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Abstract

In this paper we elaborate on the theoretical framework of [BCQ04] to quantify the informa-
tion brought by several linear approximations of a block-cipher without putting any restriction
on these approximations. This allows to estimate accurately how many plaintext-ciphertext
pairs are needed in order to recover with good probability the vector K̃ formed by the linear
combinations of the key bits involved in the linear approximations. Moreover, we also show
how decoding techniques can be used in this context in order to reduce significantly the time
complexity of finding the most likely K̃.

1 Introduction

Related work
Linear cryptanalysis is probably one of the most powerful tools available for attacking symmetric

cryptosystems. It was invented by Matsui [Mat93, ?] to break the DES cipher building upon ideas
put forward in [TCG91, MM92]. It was quickly discovered that other ciphers can be attacked in
this way, for instance FEAL [OA94], LOKI [TSM94], SAFER [MPWW95].

It is a known plaintext attack which takes advantage of probabilistic linear equations that
involve bits of the plaintext P, the ciphertext C and the key K

Pr(< π,P > ⊕ < γ,C > ⊕ < κ,K >= b) =
1
2

+ ε. (1)

ε is called the bias of the equation, π, γ and κ are linear masks and < π,P > denotes the following
inner product between π = (πi)1≤i≤m and P = (Pi)1≤i≤m, < π,P >

def=
⊕m

i=1 πiPi. There might be
several different linear approximations of this kind we have at our disposal and we let n be their
number. We denote the corresponding key masks by κi = (κji )1≤j≤k and the corresponding biases
by εi for i ∈ {1, . . . , n}.

Such an attack can be divided in three parts:
- Distillation phase: it consists in extracting from the available plaintext-ciphertext pairs the rel-
evant parts of the data. It basically consists in counting for each linear approximation how many
times < π,P > ⊕ < γ,C > evaluates to zero.
- Analysis phase: It consists of extracting from the values taken by the counters some information
on the key and testing whether some key guesses are correct or not by using the linear approxima-
tion(s) (1) as a distinguisher.
- Search phase: It typically consists in finding the rest of the key by exhaustive search.
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In [Mat93] Matsui used only one approximation to distinguish wrong last round keys from the
right one. One year later, he refined his attack by using a second approximation obtained by
symmetry [?] and by also distinguishing with them the first round key. Later Vaudenay [Vau96]
has presented a framework for statistical cryptanalysis where Matsui’s attack is presented as a
particular case. With Junod, he has also studied the optimal way of merging information from
two (or more) approximations [JV03]. This kind of attack can use several approximations but the
key masks must have disjoint supports. A second approach of using multiple equations is given by
Kaliski and Robshaw [BSKR94]. They improved Matsui’s first attack using several approximations
which have the same key mask κ.

All these improvements have a common goal: reducing the amount of messages needed for
the attack. Clearly, using several approximations should give more information than a single one.
Biryukov and al. suggest in [BCQ04] a way of using multiple linear approximations without putting
any restriction on them. We call this kind of attack multilinear cryptanalysis. Moreover, they bring
in a simple probabilistic model which is quite convenient for studying linear cryptanalysis with
multiple linear approximations. We will elaborate on the this theoretical framework here.

Our contribution
The purpose of this paper is to study how much multiple linear approximations may benefit

linear cryptanalysis. Our purpose is twofold here:
- we wish to quantify accurately how much information is gained on the key from the knowledge of
a certain amount of plaintext-ciphertext pairs and a certain number of probabilistic approximate
linear equations of type (1).
- By using decoding techniques, we suggest a much faster way for recovering the linear combinations
of the key bits < κ,K > than what has been proposed before.

How much information do we have on the key by using linear cryptanalysis statistics?
Several statistics have been proposed to study how many plaintext-ciphertext pairs we need

to have in order to carry out succesfully a linear cryptanalysis. This includes for instance the
probability of guessing incorrectly a linear combination of key bits by Matsui’s Algorithm 1 [?],
the ranking of the right subkey in the ordered list of candidates [?] or the expected size of the
number of keys which are more likely than the right key [BCQ04]. Some of these statistics are
either not relevant for linear cryptanalysis with several linear equations or are extremely difficult
to calculate in the case of multilinear cryptanalysis (such as for instance the ranking statistics
of [?]). This is not the case of the expected size of the number L of keys which are more likely
than the right key considered in [BCQ04]. However, this kind of statistics also leads to pessimistic
predictions concerning the number of plaintext-ciphertexts which are needed. This is related to
the following probabilistic phenomenon which is detailled in Subsection 4.4: this expectation is in
a rather wide range of amount of plaintext-ciphertext pairs exponential in the key size k, while
for most plaintext-ciphertext pairs the most likely key is the right one. This comes from the fact
that rare events (of exponentially small probability) yield values of L which are exponentially large
in k. In other words, while for typical plaintext-ciphertext pairs L is equal to zero, for some rare
occurrences of the plaintext-ciphertext pairs L is very large, and this accounts quite heavily in the
expectation of L. This boils down to the fact that we take the expectation of a quantity which can
vary between 0 and 2k. It would be much better to take the expectation of a quantity which is
much smaller.

A quantity which is of this type is the entropy H(K|Y) of the key K (or more generally
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H(K′|Y), where K′ is a certain subkey of K- for instance it can be the part of the key involved in
a distinguisher attack) given the statistics Y we have derived from the plaintext-ciphertext pairs.
This quantity is one of the most fundamental measure of the uncertainty on the key K given Y
and displays many attractive features. First of all, it can be considered as the number of “truly”
random bits left in K given Y. Moreover, it quantifies precisely what happens if there is a subset
T of possible K’s such that:
(i) all the keys of T have roughly the same probability of being the right key given Y,
(ii) T is of much smaller cardinality than the set of all possible keys K,
(iii) and is such that the probability that the key is not in T given Y is small.

In such a case we wish to say that the number of random bits in the key given Y is of order
log2(|T |). The entropy functional captures with accuracy this behavior. If the aforementioned
phenomenon occurs, then the size of T will be about 2H(K|Y). This quantity H(K|Y) can be really
viewed in such a case as the expectation of the logarithm log2(L) of of the list of candidates which
are at least as likely as the right key. The logarithm of L varies much less than L and this why the
typical size of logL coincides quite well with the expectation.

