
An Efficient Attack on a Code-based Signature Scheme

Aurélie Phesso2 Jean-Pierre Tillich1

1 SECRET Project - INRIA Rocquencourt
Domaine de Voluceau, B.P. 105 78153 Le Chesnay Cedex - France
aurelie.phesso@gmail.com, jean-pierre.tillich@inria.fr

2 Université Bordeaux
France.

Abstract. Baldi et al. have introduced in [BBC+13] a very novel code based signature
scheme. However we will prove here that some of the bits of the signatures are correlated in
this scheme and this allows an attack that recovers enough of the underlying secret structure
to forge new signatures. This cryptanalysis was performed on the parameters which were
devised for 80 bits of security and broke them with 100, 000 signatures originating from the
same secret key.

1 Introduction

It is a long standing open problem to build an efficient and secure signature scheme based on
the hardness of decoding a linear code which could compete in all respects with DSA or RSA.
Such schemes could indeed give a quantum resistant signature for replacing in practice the afore-
mentioned signature schemes that are well known to be broken by quantum computers. The first
answer to this question was given in [CFS01]. They adapted the Niederreiter scheme [Nie86] for
this purpose. This requires a linear code for which there exists an efficient complete decoding
algorithm. This means that if H is a r × n parity-check matrix of the code, there exists for any
s ∈ {0, 1}r an efficient way to find a word e of smallest Hamming weight such that HeT = sT .
To sign a message m, a hash function H is first applied to the message (say that the output of the
hash function is a binary string of length r). Then the complete decoding algorithm of the code
with parity-check matrix H is used to produce the signature of m which is a word e of smallest
weight such that

HeT = H(m)T .

The authors of [CFS01] noticed that very high rate Goppa codes are able to fulfill this task,
and their scheme can indeed be considered as the first practical solution to the aforementioned
problem. Moreover they gave a security proof of their scheme relying only on the assumption
that two problems were hard, namely (i) decoding a generic linear code and (ii) distinguishing
a Goppa code from a random linear code with the same parameters. However, afterwards it
was realized that the parameters proposed in [CFS01] can be attacked by an unpublished attack
of Bleichenbacher, which despite its exponential complexity gives an attack which is probably
implementable in practice nowadays. Subsequently, it was shown in [Fin10] that there is a slight
variation called Parallel-CFS which avoids the significant increase of parameters needed to thwart
the Bleichenbacher attack on the original system. However, even this modified scheme shares the
same nice features as the original scheme, that is very short signature sizes and reasonably fast
software implementation for 80 bits of security [LS12] it has also some drawbacks, such as for
instance:
(i) a lack of security proof in light of the distinguisher of high rate Goppa codes found in [FGO+11]
(see also [FGO+13] for more details) which shows that the hypotheses used in [CFS01] to give a
security proof of the signature scheme were not met,
(ii) and poor scaling of the parameters when security has to be increased. This comes from the
following behavior. The [CFS01] scheme uses t-error correcting Goppa codes of length 2m. The
public key is of size K = tm2m whereas decoding attacks take about λ = 2tm/2 operations whereas

obtaining signature needs about t!t2m3 operations. If we want to stick to a reasonable signature
cost, this needs that we fix t to a small value (say smaller than 12). In this case the security
parameter λ is basically only a polynomial function of the key size K : λ ≈ Kt/2.

Other signature schemes based on codes were also given in the literature such as for instance
the KKS scheme [KKS97,KKS05] or its variant [BMS11]. But they can be considered at best to
be one-time signature schemes in light of the attack given in [COV07] and great care has to be
taken to choose the parameters of this scheme as shown by [OT11] which broke all the parameters
proposed in [KKS97,KKS05,BMS11].

Recently, there has been some revival in the CFS strategy [CFS01], by choosing other code
families (or by replacing the Hamming metric by another metric). The new code families that were
used are LDGM codes in [BBC+13], i.e. codes with a Low Density Generator Matrix, LRPC codes
in [GRSZ14], or (essentially) convolutional codes [GSJB14]. While there are still some doubts that
there is a way to choose the parameters of the scheme [GSJB14] in order to avoid the attack [LT13]
on the McEliece cryptosystem based on convolutional codes [LJ12], there was no clear indication
that the two other schemes are insecure. In particular, the LRPC-based scheme comes with a
security proof that obtaining a fairly large amount of message-signature pairs does not simplify
the work of an attacker (and obtaining a feasable attack on the parameters proposed in [GRSZ14]
is a completely open question). Both schemes are based on two very original ideas for decoding
in the rank metric case for LRPC codes and decoding in the Hamming metric for the [BBC+13]
scheme.

The [BBC+13] scheme builds upon the following idea. It is namely easy to find an error e of low
weight which has some specific syndrome s (i.e. sT = HeT) of low weight when the parity-check
matrix H is systematic, i.e. it has the form H =

(
P I

)
, where I is the identity matrix and P is

arbitrary. Here is enough to take e = 0||s where || stands for concatenation and 0 is the all-zero
vector that has as many entries as there are columns in P . Basically the authors of [BBC+13]
choose a hash function H, such that the result of the hash function is a word of low weight for
which the aforementioned decoding procedure works. Of course, an attacker can also perform the
same task and it is the purpose of the [BBC+13] scheme to hide the structure that allows this way
of signing. This is obtained by taking LDGM codes whose low weight codewords will be used to
hide the structure of the signature and by multiplying H by appropriate matrices.

