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Abstract

We aim here at showing how some known Ramanujan Cayley graphs yield error-correcting
codes that are asymptotically optimal in the class of cycle codes of graphs.

The main reason why known constructions of Ramanujan graphs yield good cycle codes is
that the number of their cycles of a given length behaves essentially like that of random regular
graphs. More precisely we show that for actual constructions of Ramanujan graphs of degree
∆ which are bipartite, and for the double cover of known Ramanujan graphs which are not
bipartite, the number of cycles of length 2l is Oε(∆ − 1 + ε)2l (for every ε > 0), which is as
about the same as one could expect from a random regular graph of degree ∆. Furthermore,
it is possible to show that this property guarantees the highest possible error-probability p that
the corresponding cycle codes can sustain, among the class of cycle codes of ∆-regular graphs.
This gives a constructive answer to an early problem in coding theory, namely determining what
is asymptotically the best possible performance of cycle codes of graphs, when submitted to the
binary symmetric channel.
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1 Cycle codes of graphs

Let F2 = {0, 1} denote the field on two elements. For any set S denote by 2S the set of subsets of S.
If x,y ∈ 2S , x+y will denote the symmetric difference of x and y. 2S is in a natural correspondence

∗Dept. of Mathematics, University of British Columbia, Vancouver V6T 1Z2, Canada
†Network Dept., Ecole Nationale Supérieure des Télécommunications, 75634 Paris 13, France
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with F s
2 , the vector space of binary s-tuples where s = #S, and we shall identify subsets of S with

their characteristic vectors in F s
2 .

Let Γ be a finite graph. Denote by V and E the set of vertices and the set of edges of Γ
respectively. Let v = #V and n = #E denote the cardinalities of V and E. An edge of Γ is an
element of 2V containing exactly two vertices. For any edge e ∈ E, define its boundary ∂e ∈ 2V as
the union of its endpoints. ∂ is naturally extended to a mapping of 2E to 2V , where,

∂ : x #→
∑

e∈x

∂e.

A (homological) cycle is a set of edges with zero boundary. Its connected components correspond to
closed paths, and we refer to them as elementary cycles. The set of cycles of Γ, denoted by C(Γ) is a
linear code (i.e. a vector space) over F2 refered to as the cycle code of Γ. If the graph Γ is connected,
which we shall always suppose in what follows, C(Γ) has dimension k = dim C(Γ) = n − v + 1. We
shall consider from now on only ∆-regular graphs, i.e. graphs such that every vertex has exactly
∆ neighbours. In this case, k = dim C(G) = n(1 − 2/∆) + 1. The size of the smallest cycle in Γ is
called the girth of Γ by graph-theorists and is the minimum distance of C(Γ) for coding theorists :
denote it by d(Γ), or simply d.

Error-probabilities. We are interested in the probability fΓ(p) that a random set of edges x
contains half the edges of some cycle, when x is obtained by choosing every edge independently
with probability p. More precisely, define

[0, 1] → [0, 1]

p #→ fΓ(p) =
∑

x∈W

p|x|(1 − p)n−|x|

where |x| denotes the weight (cardinality) of x and where

W = {x ∈ 2E |∃c ∈ C(Γ), c &= 0, |x ∩ c| ≥ |c|/2}.

In other words, W is the set of vectors that are closer, for the Hamming distance, to some nonzero
codeword (cycle) than to the origin.

From the coding point of view, we are submitting codewords of C(Γ) to the binary symmetric
(communication) channel with error-probability p. This means that each transmitted binary symbol
is transformed into the complementary symbol independently with probability p. One can assume,
by linearity and without loss of generality, that the submitted codeword is the 0 vector. The received
vector is then some random error vector x, which is decoded by choosing the codeword closest to it
for the Hamming distance. Whenever decoding produces a codeword different from 0, or a choice
between 0 and one (or more) other closest codewords, we shall say that a decoding (or residual)
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error occurs. The probability that a decoding error occurs is therefore exactly the probability that
x ∈ W , i.e. equals fΓ(p).

