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Abstract—We generalize a construction of non-binary quantum
LDPC codes over F2m due to [KHIK11] and apply it in particular
to toric codes. We obtain in this way not only codes with
better rates than toric codes but also improve dramatically the
performance of standard iterative decoding. Moreover, the new
codes obtained in this fashion inherit the distance properties
of the underlying toric codes and have therefore a minimum
distance which grows as the square root of the length of the
code for fixed m.

I. INTRODUCTION

LDPC codes [Gal63] and their variants are one of the
most satisfying answers to the problem of devising codes
guaranteed by Shannon’s theorem. They display outstanding
performance for a large class of error models with a fast
decoding algorithm. Generalizing these codes to the quantum
setting seems a promising way to devise powerful quantum
error correcting codes for protecting, for instance, the very
fragile superpositions manipulated in a quantum computer. It
should be emphasized that a fast decoding algorithm could
be even more crucial in the quantum setting than in the
classical one. In the classical case, when error correction
codes are used for communication over a noisy channel, the
decoding time translates directly into communication delays.
This has been the driving motivation to devise decoding
schemes of low complexity, and is likely to be important in
the quantum setting as well. However, there is an important
additional motivation for efficient decoding in the quantum
setting. Quantum computation is likely to require active sta-
bilization. The decoding time thus translates into computation
delays, and most importantly in error suppression delays. If
errors accumulate faster than they can be identified, quantum
computation may well become infeasible: fast decoding is an
essential ingredient to fault-tolerant computation.

Quantum generalizations of LDPC codes have indeed been
proposed in [MMM04]. However, it has turned out that the
design of high performance quantum LDPC codes is much
more complicated than in the classical setting. This is due
to several reasons, the most obvious of which being that the
parity-check matrix of quantum LDPC codes must satisfy cer-
tain orthogonality constraints. This complicates significantly
the construction of such codes. In particular, the plain random
constructions that work so well in the classical setting are
pointless here. There have been a number of attempts at over-
coming this difficulty and a variety of methods for constructing
quantum LDPC codes have been proposed [Pos01], [Kit03],

[MMM04], [COT05], [COT07], [LGF06], [GFL08], [HI07],
[IM07], [Djo08], [SMK08], [Aly07], [Aly08], [HBD08],
[TZ09], [TL10], [KHIK11]. However, with the exception of
[TZ09] which gives a construction of LDPC codes with
minimum distance of the order of the square root of the block-
length, all of these constructions suffer from disappointingly
small minimum distances, namely whenever they have non-
vanishing rate and parity-check matrices with bounded row-
weight, their minimum distance is either proved to be bounded,
or unknown and with little hope for unboundedness.

The point has been made several times that minimum
distance is not everything, because there are complex decoding
issues involved, whose behavior depends only in part on the
minimum distance, and also because a poor asymptotic be-
havior may be acceptable when one limits oneself to practical
lengths. This is illustrated for instance in our case by the codes
constructed in [KHIK11] whose performance under iterative
decoding is quite good even if their minimum distance might
be bounded. Their construction can be summarized as follows.
There are three ingredients:
(i) The starting point is a CSS quantum code associated

to a couple (CX ,CZ) of binary LDPC codes satisfying
CZ
⊥ ⊂ CX (see Section II) obtained from a construction

due to [HI07]. These LDPC codes have parity check
matrices HX and HZ which are (2, L)-regular, meaning
that each column contains exactly 2 “1”’s and each row
contains exactly L-ones.

(ii) From this construction, a pair of q-ary LDPC codes
(C

(q)
X ,C

(q)
Z ) is deduced which satisfies C

(q)
Z

⊥
⊂ C

(q)
X ,

where q is some power of two, q = 2m. These codes have
parity-check matrices H

(q)
X and H

(q)
Z of the same size as

HX and HX respectively and which have nonzero entries
whenever the corresponding entry of HX (respectively
HZ) is equal to 1, that is

x
(q)
i,j 6= 0⇔ xi,j = 1, z

(q)
i,j 6= 0⇔ zi,j = 1, (1)

where x
(q)
i,j,,xi,j,,z

(q)
i,j , zi,j denote the entry correspond-

ing to the i-th row and the j-th column of
H

(q)
X ,HX ,H

(q)
Z ,HZ respectively.

(iii) By denoting the length of CX ,CZ ,C
(q)
X ,C

(q)
Z by n, and

by replacing each entry of H(q)
X and H

(q)
Z in the finite field

Fq over q elements by a binary matrix of size 2m × 2m,
through a ring isomorphism A : F2m → M2m where
M2m is a certain subring of binary 2m×2m matrices (i.e.



a one-to-one mapping preserving field addition and multi-
plication), a pair of two parity-check matrices (ĤX , ĤZ)
is obtained. They define a pair of binary codes (ĈX , ĈZ)

of length n×m satisfying the CSS condition ĈZ
⊥
⊂ ĈX .

