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Abstract

It is well known that there is a simple equivalence between isoperimetric inequalities and
certain analytic inequalities in Riemannian manifolds (see Rothaus, J. Funct. Anal. 64 (1985)
296–313). We generalize these results to graphs, and use them to derive isoperimetric inequalities
for product graphs. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Our main concern in this article is to get useful tools to obtain a ‘good’ edge-
isoperimetric inequality of a graph G with vertex set V and edge set E, namely a
function F such that for every nonempty subset of vertices 


|@
|¿F(|
|)
where @
 (the boundary of 
) denotes the set of edges of the graph connecting vertices
of 
 with vertices of its complement �
 = V\
. We aim at obtaining isoperimetric
inequalities which can be sharp for certain subsets of vertices. These subsets are in this
case isoperimetric sets, i.e. sets of given size which have the smallest edge-boundary.
Sharp isoperimetric inequalities are known for only a few classes of graphs. Basi-

cally, the best isoperimetric function (i.e. F(k) = min|
|=k |@
|) is known for some
trivial examples like

The complete graph Kn |@
|= (n− |
|)|
|.
The cycle Cn |@
|¿2 (for |
| 6= n).
The in�nite d-regular tree |@
|¿(d− 2)|
|+2, (the isoperimetric sets are balls of

some radius l with possibly additional vertices on the sphere with the same centre and
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radius l+1, and it is straightforward to check in this case that for these sets we have
|@
|= (d− 2)|
|+ 2).
For these examples getting the best isoperimetric function (or the isoperimetric sets)

follows from straightforward combinatorial arguments. Much more is involved in order
to get the best isoperimetric function for more complicated graphs. Basically, all the
other (nontrivial!) examples where the best isoperimetric function is known are some
families of cartesian products of graphs (an exception being the Johnson graph [27]).
The cartesian product of two graphs G and H is a graph whose vertex set is the
product V (G) × V (H) and two vertices (g; h) and (g′; h′) are adjacent if and only if
h= h′ and gg′ is an edge of G, or if g= g′ and hh′ is an edge of H . Here are a few
examples where good isoperimetric inequalities are known:

The n-cube Qn |@
|¿log2(|V |=|
|)|
|.
The grid [k]n, |@
|¿min{d|
|(d−1)=dkn=d−1|d= 1; 2; : : : ; n}, when |
|6kn=2.
The lattice Zn |@
|¿2n|
|(n−1)=n.
The result on the n-cube follows from the work of Bernstein, Harper, Hart and

Lindsey [5,25,26,29], (we refer to these articles for a much sharper statement, namely
the determination of the isoperimetric sets; indeed the inequality given above is only
tight when 
 is a subcube, and is a good approximation for the other sets which are
not of size 2l). The result on the lattice can be found in [1]; again the inequality
above is only an approximation of the best isoperimetric inequality which is tight
when 
 is an n-dimensional cube. The result on the grid (i.e. the cartesian product
of n paths of length k) follows from the work of Bollobas and Leader ([11]) (see
also [10] for a related result on a torus, and [1,7]). They make use of the idea of
compressing a set 
 to obtain a new set 
′ with the same cardinality and |@
′|6|@
|.
For more information about isoperimetric problems we refer to the surveys [6,8] which
are devoted to edge-isoperimetric problems.
Besides these combinatorial methods, there are eigenvalue techniques which give in

general a good isoperimetric inequality. For instance (see [2]), if we denote by � the
second smallest eigenvalue of the Laplacian of G (which is a square matrix (4i; j)i; j∈V

such that 4ii is the degree of vertex i; 4ij=−1 for i 6= j i� there is an edge between
i and j, and 4ij = 0 otherwise) then we have

|@
|¿�
|
‖ �
|
|V | :

For a random d-regular graph it follows from the work of Friedman [20] and Bollobas
[12] that this is a good approximation of the best isoperimetric function. Furthermore,
this bound is quite practical, in the sense that � can be estimated within an arbitrary
precision � in polynomial time. Nevertheless for a given family of graphs the above
inequality can be far from the best bound (for example for the n-cube �=2, the bound
is tight only if |
| = 2n−1 and is quite weak in comparison with the bound given
previously for small sets 
).



J.-P. Tillich /Discrete Mathematics 213 (2000) 291–320 293

To enlarge the set of tools for obtaining isoperimetric inequalities for a graph, we
are going to mimick the tools which were quite successful to study isoperimetric prob-
lems in Rn (or even more generally for Riemannian manifolds). Perhaps the most
fundamental tool in this setting is the equivalence observed by Federer and Fleming
(see [19]) between certain Sobolev inequalities and isoperimetric inequalities. This has
been generalized for Riemannian manifolds and for a much wider range of inequalities
in [33] for example. We aim here at generalizing these results to graphs, and deduce
from this equivalence isoperimetric inequalities for product graphs. It should be noted
that this kind of approach has been used before (for example [13,16,17,35]) in or-
der to study Markov chains or isoperimetric numbers of graphs. For instance in [35]
the author generalizes the equivalence of Sobolev inequalities with a certain kind of
isoperimetric inequality for Riemannian manifolds to Markov chains, in order to get
information on their rate of convergence.
It might be insightful to review some of the results obtained by Federer and Fleming.

For example, they were able to prove that if M is some subdomain of Rn , then if we
denote by:

• V the (n-dimensional) volume and A the area (i.e. the (n− 1)-dimensional volume)
in Rn,

• i(M) the isoperimetric constant of M which is de�ned as

inf

⊂M;V (
)6V (M)=2

A(@
)
V (
)

;

then

i(M) = inf
f∈C∞

c (M)

∫
M |∇f|

inf a
∫
M |f − a| ;

where C∞
c (M) denotes the set of compactly supported C∞ functions on M .

It has been noted several times (basically already in [35] and then in [13,15,16,22])
that this can be generalized to a graph G with vertex set V and edge set E with

i(G) = inf
f

∑
xy∈E |f(x)− f(y)|

inf a
∑

x∈V |f(x)− a| ;

where

i(G) = inf

⊂ V;|
|6|V |=2

|@
|
|
| :

We will see in what follows, that this phenomenon can be generalized to other ways
of de�ning the isoperimetric number of a graph and leads to interesting results about
isoperimetric inequalities of graph products.
Moreover we will show that by using this equivalence between analytic inequalities

and isoperimetric inequalities, and by �nding analytic inequalities which display a
‘nice’ behaviour with respect to the cartesian product, isoperimetric inequalities can
be derived for a cartesian product of graphs for which we already have a certain
kind of isoperimetric inequality. As an application of our results we will rederive the
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isoperimetric inequalities obtained for the n-cube and the lattice Zn, respectively, and
show that they simply follow, respectively, from |@
|¿|
|log2(|V |=|
|) which holds
for the 2-point graph, and |@
|¿2 which holds on Z.
One of our results obtained by this approach, and which seems to be the most useful

in general for product graphs is the following.

Theorem 1. For a graph G with vertex set V we denote by l(G) the minimum of
|@
|=|
|ln(|V |=|
|) over all nonempty subsets of vertices 
 of G. Then for any carte-
sian power Gn we have

l(G) = l(Gn):

Moreover; let 
 be a subset of vertices of G for which |@
|=|
|ln(|V |=|
|) is minimum;
then 
 is clearly an isoperimetric set for G; and all the sets 
(k;n) = 
k × Vn−k for
06k6n are isoperimetric sets for Gn.