Despite the fact that it much more desirable to estimate the entropy than the expectation of
L, it might seem that this quantity is much harder to calculate. Our main result is to give here a
lower bound on this quantity (see Subsection??) which is quite sharp. The sharpness of the bound
is illustrated by the results of Subsection 4.3. We apply this bound in three different scenarios: (i)
the linear attack which recovers only the linear combination of the key bits, (ii) the usual linear
distinguishing attack which recovers some linear combinations of the key bits of the first (and/or)
last round, and (iii) the algorithm MK2 in [BCQ04]. We wish to emphasize the fact that the
technique to derive the lower bound is quite general and applies in a very wide range of situations,
and not only in the case where Y corresponds to counters of linear approximations (see Subsection
4.1). A second useful property of this lower bound on the entropy is that it gives an upper bound
on the information we gain on the K when we know Y which is independent of the algorithm we
use afterwards to extract this information.
A fast algorithm for recovering the linear combinations of the key bits < κ,K >

Our second contribution is to suggest an algorithm for recovering the linear combinations <
κi,K >. It will be convenient to denote by K̃ def= (K̃i)1≤i≤n the vector of linear combinations of

the key bits induced by the key masks, that is K̃i
def=
⊕k

j=1 κ
j
iKj . A particular quantity will play a

fundamental role in this setting. It is the dimension (what we will denote by d) of the vector space
generated by the κi’s. It can be much smaller than the number n of different key masks.

We first show that finding the most likely value(s) for K̃ reduces to the problem of decoding a
linear code over the Gaussian channel. This problem has been studied in coding theory [Dum00,
VF04], [PH98, chapter 7] and has lead to algorithms for fulfilling this task which are much more
efficient than exhaustive search over the code space. This translates in our setting into algorithms
which can search for the most likely value(s) for K̃ without looking at the whole space of possible
linear combinations. For instance, in the toy example we have considered, namely 8-round DES, we
find the most likely values of 20 linearly independent combinations of the key bits by using only 219

plaintext-ciphertext pairs and considering in the search phase only a few hundred possible linear
combinations. This is comparable with the amount of plaintext-ciphertext pairs used in the best
current linear cryptanalysis of the 8-round DES and improves significantly the time complexity of
the attack.
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This approach opens up the hope of (linearly) cryptanalyzing a cipher in a different way. Gener-
ally in linear cryptanalysis, the linear approximations for a cipher are mainly used as distinguishers
for last round or first round key bits and yield only very limited information on the overall key bits.
The approach which is suggested here is different in nature. It consists in trying to take advantage
of the multiplicity of linear approximations and of the fact that there are rather efficient decoding
algorithms to process this kind of information in order to find these key bits directly without peeling
off the cipher by one or two rounds and using the linear approximations for distinguishing a right
last or first round key guess from wrong ones. This is basically also what is considered in the first
phase of the attack algorithm MK1 proposed in [BCQ04], but there is an important difference here:
whereas the processing of the information provided by the distillation phase in the analysis phase
requires there to consider all possible linear combinations of key bits given by the masks and to
rank them according to the information available from the distillation phase, we proceed differently
with our decoding algorithm. The time complexity of algorithm MK1 is namely at least of order
O(d2d) for calculating the probabilities of each possible linear combination and for ordering them.
Decoding algorithms here provide good candidates for the most likely values of K̃ with complexity
2αd with an α which is significantly smaller than 1 which depends on the decoding algorithm and on
several parameters (d, n, the noise, the probability of failure of not producing the best candidate(s)
we tolerate).

2 The probabilistic model

We review in this section the probabilistic model suggested in [BCQ04]. We denote by Σ the set of
N plaintext-ciphertext pairs. The information available after the distillation phase is modeled as
follows.

Model 1 — The attacker receives a vector Y = (Yi)1≤i≤n such that:

∀ i ∈ {1, . . . , n}, Yi = (−1)K̃i +Ni , Ni ∼ N (0, σ2
i ), (2)

where σ2
i

def
= 1

4Nε2i
.

We denote by f(Y|K̃) the density function of the variable Y conditioned by the value taken by
K̃ and fi(Yi | K̃i) denotes the density of the variable Yi conditioned by K̃i.
These conditional densities satisfy the independence relation

f(Y | K̃) =
n∏
i=1

f(Yi | K̃i) (3)

Y is derived from Σ as follows. We first define for every i in {1, . . . , n} and every j in {1, . . . , N}
the following quantity Dj

i
def=< πi,Pj > ⊕ < γi,Cj > ⊕bi, where the plaintext-ciphertext pairs

in Σ are indexed by (P1,C1), . . . , (PN ,CN ) and bi is the constant appearing in the i-th linear
approximation. Then for all i in {1, . . . , n} we set up the counters Di with Di

def=
∑N

j=1D
j
i from

which we build the vector of counters D = (Di)1≤i≤n. Di is a binomial random variable which is
approximately distributed as a normal law N ((1/2− εi(−1)K̃i)N, (1/4− ε2i )N). This explains why
the vector Y = (Yi)1≤i≤n is defined as:

Yi
def=

N − 2Di

2Nεi
(4)
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and why Equation (2) holds. There is some debate about the independence relation (3). This
point is discussed by Murphy in [Mur06] where he proves that even if some key masks are linearly
dependent, the independence relation (3) holds asymptotically if for a fixed key the covariances
cov(Dj

i1
, Dj

i2
) def= Pr(Dj

i1
= Dj

i2
= 1) − Pr(Dj

i1
= 1)Pr(Dj

i2
= 1) are negligible. We have checked

whether this holds in our experimental study. We had 129 linear approximations with biases in
the range [1.45.10−4, 5.96.10−4] and we found empirical covariances in the range [−2.10−7, 2.10−7]
for 1012 samples. This corroborates the fact that the covariances are negligible and that the
independence relation (3) approximately holds.