However, contrarily to [GRSZ14] the LDGM code based scheme does not come with a security
proof that message-signature pairs do not leak information. It is the purpose of this paper to
show that indeed there is an efficient attack for breaking this scheme when the attacker has at
her/his disposal enough signatures obtained from the same secret key. It is based on the fact that
in this scheme some of the bits of the signature are correlated. These correlations can be used to
recover an equivalent secret key which can be used to forge new signatures. This cryptanalysis
was performed on the parameters which were devised for 80 bits of security and broke them with
100, 000 signatures originating from the same secret key in about one hour.

Notation: In the whole paper, the sum between bits is always performed as the sum over F2

(that is always modulo 2) and the sum between binary words x = (xi)i and y = (yi)i of the same
length is performed componentwise x+y = (xi+yi)i. We use bold letters for matrices and vectors,
A, x and so on and so forth. Vectors are understood as row vectors and we use the transpose
notation to denote column vectors, for instance when x is a (row)-vector, xT denotes this vector
written in column form.

2 Description of the LDGM code based signature scheme proposed in
[BBC+13]

This scheme can be described as follows.
Private key.

– a full rank k×n binary matrix G with rows of some small and constant weight wG which is a
generator matrix of a binary LDGM code C of length n and dimension k. It is assumed that

the square k × k submatrix formed by the k first columns of G is invertible. In this case C
admits an (n− k)× n parity-check matrix H of the form H =

(
P I

)
where I is the identity

matrix of size (n− k)× (n− k).
– an n× n matrix S that is sparse and non-singular of average row and column weight mS .
– an invertible (n − k) × (n − k) transformation matrix Q of the form Q = R + T where R is

of very low rank z (say 1 or 2) and T is sparse with row and column weight mT . R can be
written as R = aT b where a and b are two z × (n− k) matrices.

Public key.
H ′ = Q−1HS−1.

Moreover this scheme also uses two fixed functions, a hash function H and a map F mapping
any hash to a binary string of length n− k and Hamming weight w.

Signature generation.

1. To sign a message m, the signer computes s = F(H(m)) which is an element of {0, 1}n−k of
weight w. He checks whether bsT = 0. If this is the case, he goes to the next step. If not, he
appends a counter l to H(m) to obtain H(m)||l 3 and computes F applied to H(m)||l until
getting a syndrome s of weight w that satisfies bsT = 0 (for more details see [BBC+13, §3.2]).
This requires O(2z) attempts on average.

2. The signer computes the private syndrome s′T = QsT . This syndrome has weight ≤ mTw.
3. The signer appends k zeros in front of s′ : e = 0k||s′ where 0k = 00 · · · 0︸ ︷︷ ︸

k

.

4. The signer selects mG rows of G at random where mG is some fixed and small constant and

adds these rows to obtain a codeword c of C of weight ≤ wc
def
= mGwG.

5. The signature is then equal to
σ = (e+ c)ST . (1)

Signature verification

1. The verifier checks that the weight of the signature σ is less than (mTw + wc)mS . If this is
not the case the signature is discarded.

2. He computes s∗
def
= F(H(m)) and checks whether H ′σT = s∗T . If this is not the case he

appends a counter l to H(m) and checks whether H ′σT = F(H(m)||l)T . If after O(2z)
verification attempts no such equality is found, the signature is eventually discarded.

The point behind the verification process is the following chain of equalities

H ′σT = Q−1HS−1S(eT + cT)

= Q−1H(eT + cT)

= Q−1HeT

= Q−1s′T

= Q−1QsT

= sT .

Note that this is a general description of the scheme. Now in order to have reasonable key sizes,
quasi-cyclic LDGM codes and quasi-cyclic matrices Q and S are actually chosen in [BBC+13].
More precisely G is chosen as a k0p × n0p matrix formed by sparse and circulant blocks Ci,j of
size p (and such that all the rows of G have weight wG)

G =


C0,0 C0,1 C0,2 · · · C0,n0−1
C1,0 C1,1 C1,2 · · · C1,n0−1
C2,0 C2,1 C2,2 · · · C2,n0−1

...
...

...
. . .

...
Ck0−1,0 Ck0−1,1 Ck0−1,2 . . . Ck0−1,n0−1

 .

3 Here || stands for the concatenation of strings.

Moreover in all the parameters suggested in [BBC+13], mT was chosen to be equal to 1, that
is T is a permutation matrix. Furthermore it is assumed in [BBC+13] that T is also formed by
circulant blocks of size p× p (that is T is a quasi-cyclic permutation). R is also chosen to have a
block circulant form. This is obtained by choosing R as follows.