Cycle codes of graphs were among the first families of graphs to be investigated during the early
days of coding theory, see e.g. [10]. They quickly became obsolete because of their poor minimal
distance properties, namely for growing n and fixed rate k/n (equivalently for fixed degree ∆), d

must be upperbounded by a logarithmic function of n. However, they remain of theoretical interest
because they can provide, for fixed rate k/n, infinite families of codes for which fΓn(p) tends to 0
when n → ∞, for any p < p0, for some fixed p0. For instance, we have :

Proposition 1 If (Γn) is a family of ∆-regular graphs whose girths satisfy

d(Γn) ≥ c log∆−1 n,

then limn→∞ fΓn(p) = 0 for any p < p0, where

p0 =
1
2

(

1 −
√

1 − 1
(∆− 1)2(1+2/c)

)

.

Proof
Let Ωn be a subset of the edge set of Γn. If Ωn contains half the edges of some cycle, then there
must exist a vertex x of Γn and a path of length m = *d/2+ rooted at x with at least half its edges
in Ωn. (To find such a vertex x, travel around the cycle). Consider now that Ωn is obtained by
choosing randomly each edge of Γn with independent probability p < 1/2. We can upperbound the
probability that Ωn contains half the edges of a cycle by the probability that such a vertex x exists,
so that :

fΓn(p) ≤ v∆(∆− 1)m−1
∑

m/2≤i≤m

(
m

i

)

pi(1 − p)m−i

which gives, since p < 1/2,

fΓn(p) ≤ Cn
[
2(∆ − 1)

√
p(1 − p)

]m

where C is a constant. It is now straightforward to check that fΓn(p) ≤ Cn−α for some positive α

whenever p < p0. !

Infinite families of graphs (Γn) satisfying d ≥ c log∆−1 n were first constructed in [16].

For a family G = (Γn) of ∆-regular graphs, denote by

θ(G) = sup{p | lim
n→∞

fΓn(p) = 0}.
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Not so many constructive classes of codes that achieve vanishing residual error probability for
positive p are known. Besides constructions that use concatenation [7, 13], one can quote essentially
low-density parity check codes, a generalization of cycle codes of graphs, [8], taken up again in [20],
and product-type codes originating in [6]. For both these classes of codes it is a difficult problem
to determine, for given rate k/n, the largest p for which decoding error probability vanishing with
n can be achieved. Hence the motivation for solving one of the remaining open problems for cycle
codes of graphs, namely

– determining the largest possible θ(G) for families of ∆-regular graphs G = (Γn)

– finding actual constructions of families G = (Γn) achieving this value of θ.

In [3] it is proved that for any family of ∆-regular graphs, one must have

θ ≤ 1
2

(

1 −
√

1 − 1
(∆− 1)2

)

.

In this paper we show that some families of known Ramanujan Cayley graphs achieve the above
value of θ and in this sense are optimal among the class of cycle codes of graphs.

This will be ensured by estimating the number Ai of cycles of length i of the graphs under
consideration and using the following :

Proposition 2 If G = (Γn) is a family of ∆-regular graphs such that

1. limn→∞ d(Γn) = ∞

2. for any ε > 0, there exists cε such that the number Ai of elementary cycles of length i of any
member of G satisfies

Ai ≤ cε(∆− 1 + ε)i,

then

θ(G) =
1
2

(

1 −
√

1 − 1
(∆− 1)2

)

.

Proof
Consider That Ωn is a subset of the edge set of Γn obtained by choosing randomly each edge with
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independent probability p ≤ 1/2. Let Xn be the number of subsets of edges of Ωn that consist of
at least half the edges of a cycle. The expected value of Xn is :

Ep(Xn) =
∑

i≥d(Γn)

Ai

i∑

j=i/2

(
i

j

)

pj(1 − p)i−j

where Ai is the number of elementary cycles of length i. Hence,

Ep(Xn) ≤
∑

i≥d(Γn)

Ai2i[p(1 − p)]i/2

for any p ≤ 1/2. Therefore,

Ep(Xn) ≤ cε

∑

i≥d(Γn)

(
(∆ − 1 + ε)2

√
p(1 − p)

)i

.

It is routinely checked that whenever p < 1
2

(
1 −

√
1 − 1

(∆−1+ε)2

)
, then (∆− 1 + ε)2

√
p(1 − p) < 1,

so that limn→∞ Ep(Xn) = 0 whenever d(Γn) → ∞. And necessarily, if limn→∞ Ep(Xn) = 0 then
limn→∞ fΓn(p) = 0. !

