+o(1)) ln(w(1−R))
4w , where

n is the code-length, w the density of the parity-check matrix, R is the rate of
the code. Message recovery attacks and key recovery attacks are of the same

order of complexity when w is chosen of the form (1 + o(1))
√

n lnn ln(1−R)
lnR . Thus

9 In [2], the use of a CCA-2 secure conversion is not considered. In this case, it is
allowed to have public-keys in systematic form. To have a fair comparison, here we
recompute their key-sizes assuming matrices in systematic form.

Table 2. Suggested parameters. Syndrome and key size given in bits.

Level security n0 n r w t QC-MDPC key-size

80 2 9600 4800 90 84 4800
80 3 10752 3584 153 53 7168
80 4 12288 3072 220 42 9216

128 2 19712 9856 142 134 9856
128 3 22272 7424 243 85 14848
128 4 27200 6800 340 68 20400

256 2 65536 32768 274 264 32768
256 3 67584 22528 465 167 45056
256 4 81920 20480 644 137 61440

Table 3. Key-size comparison. Key-sizes given in bits.

Level security QC-MDPC QC-LDPC [2] QD-Goppa [27] Goppa [11]

80 4800 12096 20480 460 647
128 9856 – 32768 1 537 536
256 32768 – 65536 7 667 855

choosing an (n, (1−R)n,w)-code with w of this form allows to reach arbitrarily
large security, when n goes to infinity.

7 Conclusion

We propose two McEliece variants: one from Moderate Density Parity-Check
codes (MDPC) and another from quasi-cyclic MDPC codes. These codes are
LDPC codes of higher density than what is usually adopted for telecommuni-
cation solutions, providing an worse correction capability. However, in cryptog-
raphy, we are not necessarily interested in correcting many errors, but only a
number which ensures an adequate security level, a condition satisfied by our
codes. The benefits of their employment are many.

The first one refers to the security of the scheme. The McEliece cryptosystem
security relies on two problems: the indistinguishability of the code family and
the hardness of decoding random linear codes. Under the reasonable assumption
that distinguishing a (quasi-cyclic) MDPC code from a (quasi-cyclic) random
linear code amounts to being able to ascertain the existence of low weight code-
words in its dual code, we show that our proposal reduces the key-distinguishing
problem to the problem of decoding random linear codes. Thus the security of
our McEliece variant relies only on a well studied coding-theory problem. This
provides a strong argument in favor of our scheme and must be compared to
the scenario for Goppa codes at the moment. Distinguishing Goppa codes is not
necessarily a hard problem, as shown in [15], where a method for distinguishing
high-rate Goppa codes is proposed. Although this does not represent an effective
attack, it scratches the confidence on the use of algebraic codes in cryptography.

Another benefit comes from the use of a quasi-cyclic structure. In this case,
our variant provides extremely compact keys, e.g. only 4800 bits for 80-bits
of security. Note that the state of the art indicates that a quasi-cyclic struc-
ture, by itself, does not imply a significant improvement for an adversary. All
previous attacks on McEliece schemes are based on the combination of a quasi-
cyclic/dyadic structure with some algebraic code information. Considering the
manner we generate our codes, this last ingredient simply does not exist for our
variant.

Regarding its complexity efficiency, our work presents another benefit due to
the use of very simple operations. The key-generation basically depends on the
generation of random word(s), the encryption is performed through cyclic-block
product and addition and the decryption performed by our bit-flipping variant
is very simple and achieves very low complexity. In summary, MDPC codes seem
to be very interesting for cryptographic purposes.

References

1. V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economical
construction of the transitive closure of a directed graph. Soviet Mathematics—
Doklady, 11(5):1209 – 1210, 1970.

2. M. Baldi, M. Bodrato, and F. Chiaraluce. A new analysis of the McEliece cryp-
tosystem based on QC-LDPC codes. In Proceedings of the 6th international confer-
ence on Security and Cryptography for Networks, SCN ’08, pages 246–262, Berlin,
Heidelberg, 2008. Springer-Verlag.