The point of this construction is that the new quantum code
associated to the pair (ĈX , ĈZ) can now be decoded on
the extension field Fq and this improves dramatically the
performance in the same way as the performance of classical
binary (2, L) regular LDPC codes is improved by moving to
a larger extension field F2m as shown in [Hu02], [HEA05].

Our purpose in this article is here to generalize the construc-
tion of [KHIK11] and to show that it can be applied to any
pair of binary codes (CX ,CZ) satisfying CZ

⊥ ⊂ CX which
are LDPC codes which have parity check matrices which have
exactly 2 “1”’s per column1, not only the particular family of
quasi-cyclic codes of this type which are constructed in [HI07].
We apply this generalized construction to the toric codes of
[Kit03] which are a particular instance of the CSS construction
corresponding to a pair of LDPC codes (CX ,CZ) which are
(2, 4)-regular. It presents the advantage of having a minimum
distance which grows like the square root of the length but
has also the drawback to be able to encode only 2 qubits. We
obtain in this way a new code family which displays several
attractive features compared to the toric code family:
(i) it has the same two dimensional structure as toric codes,
this might turn out to very helpful for its implementation.
It represents for instance a quite attractive code choice for
performing quantum fault-tolerant computation [Kit03].
(ii) it inherits the distance properties from the underlying toric
code and has therefore a minimum distance which grows like
the square root of the length,
(iii) the number of encoded qubits is not constant anymore as
for toric codes but grows as 2m where m is the degree of the
extension field,
(iv) whereas iterative decoding displays very bad performances
when applied to toric codes, plain iterative decoding behaves
much better for this new family of codes and when m = 9
for instance, we obtain codes for which iterative decoding
performs quite well (see Section V).

Apart from the practical relevance of the codes constructed,
there is also a theoretical aspect. This shows for instance
that it is possible to obtain families of CSS codes with a
prescribed degree distribution on the check nodes with an
unbounded minimum distance with the construction strategy
of [KHIK11]. It is questionable whether or not the codes
constructed in [KHIK11] meet this property (one of the
drawback of the codes constructed there is that they start with
a certain construction of quasi-cyclic CSS codes which can be
easily proved to have bounded minimum distance).

II. CSS CODES AND TANNER GRAPHS

a) CSS codes: The codes constructed in this paper fall
into the category of Calderbank-Shor-Steane (CSS) codes
[CS96], [Ste96] which belong to a more general class of

1In other words they are cycle codes of a graph [HB68].

quantum codes called stabilizer codes [Got97], [CRSS98]. The
first class is described with the help of a pair of mutually
orthogonal binary codes, whereas the second class is given
by an additive self-orthogonal code over F4 with respect to
the trace hermitian product. Quantum codes on n qubits are
linear subspaces of a Hilbert space of dimension 2n and do
not necessarily have a compact representation in general. The
nice feature of stabilizer codes is that they allow to define such
a space with the help of a very short representation, which
is given here by a set of generators of the aforementioned
additive code. Each generator is viewed as an element of the
Pauli group on n qubits and the quantum code is then nothing
but the space stabilized by these Pauli group elements. More-
over, the set of errors that such a quantum code can correct
can also be deduced directly from this discrete representation.
For the subclass of CSS codes, this representation in terms of
additive self-orthogonal codes is equivalent to a representation
in terms of a pair (CX ,CZ) of binary linear codes satisfying
the condition CZ

⊥ ⊂ CX . The quantum minimum distance of
such a CSS code is given by

dQ
def
= min{dX , dZ}, where (2)

dX
def
= min{|x|, x ∈ CX \ CZ

⊥},
dZ

def
= min{|x|, x ∈ CZ \ CX

⊥}.

Such a code allows to protect a subspace of kQ qubits against
errors where

kQ
def
= dim CX − dim CZ

⊥. (3)

kQ is called the quantum dimension of the CSS code.
b) LDPC codes: LDPC codes are linear codes which

have a sparse parity-check matrix. They can be decoded by
using the Tanner graph associated to such a parity-check
matrix H. This graph is defined as follows. Assume that
H = (Hij)1≤i≤r

1≤j≤n
is an r×n matrix (where n is the length of

the code). The associated Tanner graph is bipartite and has:

(i) vertex set V ∪C, where the first set V is in bijection with
the indices of the columns of H, say V = {1, . . . , n} and
is called the set of variable nodes, whereas the second
set C is called the set of check nodes and is in bijection
with the indices of the rows of H: C = {⊕1, . . . ,⊕r}.

(ii) edge set E; there is an edge between ⊕i and j if and
only if Hij 6= 0 and the edge receives label Hij in this
case.