We use here the convention that 
k × Vn−k is equal to 
n when k = n, and to Vn

when k = 0. This theorem is proved in Section 4. We will see in Section 4 that we
can obtain with this theorem good isoperimetric inequalities for product graphs, and
that we can also �nd some isoperimetric sets with it.

Notation. Throughout this paper we will deal with the cartesian product G1 × G2 of
two graphs G1 and G2, and with functions on two variables f(x1; x2) de�ned on the
vertex set V1×V2 of the cartesian product (Vi being the vertex set of Gi for i ∈ {1; 2}).
We denote by f(·; x2) the function de�ned on V1 which associates with x1 the number
f(x1; x2): f(x1; ·) is de�ned on V2 and associates f(x1; x2) with x2.

From now on we are going to note
∫
E |∇f|p the sum

∑
xy∈E |f(x) − f(y)|p. We

use this slightly unconventional notation for two purposes:

• �rst, we want with this notation to put the stress on the fact that there is for all the
inequalities in this article involving

∑
xy∈E |f(x)−f(y)|p a corresponding inequality

in Rn (or more generally in Riemannian geometry) involving
∫
M |∇f|p.

• second, by viewing a graph G as a metric space G, i.e. as a set of vertices glued
together with edges considered as intervals of length 1 (see [21,22]) it is readily
checked that if we extend f to a function f̃ de�ned over the vertices and the edges,
then

∫
G
|∇f̃|p¿∑xy∈E |f(x) − f(y)|p with equality i� f̃ is an edgewise linear

function. Since we will be only interested in lower bounds on
∑

xy∈E |f(x)−f(y)|p
we can look instead for lower bounds on

∫
G
|∇f̃|p involving only the values of f̃

on the vertices, that is f. In a sense, we can always assume in what follows that∫
E |∇f|p coincides with a continuous integration of f on the set of edges of the
graph. It appears that by doing so, several tools in Riemannian geometry are more
easily generalized (see [22]).
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We will use several times for a function f de�ned on the set of vertices of the
graph, its average or expected value, that is (1=|V |)∑x∈V f(x); this value is denoted
by E(f).

2. The equivalence of a certain kind of analytic inequality with an isoperimetric
inequality

Assume now that the following inequality holds for every function f de�ned on the
vertex set V of a given graph with edge set E:∫

E
|∇f|¿CF(f); (1)

where F is some function of f. We will prove that with mild conditions on F such
an analytic inequality is indeed equivalent to the isoperimetric inequality

|@
|¿C|
|F; (2)

where the size |
|F of 
 is measured by F(�
), �
 is the characteristic function
of 
.

Remark. (1) The example we have seen in the introduction falls in this category:
we let F(f) = inf a

∑
x∈V |f(x) − a|. It is easy to check that |
|F is, in fact, equal

to min{|
|; | �
|}, and that the largest constant C for which (2) holds is equal to the
isoperimetric number i(G) of the graph.
(2) It is straightforward to check that∫

E
|∇�
|= |@
|

which holds for every subset of vertices. This implies, with the hypotheses on F we
have in mind, that the minimum in (1) is actually attained when f is equal to some
characteristic function �
.

The proof of this equivalence relies on a summation trick which is quite standard in
the setting of Riemannian manifolds, and which is called the co-area formula (see [14,
Chapter IV, Section 1]). For graphs this trick has been used, for example, to derive
Cheeger-like inequalities (see [18] for example)

Lemma 1 (Co-area formula). Let f be a nonnegative function acting on the vertices
of a graph with edge set E, and 
t = {x ∈ V ;f(x)¿t}.∫

E
|∇f|=

∫ ∞

0
|@
t | dt =

∫ ∞

0

∫
E
|∇�
t | dt:

Proof. There are two ways of proving the co-area formula:
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Fig. 1.

• either we use the co-area formula for Riemannian manifolds, and use the fact that∫
E |∇f| has a ‘continuous’ interpretation, as

∫
G
|∇f̃| where f is extended to an

edgewise linear function f̃ over the edges (see [22]), or we use the standard com-
binatorial way of proving it, which goes as follows. Let �0 = 0¡�1¡ · · ·¡�N be
the sequence of all values of f, and At the set of vertices i such that f(i)¿�t .∫

E
|∇f|=

N∑
t=1

∑
f(i)=�t

∑
j∼i;f( j)¡�t

f(i)− f(j): (3)

Assume that f(i) = �t and f(j) = �t−u, for some u ∈ {1; 2; : : : ; t}. Then f(i) −
f(j) = (�t − �t−1) + · · ·+ (�t−u+1 − �t−u). Substituting into (3), and noting that the
edge ij is in all subsets @Ak (k ∈ {t − u+ 1; : : : ; t}) (see Fig. 1 above)we obtain

∫
E
|∇f|=

N∑
t=1

|@At |(�t − �t−1) =
∫ ∞

0
|@
t | dt:

The second part of the lemma follows from the second remark above.

From now on F will denote a functional which meets at least one the following
properties:

• F(f) is a semi-norm.
• F(f) can be expressed as

(QL) F(f) = sup
(u;v)∈V

{∑
x∈V

f+(x)u(x) +
∑
x∈V

f−(x)v(x)

}
;

where f+ = max(f; 0), f− = max(−f; 0) and V is a set of pairs of functions (u; v)
acting on the set of vertices of G. We say that F admits a (QL) (i.e. =quasi-linear)
representation. The last expression may seem little arti�cial and is a generalization of
the functionals F which can be written as F(f) = supu∈U

∑
x∈V u(x)f(x). When a

functional admits such a representation, it is called the quasi-linearized form of F and
many interesting inequalities involvingF can be derived from this form (see Chapter 1,
Section 19 in [4]).
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Theorem 2. Assume that F is either a semi-norm or has a (QL) representation. The
necessary and su�cient condition that

∫
E |∇f|¿CF(f) for all functions f is that

|@
|¿C|
|F for all subsets 
 of the graph.

Proof. That the semi-norm property implies the theorem has been proved in [22]. The
proof that the second kind of property on F implies the theorem is rather similar to
the proof where F is a semi-norm, and we will only prove this second case here, i.e.
we assume

F(f) = sup
(u;v)∈V

{∑
x∈V

f+(x)u(x) +
∑
x∈V

f−(x)v(x)

}
:

If
∫
E |∇f|¿CF(f) for all functions f then clearly |@
|¿C|
|F for all subsets 
 of

the graph (put f= �
 and note that |@
|=
∫ |∇�
|). Let us prove the converse. First,

let us notice that∫
E
|∇f|=

∫
E
|∇f+|+

∫
E
|∇f−|:

Note that in order to prove this equality, it is su�cient to prove it when the graph has
only one edge; this is readily veri�ed. We use the co-area formula with f+ and f−

to obtain∫
E
|∇f+|=

∫ ∞

0
|@
+t | dt;∫

E
|∇f−|=

∫ ∞

0
|@
−

t | dt:

Here 
±
t = {x ∈ V |f±(x)¿t}. Therefore for every (u; v) ∈ V we have∫
E
|∇f| =

∫ ∞

0
|@
+t | dt +

∫ ∞

0
|@
−

t | dt

¿C
{∫ ∞

0
|
+t |F dt +

∫ ∞

0
|
−

t |F dt
}

¿C
∫ ∞

0


∑

x∈
+t

u(x) +
∑
x∈
−

t

v(x)


 dt

¿C

{∑
x∈V

f+(x)u(x) +
∑
x∈V

f−(x)v(x)

}
:

Hence,∫
E
|∇f|¿CF(f):
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There are quite a few functionals F which meet this property and which are strongly
related to known de�nitions of the isoperimetric number of a graph.
Besides F(f)= inf a

∑
x∈V |f(x)− a| that we have already seen, let us mention the

following examples

Example 1. F(f) =
∑

x∈V |f(x)− E(f)| with E(f) = (1=|V |)∑x∈V f(x). This func-
tional is clearly a semi-norm, but it can also be noticed that F admits a (QL) rep-
resentation, F(f) = supu∈U

∑
x∈V f(x)u(x) where U is the set of functions satisfying

E(u) = 0 and sup u− inf u62 (see the appendix Section A). Here |
|F=2|
‖ �
|=|V |;
and therefore,

∀f;
∫
E
|∇f|¿C

∑
x∈V

|f(x)− E(f)| ⇔ ∀
; |@
|¿2C|
‖
�
|

|V | :

Example 2. F(f)=(1=|V |)∑x;y∈V |f(x)−f(y)|: This functional is also a semi-norm.
Let us note that |
|F = 2|
‖ �
|=|V | coincides with the previous de�nition and yields
the equivalence

∀f;
∫
E
|∇f|¿C

1
|V |

∑
x;y∈V

|f(x)− f(y)| ⇔ ∀
; |@
|¿2C|
‖
�
|

|V | :

Example 3. F(f)= {∑x∈V |f(x)|p}1=p with 16p6∞. This functional arises in iso-
perimetric inequalities in in�nite graphs (see Section 5). This functional is a norm,
but it can also be noted that F(f) = supu∈U

∑
x∈V f(x)u(x) where U is the set of

functions satisfying
∑

x∈V |u(x)|q61, where q is the dual exponent (i.e. 1=p+1=q=1),
see the appendix for a proof. Here we have the equivalence:

∀f;
∫
E
|∇f|¿C

{∑
x∈V

|f(x)|p
}1=p

⇔ ∀
; |@
|¿C|
|1=p:

Example 4. F(f) = inf a{
∑

x∈V |f(x)− a|p}1=p with 16p6∞. This is a generaliza-
tion of the aforementioned functional F(f)= inf a

∑
x∈V |f(x)− a| which corresponds

to the usual de�nition of the isoperimetric number, and has been used
in [17] for instance. This functional is a semi-norm, but it can also be noted that
F(f)=supu∈U

∑
x∈V f(x)u(x) where U is the set of functions satisfying E(u)=0 and∑

x∈V |u(x)|q61, where q is the dual exponent (i.e. 1=p+ 1=q= 1). The proof of this
fact is in the appendix. It can be veri�ed (see [22] for instance) that inf a{

∑
x∈V |f(x)−

a|p}1=p is attained at any value a such that
∑

x∈V sign(f(x) − a)|f(x) − a|p−1 = 0.
Hence |
|F = (|
|1−q + |V\
|1−q)−1=q. Here we have the equivalence

∀f;
∫
E
|∇f|¿C inf

a

{∑
x∈V

|f(x)− a|p
}1=p

⇔ ∀
;

|@
|¿C(|
|1−q + |V\
|1−q)−1=q:
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Example 5.

F(f) =
∑
x∈V

|f(x)| ln |f(x)|∑
x∈V |f(x)| + ln|V |

∑
x∈V

|f(x)|=
∑
x∈V

|f(x)| ln |f(x)|
E(|f|) :

This functional has a (QL) representation since F(f)=supu∈U
∑

x∈V |f(x)|u(x) where
U is the set of functions satisfying

∑
x∈V e

u(x)6|V | (we can even choose the set of
functions such that

∑
x∈V e

u(x) = |V |, that is such that E(eu) = 1). The proof of this
statement is also in the appendix. Here |
|F = |
| ln (|V |=|
|) and we obtain the
following equivalence:

∀f;
∫
E
|∇f|¿C

∑
x∈V

|f(x)| ln |f(x)|
E(|f|) ⇔ ∀
; |@
|¿C|
| ln

( |V |
|
|
)

:

3. Analytic inequalities which are ‘stable’ with respect to graph products

3.1. Motivation

It has been observed several times (see [16,30,34] for example), that the isoperi-
metric number i(G) of a product of graphs G = G1 × G2 × Gk is strongly related to
the isoperimetric numbers i(G1), i(G2); : : : ; i(Gk). For instance, when the isoperimetric
number of a graph with vertex set V is de�ned by min
⊂ V ;|
|6|V |=2 |@
|=|
|, we have
the straightforward inequality (see for example [30])

i(G)6min{i(G1); i(G2); : : : ; i(Gk)}
(it su�ces to consider subsets of vertices of G of the form X (i) = V1 × V2 × Vi−1 ×
Xi × Vi+1 · · ·Vk where the Vj’s are the vertex sets of the Gj’s and Xi is a subset of
vertices of Gi such that i(Gi) = |@Xi|=|Xi| and to notice that |@X (i)| = |@Xi|�j 6=i|Vj| =
(|@Xi|=|Xi|)|X (i)|= i(Gi)|X (i)|).
Unfortunately, there are graphs G and H for which i(G×H)¡min{i(G); i(H)}, see

for instance [30]. Nevertheless, a recent result of Chung and Tetali [16] (improving
upon an earlier result of Houdr�e and Tetali, see [28] where these authors give a slightly
weaker statement with a very interesting proof) shows that the di�erence between
both terms cannot be too large, more precisely if we denote by G the graph product
G1 × G2 × · · · × Gk then

1
2 mini

i(Gi)6i(G)6min
i

i(Gi):

We will show now how to rederive this result (actually with a slight improvement
on the �rst inequality) by choosing another de�nition of the isoperimetric number of
a graph G with vertex set V , namely

i′(G) = min



{ |@
‖V |
2|
‖ �
|

}
:

The attractive feature of this isoperimetric number is:
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Proposition 1.

i′(G × H) = min{i′(G); i′(H)}:

From the observation

i(G)
2

¡i′(G)6i(G);

we obtain

1
2 mini

i(Gi)¡i(G)6min
i

i(Gi);

which improves little on Chung and Tetali’s result.
To prove this proposition we will proceed by using the relationship between ana-

lytic and isoperimetric inequalities of Section 2. More generally, we use the following
technique (which has also been used by Chung and Tetali in [16]):

1. We �rst use the results of Section 2 to �nd which kind of analytic inequality is
equivalent, or nearly equivalent, to the isoperimetric inequality we consider.

2. Show that when we have such an analytic inequality for two graphs G and H , we
can deduce an analytic inequality of the same kind for G × H . This is not always
the case but happens for a very large class of functionals (see the next subsection).

3. Use the results of Section 2 again, to translate the analytic inequality obtained for
G × H in terms of an isoperimetric inequality for G × H .