3. M. Baldi and F. Chiaraluce. Cryptanalysis of a new instance of McEliece cryp-
tosystem based on QC-LDPC codes. In Information Theory, 2007. ISIT 2007.
IEEE International Symposium on, pages 2591 –2595, june 2007.

4. M. Baldi, F. Chiaraluce, and R. Garello. On the usage of quasi-cyclic low-density
parity-check codes in the McEliece cryptosystem. In Proceedings of the First Inter-
national Conference on Communication and Electronics (ICEE’06), pages 305–310,
October 2006.

5. M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni. Quasi-cyclic low-density
parity-check codes in the McEliece cryptosystem. In Communications, 2007. ICC
’07. IEEE International Conference on, pages 951 –956, june 2007.

6. A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes
in 2n/20: How 1+1=0 improves information set decoding. In D. Pointcheval and
T. Johansson, editors, Advances in Cryptology - EUROCRYPT 2012, volume 7237
of LNCS, pages 520–536. Springer, 2012.

7. T. P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing key length
of the McEliece cryptosystem. In B. Preneel, editor, Progress in Cryptology –
Africacrypt’2009, volume 5580 of Lecture Notes in Computer Science, pages 77–
97. Springer, 2009.

8. E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of
certain coding problems (corresp.). Information Theory, IEEE Transactions on,
24(3):384 – 386, may 1978.

9. D. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: Ball-collision
decoding. In P. Rogaway, editor, Advances in Cryptology CRYPTO 2011, vol-
ume 6841 of Lecture Notes in Computer Science, pages 743–760. Springer Berlin /
Heidelberg, 2011. 10.1007/978-3-642-22792-942.

10. D. J. Bernstein, J. Buchmann, and E. Dahmen, editors. Post-Quantum Cryptog-
raphy. Springer-Verlag, 2009.

11. D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece
cryptosystem. In Proceedings of the 2nd International Workshop on Post-Quantum
Cryptography, PQCrypto ’08, pages 31–46, Berlin, Heidelberg, 2008. Springer-
Verlag.

12. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. Information Theory, IEEE Transactions on, 44(1):367 –378,
Jan. 1998.

13. N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital
signature scheme. In Advances in Cryptology – Asiacrypt’2001, volume 2248 of
Lecture Notes in Computer Science, pages 157–174, Gold Coast, Australia, 2001.
Springer.

14. I. Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, Moscow, 1991.

15. J.-C. Faugère, V. Gauthier, A. Otmani, L. Perret, and J.-P. Tillich. A distinguisher
for high rate McEliece cryptosystems. In ITW 2011, pages 282–286, Paraty, Brazil,
Oct. 2011.

16. J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic cryptanalysis of
McEliece variants with compact keys. In H. Gilbert, editor, Advances in Cryptology
– Eurocrypt’2010, volume 6110 of Lecture Notes in Computer Science, pages 279–
298. Springer, 2010.

17. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryp-
tosystems. In M. Matsui, editor, Advances in Cryptology – Asiacrypt 2009, volume
5912 of Lecture Notes in Computer Science, pages 88–105. Springer, 2009.

18. P. Gaborit. Shorter keys for code based cryptography. In International Workshop
on Coding and Cryptography – WCC’2005, pages 81–91, Bergen, Norway, 2005.
ACM Press.

19. R. G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press, 1963.
20. J. Hagenauer, E. Offer, and L. Papke. On the inherent intractability of certain

coding problems (corresp.). Information Theory, IEEE Transactions on, 42(2):429
– 445, march 1996.

21. W. Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge
University Press, 2003.

22. K. Kobara and H. Imai. Semantically secure mceliece public-key cryptosystems
-conversions for mceliece pkc -. In K. Kim, editor, Public Key Cryptography, vol-
ume 1992 of Lecture Notes in Computer Science, pages 19–35. Springer Berlin /
Heidelberg, 2001. 10.1007/3-540-44586-2-2.