R = (aTr0br0)⊗ 1p×p

where r0
def
= n0 − k0, ar0 and br0 are two binary matrices of size z × r0, 1p×p is the all-one p× p

matrix and ⊗ stands for the Kronecker product. This implies that Q is formed by circulant blocks
of size p× p. S is also chosen in this way, namely formed by circulant blocks of size p× p.

3 The idea underlying the attack

3.1 Correlations between bits of the signature

The creation of a signature can be summarized as follows. It is obtained by first obtaining a binary
word s of small weight from the message m that has to be signed and then computing the product

((0k||sQT) + c)ST

where c is a codeword of small weight ≤ wc of the LDGM code chosen for this scheme. From the
fact that Q = T +R and RsT = 0 where T is a permutation matrix (this choice is made in all
the parameters proposed in [BBC+13]), it turns out that the signature σ can be written as

σ = ((0k||s′) + c)ST

where s′ is a word of (small) weight w. To simplify the discussion we will make this assumption
from now on, i.e. T is a permutation matrix. We wish to emphasize that this assumption is just
here to simplify the discussion a little bit, and that our attack will also work in a more general
setting where the weight of s′ stays sufficiently small. Let us bring in the quantities

x = (x1 . . . xn)
def
= (0k||s′) + c.

Here we have
σ = xST .

Roughly speaking, the idea of the attack is to look for correlations between bits of σ by using a
bunch of signatures that will allow to compute such statistics. These correlations will give a lot of
useful information about S that allows to recover a column permuted version Sp of S and later
on from the knowledge of Q−1HS−1 recover a possible matrix Qp that allows to forge signatures.

Before we explain where these correlations come from, let us first observe that each bit σi of
σ is a linear combination of a small number of bits xj :

σi =
∑

j:Sij=1

xj (2)

where Sij denotes the entry of S at row i and column j and the bits of x are highly biased, as we
have

prob(xi = 1) =
wc
n

for i ∈ {1, · · · , k}. (3)

prob(xi = 1) =
wc
n

+
w

n− k
− 2

wwc
n(n− k)

≈ wc
n

+
w

n− k
for i ∈ {k + 1, · · · , n}. (4)

This already allows to find for a given position i the number of xj ’s for j in {1, . . . , k} and the
number of xj ’s for j ∈ {k + 1, . . . , n} that appear in the linear combination (2) defining σi. For
this we assume that the xj ’s are independent and that their distribution is given by (3) and (4).
This can be obtained by computing estimates of prob(σi = 1) and the piling up lemma [Mat93]

Proposition 1. Assume that the xj’s are independent Benoulli random variables and that their
distribution is given by (3) and (4). Let

li
def
= # {j ∈ {1, . . . , k} : Sij = 1} .

ri
def
= # {j ∈ {k + 1, . . . , n} : Sij = 1} .

Then

prob(σi = 1) =
1− (1− 2wc/n)li+ri(1− 2w/(n− k))ri

2

Computing an estimate for prob(σi = 1) by using a bunch of signatures allows to recover for each
position the numbers li and ri. This gives all of the row weights of S, but we can go beyond this
by taking advantage of the correlations between the bits of σ.

If σi and σj do not share a common bit in the associated linear combination (for instance
σi = x1 + x3000 whereas σj = x1300 + x2780 + x4000) then we may expect that σi and σj are
independent and there is no significant statistical correlation between them. On the other hand,
when σi and σj share a same bit xt in their associated linear combination (for instance σi =
x1 +x3000 whereas σj = x1300 +x3000 +x4000) σi and σj are clearly correlated as explained by the
following proposition.

Proposition 2. Let X1, X2, X3 be independent Bernoulli variables such that prob(Xi = 1) = pi,

σ1
def
= X1 + X3 and σ2

def
= X2 + X3. Then if p3 /∈ {0, 1}, p1, p2 6= 1

2 , we have that σ1 and σ2 are
correlated with

Cov(σ1, σ2)
def
= E(σ1σ2)− E(σ1)E(σ2) = p3(1− p3)(1− 2p1)(1− 2p2).

This proposition is proved in Section A of the appendix. By computing estimates for all Cov(σi, σj)
we know if the associated linear combinations (2) corresponding to σi and σj share a common xt.
From this information we easily obtain S up to a column permutation as shown in Section 4.

3.2 An additional source of correlations

This method works as long as the low codewords of the LDGM code do not introduce another
source of correlations that competes with the aforementioned correlations. These correlations are
in essence a consequence of a rather subtle interplay between these codewords and the rows of S.
To explain this new source of correlations let us introduce some notation.

Notation 1. Let (i, j) be a pair of signature positions. We denote by n(i, j) the number of rows of
G′ = GST whose support contains both i and j. We will also use the notation ni for the number
of rows of G′ whose support contains position i. Finally, we denote by g′i the i-th row of G′.