3 Performing the linear attack by decoding a linear code

The problem of finding the most likely K̃’s for a given Y is exactly the problem of decoding a linear
code of dimension d (the maximum number of independent masks) of length n (the number of linear
approximations) over an additive white Gaussian noise channel with BPSK modulation [?] with
different values of the noise for each bit: the i-bit is transmitted through a Gaussian channel with
noise variance σ2

i . Many methods have been suggested to perform this task faster than calculating
all 2r probabilities Pr(K̃|Y) (which represents the probability that K̃ corresponds to the right
key given that Y has been received) and outputting the most likely ones. We present in what
follows an algorithm for performing this task which was proposed in [Val00]. Contrarily to other
decoding algorithms such as [Dum00, VF04] there is no proof that this algorithm performs faster
than exhaustive search over the whole key space, but this algorithm has the advantage to be simple
to explain and quite efficient in practice. For this purpose, we need to define a few quantities. The
log-likelihood LY(K̃) of a key K̃ for a received vector Y is defined by LY(K̃) def=

∑n
i=1(−1)K̃iYi/σ2

i .
This definition comes from the following lemma.

Lemma 1 For a given Y, the probabilities Pr(K̃|Y) are ordered in the same way as the log-
likelihoods LY(K̃).

This lemma implies that in order to find the most likely K̃ we have to find the K̃’s with the
largest log-likelihoods. Many algorithms for performing this task operate on the quantified version
Ŷ = (Ŷi)1≤i≤n of Y which is a binary vector of length n defined by

Ŷi
def= 0 if Yi ≥ 0 and 1 otherwise. (5)

Ŷi can be viewed as the most likely value for K̃i given Yi. It is therefore natural to expect that the
most likely K̃ is not too far away from Ŷ with respect to the Hamming distance. However, it is by
no means obvious to produce efficiently possible values for K̃ which are the closest to Ŷ , the problem
being that only a fraction 2d−n of binary words of length n can be taken by K̃. Nevertheless, it
is easy to set up K̃’s which are at a specified Hamming distance on a subset of d positions when
this subset forms what is called an information set. This is by definition a subset of d positions
on which the K̃’s take all possible values among {0, 1}d. It is also defined equivalently by a set of
r independent columns of the generating matrix G with d rows and n columns which is such that
K̃ = KG. The columns of this matrix correspond to the key masks κi: such a set of r independent
columns corresponds to a set of r independent key masks. K̃ is completely determined by the
values it takes on an information set. More specifically, if we denote for subset P ⊂ {1, . . . , n} by
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K̃P the vector (K̃i)i∈P and by P̄ the complementary set of P , then for any information set I there
exists an d× (n− d) matrix GI such that K̃Ī = K̃IGI .

A rather good heuristic would then be to find an information set I, use the previous facts about
an information set for generating all K̃’s such that the Hamming distance between K̃I and ŶI

is at most d for some small d and hope that the most likely K̃’s are generated in this way. This
basically amounts to generate 1 +

(
n
1

)
+ · · · +

(
n
d

)
candidates for K̃. However, even if K̃I and Ŷ

are close to each other, many of these K̃’s generated in this way are rather far away from Y. It is
possible to avoid many useless K̃’s by proceeding slightly differently and asking for K̃’s such that
the Hamming distance between ŶJ and K̃J is at most d where J is a set of positions of size d+ h
(where h is much smaller than d) which contains an information set. The problem of generating
such K̃’s is solved by bringing in parity-check considerations.

This time all 2d+h possible binary values can not be taken by the K̃’s on J . There exists for
such a set J of positions a parity-check matrix HJ of size h× (d+h) which can be obtained from G
by Gaussian elimination such that a vector X ∈ {0, 1}d+h is a possible K̃J if and only if HJXT = 0.
To produce efficiently such K̃’s we split J in two halves J = J1 ∪ J2 and generate all couples of
error patterns (E1,E2) ∈ {0, 1}d+h × {0, 1}d+h such that (i) the support of Ei is included in Ji
(ii) the Hamming weights of E1 and E2 are at most d/2, (iii)HJ(Ŷ ⊕ E1 ⊕ E2)T = 0. This can
be achieved efficiently by storing the values of HJET

1 in a hash table. The algorithm has a time
complexity of O

(
2−h

(
d+h
d/2

)2)
and a memory complexity of O

(
d+h
d/2

)
. A good idea is to choose h such

that
(
d+h
d/2

)
' 2h. The final algorithm deals then with O

(
d+h
d/2

)
possible values for K̃. This algorithm

can be described by:
INPUTS:
- J : a set of positions of size k + h,
- Y: the vector to decode.
OUTPUT:
res: the result of the decoding procedure.
Maximum Likelihood Decoding Algorithm(Y , J)

1 Calculate HJ the parity-check matrix restricted to J
2 Set S← HJ ŶT

J , vmax← −∞ , res← 0
3 Split J in two halves J1 and J2

4 Generate all error patterns E1 of maximal weight d/2 on J1

5 Store them in a table at the address HJ ET
1

6 for ALL error patterns E2 of maximal weight d/2 on J2

7 do Look at the address S⊕ (HJ ET
2 )

8 for ALL error pattern E1 stored here
9 do Complete ŶJ ⊕E1 ⊕E2 in a vector K̃

10 v ← LY(K̃)
11 if v > vmax
12 then vmax← v and res← K̃
13 Return res

d is generally chosen to be quite small and with rather large probability we might miss the most
likely K̃. To avoid that, the previous algorithm is applied on many sets of size d + h. Obviously,
we should look for sets which contain the least number of quantifications errors (i.e. be such that
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for most i in J , Ŷi coincides with K̃ ′i where K̃′ denotes now the most likely value for K̃). The
best set of this kind corresponds by Formula (15) to the set J of d + h positions with the largest∑

i∈J |Yi|/σ2
i . One might be tempted to look first for this set, then for the set with the second

largest sum and so on. This is not a very good idea, since these sets are generally very close to
each other, and if K̃′ has too many errors on a given set J of positions, then this may also be the
case with a neighboring set. It is better to find a way to produce sets J of size d+ h with a large∑

i∈J |Yi|/σ2
i but which are sufficiently different from each other. A nice way to do this is to use

stochastic resonance as Valembois proposed in his PhD thesis [Val00]:

INPUTS:
- NbRounds the number of sets J we are going to check.
- h the size of J minus r.
OUTPUT: res the result of the decoding algorithm.
Stochastic Resonance Decoding Algorithm(h , NbRounds)

1 vmax← −∞ , res← 0
2 for j from 1 to NbRounds
3 do for i from 1 to n
4 do Y ′i ← Yi +Ni , where Ni ∼ N (0, σ2

i /4)
5 Choose the set J as the d+ h indices with the largest |Y ′i /σ2

i |
6 if J contains an information set
7 then K̃← Maximum Likelihood Decoding Algorithm(Y′, J)
8 v ← LY(K̃)
9 if v > vmax