23. D. Kravitz. Digital signature algorithm. US patent 5231668, July 1991.
24. Y. X. Li, R. H. Deng, and X. M. Wang. On the equivalence of mceliece’s and

niederreiter’s public-key cryptosystems. Information Theory, IEEE Transactions
on, 40(1):271 –273, jan 1994.

25. A. May, A. Meurer, and E. Thomae. Decoding random linear codes in Õ(20.054n).
In D. Lee and X. Wang, editors, Advances in Cryptology - ASIACRYPT 2011,
volume 7073 of LNCS, pages 107–124. Springer, 2011.

26. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. Deep
Space Network Progress Report, 44:114–116, Jan. 1978.

27. R. Misoczki and P. S. L. M. Barreto. Compact McEliece keys from Goppa codes.
In Selected Areas in Cryptography, pages 376–392, 2009.

28. C. Monico, J. Rosenthal, and A. Shokrollahi. Using low density parity check codes
in the McEliece cryptosystem. In IEEE International Symposium on Information
Theory – ISIT’2000, page 215, Sorrento, Italy, 2000. IEEE.

29. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory, 15(2):159–166, 1986.

30. A. Otmani, J. Tillich, and L. Dallot. Cryptanalysis of two McEliece cryptosystems
based on quasi-cyclic codes. Special Issues of Mathematics in Computer Science,
3(2):129–140, Jan. 2010.

31. S. Ouzan and Y. Be’ery. Moderate-density parity-check codes. CoRR,
abs/0911.3262, 2009.

32. E. Prange. The use of information sets in decoding cyclic codes. Information
Theory, IRE Transactions on, 8(5):5–9, september 1962.

33. T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University
Press, 2008.

34. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

35. N. Sendrier. On the use of structured codes in code based cryptography. In
S. Nikova, B. Preneel, and L. Storme, editors, Coding Theory and Cryptography
III, Contactforum, pages 59–68. Koninklijke Vlaamse Academie van België voor
Wetenschaeppen en Kunsten, 2009.

36. N. Sendrier. Decoding one out of many. In B.-Y. Yang, editor, Post-Quantum
Cryptography, volume 7071 of Lecture Notes in Computer Science, pages 51–67.
Springer Berlin / Heidelberg, 2011. 10.1007/978-3-642-25405-5-4.

37. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

38. J. Stern. A method for finding codewords of small weight. In G. Cohen and
J. Wolfmann, editors, Coding Theory and Applications, volume 388 of Lecture Notes
in Computer Science, pages 106–113. Springer, 1989.

A Computing the threshold for the Bit-Flipping
algorithm

A way for estimating the waterfall threshold for the bit-flipping algorithm is
considering the probability of a bit to be in error after a given number of iter-
ations of the algorithm. When such probability converges to zero, reliable error
correction can be achieved. Below we discuss the weak bound presented in [19]
based on this probability.

We denote by Pi the probability of a bit be in error after i iterations of
the decoding algorithm. When the code length is supposed to be infinite and
that there are no cycles of length less than or equal to 2i in the Tanner graph
associated to the parity-check matrix, this probability does not depend on a
particular position [33]. These conditions can be relaxed and a finite analysis of
the decoding process can be obtained, but this is beyond the scope of this work.
Furthermore, practical parameters can be achieved from the refinement provided
by the exhaustive simulation, ensuring an adequate decoding failure rate.

We denote by H the parity-check matrix of an (n, r, w)-MDPC code. Suppose
we are verifying the convergence of Pi, when messages containing t errors are

received (thus P0 = t
n). To describe how pi evolves, we have to introduce some

additional notation. Let m be the total number of entries equal to 1 in H. Let
mi be the total number of entries equal to 1 of H which appear in a column of

weight i and let λi
def
= mi

m . Notice that mi is also equal to i times the number
of columns of weight i in H. In the quasi-cyclic case, note that m = rw and
mi =

∑n0−1
j=0 w2

j1wj=i, where 1wj=i stands for the indicator of the event wj = i
(i.e. it is equal to 1 if wj = i and 0 otherwise). With this notation we have

pi+1 = p0 − p0
∑
d

λd

d−1∑
l=bd

(
d− 1

l

)[
1 + (1− 2pi)

w−1

2

]l [
1− (1− 2pi)

w−1

2

]d−l−1

+(1− p0)
∑
d

λd

d−1∑
l=bd

(
d− 1

l

)[
1− (1− 2pi)

w−1

2

]l [
1 + (1− 2pi)

w−1

2

]d−l−1
In [19], the integer bd is chosen as an integer between d − 1 and d/2 which

aims at minimizing the function pi+1.