Roughly speaking, large values of n(i, j) explain the correlations between positions i and j. To
understand this link, let us first observe that from (1) we know that a signature σ can be written
as σ = (e+ c)ST where c is a sum of mG rows of the matrix G. This implies that

σ =

mG∑
s=1

g′is + eST (5)

Here it should be noticed that the weight of the rows g′i is rather small compared to the length n
of these rows (think of about 180 for the parameters proposed for 80 bits of security in [BBC+13]
whereas the length is 9600). Moreover the weight of eST is approximately of the same order as
the weight of the g′i’s. This means that if σi is equal to 1, this is generally due to the fact that
one of these rows g′is has a 1 in the i-th position. Moreover since the weight of the g′i’s is small
compared to the length of these vectors, their intersection is in general very small, meaning that

if σi is equal to 1, this is generally due to the fact that there is exactly one of the g′ij that has an

i-th coordinate equal to 1. Here (positive) correlations appear precisely when n(i, j) is unusually
large, that is larger than we would expect if the g′i behaved at random. In such a case when σi
and σj are both equal to 1, this is rather often due to one of those n(i, j) rows g′u that appears
in both linear combinations (5) defining σi and σj (and whose i-th and j-th coordinates are both
equal to 1).

To put things on a more quantitive level, we would expect that

E(n(i, j)) = k

(
n−2

mSwG−2
)(

n
mSwG

) ≈ km2
Sw

2
G

n2
.

If n(i, j) is greater than this quantity, then positive correlations appear.
Large values of n(i, j) appear either because

(i) of the aforementioned phenomenon: the linear combinations (2) defining σi and σj share a
common xt. This happens when the support of the i-th row of S and the support of the j-th
row of S share a common position (i.e. position t here). In such a case we denote by n1(i, j)
the Hamming weight of the t-th column of G.

(ii) or a certain interplay between the rows of G and the rows of S that occurs when there are
rows of G whose support contains an element of the support of the i-th row of S and an
element of the support of the j-th row of S. We let n2(i, j) be the number of such rows.

We clearly have that the second case is more general than the first one and a row of G′ is non
zero in position i and position j is such that the row of the same index in G has a support that
has to intersect both the support of the i-th row and the j-th row of S. In other words:

n2(i, j) ≥ n1(i, j) (6)

n(i, j) ≤ n2(i, j). (7)

Notice that we generally have n(i, j) = n2(i, j) and if n1(i, j) 6= 0 then we generally have n(i, j) =
n1(i, j) = n2(i, j).

Correlations between σi and σj allow to detect large values of n(i, j). In case (i) we obtain
directly information on the rows of S, however the second case does not seem to give direct
information on S since it involves both G′ (that we do not know) and S. There is however a
way to distinguish between the cases n1(i, j) 6= 0 and n1(i, j) = 0. This comes from the following
phenomenon in the first case.

Fact 2. Consider a column of index t of S and denote by {i1, . . . , is} the set of rows where this
column has a 1 at that position. Then all possible pairs (ia, ib) are correlated because σia and σib
share a common xt.

Let us define a graph with vertex set the set of positions {1, . . . , n} and where two positions
are linked together with an edge if they are sufficiently correlated. Of course this graph depends
on the threshold we choose for deciding whether two positions are sufficiently correlated or not.
Correlations of the first kind give rise to cliques associated to columns of S where the size of the
clique is the weight of the column. Recall that a clique of a graph is a subset of vertices which are
linked together with edges of the graph (every two distinct vertices in the clique are adjacent). The
second source of correlations is unlikely to yield such cliques and this phenomenon is used in the
next section to distinguish between both sources of correlations. It will be essential to recognize
the first source of correlation in order to recover S up to a column permutation.

3.3 Obtaining low weight codewords of the code with parity-check matrix H ′

Correlations also allow to obtain codewords of the code with parity-check matrix H ′. Note that
this code is known to an attacker since H ′ is public. It will be handy to introduce the following
notation

Definition 1 (public code Cpub). The code with parity-check matrix H ′ is denoted by Cpub.

We can also observe that the matrix G′ = GST is a generator matrix of this code. It can be used
to “perturb” signatures (by changing their Hamming weight), without changing the syndrome
H ′σT of the signature. It is actually used exactly in this way in the signature scheme. Note that
this is also an LDGM code since G′ has rows of weight ≤ mSwG. Such rows allow to add small
perturbations to the signature and they are used later on in our attack.

Some of these rows can be recovered in the following fashion. Assume that we have obtained
a set of valid signatures S and that i and j are two positions that are correlated. Consider in this
case the following subset of S:

Σ(i, j)
def
= {signatures σ ∈ S : σi = σj = 1}. (8)

When σi and σj are significantly correlated it turns out that a non negligible fraction of elements
of Σ(i, j) are of the form

∑mG

s=1 g
′
is

+ eSt where exactly one of those g′is has a “1” in the i-th
position and the j-th position. This means that such a g′is is precisely one of the n(i, j) rows of
G′ that have a 1 in the i-th and the j-th positions.

Such a phenomenon implies that if we consider the intersection of the supports of the pairs of
elements σs and σt of Σ(i, j), a fraction of order 1

n(i,j) of these intersections has an unusually large

size which is precisely due to the pairs (σs, σt) that correspond to a pair of linear combinations
(
∑mG

a=1 g
′
ia

+ esSt,
∑mG

b=1 g
′
ib

+ etSt) that share a common g′u that belongs to one of the n(i, j)
rows of G′ that have a 1 in position i and j.