We will show that some interesting results about the isoperimetric numbers of graph
products can be obtained from this technique.
Our �rst task now is to �nd a way to derive an analytic inequality on the product

G = G1 × G2, when we have two analytic inequalities for the graphs G1 and G2. Let
us bring in a few notations. Let V; V1; V2 be the vertex sets of G;G1; G2, and E; E1; E2
the set of edges of these graphs. An analytic inequality for the graph G involves a
function f on V , such a function can be considered as a function of two variables
f(x1; x2) where x1 ∈ V1 and x2 ∈ V2. It will be quite useful in what follows to consider
the functions of a single variable f(x1; ·), which associates with a vertex y in V2 the
number f(x1; y), and f(·; x2), which associates with a vertex y in V1 the number
f(y; x2). First let us note that for any p¿ 0:

Lemma 2.∫
E
|∇f|p =

∑
x1∈V1

∫
E2
|∇f(x1; ·)|p +

∑
x2∈V2

∫
E1
|∇f|(·; x2)|p:

Proof. E can be partitioned into E′
1 ∪ E′

2 where E′
1 is the set of edges of the form

(x1; y) − (y1; y), and E′
2 the set of edges of the type (y; x2) − (y; y2). The equality
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above follows from∫
E′
2

|∇f|p =
∑
x1∈V1

∫
E2
|∇f(x1; ·)|p;

∫
E′
1

|∇f|p =
∑
x2∈V2

∫
E1
|∇f(·; x2)|p:

A straightforward utilization of the previous lemma gives:

Lemma 3. If there exist two constants C1 and C2; such that we have for every f1
and f2; acting on the set of vertices V1 and V2; respectively;∫

E1
|∇f1|¿C1

1
|V1|

∑
x;y∈V1

|f1(x)− f1(y)|;

∫
E2
|∇f2|¿C2

1
|V2|

∑
x;y∈V2

|f2(x)− f2(y)|;

then for every function f on V = V1 × V2 we have∫
E
|∇f|¿min{C1; C2} 1|V |

∑
x;y∈V

|f(x)− f(y)|:

Proof. From Lemma 2 we know that∫
E
|∇f|=

∑
x1∈V1

∫
E2
|∇f(x1; ·)|+

∑
x2∈V2

∫
E1
|∇f(·; x2)|:

By using the �rst hypothesis we have∑
x1∈V1

∫
E2
|∇f(x1; ·)|¿ C2

|V2|
∑
x1∈V1

∑
x2 ;y2

|f(x1; x2)− f(x1; y2)|

¿
C2
|V |

∑
x1 ;y1∈V1

∑
x2 ;y2

|f(x1; x2)− f(x1; y2)|:

Similarly,∑
x2∈V2

∫
E1
|∇f(·; x2)|¿ C1

|V |
∑

x2 ;y2∈V2

∑
x1 ;y1

|f(x1; y2)− f(y1; y2)|:

Therefore by summing these two inequalities, and by using the triangle inequality∫
E
|∇f|¿ min(C1; C2)

|V |
∑

x1 ;y1∈V1;x2 ;y2∈V2

|f(x1; x2)− f(x1; y2)|

+|f(x1; y2)− f(y1; y2)|

¿
min(C1; C2)

|V |
∑

x1 ;y1∈V1;x2 ;y2∈V2

|f(x1; x2)− f(y1; y2)|:
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We are ready now to prove Proposition 1.

Proof of Proposition 1. From Example 2 given in Section 2, and the previous lemma
we deduce that

i′(G)¿min{i′(G1); i′(G2)}:

The converse follows by considering a set of vertices of the form X = X1 × V2 where
i′(G1) = |V1‖@X1|=2|X1‖V1\X1|. It is readily seen that

|V1‖@X1|
2|X1‖V1\X1| =

|V‖@X |
2|X ‖V\X |¿i′(G):

Similarly i′(G2)¿i′(G).

There is a corollary to Proposition 1, namely:

Corollary 1. Let VG; VH ; VG×H be the vertex sets of G;H;G×H . If i′(G)6i′(H) and
if 
 is a set such that i′(G) = |VG‖@
|=2|
‖VG\
|; then

i′(G × H) =
|VG×H‖@(
 × VH )|

2|
 × VH‖VG×H\(
 × VH )| :


 × VH is therefore an isoperimetric set of G × H .

This is a consequence of Proposition 1 and the calculation at the end of the proof
of Proposition 1.

3.2. Some other analytic inequalities which are stable with respect to the cartesian
product

It can be argued now that the reason for i′(G×H)=min{i′(G); i′(H)} is actually the
fact that the inequality

∫
E |∇f|¿C(1=|V |)∑x 6=y |f(x)−f(y)| is stable with respect to

the usual cartesian product of graphs (SWRCP in short). By this we mean an inequality∫
E
|∇f|¿F(f)

such that if it holds for all functions de�ned on the vertex set of a graph G1 and all
functions de�ned on the vertex set of a graph G2, then it also holds for all functions
de�ned on the vertex set of G = G1 × G2. One might wonder whether there are other
analytic inequalities of the kind

∫
E |∇f|p¿F(f) which display the same behaviour,

and draw some consequences on the associated isoperimetric inequalities.
We now give a su�cient condition for such an inequality to be SWRCP.
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Proposition 2. The inequality
∫
E |∇f|p¿F(f) is SWRCP if for every function

f(x1; x2) de�ned on V = V1 × V2; a product of vertex sets of two graphs G1 and
G2; we have

(P) F(f)6
∑
x1∈V1

F(f(x1; ·)) +
∑
x2∈V2

F(f(·; x2)):

We say in this case that F satis�es property (P).

Proof. Let us denote by Ei the edge set of the graph Gi (i ∈ {1; 2}), and let f be a
function de�ned on V . Assume that we have

∫
Ei
|∇fi|p¿F(fi) for every function fi

n Vi. From Lemma 2 we deduce

∫
E
|∇f|p =

∑
x1∈V1

∫
E2
|∇f(x1; ·)|p +

∑
x2∈V2

∫
E1
|∇f(·; x2)|p

¿
∑
x1∈V1

F(f(x1; ·)) +
∑
x2∈V2

F(f(·; x2))

¿F(f):

We have seen in the previous subsection an example of a functional which meets
this property which has the form (1=|V |)∑x;y∈V |f(x) − f(y)|. Actually, many func-
tionals of the type F(f) = (1=|V |)∑x;y∈V  (f(x); f(y)) meet this property, this is
shown by the next proposition (as soon as the function in two variables  satis-
�es a certain condition). In order to simplify the statement of this proposition we
will write  (x; y) instead of  (f(x); f(y)). Without loss of generality, we may as-
sume that  is a symmetric function, i.e.  (x; y) =  (y; x). Indeed if we bring
in �(x; y) = 1

2 ( (x; y) +  (y; x)) we just have to note that
∑

x;y∈V  (x; y) =∑
x;y∈V �(x; y).
We now give a su�cient condition on  (when  is symmetric) which implies

property (P) of Proposition 2. Let V = V1 × V2. To describe this condition we need
to de�ne the notion of a rectangle. We say that four vertices x; y; z; t of V form a
rectangle with diagonals xy and zt i� there exist xi and yi in Vi (i ∈ {1; 2}) such that
x = (x1; x2); y = (y1; y2); z = (x1; y2); t = (y1; x2).
The su�cient condition on  is the ‘diagonal inequality’ (DI) which has to hold for

every rectangle xzyt with diagonals xy and zt (see Fig. 2):

(DI)  (x; y) +  (z; t)6 (x; z) +  (z; y) +  (y; t) +  (t; x):

Proposition 3. If  satis�es (DI) then the associated functional F(f) = (1=|V |)∑
x;y∈V  (x; y) satis�es (P) and therefore the inequality

∫
E |∇f|p¿F(f) is SWRCP

for every p¿ 0.
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Fig. 2.