10 then vmax← v and res← K̃
11 Return res

4 Bounds on the required amount of plaintext-ciphertext pairs

4.1 An information-theoretic lower bound

The purpose of this subsection is to derive a general lower bound on the amount of uncertainty
H(K|Y) we have on the key given the statistics Y derived from the plaintext-ciphertext pairs. We
recall that the (binary) entropy H(X) of a random variable X is given by the expression:

H(X) def= −
∑
x

Pr(X = x) log2 Pr(X = x) (for discrete X)

def= −
∫
f(x) log2(f(x))dx (for continuous X of density f) (6)

For a couple of random variables (X,Y ) we denote by H(X|Y ) the conditional entropy of X given
Y . It is defined by H(X|Y ) def=

∑
y Pr(Y = y)H(X|Y = y), where H(X|Y = y) def= −

∑
x Pr(X =

x|Y = y) log2 Pr(X = x|Y = y) when X and Y are discrete variables and when Y is a continuous
random variable taking its values over Rn it is given by H(X|Y) =

∫
Rn H(X|Y = y)f(y)dy, where

f(y) is the density of the distribution of Y at the point y. A related quantity is the mutual

7



information I(X;Y ) between X and Y which is defined by

I(X;Y ) def= H(X)−H(X|Y ). (7)

It is straightforward to check [CT91] that this quantity is symmetric and that

I(X;Y ) = I(Y ;X) = H(Y )−H(Y |X). (8)

We will be interested in deriving a lower bound on H(K′|Y) when K ′ = (K ′1, . . . ,K
′
n) is a

subkey derived from K which satisfies:

(i) (conditional independence assumption)

f(Y | K′) =
n∏
i=1

f(Yi | K ′i), (9)

where f(Y|K′) is the density function of the variable Y conditioned by the value taken by
K′ and fi(Yi | K ′i) denotes the density of the variable Yi conditioned by Ki.

(ii) K′ may take 2k
′

values and all are equally likely.

With these assumptions we have the following result

Lemma 2

I(K′; Y) ≤
n∑
i=1

I(Ki;Yi) (10)

H(K′|Y) ≥ k′ −
n∑
i=1

I(Ki;Yi). (11)

The proof is this lemma can be found in the appendix. It will be used in what follows in
various scenarios for linear attacks, but it can obviously be used to cover many other cryptographic
attacks. This lower bound is in general amazingly sharp as long as it is non-trivial, i.e when
k′ ≥

∑n
i=1 I(K ′i;Yi). We will prove this for one the application in what follows but this can also

be done for the other cases. In what follows, when K is a discrete random variable and Y is a
continuous one such that the conditional disributions of Y given K have density f(Y |K) it will be
convenient to use the following formula for the mutual information

I(K;Y ) =
∑
k

Pr(K = k)
∫
f(y|k) log

f(y|k)∑
k f(y|k)

dy. (12)

4.2 Application to various scenarios

Attack 1 : It corresponds to the case where we do not use the linear equations as distinguishers
but only want to recover the < κi,K >’s. This corresponds in the case of a single equation to
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Matsui’s attack 1 and in the case of multiple equations to the attack MK1 in [BCQ04]. We have
here

K ′i = < κi,K >

Yj =
N − 2Dj

2Nεj
.

K′ and Y satisfy the required conditional independence assumption (see Equation 3) and a straight-
forward calculation using Formula (12) yields

I(K ′i;Yi) = Cap(σ2
j )

where

Cap(σ2) def= 1− σe−
1

2σ2

√
8π

∫ ∞
∞

e−
u2σ2

8 e
u
2 log2

(
1 + e−u

)
du.

and therefore by applying Lemma 2 we obtain

H(K′|Y) ≥ d−
n∑
j=1

Cap(σ2
j ) (13)

Attack 2: We consider a distinguisher attack where the approximate linear equations of the form
(1) correspond to a first and last round reduced cipher. This means that they apply to pairs (P,C)
for which P is the encrypted version of the plaintext with the first round key Kfirst and C being
the inverse of the ciphertext corresponding to the last round key Klast. The < πi,P >’s and the
< γi,C >’s might not depend on all the bits of Kfirst and Klast. We denote by K ′ the vector formed
by the bits of Kfirst and Klast on which the < πi,P >’s and the < γi,C >’s depend. We assume
that K ′ may take 2k

′
values. We define K′ by the vector (K ′i)

n
i=1 such that K ′i = K ′ for all i’s.

We also assume that we make no assumption on the < κi,K >’s (or consider all possible values
for these quantities) and we just want to recover K ′ based on the values of the counters Dz

j for
j in {1, . . . , n} and z ranging over all possible values for K ′. These counters are defined similarly
as in Section 2 with the difference being that we use the value K ′ = z for deriving the relevant
couples (P,C). The statistics Y = (Yj)1≤j≤n we consider in this case is given by Yj

def= (Y z
j )z with

Y z
j =

|N−2Dzj |
2Nεj

. Again the conditional independence relation (3) is also satisfied in this case. With
the help of Lemma 2, we can write H(K′|Y) ≥ k′ −

∑n
i=1 I(K ′;Yi). We can again use Lemma 2

and obtain I(K ′;Yi) ≤
∑

z I(K ′;Y z
i ). The variable Y z

j has density rj if z corresponds to the right
choice for K ′ and wj otherwise, where rj(t) = φ1

j (t) +φ−1
j (t), wj(t) = 2φ0

j (t) for nonnegative t with

ϕαj (t) = 1q
2πσ2

j

e
− (t−α)2

2σ2
j being the density of a normal variable of expectation α and variance σ2

j . A

straightforward application of Formula (12) gives

I(K ′j ;Yj) =
∫ +∞

0

rj(t)
2k′

log
(
rj(t)
sj(t)

)
dt+

∫ ∞
0

(1− 2−k
′
)wj(t) log

(
wj(t)
sj(t)