Remark. It can be checked easily enough that the expected number of homological cycles of length
2i of a randomly chosen ∆-regular bipartite graph is (∆− 1)2i. Note that this means that random
∆-regular graphs have cycles of constant length. This must be avoided to obtain the conclusion of
proposition 2. Hence condition 1 in the proposition, which is satisfied by the Ramanujan graphs we
consider.

2 Ramanujan graphs

There are several ways to define the actual explicit constructions of Ramanujan graphs (given in
[1, 14, 15, 17, 18]). All these constructions can be described as q + 1-regular Cayley graphs over
PGL2(Fq′) or PSL2(Fq′), where q and q′ are two prime powers, and Fq′ is the finite field with q′

elements.

For our purposes it will be more convenient to use the quaternion description of these graphs. As
a matter of fact, by using the latter description we can relate the problem of counting the number
of cycles of a given length to the problem of estimating the number of solutions of some diophantine
equation.

Basically the construction of those Ramanujan graphs is done in two steps.
1. The first step consists of constructing the q+1-regular infinite tree in an arithmetic way by using
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quaternions.
2. One obtains finite Ramanujan graphs from this tree by taking suitable finite quotients of this
tree which do not create small cycles.

Let us see these constructions in more detail.

The construction of the infinite tree of degree q + 1

The construction of the infinite tree starts by considering the following set of quaternions S =
A1 + Ai + Aj + Aij, where A is an euclidean domain which will be either Z or Fq[X]. We will
denote by x the conjugate of the element x ∈ S, and by N(x) = xx ∈ A the norm of x. Then a
prime π is chosen in A : this is a prime number equal to q when A = Z, and X when A = Fq[X]
for odd q, and X + 1 for even q.

The basic step consists of setting up a set of q + 1 quaternions α1, α2, · · · , αq+1 of norm π such
that
1. every quaternion α of norm πn has a unique factorization

α = uπrαi1αi2 · · ·αim

where u is a unit (an element of norm 1 here), and 2r + m = n, and where the product of two
consecutive terms of the product αij and αij+1 never belongs to A.
2. for every αi, αi is equal to some ±αj

We refer to [15, 17, 18, 19] to see how this set of quaternions is obtained. This set now enables
us to construct the infinite q+1 regular tree as a Cayley graph. The group G from which this graph
is constructed is just the set of quaternions generated by the αi’s and we identify the quaternions
which differ by a multiplication of some ±πi. Let us denote by [α] the equivalence class associated
to α. This group is clearly generated by the [αi]’s and the inverse of [αi] is [αj ] where αj is the
quaternion such that αj = ±αi (since [αi][±αi] = [±αiαi] = [±π] = [1]). That the infinite Cayley
graph over G with generator set [α1], [α2], · · · , [αq+1] is indeed the q + 1-regular infinite tree is just
a consequence of the fact that every quaternion of norm πn has a unique factorization over the αi’s.

We have depicted such an example in figure 1, when there are 3 generators [α1], [α2], [α3] and we
have assumed that α1 = α2 and α3 = α3, in other words [α1]−1 = [α2] and [α3]−1 = [α3].

The finite Cayley graph

We obtain our Ramanujan graph by taking a finite quotient of this infinite tree, and this quo-
tient will be realized as a Cayley graph by choosing a suitable normal subgroup H of G of finite
index. One selects first a prime π′ of A which satisfies certain conditions (for more details see the
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Figure 1: the infinite tree

following section). H is defined as the set of classes [α] = [a0 + a1i + a2j + a3ij] for which a1, a2, a3

are multiples of π′. This set is clearly a normal subgroup for it can be seen as the kernel of the
homomorphism φ

φ : G → H(A/π′A)∗/Z

[α] #→ (α mod π′)Z

where H(A/π′A) denotes the ring of quaternions with entries in the field A/π′A, H(A/π′A)∗, the
invertible elements of this ring, and Z its central subgroup, which is {a ∈ A/π′A |a &= 0}.

One of the attractive features of this way of constructing a Cayley graph is that the study of the
number of cycles of a given length can now be expressed as a problem in number theory.