A CSS code defined by a couple of binary code (CX ,CZ) is
said to be a quantum LDPC code if and only if CX and CZ

are LDPC codes.

III. A GENERALIZATION OF THE CONSTRUCTION OF
[KHIK11]

We show in this section how to derive for any integer m > 1
from a pair of binary LDPC codes (CX ,CZ) with parity-check
matrices HX and HZ satisfying



(1) HXHZ
T = 0,

(2) all the columns of HX and HZ have exactly 2 “1”’s in it,
a pair of 2m-ary LDPC codes (C

(q)
X ,C

(q)
Z ) with parity-check

matrices H
(q)
X and H

(q)
Z satisfying

(1) H(q)
X H

(q)
Z

T
= 0,

(2) all the columns of HX and HZ have exactly 2 non zero
elements in it.
This generalizes the construction of [KHIK11] to other codes
than the ones obtained from [HI07] by using the ring isomor-
phism A from the finite field F2m toM2m which is described
in Subsection II.C of [KHIK11].

We show the existence of the couple (C
(q)
X ,C

(q)
Z ) by

providing an efficient algorithm which outputs a couple of
matrices (H

(q)
X ,H

(q)
Z ) meeting (1) and (2). To explain how

the algorithm works let us bring in the following definition
Definition 1: To each row k of HZ we associate a parity-

check matrix HX(k) consisting of the submatrix of HX

formed by the columns j of HX such that zk,j 6= 0 and by
keeping only the non zero rows in it. Let GX(k) be the Tanner
graph associated to this parity-check matrix.

The crucial point is the following lemma
Lemma 1: The degree of every variable node of GX(k)

is two, whereas the degree of every check node is an even
positive number.

Proof: The fact that the degree of every variable node
is exactly two is a direct consequence of the fact that the
columns of HX(k) are all of weight 2 since the columns of
HX have exactly this property. The second claim about the
degree of the check nodes is a consequence of HXHZ

T = 0.
This can be verified as follows. Each check node corresponds
to a row of HX(k) which corresponds itself to some row of
HX . We denote such a row by i. The degree of the check
node corresponding to i is nothing but the weight of row i
of HX(k). It is equal to the number of j’s such that we both
have xi,j = zk,j = 1. Notice that HXHZ

T = 0 implies in
particular that ∑

j

xi,jzk,j = 0 (4)

This implies the aforementioned claim about the degree of
the check node, since the aforementioned number of j’s is
necessarily even in order to meet (4).

Since the degrees of all the vertices of GX(k) is even,
GX(k) can be decomposed in an edge-disjoint subset of cycles
CycX(k). Each variable node vertex j belongs to a unique
cycle of this kind whereas a check node ⊕i may belong to
several cycles of CycX(k). Our strategy to ensure that there
is a choice of H

(q)
X and H

(q)
Z meeting Condition (1) and

H
(q)
X H

(q)
Z

T
= 0 is to look for solutions which satisfy for all

rows k of H(q)
Z , all cycles C of CycX(k), and all check nodes

⊕i belonging to C ∑
j:⊕i,j∈E

x
(q)
i,j z

(q)
k,j = 0 (5)

where we denote by E the set of edges of C. Notice that there
are exactly two variable nodes which are adjacent to ⊕i in C.

The first point is that the sum
∑

j x
(q)
i,j z

(q)
k,j can be decom-

posed as a sum
∑
C:C∈CycX(k),⊕i∈C

∑
j:⊕ij edge of C x

(q)
i,j z

(q)
k,j

which implies that ensuring (5) implies (4) and therefore
H

(q)
X H

(q)
Z

T
= 0. Moreover the code associated to the cyclic

Tanner graph C is non trivial if and only if the product of its
labels on its cycle is equal to 1. We define here for a Tanner
graph the product over a cycle by

Definition 1 (product over a cycle of a Tanner graph):
Let C = v1, c1, v2, . . . , ck, v1 be a cycle in the Tanner graph
code. Then the product over this cycle is the product of all
the coefficients of the edges over this cycle, with a power 1
if it is a check-to-node edge, and −1 if it is node-to-check.
We denote this product by Π(C).

It is namely well known that
Proposition 1: The code associated to Tanner graph which

is a unique cycle is not reduced to the zero codeword if and
only if the product of the labels over the cycle is equal to 1.
In such a case, all the non-zero codewords have only non-zero
positions.
The proof of this proposition is given in the appendix.

