
Quantum serial turbo-codes
David Poulin∗, Jean-Pierre Tillich†, and Harold Ollivier‡

∗ Center for the Physics of Information, California Institute of Technology, Pasadena, CA 91125, USA.
† INRIA, Projet Codes, Domaine de Voluceau BP 105, F-78153 Le Chesnay cedex, France.

‡ Perimeter Institute for Theoretical Physics, Waterloo, ON, N2J 2W9, Canada.

Abstract— We present a theory of quantum serial turbo-codes,
describe their decoding algorithm, and study their performances
numerically on a depolarization channel. These codes can be
considered as a generalization of classical serial turbo-codes.
As their classical cousins, they can be iteratively decoded and
with well chosen constituent convolutional codes, we observe an
important reduction of the word error rate as the number of
encoded qubits increases.

Our construction offers several advantages over quantum
LDPC codes. First, the Tanner graph used for decoding can be
chosen to be free of 4-cycles that deteriorate the performances of
iterative decoding. Secondly, the iterative decoder makes explicit
use of the code’s degeneracy. Finally, there is complete freedom
in the code design in terms of length, rate, memory size, and
interleaver choice.

We address two issues related to the encoding of convolutional
codes that are directly relevant for turbo-codes, namely the
character of being recursive and non-catastrophic. We define a
quantum analogue of a state diagram that provides an efficient
way to verify these properties on a given quantum convolutional
encoder. Unfortunately, we also prove that all recursive quantum
convolutional encoder have catastrophic error propagation. In
our constructions, the convolutional codes have thus been chosen
to be non-catastrophic and non-recursive. While there is no
guarantee that the resulting families of turbo-codes have a
minimum distance growing with the number of encoded qubits,
from a pragmatic point of view the effective minimum distances
of the codes that we have simulated are large enough not to
degrade the iterative decoding performance up to reasonable
word error rates and block sizes.

I. INTRODUCTION

For the fifty years that followed Shannon’s landmark pa-
per [38] on information theory, the primary goal of the field
of coding theory was the design of practical coding schemes
that could come arbitrarily close to the channel capacity.
Random codes were used by Shannon to prove the existence
of codes approaching the capacity – in fact he proved that
the overwhelming majority of codes are good in this sense.
For symmetric channels this can even be achieved by linear
codes. Unfortunately, decoding a linear code is an NP-hard
problem [5], so they have no practical relevance. To render
the decoding problem tractable thus imposes the use of codes
with even more structure.

The first few decades were dominated by algebraic coding
theory. Codes such as Reed-Solomon codes [37] and Bose-
Chaudhuri-Hocquenghem codes [20], [7] use the algebraic
structure of finite fields to design codes with large minimal
distances that have efficient minimal distance decoders. The
most satisfying compromise nowadays is instead obtained
from families of codes (sometimes referred to as “probabilistic

codes”) with some element of randomness but sufficiently
structured to be suitable for iterative decoding. They display
good performances for a large class of error models with a
decoding algorithm of reasonable complexity. The most promi-
nent families of probabilistic codes are Gallager’s low density
parity-check (LDPC) codes [15] and turbo-codes [6]. They are
all decoded by a belief propagation algorithm, which albeit
sub-optimal has been shown to have astonishing performance
even at rates very close to the channel capacity. Moreover,
the randomness involved in the code design can facilitate the
analysis of their average performance. Indeed, probabilistic
codes are in many aspect related to quench-disordered physical
systems, so standard statistical physics tools can be called into
play [45], [28].