Counting Cycles of a given length

In order to bound the number of cycles of a given length in the finite Cayley graph which has
been constructed we can observe that

Fact 1 The number of elementary cycles of length l in a graph is less than the number of non-
backtracking closed walks of length l. In an undirected Cayley graph this is less than the number
of vertices v of the graph times the number of non-backtracking walks of length l which start at the
identity of the group and which go back to this vertex.

Fact 2 A non-backtracking walk of length l corresponds in the case described above to a sequence
αi1αi2 · · ·αil such that no consecutive terms are conjugate, and this non-backtracking walk returns
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to its starting point (is closed) if and only if the product [αi1 ][αi2 ] · · · [αil ] is an element of the
normal subgroup H, or what amounts to the same thing, iff the product αi1αi2 · · ·αil is of the form
a0 + a1i + a2j + a3ij where a1, a2, a3 are multiples of the prime π′ which defines H.

Let us notice now that the norm is multiplicative, and that this implies that the norm of a product
αi1αi2 · · ·αil is πl . Hence :

Fact 3 The number of non-backtracking closed walks of length l is less than

v #
{
(a0, a1, a2, a3) ∈ A4|N(a0 + ra1i + ra2j + ra3ij) = πl

}

The norm of a quaternion a0 +a1i+a2j +a3ij is a quadratic form in (a0, a1, a2, a3), and all that
we need now, is a tool bounding the number of solutions in A of a certain quadratic equation. There
are several methods which can be employed to estimate the number of solutions of the quadratic
equation which arises in our case. The most precise one, which uses the work of Drinfeld, Eichler,
and Igusa (see [4, 5, 12]) does not give enough information on the number of “small” cycles. We use
instead very simple (and classical) arguments (see [9] for example) to bound the number of solutions
of such equations, and this is obtained by the following lemma

lemma 1 Let A be the ring Z or Fq[X], R = A + Ai, where i is an algebraic integer of degree 2
over A (i.e i does not belong to A and satifies an equation i2 + ai + b = 0, with a, b ∈ A). Let i be
the other solution of this equation, and define the following automorphism of R, by x + yi = x+ yi,
and the multiplicative morphism N “the norm” from R to A by N(x) = xx. If R is a unique
factorization domain, then the number of solutions of the equation N(x) = c (the unknown is x,
and c is a given element of A) is Oδ(cδ) if A = Z, and Oδ(q

δ deg c) if A = Fq[X], and this for every
δ > 0.

See the appendix for a proof.

The bipartite cover

Actually, for the graphs we consider, we are able to give rather tight upper bounds on the car-
dinality of the set in fact 3, i.e. on the number of non-backtracking closed walks, only when their
length l is even. This approach works well when the Cayley graph is bipartite, because there are no
odd cycles. When this graph is not bipartite, we shall move around this difficulty by considering
its bipartite double cover.
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Definition Let Γ(V,E) be a graph with set of vertices V , and set of edges E. Its double cover Γ̂ is de-
fined by the set of vertices V̂ = V ×{0, 1}, and the set of edges Ê = {{(x, 0), (y, 1)} for {x, y} ∈ E}.

An attractive feature of this double cover is

Fact 4 The double cover of a graph Γ is
– connected iff Γ is connected and non bipartite,
– bipartite and has therefore only cycles of even length. Furthermore, the projection

V̂ −→ V

(x, i) #→ x

for i = 0, 1 induces a two-to-one correspondence between the non-backtracking closed walks of Γ̂ and
the non-backtracking closed walks of even length of Γ.

By taking double covers if need be, we shall look therefore for graphs that satisfy the conditions
of proposition 2 among bipartite graphs.

3 Estimation of the number of cycles in some Ramanujan graphs

We are going to show in this section that some of the Ramanujan graphs constructed in [15, 17, 18]
meet the hypotheses of proposition 2, which implies that the associated families of cycle codes are
optimal. We do not give all the steps involved in the construction of these graphs, and merely refer
to [15, 17, 18, 19] for further details. A rough description in the spirit of the general presentation of
section 2 will suffice for our needs. The parameters of these graphs which are relevant to counting
cycles are gathered in tableau format in figure 2.