)
dt, (14)

with sj(t)
def= 2−k

′
rj(t) + (1− 2−k

′
)wj(t). We denote this quantity by Ij and we finally obtain

H(K′|Y) ≥ k′ − 2k
′
n∑
j=1

Ij .
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Attack 3: This corresponds to the attack MK2 in [BCQ04] which is a variation of the previously
seen distinguisher attack. In this case, we wish to find simultaneously the K ′ defined in Attack
2 and also the vector K ′′ = (< κi,K >)1≤i≤n. In this case, we let K ′′′ = (K ′,K ′′) and define

K′ def= (K ′i)1≤i≤n by K ′i = K ′′′ for every i. We assume that 2k
′′′

is the number of all possible
values for K ′′′ and that 2k

′
is the number of all possible values for K ′. Here, we define the relevant

statistics Y = (Yi)1≤i≤n by Yi = (Y z
i )z where z ranges over all possible values for K ′ and where

Y z
j =

N−2Dzj
2Nεj

. We have again the desired independence relation (3) and as in the previous example
we can use Lemma 2 twice to obtain

H(K′|Y) ≥ k′′′ −
n∑
j=1

I(K ′′′;Yj) ≥ k′′′ − 2k
′
n∑
j=1

I(K ′′′;Y z
j )

A straightforward application of Formula (12) yields

I(K ′′′;Y z
j ) =

∫ ∞
−∞

ϕ−1(t)
2k′

log
(
ϕ−1(t)
ψj(t)

)
dt+

∫ ∞
−∞

(1− 2−k
′
)ϕ0(t) log

(
ϕ0(t)
ψj(t)

)
dt,

with ϕαj (t) defined as in Attack 2 and ψj(t)
def= (1− 2−k

′
)ϕ0

j (t) + 2−k
′−1[ϕ−1

j (t) + ϕ1
j (t)].

4.3 An upper bound

One might wonder whether or not the bounds given in the previous subsection are sharp or not. It is
clear that these lower bounds become negative when the number of plaintext-ciphertext pairs is large
enough and that they are worthless in this case (since mutual information is always nonnegative).
However in all three cases it can be proved that as long the bound is non trivial it is quite sharp.
We will prove this for the lower-bound (13). Similar techniques can be used for the other bounds
but it would be too long to include them in this paper. To study how sharp (13) is we will consider
the case when

n∑
i=1

Cap(σ2
i ) ≈ d?

If the lower-bound is sharp, one might be tempted to say that the conditional entropy of K′ given
Y should be close to 0 which would mean that K′ is determined from Y with probability close to 1.
This is of course not always true, but it is the case for most choices of the coefficients κji . To give
a precise meaning to this statement we will first consider what happens when the κji ’s are chosen
at random.

Theorem 1 Assume that the κji are chosen chosen uniformly at random and that
∑n

i=1 Cap(σ2
i ) ≥

d + δn for some constant δ > 0. Let Perr be the probability that the most likely value for K′ given
Y is not the right one. There exists a constant A such that

Perr ≤
A

δ2n
+ 2−δn/2.

The probability Perr is taken over Y but also over the choices of the κji ’s. It says nothing about
a particular choice of the κji ’s. However it implies the aforementioned assertion about most choices
of the κi’s. Let us be more specific by bringing in Perr(C) which is the probability that the most
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likely key given Y is not the right one when the subspace of dimension d of the possible values for
K̃ is C. A bound on Perr implies that for most choices of the κi’s (and hence of C) Perr(C) is small
by using the following lemma

Lemma 3 Assume that Perr ≤ ε. Then for any t > 0:

PrC (Perr(C) ≥ tε) ≤
1
t

Proof. Let P def= PrC (Perr(C) ≥ tε). We observe that Perr =
∑
C Perr(C)Pr(C)

≥ Ptε. This implies that P ≤ 1
t .

Remark: The notation PrC means here that the probability is taken over the choices for C.
It actually denotes the proportion of choices for C which lead to the specified event inside the
probability.

4.4 Entropy vs. expected number of K̃’s which are more likely than the right
one

The aim of this subsection is to explain that in a certain range of values of N (which is the number
of plaintext-ciphertext pairs) the expected size E of the list of the K̃’s which are more likely than
the right one gives pessimistic estimates of the amount of plaintext-ciphertext pairs we need to
mount an attack. We illustrate this with the following example. We assume that we have n linear
approximations which are all with biases ε = 10−8 and that the dimension of the key masks is
d = n/2. Let σ2 def= 1

4Nε2
. If these approximations behave like random approximations we expect

from Theorem 1 that as soon Cap(σ2) gets slightly larger than 1
2 the probability that the most

likely K̃ is the right one approaches 1 as n goes to infinity. This is the case for σ2 below 0.958,
that is for N ≈ 251.

On the other hand, it can be proved by classical calculations (see for instance [RU, exercise

1.21]) that for random linear key masks, E is at least of order A (1+e
− 1

2σ2 )n−1

n2n/2
for some constant A.

This quantity is exponential large in n for σ2 in the range 0.567− 0.958, that is for N in the range
251 − 252. This seems surprising because in this range the most likely K̃ is with probability going
to 1 the right one. It can be checked that this is due to the following phenomenon: most of the
time the list of K̃’s which are more likely than the right one is empty, but with exponentially small
probability this list is of much larger size (and is exponentially large).

5 Experimental Results

We have benchmarked our algorithm on DES reduced to 8 rounds. We have used 129 linear
approximations for the 8 rounds of DES which stem from the work of Loidreau and Tavernier
[LT07]. The biases of all these approximations are in the range 1.45.10−4 − 5.96.10−4.

These equations can be split into two groups of 55 and 74 equations. The first group involves
9 key bits, the second 13 and there are 2 key bits which are involved in both groups. We have
computed the amount of plaintext for which the bound in Theorem ?? becomes zero. It corresponds
to N ≈ 219.49 for the first group of equations and it corresponds to N ≈ 219.84 for the second group.

11



The quality of the lower-bound of Theorem ?? can be checked by estimating empirically the
entropy. Figure 1 displays the empirical conditional entropies of K̃ given Y for both groups of
equations. There is an excellent agreement between the lower bound and the empirical entropies
up to when we approach the critical value of N for which the lower bound is equal to zero. This
kind of lower bound is really suited to the case when the amount of plaintext-ciphertext pairs is
some order of magnitude below this critical value. This is typically the case in attacks when we
want to decrease the amount of plaintext-ciphertext pairs as much as possible at the expense of
keeping a list of possible candidates for K̃’s.