This phenomenon clearly points to an algorithm arranging signatures of Σ(i, j) in n(i, j) groups
such that all the elements in a group have an unusual large intersection with each other. Each group
corresponds here to one of the rows g′l of G′ that has a “1” in position i and j and the signatures
in this group have an unusual large intersection precisely because they share this common g′l in
the linear combination (5) which defines them.

Roughly speaking, the idea of considering this set Σ(i, j) is that it acts as a filter that gives
signatures for which an unusual number of them has a large intersection, and this because a non
negligible fraction of them uses one of the rows g′l of G′ that has a “1” in position i and j in the
linear combination (5) that defines them.

To filter inside the set Σ(i, j) the signatures that are of this form, it suffices to compute for
each signature σ in this set the number N(σ) of signatures in Σ(i, j) different from σ that have
an unusually large intersection with σ and to keep only those signatures for which N(σ) is large.
Setting up the threshold for deciding that two signatures have a large intersection is easily achieved
by plotting the histogram of those intersections as shown by Figure 1. Choosing the signatures σ of
Σ(i, j) for which N(σ) is above this threshold yields a set that we denote by Σ′(i, j). Then we form
inside Σ′(i, j) groups consisting of signatures which have all with each other a large intersection.
This is done by considering the graph with vertices the elements of Σ′(i, j) and putting an edge
between two signatures if their intersection is sufficiently large (say greater than some threshold)
and by looking for large cliques in this graph.

Once we have such groups we can recover from them some of the rows of G′. Indeed, for each of
those groups we can recover the common element g′u in the linear combination (5) corresponding
to these signatures. The support of g′u is easily obtained by counting for each position i the number
Ni of signatures of the group that have a 1 in this position. The support of g′u corresponds to the
positions i for which Ni is unusually large.

4 Recovering S up to a column permutation

Computing the correlations between bits of the signature reveals pairs (i, j) of rows of S that
have a “1” at the same position. Consider a function Θ whose purpose is to give the threshold for
deciding whether a pair of position (i, j) is sufficiently correlated or not. It takes five inputs : x
a real number that gives the computed correlation of the pair and four nonnegative integers that

Fig. 1. Distribution of the weights of the intersections of every pair of signatures in Σ(i, j). Here the
threshold is set at a weight of about 250.

represent li, ri, lj and rj respectively:

Θ : R× N× N× N× N→ {0, 1}
(x, li, ri, lj , rj) 7→ Θ(x, li, ri, lj , rj)

In practice, it has been enough to suggest a relevant function for the “degree” li + ri of a position
i, that is we chose a function Θ(x, li, ri, lj , rj) depending only on x, li+ri and lj +rj . We associate
to such a threshold function Θ a graph GΘ defined as follows

Definition 2 (Threshold graph). The threshold graph GΘ associated to the threshold function
is the graph with
- vertex set the set of signature positions,
- there is an edge between i and j if and only if Θ(empCov(σi, σj), li, ri, lj , rj) = 1, where
empCov(σi, σj) denotes the empirical covariance between σi and σj that is computed from the
available set of signatures.

Let Gsec be the graph with the same set of vertices and there is an edge between i and j if and
only if the i-th row and j-th row of S have a “1” in common. Our aim is to recover Gsec by using
GΘ. Note that cliques in Gsec (that is subset of vertices of Gsec that are all linked together by edges
of Gsec) correspond to columns of S, the clique correspond to all the rows of S where this column
has a “1” entry. Recovering S up to a column permutation amounts to recover the cliques of Gsec.

This is easily achieved by considering two different threshold functions Θ1 and Θ2. The
first one is chosen in a conservative manner. More precisely, we choose Θ1 such that whenever
Θ1(empCov(σi, σj), li, ri, lj , rj) = 1 there is an edge between i and j in Gsec (i.e. this threshold is
chosen in such a way, that if we declare that there is a correlation between i and j it always cor-
responds to two rows of S that have a “1” in common). To put it differently, GΘ1

is a subgraph of
Gsec. The second threshold is chosen in a much less conservative way so that we never miss an edge
of Gsec, i.e. when there is an edge between i and j in Gsec, then Θ2(empCov(σi, σj), li, ri, lj , rj) = 1.
In other words, Gsec is a subgraph of GΘ2 this time. In our experiments, we have always been able
to choose Θ1 and Θ2 in this way.

Cliques of Gsec are found by adding edges to GΘ1
and finding cliques in the “augmented” graph

by closing triangles in GΘ1
whenever there was such a triangle in GΘ2

. More precisely, we add an
edge between i and k in GΘ1 when there was a j for which there are edges between i and j and
between j and k in GΘ1 and {i, j, k} forms a triangle in GΘ2 meaning that there are edges between
i and j, between i and k and between j and k in GΘ2

. We have been able to recover all cliques in
Gsec by this simple algorithm in all cases when the columns of S were of weight at least 3, meaning

that all vertices of Gsec are involved in at least one clique which contains a triangle. We ended up
here with a matrix Sp that is equal to S up to a column permutation.