1− p0
p0

≤
[

1 + (1− 2pi)
w−1

1− (1− 2pi)w−1

]2bd−d+1

The waterfall threshold of an (n, r, w)-MDPC code for the original bit-flipping
algorithm is obtained as the maximal integer t such that p0 = t/n and pi con-
verges to 0.

B Computing the work-factor of the ISD variant [6].

Let H ∈ Fr×n2 , s ∈ Fr2 and k = n − r. We are interested in finding a vector
e ∈ Fn2 of weight w such that HeT = s. Equivalently we want to find a linear
combination of w columns of H which when added to s gives a 0-vector. Below
we briefly describe the algorithm proposed in [6] for solving this problem. The
algorithm is divided in two steps: the setup and the search step. The former
consists in randomly permute the columns of H and it proceeds with a partial
Gaussian elimination on the rows of H. More precisely, let l be an optimal
algorithm parameter, we compute the matrix:

H ′ =

[
I(r−l)×(r−l)

0l×(r−l)
Qr×(k+l)

]
where I stands to an identity block and 0 to a zero block. The second step
depends on the algorithm parameter p < w. The value of p defines the error
pattern of the sought error vector, which is vectors of: weight w − p in the first
r − l positions and of weight p in the last k + l positions. A valid strategy for
finding solutions is: compute all possible linear combinations of p columns in Q
and select those one which sums up to a vector coinciding in the last l positions
of the syndrome. We have found a solution when the sum of such combination

plus the syndrome gives a vector of weight w − p. Note that the sum of each
combination plus the syndrome gives a vector of weight 0 in the last l positions.
Thus the weight of each combination plus the syndrome will be concentrated in
the first r − l positions. When this part has weight exactly w − p, we can add
the w − p columns from the identity part of H ′ which erase these positions. In
summary, we have selected w−p columns from the first r− l columns of H ′ plus
p columns from the last k + l columns of H ′, therefore it is a solution.

An improvement is achieved using a Meet-In-The-Middle strategy. It is con-
venient to compute two lists L1, L2 of all possible linear combinations of p/2
columns in Q, instead of computing all possible linear combinations of p columns
in Q, taking advantage from the Birthday Paradox. Then we select the sums
{a+ b|a ∈ L1, b ∈ L2} which have weight exactly p. Note that the fact of L1 and
L2 be not disjoint might lead to multiple representations of the same solution.
The main improvement presented in [6] is that they allow elements in L1 and
L2 of weight p/2 + ε, for some small integer ε. This generalizes the previous
approaches. Basically they are considering also the case when ε positions of a
are erased by ε positions of b (i.e. 1 + 1 = 0 for binary codes), which still gives
a sum of weight p. Actually, the authors propose to apply this strategy not only
once. This leads to an algorithm which can be divided in 4 layers, we label it
from 3 (the initial) until 0 (the final layer). The third layer has 4 pairs of two
disjoint lists each one. The second layer has two pairs of lists. The first layer has
one pair and the layer 0 has the final list. Next we describe the algorithm along
with the cost for each step.

Let p, l, p1, p2, ε1, ε2, r1, r2 be optimal algorithm parameters such that:
p1 = p/2 + ε1, p2 = p1/2 + ε2 and l > r1 > r2. In the initial layer, we produce
4 pairs of 2 disjoint lists each one. Each list has the linear combination of p2/2

columns of Q. Thus the size of each list is: S3 =
(
(k+l)/2
p2/2

)
. We develop the

discussion for a pair of lists L3,1 and L3,2, but the same apply for the other
three pairs.