 0

 2

 4

 6

 8

 10

 12

 14

 15  16  17  18  19  20  21

H
(K

|Y
)

log(N)

Th. bound (G1)
Th. bound (G2)

G1
G2

Figure 1:

We have implemented the linear attack described in Section 3 with these two groups of equations.
Figure 2 displays the success rate as a function of log2(N). We count here an attack as successful
when the best K̃ obtained by the decoding algorithm corresponds to the right key. We also show
in the same graph the joint probability of success of the attack (i.e. when the two algorithms give
the right answer together).
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There are many ways of improving the success rate of the algorithm. For instance, we may keep
a list of the best candidates for K̃ for both groups of equations and merge both lists in a single
(final) list. For example, for 219 plaintext-ciphertext pairs we have plotted the success rate of this
procedure (where we say that the final list is a success iff it contains the right K̃) against the size
of the final list of candidates for K̃ and obtain Figure 3 (where the size of the two intermediate
lists has been fixed to 16).
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A Proofs

A.1 Proof of lemma 1

First of all, note that for a given Y, the probabilities Pr(K̃|Y) are ordered in the same way as
the f(Y|K̃)’s since Pr(K̃|Y) = f(Y|K̃) Pr(K̃)

f(Y) = f(Y|K̃)
2rf(Y) . The logarithm is an increasing function

therefore the ln f(Y|K̃)’s are also ordered in the same way. From the independence relation (3)
we know that ln f(Y|K̃) =

∑n
i=1 ln fi(Yi|K̃i). All this implies that the probabilities Pr(K̃|Y) are

ordered in the same way as the sums
∑n

i=1 ln fi(Yi|K̃i). We notice now that

ln

(
fi(Yi|K̃i = 1)
fi(Yi|K̃i = 0)

)
= ln

e−(Yi+1)2/(2σ2
i )/
√

2πσ2
i

e−(Yi−1)2/(2σ2
i )/
√

2πσ2
i

 = −2Yi
σ2
i

(15)

We finish the proof by

Pn
i=1(−1)K̃iYi/σ

2
i = 1

2

P
i:K̃i=1 ln

„
fi(Yi|K̃i=1)

fi(Yi|K̃i=0)

«
− 1

2

P
i:K̃i=0 ln

„
fi(Yi|K̃i=1)

fi(Yi|K̃i=0)

«
=
Pn
i=1 ln fi(Yi|K̃i)− 1

2

Pn
i=1 ln fi(Yi|K̃i=0)− 1

2

Pn
i=1 ln fi(Yi|K̃i=1)

This shows that the sums
∑n

i=1(−1)K̃iYi/σ2
i are ordered in the same way as the sums

∑n
i=1 ln fi(Yi|K̃i).
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A.2 Proof of Lemma 2

Let us use Equation (8) and write in two different ways the mutual information between K′ and
Y: I(K′; Y) = H(K′)−H(K′|Y) = H(Y)−H(Y|K′). From this we deduce that

H(K′|Y) = H(K′)−H(Y) +H(Y|K′)
= k′ −H(Y1, . . . , Yn) +H(Y1, . . . , Yn|K′). (16)

Here Equation (16) is a consequence of the fact that the a priori distribution over K′ is the uni-
form distribution and the entropy of a discrete random variable which is uniformly distributed is
obviously nothing but the logarithm of the number of values it can take. Moreover (see [CT91,
Theorem 2.6.6])

H(Y1, . . . , Yn) ≤ H(Y1) + · · ·+H(Yn). (17)

On the other hand, by the chain rule for entropy [CT91, Theorem 2.5.1]:

H(Y1, . . . , Yn|K′) = H(Y1|K′) +H(Y2|Y1,K′) + · · ·+H(Yn|K′, Y1, Y2, . . . , Yn−1). (18)

We notice now that H(Yi|K′, Y1 . . . Yi−1) can be written as

P
k

R
Ri−1 H(Yi|K′=k,Y1=y1,...,Yi−1=yi−1)f(y1,...,yi−1|K′=k)Pr(K′=k)dy1...dyi−1, (19)

where the sum is taken over all 2r possible values k of K and f(y1, . . . , yi−1|K′ = k)Pr(K′ = k)
is the density of the distribution of the vector (Y1, . . . , Yi−1) given the value k of K′ at the point
(y1, . . . , yi−1). From conditional independence assumption (9) we deduce that H(Yi|K′ = k, Y1 =
y1, . . . , Yi−1 = yi−1) = H(Yi|K ′i). By summing in Expression (19) over y1, . . . , yi−1 and all possible
values of K ′1, . . . ,K

′
i−1,K

′
i+1, . . . ,K

′
n we obtain that

H(Yi|K′, Y1, . . . , Yi−1) =
1
2
H(Yi|K ′i = 0) +

1
2
H(Yi|K ′i = 1) = H(Yi|K ′i = ki) (20)

Plugging in this last expression in Expression (18) we obtain that

H(Y1, . . . , Yn|K ′1, . . . ,K ′n) = H(Y1|K ′1) + · · ·+H(Yn|K ′n). (21)

Using this last equation and Inequality (17) in (16) we finally deduce that

H(K′|Y) ≥ r −H(Y1)− · · · − H(Yn) +H(Y1|K ′1) + · · ·+H(Yn|K ′n)

≥ k′ −
n∑
i=1

H(Yi)−H(Yi|K ′i)

≥ k′ −
n∑
i=1

I(K ′i;Yi). (22)

A.3 Proof of Theorem 1

The proof of this theorem follows closely standard proofs of the direct part of Shannon’s channel
capacity theorem [CT91], however most of the proofs given for this theorem are asymptotic in
nature and are not suited to our case. There are proofs which are not asymptotic, but they are
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tailored for the case where all the σi’s are equal and are rather involved. We prefer to follow a
slightly different path here. The first argument we will use is an explicit form of the joint AEP
(Asymptotic Equipartition Property) theorem.

For this purpose, we denote by (X,Y) a couple of random variables where X = (Xi)1≤i≤n
is uniformly distributed over {0, 1}n and Y = (Yi)1≤i≤n is the output of the Gaussian channel
described in Section 2 when X is sent through it. This means that

Yi = (−1)Xi +Ni, (23)

where the Ni are independent centered normal variables of variance σ2
i .