3.1 The Ramanujan graphs constructed by Margulis and Lubotzky, Philipps,

Sarnak

They correspond to the choice A = Z. We denote these graphs by X p,q, where q denotes the odd
prime number chosen for π, and p the odd prime number chosen for π′. Now, upperbounding the
number of vertices v by p3, Fact 3 translates to

Fact 3’ The number of non-backtracking closed walks of length l in X p,q is less than

p3 #{(a0, a1, a2, a3) ∈ Z4|a2
0 + p2a2

1 + p2a2
2 + p2a2

3 = ql}.
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graphs constructed graphs constructed graphs constructed
in [15, 17] in [18] in [18]

A Z Fq[X], q = pn, F2n [X]
p odd prime

i2 = i + η,
H(A) i2 = j2 = (ij)2 = −1 i2 = η η is such that

= η is not a square in Fq X2 + X + η

A + Ai + Aj + Aij ij = −ji j2 = X − 1, ij = −ji is irreducible over F2n ,
j2 = X, ij = ji + j

α, a − bi − cj − dij a − bi − cj − dij (a + b) + bi + cj + dij

α = a + bi + cj + dij

N(α) a2 + b2 + c2 + d2 a2 − ηb2 a2 + ηb2 + ab

−(X − 1)(c2 − ηd2) +X(c2 + ηd2 + cd)
π odd prime number q X X + 1
π′ odd prime number p irreducible polynomial irreducible polynomial

g(X) ∈ Fq[X] g(X) ∈ F2n [X]
degree of the graph q + 1 q + 1 2n + 1
Number of vertices p(p2−1) if

(q
p

)
= −1 q3d−qd if

(
X

g(X)

)
= −1 23nd − 2nd

of the p(p2−1)
2 if

(q
p

)
= 1 q3d−qd

2 if
(

X
g(X)

)
= 1 d = deg g(X)

Ramanujan graph d = deg g(X)
bipartite yes if

(q
p

)
= −1 yes if

(
X

g(X)

)
= −1 never

no if
(q

p

)
= 1 no if

(
X

g(X)

)
= 1

Figure 2: Constructions of Ramanujan graphs : There are some additional constraints on π′ which
are not given here. We refer to [15, 17, 18] for the missing details.

By using lemma 1 it is straightforward to obtain a rather tight upper bound on the number of
solutions of this diophantine equation when the length of the cycles is even.

lemma 2 The number of non-backtracking closed walks of length 2l in X p,q is Oε(q + ε)2l for every
ε > 0.

Proof
Assume that a2

0 + p2a2
1 + p2a2

2 + p2a2
3 = q2l, then a2

0 ≡ q2l mod p2, and thus a0 ≡ ±ql mod p2

Therefore there at most /4ql/p20 choices for a0. Since p2a2
1 < q2l, there are at most /2ql/p0 choices

for a1.
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For fixed a0, a1, the number of choices we have for the couple (a2, a3) is not very large, because
a2

2 + a2
3 should be equal to q2l−a2

0−p2a2
1

p2 which is a number smaller than q2l

p2 , and from lemma 1 the
number of couples (a2, a3) which satisfy this inequality is Oε(q2l/p2)ε.

Therefore the total number of solutions is less than

/4ql/p20/2ql/p0Oε(q2l/p2)ε =
1
p3

Oε(q2l(1+ε)).

We conclude by applying fact 3’. !

Those graphs X p,q are bipartite if and only if q is not a quadratic residue modulo p, and have
in this case only cycles of even length whose numbers can be bounded with the previous lemma.
Moreover in this case the graphs X p,q have a very large girth which is 4

3 logq(p(p2 − 1)) + O(1).
When q is a quadratic residue modulo p, the graph is not bipartite, but its double cover X̂ p,q

has
still a large girth, namely 4

3 logq(p(p2 − 1)) + O(1).