The algorithm for choosing the entries of H(q)
X and H

(q)
Z is

described below as Algorithm 1. The fact that the z(q)k,j ’s can

Algorithm 1 Choosing the entries of H(q)
X and H

(q)
Z

Choose the entries x(q)i,j of H(q)
X such that for all rows k of

H
(q)
Z and all cycles of CycX(k) the product of the labels

x
(q)
i,j along these cycles is equal to 1.

for all rows k of H(q)
Z do

for all cycles C of CycX(k) do
Choose non-zero entries z(q)k,j for all variable nodes j
of C such that (5) holds for all edges of C.

end for
end for

be chosen to be different from zero comes from the fact that
the product of the labels xi,j along C is equal to 1 and from
Proposition 1. It just amounts to choose a non-zero codeword
in the code whose Tanner graph is given by C and the labels
of the edges are given by the x(q)i,j ’s. This leads to two matrices

H
(q)
X and H

(q)
Z which satisfy Condition (1) and H

(q)
X H

(q)
Z

T
=

0. Finally, it remains to explain how we choose the entries
x
(q)
i,j of H

(q)
X . We will actually provide an algorithm which

provides a stronger condition on the x(q)i,j ’s, namely that

for all cycles C of GX , Π(C) = 1. (6)

The fact that the product over all cycles of GX will be equal
to 1 (and not only the cycles of the subgraphs GX(k)) will be
quite useful when applied to the toric code and this stronger
condition can be met with Algorithm 2 which gives a very
large choice for the coefficients.

Proof: (of correctness of Algorithm 2) Let C be a cycle of
GX . Let us prove that Π(C) = 1. This product can be written



Algorithm 2 Algorithm to ensure (6)
for all check nodes ⊕k of the Tanner graph GX associated
to HX do

Choose arbitrarily a non zero element ak and non-zero
elements ajk for all variable nodes j adjacent to ⊕k.

end for
for all variable nodes j of GX do
x
(q)
i,j ← aibijbkj

x
(q)
k,j ← akbkjbij {Here ⊕i and ⊕k denote the two check

nodes adjacent to j.}
end for

as
Π(C) = Πcheck nodes ⊕k in Cf(k),

where f(k) counts the contribution to the product which
involves terms which depend on k. By denoting by j and
l the two variable nodes adjacent to ⊕k in the cycle and by
⊕i and ⊕m the two other check nodes which are adjacent in
the cycle to j and l respectively we can decompose f(k) as

f(k) = g(ij)g(jk)g(kl)g(lm)

where g(ab) gives the part of the contribution to Π(C) stem-
ming from edge ab by keeping only elements of the product
which depend on k. We observe now that g(ij) = bkj ,
g(jk) = a−1k b−1kj , g(kl) = akbkl and g(lm) = b−1kl . This
implies f(k) = 1, which in turn implies that Π(C) = 1.
Remark: One might wonder whether or not it is possible
to obtain q-ary versions of HX and HZ which satisfy the
orthogonality condition H

(q)
X H

(q)
Z

T
= 0 when the columns of

HX and HZ have weight greater than 2. While this can be
easily done for certain structured constructions such as the
one proposed in [TZ09], it is not clear how to achieve this
in all generality. The difficulty is the following. Consider the
code defined by a Tanner graph which is a subgraph of GX
labelled by a certain choice of the x(q)i,j and which consists in
codewords of the form (z

(q)
k,j)j:zk,j=1 satisfying (4). All these

codes (for k ranging over all rows of H
(q)
Z ) should be not

reduced to the zero codeword. While this is easily achieved
in the case of column weight 2 essentially by the fact that the
number of check nodes of the Tanner graphs GX(k) is always
less than or equal to the number of variable nodes (since by
Lemma 1 the degree of the check nodes is greater than or
equal to 2 and the degree of the variable nodes is constant
and equal to 2), this is not the case anymore when the column
weight is higher.

IV. AN APPLICATION: THE EXTENDED TORIC CODE

A. Definition of the toric code and its extended version

The toric code (see [BK98] for more details) is a CSS code
of length 2n2 which encodes 2 qubits. It is convenient to
define the Tanner graphs GX and GZ of the couple (CX ,CZ)
of binary codes of the CSS code simultaneously. Let CX and
CZ be the set of variable nodes of GX and GZ respectively and

we identify the variable node sets VX and VZ of both codes,
say VX = VZ = V . These graphs are defined as follows:

V = {(i, j) ∈ [0..2n− 1]× [0..2n− 1] : i+ j even}
CX = {(i, j) ∈ [0..2n− 1]× [0..2n− 1] : i odd, j even}
CZ = {(i, j) ∈ [0..2n− 1]× [0..2n− 1] : i even, j odd}

A check node (i, j) is connected to 4 variable nodes (i±1, j±
1) in both graphs (where addition is performed modulo 2n).
The degree of the variable nodes is of course 2.

The construction, summarized on Fig 1, has the shape of a
torus of length and width 2n.