Sp = SΠ

where Π is a permutation matrix for which we can assume that it is formed by circulant blocks
of size p (by reordering Sp in such a way that it is formed only by circulant blocks of size p).

5 Recovering Q up to a column permutation

The previous attack lead to find S up to a column permutation. This will lead us to recover Q up
to a permutation too. We will need for this the following proposition.

Proposition 3. Let Mr0×r0 be the ring of r0p × r0p matrices formed by circulant blocks of size
p × p and let Ar0×r0 be the subset of matrices of Mr0×r0 which are formed only by 0 blocks 0p×p
or by all-ones blocks 1p×p. Ar0×r0 is a subring of Mr0×r0 which is stable by multiplication

Ar0×r0Mr0×r0 = Mr0×r0Ar0×r0 = Ar0×r0 .

The inverse of Q is of the form T−1 +A where A belongs to Ar0×r0 .

The proof of this proposition is given in the appendix. Recall now that we have a matrix Sp
which up to a column permutation is equal to S, that is

Sp = SΠ (9)

Recall now the following relation between the public parity-check matrix H ′ and the secret one
H:

H ′ = Q−1HS−1.

We also have H =
(
P | I

)
. By putting all these equations together and by multiplying H ′ on the

right by Sp we obtain

H ′Sp = Q−1HS−1Sp

= Q−1
(
P | I

)
S−1SΠ

= Q−1
(
P | I

)
Π

=
(
Q−1P | Q−1

)
Π

By using Proposition 3, we obtain

H ′Sp =
(
(T−1 +A)P | (T−1 +A)

)
Π (10)

for someA that belongs to Ar0×r0 . We claim that we can find inH ′S′p the columns that correspond

to T−1 +A. Indeed in the matrix A the columns that belong to the same circulant block of size p
are equal. Adding T−1 which is a permutation matrix just changes one entry per column. In other
words columns belonging to the same circulant block of T−1 +A are all at Hamming distance 2
from each other. Such groups of columns can easily be detected and we can find a permutation
matrix Π ′ in Mn0×n0 such that

H ′SpΠ
′ =

(
Q−1PΠ l | Q−1Πr

)
(11)

for some permutation matrices Π l and Πr in Mk0×k0 and Mr0×r0 respectively. Then we set

S′p = SpΠ
′

Qp = (Q−1Πr)
−1 = Π−1r Q

6 Forging new signatures

We are ready now to put all the pieces together. Forging is performed by using the pair of matrices
(Qp,S

′
p) instead of the pair (Q,S). To sign a message m we proceed as follows

1. The forger computes s = F(H(m)) which is an element of {0, 1}n−k of weight w. He checks
whether bsT = 0. If this is the case he goes to the next step. If not, he appends a counter l
to H(m) to obtain H(m)||l and computes F applied to H(m)||l until getting a syndrome s
of weight w that satisfies bsT = 0

2. He computes s′
T

= Qps
T . This syndrome has weight ≤ mTw

3. The forger sets e = 00 · · · 0︸ ︷︷ ︸
k

||s′

4. The forged signature is then computed as σ = eS′p
T

.

It can be verified that σ is a valid signature since
(i) H ′σT = sT , because

H ′σT = H ′S′pe
T

= H ′SpΠ
′eT

=
(
Q−1PΠ l | Q−1Πr

) (
0k s

′)T (follows from (11))

=
(
Q−1PΠ l | Q−1p

)(0Tk
Qps

T

)
= sT

(ii) It is readily verified that the signature σ has Hamming weight at most mTmSw which is
smaller than (mTw + wc)mS .

It could be argued that this weight is significantly smaller than the weight of a genuine signature
which should be typically slightly less than (mTw+wc)mS and that this could be detected. This
attack can be improved in order to achieve the “right” weight of (mTw + wc)mS as follows.
During the recovery process of S we have found rows of G′. These rows have weight of about
wGmS . Since such rows are in the public code Cpub which has parity-check matrix H ′ we can add
mG of them to σ without changing the syndrome H ′σT . However this adds a Hamming weight
of about mGwGmS = wcmS to the signature which is precisely the weight we want to achieve.

7 Experimental Results

Running the whole attack was performed on the parameters suggested for 80 bits of security of
[BBC+13] namely

n k p w wg wc z mT ms

9800 4900 50 18 20 160 2 1 9
Table 1. Parameters for 80 bits of security.

We used 100, 000 signatures to perform the attack which was implemented in Sage and took
about one hour on a 6-core Intel R© Xeon R© running at 3.20 GHz. It was performed on matrices S
which were either regular (constant column and row weight equal to wS) or irregular.