Remarks

1. The key fact in lemma 2 has been observed in another setting by G. Davidoff and P. Sarnak
too (see [2]).

2. We wish to emphasise here that the results on the girth of X p,q in the non bipartite case which
can be found in the literature give only the lower bound 2

3 logq(p(p2 − 1)), so the result we
invoque here shows that in some sense we can “improve” substantially these graphs by taking
their double cover. We justify this by the fact that the double cover has only cycles of even
length, and that these project on X p,q to either cycles of the same even length or to cycles of
odd length half as long. The point is that the proof used in [15] for example, to show that
the girth in the bipartite case is bigger than 4

3 logq(p(p2 − 1)) depends only on the fact that
a cycle of even length cannot be shorter than this quantity, and therefore also gives a lower
bound on the length of the shortest cycle of even length when the graph is not bipartite. That
the girth is indeed 4

3 logq(p(p2 − 1)) + O(1) follows from a straightforward generalization of
results given in [17].

This leads to the the following result by upperbounding the number of vertices v by 2p3, applying
fact 1, and using the discussion given in the previous section under the heading “The bipartite cover”,
together with proposition 2.

Theorem 1 Let q be a fixed prime. Let X q = (X p,q) be the family of those X p,q for which
(

q
−
p

)
=
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−1. Let X̂ q = (X̂ p,q
) be the family of those X̂ p,q

for which
(

q
−
p

)
= 1. Then

θ(X q) = θ(X̂ q) =
1
2

(

1 −
√

1 − 1
q2

)

3.2 The case A = Fq[X], q odd prime power

The corresponding Ramanujan graphs have been constructed by Morgenstern (see [18]) and are
regular of degree q + 1. From now on, we consider such a graph obtained by choosing π′ = g(X) an
irreducible polynomial of degree k.

By using fact 3 given in section 2 and by using the fact that the groups over which these finite
Cayley graphs are defined have less than q3k elements, we obtain that the number N2l of non-
backtracking closed walks of length 2l satisfies

N2l ≤ q3k#
{
(a, b, c, d) ∈ (Fq[X])4|N(a + gbi + gcj + gdij) = X2l

}

≤ q3k#
{
(a, b, c, d) ∈ (Fq[X])4|a2 − ηb2g2 + (X − 1)g2(ηd2 − c2) = X2l

}
(1)

To obtain an estimation of the number of solutions of this equation, we use an upper bound on
the number of solutions in Fq[X] of the equation a2 − ηb2 = P , where the unknowns are a, b, and
P is a given polynomial of degree l. For that purpose we use the classical method which consists of
studying the ring R = Fq[X] + Fq[X]i. The crucial property of this ring is

lemma 3 R = Fq[X] + iFq[X] is an euclidean domain.

Proof Let φ(a+ bi) = deg
(
(a + bi)(a + bi)

)
= deg(a2 −ηb2). Since a2− b2η = 0 implies a = b = 0,

for a, b ∈ Fq[X], we deduce that φ(α) is nonnegative for all α &= 0, and this combined with the
relation φ(αβ) = φ(α) + φ(β) shows that R is a domain. To show that R is euclidean it remains to
prove that for all α and β in R such that φ(α) ≥ φ(β), there exists a γ in R such that φ(α− γβ) <

φ(β) or α = βγ.

Let a + bi = αβ and t = ββ. Carry out the usual euclidean division over Fq[X] of a and b by t :
a = q1t+ r1, b = q2t+ r2, with deg(r1),deg(r2) < deg(t). We claim that we can choose γ = q1 + q2i.
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This follows from

φ(α − βγ) + φ(β) = φ(αβ − ββγ)

= φ(a + bi − t(q1 + q2i))

= φ(r1 + r2i)

< 2 deg(t) = φ(β) + φ(β)

Hence φ(α − βγ) < φ(β). This calculation is valid as long as either r1 or r2 is different from 0. We
handle the case r1 = r2 = 0 by noticing that in such a case αβ = a + bi = tγ = (ββ)γ = (βγ)β.
Therefore α = βγ. !

The ring R is therefore an unique factorization domain. The units of R are exactly the invertible
elements of R, which is the set I = Fq +Fqi−{0}. By using lemma 1 we obtain that the number of
solutions (x, y) in Fq[X] × Fq[X] of the equation x2 − ηy2 = P , where P is some given polynomial
of Fq[X] is

Oε(qε deg P ) (2)

From this we can give an upper bound on the number of solutions (a, b, c, d) of

a2 − ηb2g2 + (X − 1)g2(ηd2 − c2) = X2l

by noticing that

• deg
(
a2 − ηb2g2 + (X − 1)g2(ηd2 − c2)

)

= max (2 deg a, 2(k + deg b), 2(k + deg c) + 1, 2(k + deg d) + 1),
and so l− k ≥ deg(b), there are no more than ql−k+1 choices for b. The equality on the degree
makes use of

x2 − ηy2 = 0 iff x = y = 0

for x, y ∈ Fq, and therefore deg(a2 − b2η) = 2max(deg a,deg b) for a, b ∈ Fq[X].