(i,j)

(i,j+1)

(i,j-1)

(i-1,j) (i+1,j)

(i+2,j)

(i+1,j-1)

(i+1,j+1)

Fig. 1. The Tanner graph of the toric code, with both X and Z parts together.
The black dots represent the qubits, the dotted crosses the checks of the Z
part, and the black crosses the checks of the X part. The left part is identified
to the right part, and the upper part to the lower part, so that the global shape
of the graph is a torus.

Even if this code has as many checks as qubits, its di-
mension is positive: the rank of HX and HZ associated to
GX and GZ is n2 − 1 instead of n2, thus the dimension is
dim(CX)−dim(CZ

⊥) = n2+1−(n2−1) = 2 (from (3)). The
code has a rather large minimum distance [Kit03], however its
performances when decoded with standard belief propagation
is quite bad, because of the presence of many small cycles
and also because the (classical) minimum distance of CX and
CZ is only 4.

Now we construct a q-ary version of this code, in the same
way as in Section III. In other terms, we just put some non-zero
labels on the edges of the graph. For simplicity of notation we
will further use xi,j to design x

(q)
i,j , the label in Fq \ {0} on

the edge between check i and node j. Labeling is performed
through Algorithm 1 by choosing the coefficients ai and bjk
at random in Algorithm 2. We obtain a couple (C

(q)
X ,C

(q)
Z ) of

q-ary codes satisfying

C
(q)
Z

⊥
⊂ C

(q)
X .

We obtain the extended toric code by applying the aforemen-
tioned ring isomorphism to the entries of the parity-check
matrices H

(q)
X and H

(q)
Z of C

(q)
X and C

(q)
Z : the resulting code

has length 2mn2. We denote the couple of binary codes
defining this toric code by (ĈX , ĈZ).

B. Dimension

Strictly speaking, by applying Algorithm 1, the dimension
of C

(q)
X minus the dimension of C

(q)
Z

⊥
could be smaller than



dim CX − dim CZ . Indeed H
(q)
X and H

(q)
Z might now be of

full rank and we might have dim C
(q)
X = dim C

(q)
Z

⊥
= n2.

This would imply that dim ĈX = dim ĈZ
⊥

and the quantum
dimension of the extended toric code would be 0. However,
when we apply Algorithm 2 to choose the labels (so that the
product of the labels xi,j over all cycles of GX is equal to 1),
then it will turn out that

dim C
(q)
X − dim C

(q)
Z

⊥
= dim CX − dim CZ

⊥ = 2,

so that dim ĈX − dim ĈZ = 2m. This means that
Theorem 1 (Dimension of the extended toric code): If

C
(q)
X and C

(q)
Z are constructed such that C

(q)
X verifies (6) and

C
(q)
Z

⊥
⊂ C

(q)
X , then the extended toric code has dimension

2m.
Proof: This is shown with the help of two lemmas:

Lemma 2: If C
(q)
X verifies (6) and C

(q)
Z

⊥
⊂ C

(q)
X , then C

(q)
Z

verifies also (6).
Lemma 3: If C

(q)
X verifies (6), then it has q-ary dimension

n2 + 1.
From these two lemmas, we obtain that the dimension of

C
(q)
X and C

(q)
Z is n2 + 1, which gives

dim C
(q)
X − dim C

(q)
Z

⊥
= 2

This implies that the quantum dimension of the extended toric
code is

dim(ĈX)− dim(ĈZ
⊥

) = m(dim C
(q)
X − dim C

(q)
Z

⊥
) = 2m

The proof of the two lemmas is given in the appendix.

C. Minimum distance

Choosing the product of the labels to be equal to 1 on all
cycles of GX brings another benefit : it allows to control the
minimum distance, since we have in this case

Lemma 4: min{|x| ∈ C
(q)
X \ C

(q)
Z

⊥
} = min{|x| ∈ C

(q)
Z \

C
(q)
X

⊥
} = n.

The proof is given in the appendix. This implies that
Theorem 2 (minimum distance of the extended toric code):

The minimum distance of the extended toric code is ≥ n.
Proof: The minimum distance of the extended toric code

is the minimal weight of a word from ĈX \ĈZ
⊥

or ĈZ \ĈX
⊥

.
The Hamming weight of such a word is greater than or equal
to the Hamming weight of the word in C

(q)
X \C (q)

Z

⊥
or C

(q)
Z \

C
(q)
X

⊥
it corresponds to after taking the aforementioned ring

isomorphism A.
Remark 1: There is also an upper bound on the minimum

distance: it is at most nm, since a word of weight n in Fq has
minimal weight n and maximal weight mn in F2.