Quantum information and quantum error correction [40],
[43], [4], [16], [22] are much younger theories and differ from
their classical cousins in many aspects. For instance, there
exists a quantum analogue of the Shannon channel capacity
called the quantum channel capacity [12], [39], [25], which
sets the maximum rate at which quantum information can be
sent over a noisy quantum channel. Contrarily to the classical
case, we do not know how to efficiently compute its value for
channels of practical significance, except for quite peculiar
channels such as the quantum erasure channel where it is
equal to one minus twice the erasure probability [3]. For
the depolarizing channel – the quantum generalization of the
binary symmetric channel – random codes do not achieve the
optimal transmission rate in general. Instead, they provide a
lower bound on the channel capacity, often referred to as the
hashing bound. In fact, coding schemes have been designed to
reliably transmit information on a depolarization channel in a
noise regime where the hashing bound is zero [13], [41].

The stabilizer formalism [16] is a powerful method in
which a quantum code on n qubits can be seen as classical
linear codes on 2n bits, but with a parity-check matrix whose
rows are orthogonal relative to a symplectic inner product.
Moreover, a special class of stabilizer codes, called CSS codes
after their inventors [8], [42], can turn any pair of dual classical
linear code into a quantum code with related properties. The
stabilizer formalism and the CSS construction allow to import
a great deal of knowledge directly from the classical theory,
and one may hope to use them to leverage the power of
probabilistic coding to the quantum domain. In particular, one
may expect that, as in the classical case, quantum analogues
of LDPC codes or turbo-codes could perform under iterative
decoding as well as random quantum codes, i.e. that they could

come arbitrarily close to the hashing bound.
For this purpose, it is also necessary to design a good

iterative decoding algorithm for quantum codes. For a special
class of noise models considered here – namely Pauli noise
models – it turns out that a version of the classical belief
propagation algorithm can be applied. For CSS codes in
particular, each code in the pair of dual codes can be decoded
independently as a classical code. However, this is done at the
cost of neglecting some correlations between errors that impact
the coding scheme’s performances. For some class of stabilizer
codes, the classical belief propagation can be improved to
exploit the coset structure of degenerate errors which improve
the code’s performances. This is the case for concatenated
block codes [34] and the turbo-codes we consider here, but
we do not know how to exploit this feature for LDPC codes
for instance. Finally, a quantum belief propagation algorithm
was recently proposed [24] to enable iterative decoding of
more general (non-Pauli) noise models. As in the classical
case, quantum belief propagation also ties in with statistical
physics [19], [23], [24], [35].

We emphasize that a fast decoding algorithm is crucial in
quantum information theory. In the classical setting, when
error correction codes are used for communication over a
noisy channel, the decoding time translate directly into com-
munication delays. This has been the driving motivation to
devise fast decoding schemes, and is likely to be important in
the quantum setting as well. However, there is an important
additional motivation for efficient decoding in the quantum
setting. Quantum computation is likely to require active sta-
bilization. The decoding time thus translates into computation
delays, and most importantly in error suppression delays. If
errors accumulate faster than they can be identified, quantum
computation may well become infeasible: fast decoding is an
essential ingredient to fault-tolerant computation.

The first attempts at obtaining quantum analogues of LDPC
codes [27], [9], [18] have not yielded results as spectacular as
their classical counterpart. This is due to several reasons. First
there are issues with the code design. Due to the orthogonality
constraints imposed on the parity-check matrix, it is much
harder to construct quantum LDPC codes that classical ones.
In particular, constructing the code at random will certainly
not do. The CSS construction is of no help since random
sparse classical codes do not have sparse duals. In fact, it
is still unknown whether there exist families of quantum
LDPC codes with non-vanishing rate and unbounded minimum
distance. Moreover, all known construction seem to suffer
from a poor minimum distances for reasons which are not
always fully understood. Second, there are issues with the
decoder. The Tanner graph associated to a quantum LDPC
code necessarily contains many 4-cycles which are well known
for their negative effect on the performances of iterative
decoding. Moreover, quantum LDPC codes are by definition
highly degenerate but their decoder does not exploit this
property: rather it is impaired by it [36].