• a2 ≡ x2l (mod g2) , and therefore a ≡ ±X l (mod g2), thus a can not take on more than
2ql−2k+1 different values (a is of degree l at most).

• Once a and b are chosen ηd2 − c2 has to be equal to some polynomial of degree at most
2l− 2− 2k and from (2) we deduce that the number of choices left for (c, d) is Oε(qε(2l−2−2k))

This yields that the number of non backtracking closed walks of length 2l of our Ramanujan
graph is Oε(q + ε)2l (for every ε > 0). We now have to treat two cases separately
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– either our graph is bipartite (this is if X is not a quadratic residue modulo g(X)). The girth of
our graph is in this case larger than 4/3 logq

(
q3 deg(g)−qdeg(g)

2

)
+ 1 (see theorem 4.1.3 of [18]).

– or our graph is not bipartite (if X is a quadratic residue modulo g(X)). Then one can prove
easily (by using the argument given in the proof of the lower bound on the girth of these graphs,
in theorem 4.13 in [18]) that the bipartite cover of our graphs has a girth which is greater than
4/3 logq

(
q3k−qk

2

)
+ 1 too. We can now conclude by using proposition 2 :

Theorem 2 Let X g,q be the Ramanujan graph of degree q + 1 considered in this section obtained
from the choice π′ = g(X). Let X q be the family of graphs X g,q which are bipartite, and Yq be the
family of double covers X̂ g,q

of all graphs X g,q which are not bipartite.

θ(X q) = θ(Yq) =
1
2

(

1 −
√

1 − 1
q2

)

.

3.3 The case of A = F2n [X]

The corresponding Ramanujan graphs have been constructed by Morgenstern (see [18]) and are
regular of degree 2n + 1. From now on we consider such a graph obtained by choosing π′ = g(X)
an irreducible polynomial of degree k. We let q = 2n and we denote this graph by X g,q

By using fact 3 given in section 2 we see that the number N2l of non-backtracking closed walks
of length 2l of these graphs X g,q verifies :

N2l ≤ q3k #
{
(a, b, c, d) ∈ (Fq[X ])4|N(a + gbi + gcj + gdij) = (X + 1)2l

}

≤ q3k #
{
(a, b, c, d) ∈ (Fq[X ])4|a2 + gab + ηb2g2 + Xg2(c2 + cd + ηd2) = (X + 1)2l

}
(3)

We proceed as for the graphs of odd degrees :
we obtain first an estimation of the number of solutions in Fq[X] of the equation a2 + b2η +ab = P ,
where the unknowns are a, b, and P is a given polynomial. It can be shown in a similar way as
lemma 3 that R = Fq[X] + iFq[X] is an euclidean domain (the only difference being that we use
this time the remark a2 + ηb2 + ab = 0 iff a = b = 0 for a, b ∈ F2n [X]). Hence by lemma 1 the
number of solutions of the aforementioned equation is Oε(qεdeg(P )) for all ε > 0. This yields the
upper bound which holds for every ε > 0,

N 2l < Oε

(
(q + ε)2l

)
.

14



It can be shown that the girth of the bipartite cover X̂ g,q
is not less than 4

3 logq(q3 deg(g)−qdeg(g))
(by using the same proof technique as in theorem 4.13 of [18] and by using the fact that there are
only cycles of even length). We conclude as before.

Theorem 3 If Ŷq is the family Ŷq = (X̂ g,q
), then

θ(Ŷq) =
1
2

(

1 −
√

1 − 1
q2

)

.
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APPENDIX : Proof of the Main Lemma

In this section we prove lemma 1.