Proof. Let V = V1 × V2, and f a function on V = V1 × V2. Let us check that
property (P) holds for F.∑

x1∈V1

F(f(x1; ·)) +
∑
x2∈V2

F(f(·; x2))

=
1

|V2|
∑
x1∈V1

x2 ;y2∈V2

 (x1x2; x1y2) +
1

|V1|
∑

x1 ;y1∈V1
x2∈V2

 (x1x2; y1x2)

=
1
|V |




∑
x1 ;y1∈V1
x2 ;y2∈V2

 (x1x2; x1y2) +  (x1x2; y1x2)




=
1
|V |

∑
R=xzyt

a(R) { (xz) +  (zy) +  (yt) +  (tx)} :

The last sum ranges over all possible rectangles R = xzyt, and a(R) is equal to the
number of vertices of the rectangle divided by two (for instance a(R) = 1 when the
rectangle is formed only by two distinct points). Since  satis�es (DI) we have

∑
x1∈V1

F(f(x1; ·)) +
∑
x2∈V2

F(f(·; x2))¿ 1
|V |

∑
R=xzyt

a(R)( (xy) +  (zt))

¿
1
|V |

∑
a;b∈V

 (a; b)

¿F(f):

If  is a distance function, it clearly meets citerion (DI). This is the case for
 (x; y) = C|f(x) − f(y)| that we have already met. Another interesting example is
given by  (x; y) = (f(x)−f(y))2 ((DI) is easily checked for this example). In other
words:



J.-P. Tillich /Discrete Mathematics 213 (2000) 291–320 305

Proposition 4. The inequality∫
E
|∇f|2¿ C

|V |
∑
x;y∈V

|f(x)− f(y)|2

is SWRCP.

This inequality is known as a Poincar�e inequality, and can also be written as∫
E
|∇f|2¿2C

∑
x∈V

|f(x)− E(f))|2:

This inequality is well known for being SWRCP, and this is generally proved by
using the fact that

∫
E |∇f|2=

∑
x∈V |f(x) − E(f))|2 is equal to the smallest nontrivial

eigenvalue of the Laplacian of the graph.
Another class of functionals which are well known for being SWRCP (at least in

the context of Markov chains and Riemannian manifolds) are log-Sobolev inequalities
([23,24]) which have the form for a Riemannian manifold M of �nite volume:∫

M
|∇f|2¿C

∫
M

f2 ln
(

f2

E(f2)

)
:

We will show that much more is true for �nite graphs namely that not only for
p= 2 but for any p 6= 0 the following inequalities are SWRCP:∫

|∇f|p¿C
∑
x∈V

|f(x)|p ln
( |f(x)|p
E(|f|p)

)
:

Actually, we will show that a more general class of inequalities is SWRCP, and they
are built from functionals of the type

F(f) = sup
u∈U

∑
x∈V

(u(x)− E�(u)) (f(x)):

Here U is a subset of functions acting on V which depends on the graph G but not
on f — we will write UG to emphasize this dependance. � is just any one-to-one
mapping, and  any real function, and E�(u) = �−1(E(�(u))). Not every functional
of this type meets property (P) (and therefore does not necessarily give an inequality∫ |∇f|p¿F(f) which is SWRCP). However this will be the case as soon as U
satis�es the following two conditions:
for all graphs G1; G2, and every x1 ∈V1 (V1 is the vertex set of G1), whenever

u ∈ UG1×G2 (we consider u as a function of two variables u(·; ·), the �rst being in V1,
the second in V2)) we have
(i) u(x1; ·) ∈ UG2 .
(ii) v : x1 → E�(u(x1; ·)) ∈ UG1

Proposition 5. If U satis�es the two conditions given above; then

F(f) = sup
u∈U

∑
x∈V

(u(x)− E�(u)) (f(x))

satis�es property (P).



306 J.-P. Tillich /Discrete Mathematics 213 (2000) 291–320

Proof. To check that F satis�es property (P), we prove that for any graphs G1 and
G2 with vertex sets V1 and V2, any function f de�ned on V1 × V2 we have

F(f)6
∑
x1∈V1

F(f(x1; ·)) +
∑
x2∈V2

F(f(· ; x2)):

For this purpose we just have to check that for any function u(· ; ·) ∈ UG1 ;G2 we have∑
x1∈V1
x2∈V2

(u(x1; x2)− E�(u)) (f(x1; x2))6
∑
x1∈V1

F(f(x1; ·)) +
∑
x2∈V2

F(f(· ; x2)):

In order to do so, we observe that since u(x1; ·) ∈ UG2 we have

F(f(x1; ·))¿
∑
x2∈V2

(u(x1; x2)− E�(u(x1; ·))) (f(x1; x2)):

Since v(x1) = E�(u(x1; ·)) ∈ UG1 we also have

F(f(· ; x2))¿
∑
x1∈V1

(v(x1)− E�(v)) (f(x1; x2)):

We sum these two inequalities with respect to x1 and x2; respectively, add them together
to get∑

x1∈V1

F(f(x1; ·)) +
∑
x2∈V2

F(f(· ; x2))¿
∑
x1∈V1
x2∈V2

(u(x1; x2)− E�(u)) (f(x1; x2)):

We have used the fact here that the two terms involving
∑

x1∈V1 ;x2∈V2 v(x1) (f(x1; x2))
and −∑x1∈Vi

E�(u(x1; ·)) (f(x1; x2)) cancel and that E�(u) = E�(v).

A consequence of this last proposition is that the following analytic inequalities are
SWRCP.

Proposition 6. The following inequalities are SWRCP:
(i)

∫
E
|∇f|¿C

∑
x∈V

|f(x)− E(f)|:

(ii)∫
E
|∇f|p¿C

∑
x∈V

|f(x)|p ln
( |f(x)|p
E(|f|p)

)
for p¿ 0:

Proof. To prove (i) we recall (see Example 1 in Section 2) that F(f)=
∑

x∈V |f(x)−
E(f)|= supu∈U

∑
x∈V (u(x)− E(u))f(x) where U = {u|sup u− inf u62}. It is readily

checked that U satis�es both conditions given just before Proposition 5. Hence F(f)
satis�es (P) and we conclude by using Proposition 2.
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To prove (ii) we use the characterization ofF(f)=
∑

x∈V |f(x)|p ln(|f(x)|p=E(|f|p))
given in Example 5 of Section 2, i.e

F(f) = sup
u∈U ′

∑
x∈V

u(x)|f(x)|p = sup
u∈U

∑
x∈V

(u(x)− Eexp(u))|f(x)|p;

where U ′ is the set of functions such that E(eu) = 1 and U is the set of all functions
de�ned on the vertex set of the graph we consider (this follows from the calculation
E(eu−Eexp(u)) = E(eu−ln(E(e

u))) = 1).

Remark. Basically it has already been proved in [16] that the �rst inequality is SWRCP.