V. RESULTS

We have implemented standard belief propagation over F2m

to decode extended toric codes for several values of n and m
(see Section III of [KHIK11]) but which correspond to the
same final length 2mn2, which is 1152 here. We have chosen
(i) m = 1, n = 24,
(ii) m = 4, n = 12
(iii) m = 9, n = 8.
The channel error model is the depolarizing channel model
with depolarizing probability p, meaning that the probability
of an X,Y or Z error is p/3 which implies that the codes ĈX

and ĈZ see a binary symmetric channel of probability 2p
3 .

The performance of belief propagation is quite bad in the
binary case (that is for standard toric code), even if the qubit
error rate is rather low, the whole error is typically badly
estimated. On the other hand the performances get better by
moving from F2 to F16 and become quite good over F512.
This is remarkable since the length of these CSS codes is
constant but the rate increases with m. For instance, the rate
of the toric code is 1

576 whereas the rate of the extended toric
code over F512 is equal to 1

64 . It would be interesting to carry
over the renormalizing approach of [DCP10] which improves
dramatically belief propagation over standard toric codes and
study how much it is able to improve the performance of
standard belief propagation over these larger alphabets.

Fig. 2. Word and qubit error rates for several extended toric codes.

APPENDIX

Proof of Proposition 1: Let us consider a Tanner graph
composed of a cycle v0, C0, v1, C1, . . . vk−1, Ck−1, and let
xi,j be the label on the edge between check i and node j.
A codeword w0w1, . . . wk−1 of the code associated to this
Tanner graph is such that:

x0,0w0 + x0,1w1 = 0

x1,1w1 + x1,2w2 = 0

. . .

xk−1,k−1wk−1 + xk−1,0w0 = 0



This system has non-trivial solutions if and only if the deter-
minant of this system is 0, ie if:

x0,0 . . . xk−1,k−1 + x0,1 . . . xk−1,0 = 0

⇐⇒ x0,0x
−1
0,1 . . . xk−1,k−1x

−1
k−1,0 = 1

which means that the product over the cycle is 1.
If this condition is verified, and one of the wi’s is zero, for

example w0, we can see from the system that w1, . . . wk−1
have to be equal to zero too. So the non-zero codewords have
only non-zero positions.

Proof of Lemma 2:
We consider here two basic types of cycles in the Tanner

graphs of C
(q)
X and C

(q)
Z : the minimal cycles of length 8, and

cycles of length 2n that go through the length or the width of
the torus, we call the last ones “big cycles”. An example is
shown on Fig 3.

Fig. 3. Two big cycles (horizontal, vertical) and a minimal cycle.

More formally,
Definition 2 (minimal cycle): A minimal cycle in the Tan-

ner graph of C
(q)
X or C

(q)
Z is a cycle of the form: (i, j), (i +

1, j), (i+ 1, j− 1), (i+ 1, j− 2), (i, j− 2), (i− 1, j− 2), (i−
1, j − 1), (i − 1, j), (i, j) with i + j even, so that (i, j) is a
variable node.

Definition 3 (Big cycle): A horizontal big cycle in the Tan-
ner graph of C

(q)
X or C

(q)
Z is a cycle of the form: (i, j), (i +

1, j), . . . (i+ 2n− 1, j), (i, j), with i+ j even. 2

A vertical big cycle in the Tanner graph of C
(q)
X or C

(q)
Z is a

cycle (i, j), (i, j+1), . . . (i, j+2n−1), (i, j), with i+j even.
Our first observation is that it is enough to prove Condition

(6) on the minimal cycles and the big cycles of the Tanner
graph of C

(q)
Z , since the product of any other cycle in this

Tanner graph can be decomposed as a product of products
over these basic cycles.

Let us now consider a 4-cycle which lives in the union
of the two Tanner graphs of C

(q)
X and C

(q)
Z . It consists in

two checks (see Fig 4) A and B, that are both connected to
two variable nodes 1 and 2. From the orthogonality constraint
H

(q)
X H

(q)
Z

T
= 0, we deduce that the labels on the edges of

this cycle satisfy

xA,1zB,1 + xA,2zB,2 = 0

2recall that addition on the indices is performed modulo 2n.

B

1A

2

xA,1

zB,2

xA,2
zB,1

Fig. 4. A 4-cycle. The black cross A is a check from C
(q)
X , the dotted cross

B is one from C
(q)
Z , and the dots 1 and 2 are the qubits where they interact

We can reformulate this:

xA,1zB,1z
−1
B,2x

−1
A,2 = 1

With the following definition, we obtain in this way that the
product over such cycles of size 4 is equal to 1.