For the next layer, we select all sums {a + b | a ∈ L3,1, b ∈ L3,2} of weight
p2 = p1/2 + ε2 and which coincide with the syndrome in the last r2 positions.

Thus the size of each list is: S2 = (S3)
2

2r2 . Let the result be L2,1 and let L2,2 be
the merge from another pair in the previous layer.

For the next layer, we select all sums {a + b|a ∈ L2,1, b ∈ L2,2} of weight
p1 = p/2+ε1 and which coincide with the syndrome in the last r1 positions. Since
all elements already coincide in the last r2 positions, and r1 > r2, we have to
discard only 2r1−r2 from all possibilities obtained from L2,1×L2,2. Thus the cost

of merging these lists is C2 = (S2)
2

2r1−r2
. Since L2,1 and L2,2 are not disjoint, we can

obtain multiple representations of the same partial solution. We must proceed
with a single representation of each solution. The rate of distinct solutions can
be measured by:

µ2 =

(
k+l
ε2

)(
k+l−ε2
p2−ε2

)(
k+l−p2
p2−ε2

)
(
k+l
p2

)2

The maximal size of this list is Smax1 =
(k+l

p1
)

2r1 . Thus the size of the list of
distinct solutions is S1 = min (µ2C2, S

max
1). Let the result be L1,1 and consider

L1,2 be the result from the other pair in the second layer. Finally, we select all
sums {a+b|a ∈ L1,1, b ∈ L1,2} of weight p and which coincide with the syndrome
in the last l positions. Since all elements already coincide in the last r1 positions,
and l > r1, we have to discard only 2l−r1 from all possibilities obtained from

L1,1×L1,2. Thus the cost of merging these lists is C1 = (S1)
2

2l−r1
. Again, since L1,1

and L1,2 are not disjoint, we can obtain multiple representations of the same
solution. We must consider a single representation of each solution. The rate of
distinct solutions can be measured by:

µ1 =

(
k+l
ε1

)(
k+l−ε1
p1−ε1

)(
k+l−p1
p1−ε1

)
(
k+l
p1

)2
The maximal size of the final list is Smax0 =

(k+l
p)
2l

. Thus the size of the final
list of distinct solutions is S0 = min (µ1C1, S

max
0). Considering the cost for the

Gaussian elimination as K0 = (n+1)(n−k)
log2(n+1) [1] and the cost of merging two lists

being twice the cost of building a list (we use coefficients K1 = 1 and K2 = 2 to
make this adjustment), the cost of each iteration (an attempt of the algorithm
in finding a solution) is:

WF iteration(n, r, w, p, l, r1, r2, ε1, ε2, p1, p2) = K0+8S3K1+4C3K2+2C2K2+C1K2

The number of iterations that the algorithm must perform until find a solu-
tion depends on the probability of finding an error vector with the sought error
pattern: vectors of weight w− p in the first r− l positions and p in the last k+ l
positions. This probability is

P (n, r, w, p, l, r1, r2, ε1, ε2, p1, p2) =

(
n−k−l
w−p

)(
k+l
p

)
S0

Smax
0(

n
w

) =

(
n−k−l
w−p

)
S02l(

n
w

)
Therefore given l, p, r1, r2, ε1, ε2, p1, p2:

WF (n, r, w, p, l, r1, r2, ε1, ε2, p1, p2) = P−1 ·WF iteration(n, k, w, p, l, r1, r2, ε1, ε2, p1, p2)

= P−1(K0 + 8S3K1 + 4C3K2 + 2C2K2 + C1K2).(1)

There are several ways for choosing the parameters l, p, r1, r2, ε1, ε2, p1, p2.
With some heuristic approaches, we succeeded to find good parameters, provid-
ing lower work-factors than what is obtained for the other ISD variants. Note
however, for the parameters presented in Section 6, these values are still quite
close from what is obtained for much simpler ISD variants.