4. Isoperimetric inequalities for product graphs

4.1. A general bound and the proof of Theorem 1

We have already seen in the previous section that with the ‘right’ de�nition of the
isoperimetric number, the isoperimetric number of a product of graphs G1; G2; : : : ; Gn

can be deduced from the isoperimetric numbers of the Gi’s. When all the Gi’s are
equal, we obtain the following isoperimetric inequality for Gn = G × G × · · · × G︸ ︷︷ ︸

n(V denotes in what follows the vertex set of G):

|@
|¿i′(G)
2|
‖ �
|
|V |n :

This kind of isoperimetric inequality is quite weak when |
| = 1 for large n. We
may expect a much better isoperimetric inequality of the form

|@
|¿C|
| ln
( |V |n

|
|
)

:

Let us explain why. Specifying 
 to be a set of the form Ak × Vn−k (with A a subset
of vertices of V ), we would have |@
| = k|@A‖A|k−1|V |n−k = C(A)|
| log(|V |n=|
|),
where C(A)= |@A|=|A| log|V |=|A|. Indeed, when we look at the n-cube the isoperimetric
sets of size 2k are of the kind {0}n−k×{0; 1}k and we have a very good approximation
of the best isoperimetric inequality with

|@
|¿|
| log2
( |V |n

|
|
)

:

We are going to show now that this is a general phenomenon, i.e. that for every
graph G we can expect a isoperimetric inequality which holds for every power Gn,
which has the form

|@
|¿C|
| ln
( |V |n

|
|
)

with a constant C which depends on G but not on n.
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This is obtained by the following proposition:

Proposition 7. Assume that for some p¿ 0 we have for every function f on the
vertex set of G:∫

E
|∇f|p¿C

∑
x∈V

|f(x)|p ln |f(x)|
p

E(|f|p) :

Then for every n¿1 and all subsets 
 of Gn we have

|@
|¿C|
| ln |V |n
|
| :

Proof. From Proposition 6 we have for every function f acting on the set of vertices
Vn of Gn(Vn; En):∫

En
|∇f|p¿C

∑
x∈Vn

|f(x)|p ln |f(x)|
p

E(|f|p) :

We just have to plug in f = �
 and note that
∫
En |∇�
|p = |@
| to prove the

proposition.

We now have to compute (at least for one value of p)

Cp = inf
f

∫
E |∇f|p∑

x∈V |f(x)|p ln|f(x)|p=E(|f|p) :

When p=1 we can use Theorem 2, and notice that the minimum is attained for a
characteristic function of a subset of vertices 
, and is therefore equal to

min

∈V

|@
|
|
| ln|V |=|
| :

We have to �nd in this case the minimum among a large (but �nite!) number of
possibilities. It might also be interesting to look for the minimum when p = 2; this
problem is related to �nding the best log-sobolev constant. There are many results
in this direction for Riemannian manifolds and Markov chains, see [24,31,32]. The
relevance of the case p=2 does not lie in improving the constant C in the corresponding
isoperimetric inequality over Gn:

|@
|¿C|
| ln |V |n
|
|

(since the largest constant C which can be put into this inequality is indeed C1), but lies
in the fact that C2 can by characterized by other means (for instance, hypercontractivity,
see [24]). Therefore if the computation of

min



|@
|
|
| ln(|V |=|
|)
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is intractable (for instance if G is too large) there might be another way of obtaining
an isoperimetric inequality of the kind

|@
|¿C|
| ln |V |n
|
|

by estimating C2.
The calculation at the beginning of this section shows that whenever we have a

subset 
 which attains the minimum in

min

∈V

|@
|
|
| ln|V |=|
| ;

then all the subsets 
(k;n) =
k ×Vn−k are isoperimetric sets of Gn for every 06k6n,
and satisfy

|@
|
|
| ln|V |=|
| =

|@
(k;n)|
|
(k;n)| ln|Vn|=|
(k;n)| :

This concludes the proof of Theorem 1.

4.2. Applications to certain families of graphs

4.2.1. Powers of a complete graph
It is straightforward to check that for the complete graph Kp on p vertices the set


 which minimizes

min

∈V

|@
|
|
| ln|V |=|
|

is just a single vertex. The minimum is equal to (p− 1)=lnp.
By using Theorem 1 we have the following isoperimetric inequality for Kn

p:

|@
|¿(p− 1)|
| logp(pn=|
|):
This gives for p = 2 the sharp isoperimetric inequality for the n-cube given in the
introduction.

4.2.2. Powers of a path
Whereas a complete solution of the edge-isoperimetric problem is known for products

of complete graphs (see [29]), it is not the case for products of paths (see [1]). There
are only partial results like the isoperimetric inequality obtained by Bollobas and Leader
for the nth cartesian power [k]n of a path of length k.
For instance, for a path [k] of length k we clearly have for any subset of

vertices 
:

min



|@
|
|
| ln(k=|
|) = min

16u6k−1
1

u ln(k=u)
¿ min

x∈[0;1]
1

kx ln(1=x)
¿

e
k
:
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Fig. 3.

Therefore by using Theorem 1 we obtain that for any subset of vertices in [k]n:

|@
|¿ e
k
|
| ln

(
kn

|
|
)

:

It can be checked that this isoperimetric inequality is about as sharp as the isoperi-
metric inequality for [k]n given at the beginning of the introduction. We have plotted
these two isoperimetric functions for k = 8 and n = 4, the smooth curve (see Fig. 3)
is our isoperimetric function, and the other one which is a sequence of broken lines is
the isoperimetric function of Bollobas and Leader given in the introduction. x denotes
the ratio |
|=kn.

4.2.3. Powers of the Petersen graph
Recall that this graph is given by Fig. 4, and that the best isoperimetric function is

not known for powers of this graph. However we have a partial answer, and we can
deduce at least some isoperimetric sets from Theorem 1 and Corollary 1.
We denote by V the vertex set of the Petersen graph, and by P the Petersen graph

itself. We observe that a subset of vertices which attains the minimum of
|@
‖V |
2|
‖ �
|

is for example {1; 2; 3; 4; 5}. Therefore, from Corollary 1 we know that {1; 2; 3; 4; 5}×
Vn−1 is an isoperimetric set for Pn, for every n¿1. This minimum is equal to 1 and
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Fig. 4.

by using Proposition 1, we therefore have for any power of the Petersen graph the
isoperimetric inequality

|@
|¿2|
| |V
n\
|

|Vn| :

Another isoperimetric inequality can be obtained by using Theorem 1 by �nding the
subset of vertices of P which attains the minimum of

@
|
|
| ln|V |=|
| :

It is straightforward to check that the minimum is attained for 
= {1; 2} and that the
corresponding ratio is equal to 2=ln 5. Hence for any power of the Petersen graph the
following isoperimetric inequality holds:

|@
|¿2|
| log5|Vn|=|
|:
Moreover, any set of the form {1; 2}k × Vn−k is an isoperimetric set of Pn.
In Fig. 5 we have plotted the two isoperimetric functions divided by |Vn|, namely

2x(1− x) and 2x log5(1=x) in terms of x= |
|=|Vn|. It can be observed that the second
isoperimetric inequality is better for sets of size 6�|Vn|, where � ≈ 0:353, whereas
the �rst one is better for sets of size s which satisfy �|Vn|6s60:5|Vn|.