Definition 4 (Product over a cycle - extended version):
The notion of product over a cycle can be extended to
the union of the Tanner graphs of C

(q)
X and C

(q)
Z . If

v1, c1, v2, . . . , ck, v1 is a cycle in this union, the product over
this cycle is the product of all the labels of the edges over
this cycle, with a power:
• 1 if the edge is check-to-variable node and belongs to the
X-part,

• −1 if the edge is variable node-to-check and belongs to
the X-part,

• −1 if the edge is check-to-variable node and belongs to
the Z-part,

• 1 if the edge is variable node-to-check and belongs to the
Z-part,

Now, let us look at a combination of 4 such small cycles,
as in Fig 5.

A B

CD

E

1

3

4 2

zA,1 zB,1

zA,4 zB,2

zD,4 zC,2

zD,3 zC,3

xE,1

xE,3

xE,4 xE,2

Fig. 5. A view of a X check (E) with the four related Z checks around
(A,B,C,D).

The product over all small cycles is 1 :

z−1A,1x
−1
E,1xE,4zA,4 = 1

zB,1z
−1
B,2x

−1
E,2xE,1 = 1

xE,2zC,2z
−1
C,3x

−1
E,3 = 1

x−1E,4xE,3zD,3z
−1
D,4 = 1

By multiplying all these equations, we obtain:

z−1A,1zA,4zB,1z
−1
B,2zC,2z

−1
C,3zD,3z

−1
D,4 = 1

which is exactly the product over a minimal cycle of C
(q)
Z .

Now, we consider another combination of 2n 4-cycles such
as in Fig 4, among one direction of the torus, as shown in
Fig 6. It consists, in the subgraph of both Tanner graphs, in
the variable and check nodes in the cartesian product [0..2n−



1]×{0, 1}. To simplify notation we have relabeled a variable
node (i, 0) by i

2 + n, a variable node (i, 1) by i−1
2 , a check

node (i, 1) corresponding to C
(q)
X by i

2 and a check node (i, 0)

corresponding to C
(q)
Z also by i−1

2 . It is summarized in Fig 6.

z0,n z0,n+1 z1,n+1 z1,n+2 z2,n+2 z2,n+3

z0,0 z1,1 z2,2

x0,0 x1,0 x1,1 x2,1 x2,2 x3,2

x0,n x1,n+1 x2,n+2 x3,n+3

n n+ 1 n+ 2 n+ 3

0 1 2

CZ0 CZ1 CZ2

CX0 CX1 CX2 CX3

Fig. 6. An ensemble of small cycles of C
(q)
X (black) and C

(q)
Z (dotted).

The product over all such cycles is 1, ie:

x0,0z0,0z
−1
0,nx

−1
0,n = 1

x−11,0x1,n+1z0,n+1z
−1
0,0 = 1

x1,1z1,1z,1n+ 1−1x−11,n+1 = 1
. . .
xn−1,n−1zn−1,n−1z

−1
n−1,2n−1xn−1,2n−1 = 1

x−10,n−1x0,nzn−1,nzn−1,n−1 = 1

By multiplying all these equations, we get:

x0,0z
−1
0,nx

−1
1,0z0,n+1 . . .

xn−1,n−1z
−1
n−1,2n−1x

−1
0,n−1zn−1,n = 1

(x0,0x
−1
1,0 . . . xn−1,n−1x

−1
0,n−1)×

(z−10,nz0,n+1 . . . z
−1
n−1,2n−1zn−1,n) = 1

The first parenthesis is the product over a big cycle of C
(q)
X ,

and the second parenthesis is the product over a big cycle of
C

(q)
Z .
It shows that if the product over a big horizontal cycle is

equal to 1 in C
(q)
X , then the product over a big horizontal

cycle in C
(q)
Z is also equal to 1. There is a similar proof for

the vertical cycles.
Proof of lemma 3:

First, we show that the dimension of C
(q)
X is at least n2 +1.

The idea is to construct a set of independent codewords
associated to cycles of the Tanner graph of C

(q)
X . This is

obtained as follows. Since all variable nodes of this Tanner
graph have degree 2, we can consider the graph of the checks,
where the vertices are the checks, and there is an edge between
two vertices if and only if there is a variable node that is
adjacent to the two checks. Informally, it just consists of the
same graph where an ”edge-variable node-edge” is replaced
by a single edge. We consider a spanning tree of this graph.
An example of such spanning tree is shown in Fig 7.

This spanning tree has of course n2 checks, and therefore
n2 − 1 edges between these checks. There are n2 + 1 other
edges: let e1, . . . en2+1be such edges. For all i, adding ei
to the spanning tree provides a unique cycle, ci. Let c′i be
the corresponding cycle in the original Tanner graph. Now,
the product over each such cycle is 1. From Proposition 1,
each of these cycles provides a codeword of C

(q)
X . These

n2+1 codewords are necessarily independent, since for all the

Fig. 7. A spanning tree (black) of the graph of the checks. The Tanner graph
of the toric code is shown in grey.

positions which correspond to the edges e1, . . . en2+1, exactly
one of these codewords has a non zero entry (for the edge ei
it is precisely c′i which has a non zero entry for this position).