Recall here a few facts about unique factorization domains :
- there exists a subset E of the unique factorization domain R, called the units, which is the set
of elements of R which divide every other element of the domain. In our case this coincides with
the set of elements of R of norm a unit of A. These units define an equivalence relation over the
domain : two elements x and y are said to be associated if and only if there exists a unit u such
that x = yu.
- there exists a subset Π of elements of the domain called the primes, i.e the subset of elements
not in E which are not a product of two non-units elements. The set of associated elements to a
prime is a set of prime elements, and let us choose for each such class a representative element in
an arbitrary way.
In this case every element of the unique factorization domain can be written uniquely (up to re-
ordering the factors) as:

upα1
1 pα2

2 · · · pαn
n

where the pi’s are representative elements of primes, and u is a unit.

In our case we will distinguish between sets of associated primes which contain conjugate pairs
of primes, and sets of associated primes which do not contain such conjugate pairs of primes. In
what follows
- u will always denote a unit,
- qi will always denote a representative of a set of associated primes which contains a conjugate pair
of primes,
- and pi a representative of a set of associated primes which does not contain conjugate pairs of
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prime. We will choose the pi’s such that every pi is a representative prime of a set of associated
primes too.

Let us factorize :
c = upα1

1 pα2
2 · · · pαm

m p1
β1p2

β2 · · · pm
βmqγ1

1 qγ2
2 · · · qγn

n

(where some of the powers can be 0) Since c is in A, c is in A, and by the unicity of factorization
into primes we get that αi = βi, for every i. If there exists x ∈ R such that xx = c, then we can
factorize x and x by using the same primes pi’s, the pi’s and the qi’s.

x = u′p
α′

1
1 p

α′
2

2 · · · pα′
m

m p1
β′
1p2

β′
2 · · · pm

β′
mq

γ′
1

1 q
γ′
2

2 · · · qγ′
n

n

And therefore
x = u′′p1

α′
1p2

α′
2 · · · pm

α′
mp

β′
1

1 p
β′
2

2 · · · pβ′
m

m q
γ′
1

1 q
γ′
2

2 · · · qγ′
n

n

Due to the unicity of factorization into primes, we obtain that for every i

α′
i + β′

i = αi and γi = 2γ′
i (4)

Hence the number of solutions of the equation xx = c is equal to the number of ways of choosing
an x whose factorization satisfies the conditions (4), the only choice is in fact the choice of u and
the choice of the α′

i in {0, 1, · · · , αi}. In order to get an upper bound on this number let c′ =
pα1
1 pα2

2 · · · pαm
m p1

β1p2
β2 · · · pm

βm = (p1p1)α1(p2p2)α2 · · · (pmpm)αm and let us notice that the number
of choices for the α′

i’s is exactly the number of ways of choosing y = (p1p1)α
′
1(p2p2)α

′
2 · · · (pmpm)αm

which divide c′. Since c′ and y are in A this coincides with the number of divisors (in A) of the
element c′ – where we do not not distinguish between divisors which differ by a multiplication of an
invertible element of A. This number of divisors is d(c′) in the case A = Z, that is the number of
positive integers dividing c′, and is equal to the number of polynomials whose leading coefficient is
1 which divide c′, when A = Fq[X]. From Theorem 315 in chapter XV III of [11] we get an upper
bound on d(c′) of the form Oδ(c′δ) for all δ > 0, and we deduce from that the number of solutions
s of the equation xx verifies (for every δ > 0)

s = #E d(c′)

= 4d(c′)

= Oδ(cδ)

We have similar results when A = Fq[X]. In this case E = {u + iv|u, v ∈ Fq, (u, v) &= (0, 0)},
therefore #E = q2 − 1, and the number of divisors of c′, is Oδ(qδ deg c′). This is obtained by a
straightforward generalisation of Theorem 316 in [11] to polynomials :
if a multiplicative function f : Fq[X] #→ R satisfies f(pm) → 0 for every irreducible polynomial p
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when m deg(p) → ∞, then f(a) =→ 0 when deg(a) → ∞.
We let f(x) = q−δ deg(x)d(x) which is clearly multiplicative, and satisfies f(pm) = (m+1)q−δm deg p →
0 as m deg p → ∞ for an irreducible polynomial p. We can therefore apply the aforementioned
generalization and deduce f(a) = O(1) and therefore d(a) = Oδ(qδ deg(a)).
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