5. In�nite graphs

The results given in the previous sections apply to �nite graphs and do not explain
the form of the isoperimetric inequality given for Zn in the introduction. Our aim in
this section is to give tools which enable us to recover this almost optimal isoperi-
metric inequality for Zn with analytic tools, and which is useful in general to obtain
good isoperimetric inequalities for cartesian product of in�nite graphs. These results
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Fig. 5.

generalize tools for obtaining isoperimetric inequalities of products of non-compact Rie-
manannian manifolds (see pp. 306–307 in [33]). We point out that the tools we have
obtained here for graphs are somehow sharper than the corresponding results obtained
for Riemannian manifolds (see next section for an explanation of this phenomenon).
For instance, whereas the isoperimetric inequalities obtained in this way for Rn from
the optimal isoperimetric inequality on R is not tight (see [33, Example 2, p. 303 and
Lemma 5, p. 307]), the sharp inequality on Zn: |@
|¿2:n|
|(n−1)=n will be seen to
follow from the simple inequality |@
|¿2 which holds for subsets of Z. This is a
consequence of the more general:

Proposition 8.

cn1+n2 (G1 × G2)
n1 + n2

¿
(
cn1 (G1)

n1

)n1=(n1+n2)(cn2 (G2)
n2

)n2=(n1+n2)

;

cnkG(k)

nk
¿

cn(G)
n

:

cn(G) denotes the n-dimensional isoperimetric constant of G, that is the in�mum
over all �nite subsets 
 of vertices of G of the ratio |@
|=|
|(n−1)=n. This somehow
mimicks the usual isoperimetric constant of Rn which is de�ned to be the in�mum
over all subsets 
⊂Rn of �nite volume of the ratio �(@
)=�(
)(n−1)=n, where � is
the n-dimensional volume, and �(@
) the (n− 1)-dimensional volume of its boundary.
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This last constant is known to be n!1=nn where !n is the volume of the unit ball
(see [3]).
Clearly, the second part of the proposition can be proved from the �rst part by

induction on k, and we use this second part in the obvious way to get from the optimal
isoperimetric |@
|¿2 which holds on Z the sharp inequality |@
|¿2:n|
|(n−1)=n on Zn.

Proof of Proposition 8. We use again the equivalence between analytic inequalities
and isoperimetric inequalities of Section 2 and write the equivalent analytic form of
the isoperimetric inequality

|@
|¿cni(Gi)|
|(ni−1)=ni ;

which holds for every subset 
 of Vi which is the vertex set of Gi. Here i∈{1; 2}.
This equivalent form states that for every function f de�ned on Vi we have

∫
Ei

|∇f|¿cni(Gi)

(∑
xi∈Vi

|f(xi)|n′i
)1=n′i

;

where n′i is the dual exponent of ni, i.e. 1 = 1=ni + 1=n′i .
To get the desired isoperimetric inequality on G1×G2 with vertex set V and edge set

E, we �rst obtain an analytic equivalent form and proceed as follows (here f(x1; x2)
is a function de�ned on V = V1 × V2):∫

E
|∇f| =

∑
x2∈V2

∫
E1
|∇f(· ; x2)|+

∑
x1∈V1

∫
E2
|∇f(x1; ·)|

¿
∑
x2∈V2

cn1 (G1)

( ∑
x1∈V1

|f(x1; x2)|n′1
)1=n′1

+
∑
x1∈V1

cn2 (G2)

( ∑
x2∈V2

|f(x1; x2)|n′2
)1=n′2

¿ cn1 (G1)P + cn2 (G2)Q

¿ (n1 + n2)
(

n1
n1 + n2

cn1 (G1)
n1

P +
n2

n1 + n2

cn2 (G2)
n2

Q
)

;

where P=
∑

x2∈V2 (
∑

x1∈V1 |f(x1; x2)|n
′
1 )1=n

′
1 and Q=

∑
x1∈V1 (

∑
x2∈V2 |f(x1; x2)|n

′
2 )1=n

′
2 . By

using �x + �y¿x�y� which holds for �; �; x; y¿0 and �+ � = 1 we obtain

∫
E
|∇f|¿(n1 + n2)

(
cn1 (G1)

n1

)n1=(n1+n2)

Pn1=(n1+n2)
(
cn2 (G2)

n2

)n2=(n1+n2)

Qn2=(n1+n2):
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We now claim that

Pn1=(n1+n2)Qn2=(n1+n2)¿

{ ∑
x1∈V1 ;x2∈V2

|f(x1; x2)|n′
}1=n′

;

where n′ is the dual exponent of n= n1 + n2. This is a consequence of{ ∑
x1∈V1 ;x2∈V2

|f(x1; x2)|n′
}1=n′

6


 ∑

x2∈V2

( ∑
x1∈V1

|f(x1; x2)|n′1
)1=n′1


n1=(n1+n2)


∑

x2∈V2

( ∑
x1∈V1

|f(x1; x2)|
)n′2


(1=n′2)n2=(n1+n2)

which will be proved in the appendix (see Lemma B.1 in Appendix B and apply it
with R= (n′; n′); P = (n′1; 1); Q = (1; n′2) and t = n1=(n1 + n2)), and

 ∑
x2∈V2

( ∑
x1∈V1

|f(x1; x2)|
)n′2


1=n′2

6
∑
x1∈V1

( ∑
x2∈V2

|f(x1; x2)|n′2
)1=n′2

The last inequality is only a special case of Minkowski’s inequality.
Therefore,∫

E
|∇f|¿(n1 + n2)

(
cn1 (G1)

n1

)n1=(n1+n2)(cn2 (G2)
n2

)n2=(n1+n2)

{ ∑
x1∈V1 ;x2∈V2

|f(x1; x2)|n′
}1=n′

:

Using once more the equivalence between analytic inequalities and isoperimetric in-
equalities we obtain the �rst statement of the proposition.

6. Additional remarks

6.1. Comparison with isoperimetric inequalities for Riemannian manifolds

We wish to point out here, that although most of the results obtained here have
been inspired by results obtained for Riemannian manifolds (especially [33]), there
are subtle di�erences between both settings. For instance for products of Riemannian
manifolds the corresponding formula of Lemma 2 is only true for p= 2, i.e.∫

M1×M2

|∇f|2 =
∫
M1

∫
M2

|∇f(x1; ·)|2 +
∫
M2

∫
M1

|∇f(·; x2)|2:
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A consequence of this is that there is not really a corresponding theorem to Theorem1
for Riemannian manifolds. An illustration of this is given by the following example.
The results obtained by [33] in Section 1, Example 2, p. 303 show that for subsets of
Rn we have the following isoperimetric inequality:

�(@
)¿e n
√
!n�(
) ln

(
1

�(
)

)
;

where � is the Lebesgue measure, �(@
) the surface measure of the boundary of 
,
and !n the volume of the unit ball, that is �n=2=�(1 + n=2). e n

√
!n is the best-possible

constant in this isoperimeric inequality and depends on n. In the graph-theoretic setting
we have seen in Theorem 1 that a much stronger result holds, i.e. the biggest constant
C in the isoperimetric inequality |@
|¿C|
| ln(|V |=|
|) over a product graph Gn does
not depend on n.

6.2. Sharpness of the isoperimetric inequality of Theorem 1

When we have a product graph Gn where n is large, it should be noted that unlike
the isoperimetric inequality of the kind |@
|¿C|
‖ �
|=|V |, the isoperimetric inequality
|@
|¿C|
| ln(|V |=|
|) of Theorem 1 is sharp for a whole family of sets ranging from
very small sets to sets of linear size.
There is also a trivial improvement of the isoperimetric inequality of Theorem 1.

Since |@
|= |@ �
|, and x ln(1=x)¿(1−x) ln(1=(1−x)) for x ∈ [0; 1=2], we deduce from
the isoperimetric inequality |@
|¿C|
| ln(|V |=|
|) the stronger isoperimetric inequality

|@
|¿
{

C|
| ln(|V |=|
|) for |
|6|V |=2;
C| �
| ln(|V |=| �
|) for |
|¿|V |=2:

6.3. Dealing with analytic inequalities rather than with isoperimetric inequalities

Although several results given here could have been obtained without using analytic
inequalities (Proposition 1 can be proved very easily by using straightforward combi-
natorial arguments; this can be discovered by looking at the proof of Lemma 3 and of
Proposition 1, by letting f to be a characteristic function of 
 and by understanding
the combinatorial meaning of the expressions which appear during the proof) we have
chosen to use analytic inequalities in all cases mainly to show that

• there is little speci�city about sets and isoperimetric inequalities,
• isoperimetric inequalities seem to be hidden behind more general analytical inequal-
ities involving functions de�ned on the vertex set of the graph.
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Appendix A. Quasilinearization

We prove here that the functionals which appear in the examples of Section 2 admit
a ‘quasi-linearized’ representation.
F(f) =

∑
x∈V |f(x)− E(f)|: Here U = {u|E(u) = 0; sup u− inf u62}. Let u ∈ U .