To show that this dimension is at most n2 + 1, we remove
a certain check, say check cr. We want to show that the
remaining n2 − 1 checks are independent. To obtain this, we
prove that for any syndrome, we can construct an error that
gives this syndrome. In particular, we show that for every
check c0, we can get the syndrome (0, . . . 0, 1, 0, . . . 0) with 1
at position c0.

Let c0, v1, c1, v2, . . . vk, cr be some path in the Tanner graph
that links c0 to cr. An example of such path is shown in Fig 8.

cr

c0v1c1v2
c2

v3

x0,1x1,1x1,2x2,2

Fig. 8. A path between the removed check cr (grey) and some check c0
(bold).

Now we construct an error E that has 0 in every position
except the vi’s:
• Ev1 is such that the syndrome in c0 is 1, ie Ev1 = 1/x0,1
• Ev2 such that c1 has syndrome 0, ie Ev2 = Ev1

x1,1

x1,2
, and

so on and so forth.
Since cr has been removed, all the checks except c0 are

satisfied.
Proof of Lemma 4:

Consider an element E of minimal weight in the set
C

(q)
Z /C

(q)
X

⊥
. We are going to prove that its weight is greater

than or equal to n. A similar proof shows that this is also the
case for the minimal weight elements of C

(q)
X /C

(q)
Z

⊥
and this

proves the lemma.
From Lemma 3, we know that the dimension of C

(q)
Z is

n2+1 and the dimension of C
(q)
X

⊥
is n2−1. Then the quotient



C
(q)
Z /C

(q)
X

⊥
has dimension 2, consequently we just need to

find two independent codewords X̄1 and X̄2 ∈ C
(q)
Z /C

(q)
X

⊥
,

and any such E can be written as E = Es + α1X̄1 + α2X̄2,
with α1, α2 ∈ Fq, Es ∈ C

(q)
X

⊥
, and at least one of either α1

or α2 should be non zero.
We claim that we can choose X̄1 to be a codeword provided

by a big vertical cycle of the Tanner graph of C
(q)
Z (obtained

from Proposition 1), and X̄2 being defined similarly with a
big horizontal cycle. We also define Z̄1 and Z̄2, provided by
respectively a big horizontal cycle and a big vertical cycle of
C

(q)
X .
We notice that the following inner product is non zero

X̄1Z̄1
T 6= 0

since there is only one coordinate where both X̄1 and Z̄1 are
not zero.

Note that X̄1 belongs to C
(q)
Z by definition and X̄1 6∈ C

(q)
X

⊥
,

otherwise X̄1 would have been orthogonal to all words of
C

(q)
X , including Z̄1. We have the same result for X̄2 (and Z̄2).

We finally just need to prove that they are independent:
Assume that X̄1 = αX̄2 + Es, with α in Fq \ {0} and Es

in C
(q)
X . Then we would have

X̄1Z̄1
T

= αX̄2Z̄1
T

+ EsZ̄1
T

= αX̄2Z̄1
T

since EsZ̄1
T

= 0 because Z̄1 ∈ C
(q)
X and Es ∈ C

(q)
X

⊥
.

The left part is non zero, and the right part is zero, since
the supports of X̄2 and Z̄1 are disjoint. This leads to a
contradiction.

Now assume E is of the form E = α1X̄1+α2X̄2+Es with
either α1 or α2 being different from 0. We want to show that
this error is of weight at least n. Assume now that α1 6= 0.

We introduce n shifts of Z̄1: Z̄1
i, for all i even, i ∈

{0, . . . 2n− 2} which is the codeword provided by the cycle:
(0, i), (1, i), . . . (2n − 1, i), (0, i). They are just horizontal
cycles, at different “heights”, as shown in Fig 9.

We have
Es(Z̄1

i
)T = 0

since Z̄1
i ∈ C

(q)
X and Es ∈ C

(q)
X

⊥
, and

X̄1(Z̄1
i
)T 6= 0

Notice that we have for all i:

E(Z̄1
i
)T = α1X̄1(Z̄1

i
)T + α2X̄2(Z̄1

i
)T + Es(Z̄1

i
)T

= α1X̄1(Z̄1
i
)T

6= 0

This implies that for all i, E has at least a non-zero coordinate
on the support of Z̄1

i. Since all Z̄1
i’s have disjoint support,

it shows that E has at least n non-zero coordinates. A similar
reasoning holds in the case α2 6= 0 by multiplying by Z̄2 this
time.

X̄1

Z̄1
1

Z̄1
2

Z̄1
3

Fig. 9. The toric code (only the Z-part is displayed) of length 6 with X̄1

and several variants of Z̄1
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