8 Conclusion

We have demonstrated here that correlations between some of the bits of the signature that
can be observed in the signature scheme proposed in [BBC+13] can be used to recover enough
of the secret information to be able to forge new signatures. Our attack was performed on the
parameters devised for 80 bits of security, used 100, 000 signatures for this task and took about
one hour. The real reason why this attack was possible comes from these correlations and has not
to be attributed to other features of the parameters proposed in [BBC+13] (for instance T was
chosen as a permutation matrix, the way S is chosen is not completely specified in [BBC+13] –we
chose it to be either regular or irregular). Arguably, there is one place where our attack used a
particular feature of the matrix S, namely that its columns were at least of weight 3 –see Fact 2
where cliques in the threshold graph were used to detect correlations of type (i) (see Subsection
3.2). When S has columns of weight 1 or 2, the strategy outlined in Section 4 does not work
anymore and this might require more elaborate strategies to break the scheme in such a case. It
is unlikely that such a modification is able to avoid attacks using these correlations. For all these
reasons, it seems to us that the scheme proposed in [BBC+13] could only be used in one-time (or
few-times) signature schemes.

Acknowledgment

This work was supported by the Commission of the European Communities through the Horizon
2020 program under project number 645622 PQCRYPTO. The authors would also like to thank
the anonymous reviewers for their valuable comments and suggestions which were very helpful for
improving the quality of the paper.

References

[BBC+13] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, and Davide Schipani.
Using LDGM codes and sparse syndromes to achieve digital signatures. In Post-Quantum
Cryptography 2013, volume 7932 of Lecture Notes in Comput. Sci., pages 1–15. Springer, 2013.

[BMS11] Paulo S.L.M Barreto, Rafael Misoczki, and Marcos A. Jr. Simplicio. One-time signature scheme
from syndrome decoding over generic error-correcting codes. Journal of Systems and Software,
84(2):198–204, 2011.

[CFS01] Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve a McEliece-based
digital signature scheme. In Advances in Cryptology - ASIACRYPT 2001, volume 2248 of
Lecture Notes in Comput. Sci., pages 157–174, Gold Coast, Australia, 2001. Springer.

[COV07] Pierre-Louis Cayrel, Ayoub Otmani, and Damien Vergnaud. On Kabatianskii-Krouk-Smeets
signatures. In Arithmetic of Finite Fields - WAIFI 2007, volume 4547 of Lecture Notes in
Comput. Sci., pages 237–251, Madrid, Spain, June 21–22 2007.

[FGO+11] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and Jean-Pierre
Tillich. A distinguisher for high rate McEliece cryptosystems. In Proc. IEEE Inf. Theory
Workshop- ITW 2011, pages 282–286, Paraty, Brasil, October 2011.

[FGO+13] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and Jean-Pierre
Tillich. A distinguisher for high rate McEliece cryptosystems. IEEE Trans. Inform. Theory,
59(10):6830–6844, October 2013.

[Fin10] Matthieu Finiasz. Parallel-CFS - strengthening the CFS McEliece-based signature scheme. In
Selected Areas in Cryptography 17th International Workshop, 2010, Waterloo, Ontario, Canada,
August 12-13, 2010, revised selected papers, volume 6544 of Lecture Notes in Comput. Sci., pages
159–170. Springer, 2010.

[GRSZ14] Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zémor. Ranksign: An efficient
signature algorithm based on the rank metric. In Post-Quantum Cryptography 2014, volume
8772 of Lecture Notes in Comput. Sci., pages 88–107. Springer, 2014.

[GSJB14] Danilo Gligoroski, Simona Samardjiska, H̊akon Jacobsen, and Sergey Bezzateev. McEliece
in the world of Escher. IACR Cryptology ePrint Archive, Report2014/360, 2014.
http://eprint.iacr.org/.

[KKS97] Gregory Kabatianskii, Ernst Krouk, and Ben. J. M. Smeets. A digital signature scheme based
on random error-correcting codes. In IMA Int. Conf., volume 1355 of Lecture Notes in Comput.
Sci., pages 161–167. Springer, 1997.

[KKS05] Gregory Kabatianskii, Ernst Krouk, and Ben. J. M. Smeets. Error Correcting Coding and
Security for Data Networks: Analysis of the Superchannel Concept. John Wiley & Sons, 2005.

[LJ12] Carl Löndahl and Thomas Johansson. A new version of McEliece PKC based on convolutional
codes. In Information and Communications Security, ICICS, volume 7168 of Lecture Notes in
Comput. Sci., pages 461–470. Springer, 2012.

[LS12] Gregory Landais and Nicolas Sendrier. Implementing CFS. In Progress in Cryptology - IN-
DOCRYPT 2012, volume 7668 of Lecture Notes in Comput. Sci., pages 474–488. Springer,
2012.

[LT13] Grégory Landais and Jean-Pierre Tillich. An efficient attack of a McEliece cryptosystem variant
based on convolutional codes. In P. Gaborit, editor, Post-Quantum Cryptography’13, volume
7932 of Lecture Notes in Comput. Sci., pages 102–117. Springer, June 2013.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology
- EUROCRYPT’93, volume 765 of Lecture Notes in Comput. Sci., pages 386–397, Lofthus,
Norway, May 1993. Springer.

[MS86] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes. North–
Holland, Amsterdam, fifth edition, 1986.

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of
Control and Information Theory, 15(2):159–166, 1986.

[OT11] Ayoub Otmani and Jean-Pierre Tillich. An efficient attack on all concrete KKS proposals. In
Post-Quantum Cryptography 2011, volume 7071 of Lecture Notes in Comput. Sci., pages 98–116,
2011.