We claim that F(f)¿
∑

x∈V u(x)f(x). Indeed for any a ∈ R:∑
x∈V

u(x)f(x) =
∑
x∈V

u(x)(f(x)− E(f))

=
∑
x∈V

(u(x)− a)(f(x)− E(f))

6 sup
x∈V

|u(x)− a|
∑
x∈V

|f(x)− E(f)|:

Therefore,∑
x∈V

u(x)f(x)6 inf
a∈R

sup
x∈V

|u(x)− a|
∑
x∈V

|f(x)− E(f)|6
∑
x∈V

|f(x)− E(f)|:

The last inequality is a consequence of sup u− inf u62.
To prove that the maximum of

∑
x∈V u(x)f(x) is indeed F(f); let us note that

when u is chosen to be u(x) = sign(f(x)− E(f)) + a, where a is such that E(u) = 0,
then u ∈ U and∑

x∈V

u(x)f(x) =
∑
x∈V

u(x)(f(x)− E(f))

=
∑
x∈V

(u(x)− a)(f(x)− E(f))

=
∑
x∈V

|f(x)− E(f)|

=F(f)

F(f) = {∑x∈V |f(x)|p}1=p: Here U = {u|∑x∈V |u(x)|q61}, where q is the dual
exponent of p (1 = 1=p + 1=q). Let u ∈ U . We claim that F(f)¿

∑
x∈V u(x)f(x).

This follows from H�older’s inequality

∑
x∈V

u(x)f(x)6

{∑
x∈V

|u(x)|q
}1=q{∑

x∈V

|f(x)|p
}1=p

6

{∑
x∈V

|f(x)|p
}1=p

:

On the other hand if we put u(x) = signf(x)|f(x)|p−1={∑x∈V |f(x)|p}(p−1)=p, it is
straightforward to check that

∑
x∈V |u(x)|q = ∑x∈V |u(x)|p=(p−1) = 1. Hence u∈U .
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Moreover,

∑
x∈V

u(x)f(x) =

{∑
x∈V

|f(x)|p
}1=p

=F(f):

F(f) = inf a{
∑

x∈V |f(x) − a|p}1=p: Here U = {u|E(u) = 0;
∑

x∈V |u(x)|q61},
where q is the dual exponent of p (1 = 1=p + 1=q). Let u ∈ U . We claim that
F(f)¿

∑
x∈V u(x)f(x). Indeed for any a ∈ R:∑

x∈V

u(x)f(x) =
∑
x∈V

u(x)(f(x)− a)

6

{∑
x∈V

|u(x)|q
}1=q{∑

x∈V

|f(x)− a|p
}1=p

:

Therefore,

∑
x∈V

u(x)f(x)6 inf
a

{∑
x∈V

|f(x)− a|p
}1=p

=F(f):

We conclude by letting u(x)=sign(f(x)−a)|f(x)−a|p−1={∑x∈V |f(x)−a|p}(p−1)=p,
where a is now a number which attains the in�mum in inf a{

∑
x∈V |f(x)− a|p}1=p. It

is easy to show that a number a for which this in�mum is attained satis�es
∑

x∈V sign
(f(x) − a)|f(x) − a|p−1 = 0; this implies that E(u) = 0 and it is straightforward to
check that

∑
x∈V |u(x)|q =∑x∈V |u(x)|p=(p−1) = 1. Hence u∈U . Moreover,

∑
x∈V

u(x)f(x) =

{∑
x∈V

|f(x)− a|p
}1=p

=F(f):

F(f) =
∑

x∈V |f(x)| ln|f(x)|=E(|f|): Here U = {u|∑x∈V e
u(x)6|V |}. Let u∈U .

We claim that F(f)¿
∑

x∈V u(x)|f(x)|. This is a consequence of Young’s inequality
st6es + t ln t − t (which holds for any s and any t ¿ 0):

∑
x∈V

u(x)|f(x)| = E(|f|)
∑
x∈V

u(x)
|f(x)|
E(|f|)

6 E(|f|)
∑
x∈V

{
eu(x) +

|f(x)|
E(|f|) ln

( |f(x)|
E(|f|)

)
− |f(x)|

E(|f|)
}

6
∑
x∈V

|f(x)| ln |f(x)|
E(|f|) :

We conclude by noting that the choice u(x) = ln(|f(x)|=E(|f|)) leads to∑
x∈V e

u(x)6|V | and ∑x∈V u(x)|f(x)|=F(f).
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Appendix B. A generalization of H�older’s inequality

We will prove here a standard result on mixed norms whose statement can be found
in [9]. Nevertheless, since the proof of the inequality, we need is only roughly sketched
in [9] we have decided to give a complete proof here.
Before proving the inequality that we have used in Section 5, we need a few

notations. For a couple of numbers P=(p1; p2) which are ¿1 and a function f(x1; x2)
de�ned on V1 × V2 we denote by

‖f‖P =

 ∑

x2∈V2

( ∑
x1∈V1

|f(x1; x2)|p1
)p2=p1



1=p2

:

Note that if further each pi is equal to p:

‖f‖(p;p) =

{ ∑
x1∈V1 ;x2∈V2

|f(x1; x2)|p
}1=p

= ‖f‖p:

We also recall that a slight generalization of H�older’s inequality can be written as

‖f‖r6‖f‖tp‖f‖1−t
q (B.1)

for p; q¿1, 06t61, and 1=r= t=p+(1− t)=q. Here ‖f‖p denotes (
∑

x∈V |f(x)|p)1=p,
where f is a function de�ned on V .
Now we can state the result we have used in Section 5; this result can be considered

as a further generalization of the previous ‘H�older’s inequality

Lemma B.1. For a function f de�ned on V1 × V2 and couples P = (p1; p2);
Q = (q1; q2); R = (r1; r2) of numbers ¿1 such that there exists 06t61 for which
1=ri = t=pi + (1− t)=qi

‖f‖R6‖f‖tP‖f‖1−t
Q :

Proof. A �rst application of (4) with r = r1; p= p1; q= q1 and f = f(·; x2) gives

‖f‖R =

 ∑

x2∈V2

( ∑
x1∈V1

|f(x1; x2)|r1
)r2=r1



1=r2

6

{ ∑
x2∈V2

‖f(·; x2)‖r2tp1‖f(·; x2)‖r2(1−t)
q1

}1=r2
:

Now we use H�older’s inequality for functions de�ned on V2 in its more usual form∑
x2∈V2

f(x)g(x)6‖f‖�‖g‖�′ ;
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where �′ is the dual exponent of �, i.e 1=1=�+1=�′. We choose here �=p2=r2t which
is clearly ¿1, and note that �′ = �=�− 1 = q2=r2(1− t) to get

‖f‖R6
{ ∑

x2∈V2

‖f(·; x2)‖p2p1
}1=�r2 { ∑

x2∈V2

‖f(·; x2)‖q2q1
}1=�′r2

6 ‖f‖tP‖f‖1−t
Q

This concludes the proof.
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