Let us first bring in the following definition.

Definition 1 For ε > 0, we define the set Tε of ε-jointly typical sequences of {0, 1}n × Rn by

Tε
def
=
⋃

x∈{0,1}n{x} × Tε(x) with

Tε(x)
def
= {y ∈ Rn : |− log2(f(y))−H(Y)| < nε (24)∣∣− log2

(
f(y|x)2−n

)
−H(X,Y)

∣∣ < nε
}

(25)

where f(y) is the density distribution of Y and f(y|x) is the density distribution of Y given that
X is equal to x.

The entropies of Y and (X,Y) are given by the following expressions

Lemma 4

H(Y) =
n∑
i=1

Cap(σ2
i ) +

1
2

log2(2πeσ2
i )

H(X,Y) = n+
n∑
i=1

1
2

log2(2πeσ2
i )

Proof. Notice that with our model the Yi’s are independent. Therefore H(Y) =
∑n

i=1H(Yi).
Moreover, by the very definitions of entropy and mutual information: H(Yi) = H(Yi|Xi)+I(Xi;Yi);
Xi is uniformly distributed over {0, 1} and therefore by the definition of the capacity of a Gaussian
channel and the fact that the capacity attains its maximum for a binary input which is uniformly
distributed we have I(Xi;Yi) = Cap(σ2

i ). On the other hand H(Yi|Xi) is obviously the same as
H(Ni). The calculation of this entropy is standard (see [CT91]) and gives

H(Ni) =
1
2

log2(2πeσ2
i ) (26)

By putting all these facts together we obtain the expression for H(Y). Concerning the other
entropy, with similar arguments we obtain

H(X,Y) = H(X) +H(Y|X)

= n+
∑

x∈{0,1}n

1
2n
H(Y|X = x)

= n+
∑

x∈{0,1}n

1
2n
H(N1, . . . , Nn)

= n+
n∑
i=1

1
2

log2(2πeσ2
i )
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“Tε” stands for “typical set” since it is highly unlikely that (X,Y) does not belong to Tε:

Lemma 5 There exists a constant A such that

Pr ((X,Y) /∈ Tε) ≤
A

ε2n
.

Before giving the proof of this lemma we will first give an interpretation of entropy which
provides an explanation of why the probability of falling outside the typical set becomes smaller as
n increases.

Lemma 6 Let Ui
def
= − log2 fi(Yi) where fi is the following probability density fi(y)

def
= 1

2
√

2πσ2
i

(
e
− (y−1)2

2σ2
i + e

− (y+1)2

2σ2
i

)
.

We also denote by Vi
def
= − log2

(
gi(Yi−(−1)Xi )

2

)
where gi is the density distribution of a centered

Gaussian variable of variance σ2
i .

− log2(f(Y))−H(Y) =
n∑
i=1

Ui − E

(
n∑
i=1

Ui

)

− log2(f(Y|X)2n)−H(X,Y) =
n∑
i=1

Vi − E

(
n∑
i=1

Vi

)

Proof. For the first equation we just have to notice that

− log2(f(Y)) = − log2 (Πn
i=1fi(Yi)) = −

n∑
i=1

log2(fi(Yi)) =
n∑
i=1

Ui

and that H(Y) = E(− log2 f(Y)), which follows directly from the definition of the entropy given
in (6). The second equation can be obtained in a similar way.

This implies that in order to estimate the probability that a point falls outside the typical set
we have to estimate the probability that the deviation between a sum of n independent random
variables and its expectation is at least of order εn. In our case, it can be proven that for fixed ε,
this probability is exponentially small in n. However, we prefer to give a much weaker statement
which is also easier to prove and which uses only Chebyschev’s inequality, which we recall here

Lemma 7 Consider a real random variable X of variance var(X). We have for any t > 0:

Pr (|X − E(X)| ≥ t) ≤ var(X)
t2

. (27)

To use this inequality we have to estimate the variances of the Ui’s and the Vi’s. It can be
checked that

Lemma 8 There exists a constant A such that for any i we have

var(Vi) ≤ A

var(Ui) ≤ A.
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Proof. Let us prove the first statement. Recall that from (23): Ni = Yi − (−1)Xi .

V̄i
def= Vi − E(Vi) = − log2

(
gi(Ni)

2

)
− E

(
(− log2

(
Ni

2

))
= − log2 (gi(Ni))−

1
2

log2(2eπσ2
i ).

where the last equation follows from Expression (26). Hence:

V̄i = log2(e)
N2
i

2σ2
i

+
1
2

log2(2πσ2
i )−

1
2

log2(2eπσ2
i ) =

log2(e)
2

(
N2
i

σ2
i

− 1
)
,

and therefore

var(Vi)
def= E

[
V̄i

2
]

=
log2(e)2

4

∫ ∞
−∞

1√
2πσ2

i

(
u2

σ2
i

− 1
)2

e
− u2

2σ2
i du

=
log2(e)2

4

∫ ∞
−∞

1√
2π

(
v2 − 1

)2
e−

v2

2 du

where the last equation follows by the change of variable v = u
σi

in the integral. This shows that the
variance of Vi is constant. For the second statement we will make use of the following inequalities.
For nonnegative u we have

e
− (u−1)2

2σ2
i

2
√

2πσ2
i

≤ fi(u) ≤ e
− (u−1)2

2σ2
i√

2πσ2
i

. (28)

Recall that E(Ui) = H(Yi) = H(Yi|Xi)+I(Xi;Yi) = H(Ni)+I(Xi;Yi). Note that 0 ≤ inf(Xi;Yi) ≤
H(Xi) = 1 by the properties of mutual information (see [CT91][chapter 2]). And since H(Ni) =
1
2 log2(2eπσ2

i ) we deduce that

1
2

log2(2eπσ2
i ) ≤ E(Ui) ≤

1
2

log2(2eπσ2
i ) + 1. (29)

To simplify the expressions below we let u = Yi. Assume that Ui is greater that its expectation and
that this expectation is nonnegative. This means that − log2 fi(u) ≥ E(Ui) ≥ 0. We notice that