A Proof of Proposition 2

Recall this proposition first.

Proposition. Let X1, X2, X3 be independent Bernoulli variables such that prob(Xi = 1) = pi,

σ1
def
= X1 + X3 and σ2

def
= X2 + X3. Then if p3 /∈ {0, 1}, p1, p2 6= 1

2 , we have that σ1 and σ2 are
correlated with

Cov(σ1, σ2)
def
= E(σ1σ2)− E(σ1)E(σ2) = p3(1− p3)(1− 2p1)(1− 2p2).

Proof. Let us compute the probability that σ1 and σ2 are both equal to 1. We have

prob(σ1 = 1, σ2 = 1) = prob(X3 = 1)prob(X1 = 0)prob(X2 = 0) + prob(X3 = 0)prob(X1 = 1)prob(X2 = 1)

= p3(1− p1)(1− p2) + (1− p3)p1p2

On the other hand by using Proposition 1 we have

prob(σ1 = 1) = p1 + p3 − 2p1p3

prob(σ2 = 1) = p2 + p3 − 2p2p3

A straighforward computation leads now to

Cov(σ1, σ2) = prob(σ1 = 1, σ2 = 1)− prob(σ1 = 1)prob(σ2 = 1)

= p3(1− p1)(1− p2) + (1− p3)p1p2 − (p1 + p3 − 2p1p3)(p2 + p3 − 2p2p3)

= p3 [(1− p1)(1− p2)− p1p2 − (1− 2p1)p2 − (1− 2p2)p1 − (1− 2p1)(1− 2p2)p3] + p1p2 − p1p2
= p3 [1− p1 − p2 + p1p2 − p1p2 − p2 + 2p1p2 − p1 + 2p1p2 − (1− 2p1)(1− 2p2)p3]

= p3 [1− 2p1 − 2p2 + 4p1p2 − (1− 2p1)(1− 2p2)p3]

= p3 [(1− 2p1)(1− 2p2)− (1− 2p1)(1− 2p2)p3]

= p3(1− p3)(1− 2p1)(1− 2p2)

B Proof of Proposition 3

Before we prove this proposition it will be very convenient to recall the following ring isomorphism
Ψ between the ring of circulant binary matrices Mp of size p × p and F2[X]/(1 + Xp) which is
given by

Ψ :Mp → F2[X]/(1 +Xp)
a0 a1 . . . ap−1
ap−1 a0 . . . ap−2

.
.

a1 a2 . . . a0

 7→ a0 + a1X + · · ·+ ap−1X
p−1

With this isomorphism we can view a r0p× r0p binary matrix formed by circulant blocks of size
p × p as a r0 × r0 matrix over F2[X]/(1 + Xp) by replacing each of these circulant blocks by its
image by the isomorphism Ψ to them.

We will also use the following property of the set Cp
def
= {0, 1+X+· · ·+Xp−1} of F2[X]/(Xp−1)

Lemma 1. Cp is an ideal of F2[X]/(Xp − 1).

Proof. This is just a straighforward use of the well known theory of cyclic codes : 1+X+· · ·+Xp−1

divides 1 +Xp and Cp is nothing but the cyclic code generated by 1 +X + · · ·+Xp−1, see [MS86]
(it is in fact a way of viewing the repetition code as a cyclic code). From this theory it follows
that Cp is an ideal of F2[X]/(Xp − 1).

Proposition 3 can now be rephrased as

Proposition 4. Let Mψ
r0×r0 be the ring of r0×r0 matrices over F2[X]/(Xp−1) and let Aψr0×r0 be

the ring of r0×r0 matrices over Cp. A
ψ
r0×r0 is a subring of Mψ

r0×r0 which is stable by multiplication

Aψr0×r0M
ψ
r0×r0 = Mψ

r0×r0A
ψ
r0×r0 = Aψr0×r0 .

The inverse of Qψ is of the form (T ψ)−1 +Aψ where A belongs to Aψr0×r0 , where we denote for

a matrix M in Ar0×r0 by Mψ the matrix where we have replaced every circulant block M ij by
ψ(M ij).

Proof. The first part follows immediately from Lemma 1. Tψ is invertible and therefore

(Qψ)−1 = (T ψ +Rψ)−1

= (T ψ)−1(I + (T ψ)−1Rψ)−1

We use now the first part of the proposition to deduce that AΨ def
= (T ψ)−1Rψ belongs to Aψr0×r0 .

Now it easy to prove that (I + AΨ)−1 = I + BΨ for some matrix BΨ in AΨr0×r0 . This follows
immediately from the formula

(I +AΨ)−1 =
1

det(I +Aψ)
CT

where C is the cofactor matrix of I +AΨ , namely the matrix where the entry cij is equal to the
(i, j)-minor, that is the determinant of the (r0 − 1) × (r0 − 1) matrix that results from deleting
row i and column j of I +AΨ . Here Lemma 1 is used to conclude that any product that contains
an element of Cp yields an element in Cp. We also use the fact that any product of the form
(1 + a)(1 + b) where a and b belong to Cp is of the form 1 + c where c belongs to Cp.