Ūi
2 = (Ui − E(Ui))2

= (− log2(fi(u))− E(Ui))2

≤
(

log2(e)
(u− 1)2

2σ2
i

+ 1 +
1
2

log2(2πσ2
i )−

1
2

log2(2eπσ2
i )
)2

=
(

log2(e)
(u− 1)2

2σ2
i

− 1
2

log2(e/2)
)2

(30)

by using inequations (28) and (29). Let us now write

var(Ui) = E(Ūi)2 =
∫ ∞
−∞

Ūi
2
fi(u)du

=
∫ 0

−∞
Ūi

2
fi(u)du+

∫ E(Ui)

0
Ūi

2
fi(u)du+

∫ ∞
E(Ui)

Ūi
2
fi(u)du

18



From the previous upper-bound on Ūi
2 we deduce that∫ ∞

E(Ui)
Ūi

2
fi(u)du ≤

∫ ∞
E(Ui)

(
log2(e)

(u− 1)2

2σ2
i

− 1
2

log2(e/2)
)2

fi(u)du

≤
∫ ∞

E(Ui)

(
log2(e)

(u− 1)2

2σ2
i

− 1
2

log2(e/2)
)2

e
− (u−1)2

2σ2
i√

2πσ2
i

du (31)

=
∫ ∞

E(Ui)−1

σi

(
log2(e)

v2

2
− 1

2
log2(e/2)

)2
e−

v2

2

√
2π
dv (32)

≤
∫ ∞
−∞

(
log2(e)

v2

2
− 1

2
log2(e/2)

)2
e−

v2

2

√
2π
dv,

where Inequality (31) is a consequence of (28) and Equality (32) follows from the change of variable
v = u−1

σi
. The two other integrals in (30) can be treated similarly where instead of using (28) we

use for negative values of u: e
− (u+1)2

2σ2
i

2
√

2πσ2
i

≤ fi(u) ≤ e
− (u+1)2

2σ2
i√

2πσ2
i

. This yields a constant upper-bound for

all variances var(Ui).

We are ready now to prove Lemma 5:
Proof. We start the proof by writing

Pr((X,Y)/∈Tε) = Pr({|− log2(f(Y))−H(Y)|≥nε}∪{|− log2(f(Y|X)2−n)−H(X,Y)|≥nε}
≤ Pr(|− log2(f(Y))−H(Y)|≥nε)+Pr(|− log2(f(Y|X)2−n)−H(X,Y)|≥nε)
= Pr(|U−E(U)|≥nε)+Pr(|V−E(V )|≥nε)

with U
def=
∑n

i=1 Ui and V
def=
∑n

i=1 Vi. We use now Chebyschev’s inequality (Lemma 27) together
with the upper-bounds var(U) =

∑n
i=1 var(Ui) ≤ nA and var(V ) =

∑n
i=1 var(Vi) ≤ nA to obtain

Pr ((X,Y) /∈ Tε) ≤ 2A
nε2
.

Moreover, not only is it unlikely that (X,Y) does not fall in Tε, but the Euclidean volume
(which we denote by “Vol”) of this set is not too large:

Lemma 9 ∑
x∈Rn

Vol(Tε(x)) ≤ 2H(X,Y)+εn

Proof. Let us notice that

1 =
∑
x∈Rn

1
2n

∫
Rn
f(y|x)dy ≥

∑
x∈Rn

1
2n

∫
Tε(x)

f(y|x)dy ≥
∑
x∈Rn

Vol(Tε(x))2−H(X,Y)−εn

where the last inequality follows from (25)

We will use this result to show that
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Proposition 1 If (X̃, Ỹ) is a couple of independent random variables, where X̃ is uniformly dis-

tributed and Ỹ has the same distribution as Y, then Pr
(

(X̃, Ỹ) ∈ Tε
)
≤ 2−C+2nε with C

def
=∑n

i=1 Cap(σ2
i ).

Proof. We evaluate Pr
(

(X̃, Ỹ) ∈ Tε
)

as follows

Pr
(

(X̃, Ỹ) ∈ Tε
)

=
∑

x∈{0,1}n

1
2n

∫
Tx(ε)

f(y) ≤
∑

x∈{0,1}n

1
2n

Vol(Tx(ε))2−H(Y)+εn

The last inequality follows from (24) in the definition of the typical set. We use now Lemma 9 to
obtain

Pr
(

(X̃, Ỹ) ∈ Tε
)
≤ 1

2n
2H(X,Y)+εn2−H(Y)+εn ≤ 2−n+H(X;Y)−H(Y)+2εn

By using the expressions for H(X,Y) and H(Y) given in Lemma 4 we deduce −n + H(X,Y) −
H(Y) = −

∑n
i=1 Cap(σ2

i ). This finishes the proof.

These results can be used to analyze the following typical set decoder, which takes as inputs
a vector y in Rn which is the output of the Gaussian channel described in Section 2 and a real
parameter ε, and outputs either “Failure” or a possible key K̃ ∈ {0, 1}n.
Typical set decoder(y, ε)
1 counter ← 0
2 for all possible values k of K̃
3 do if y ∈ Tk(ε)
4 then counter ← counter + 1
5 result← k
6 if counter = 1
7 then return result
8 else return failure

This algorithm is therefore successful if and only if y is in the typical set of the right key and if
there is no other value k for K̃ for which y belongs to the typical set associated to k. Let us now
finish the proof of Theorem 1.
Proof. Let k be right value of K̃ and let C be the set of possible values of K̃. The probability
Perr that the typical decoder fails is clearly upper-bounded by

Perr ≤ Pry,C(Tk(ε)) +
∑

k′∈C,k′ 6=k

Pry,C (Tk′(ε)) (33)

where Tk(ε) denotes the complementary set of Tk(ε). On the one hand

Pry,C(Tk(ε)) = Pr((X,Y) /∈ Tε) ≤
A

ε2n
.

by Lemma 5, and on the other hand for k′ 6= k:∑
k′∈C,k′ 6=k

Pry,C (Tk′(ε)) ≤
∑
k′∈C

Pry,C (Tk′(ε)) = 2rPr
(

(X̃, Ỹ) ∈ Tε
)
≤ 2r−

Pn
i=1 Cap(σ2

i )+2εn,

by Proposition 1. By plugging in these two upper bounds in the union bound (33) we obtain
Perr ≤ A

ε2n
+ 2r−

Pn
i=1 Cap(σ2

i )+2εn ≤ A
ε2n

+ 2−δn+2εn. We finish the proof by choosing ε = δ
4 .
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