On the other hand, generalizing turbo-codes to the quantum
setting first requires a quantum analogue of convolutional

codes. These have been introduced in [10], [11], [30], [31]
and followed by further investigations [14], [17], [1]. Quan-
tum turbo-codes can be obtained from the interleaved serial
concatenation of convolutional codes. This idea was first
introduced in [32]. There, it was shown that, on memoryless
Pauli channels, quantum turbo-codes can be decoded similarly
to classical serial turbo-codes. One of the motivation behind
this work was to overcome some of the problems faced by
quantum LDPC codes. For instance, graphical representation
of serial quantum turbo-codes do not necessarily contain 4-
cycles. Moreover, there is complete freedom in the code pa-
rameters. Both of these points are related to the fact that there
are basically no restrictions on the choice of the interleaver
used in the concatenation. An other advantage over LDPC
codes is that the decoder makes explicit use of the coset
structure associated to degenerate errors.

Despite these features, the iterative decoding performance of
the turbo-code considered in [32] was quite poor, much poorer
in fact that results obtained from quantum LDPC codes. The
purpose of the present article is to discuss in length several
issues omitted in [32], to provide a detailed description of the
decoding algorithm, to suggest much better turbo-codes than
the one proposed there, and, most importantly, to address the
issue of catastrophic error propagation for recursive quantum
convolutional encoders.

Non-catastrophic and recursive convolutional encoders are
responsible for the great success of parallel and serial classical
turbo-codes. In a serial concatenation scheme, an inner convo-
lutional code that is recursive yields turbo-code families with
unbounded minimum distance [21], while non-catastrophic
error propagation is necessary for iterative decoding conver-
gence. The last point can be circumvented in several ways (by
doping for instance, see [44]) and some of these tricks can be
adapted to the quantum setting, but are beyond the scope of
this paper.

The proof [21] that serial turbo-codes have unbounded
minimal-distance carries almost verbatim to the quantum
setting. Thus, it is possible to design quantum turbo-codes
with polynomially large minimal distances. However, we will
demonstrate that all recursive quantum convolutional encoders
have catastrophic error propagation. This phenomenon is re-
lated to the orthogonality constraints which appear in the
quantum setting and to the fact that quantum codes are in
a sense coset codes. As a consequence, such encoders are not
suitable for (standard) serial turbo-codes schemes.

In our constructions, the convolutional codes are therefore
chosen to be non-catastrophic and non-recursive, so there is
no guarantee that the resulting families of turbo-codes have a
minimum distance which grows with the number of encoded
qubits. Despite these limitations, we provide strong numerical
evidence that their error probability decreases as we increase
the block size at fixed rate – and this up to rather large block
sizes. In other words, from a pragmatic point of view, the
minimum distances of the codes that we have simulated are
large enough not to degrade the iterative decoding performance
up to moderate word error rates (10−3−10−5) and block sizes

(102 − 104).
The style of our presentation is motivated by the intention

to accommodate a readership familiar with either classical
turbo-codes or quantum information science. This unavoidably
implies some redundancy and the expert reader may want
to skip some sections, or perhaps glimpse at them to pick
up the notation. In particular, the necessary background from
classical coding theory and convolutional codes is presented
in the next section using the circuit language of quantum
information science, and yet requires little departure from
more conventional presentations. This, we hope, allows a very
smooth transition between classical codes and quantum codes,
which are the subject of Sec. III. Whenever possible, the
definitions used in the quantum setting directly mirror those
established in the classical setting.

Section IV uses the circuit representation to define quantum
convolutional codes and their associated state diagram. The
state diagram is an important tool to understand the properties
of a convolutional code. In particular, the detailed analysis
of the state diagram of recursive convolutional encoders per-
formed in Sec. IV-E will lead to the conclusion that they all
have catastrophic error propagation. Section V is a detailed
presentation of the iterative decoding procedure used for
quantum turbo-codes. Finally, our numerical results on the
codes’ word error rate and spectral properties are presented
at Sec. VI.

II. CLASSICAL PRELIMINARIES

The main purpose of this section is to introduce a circuit
representation of convolutional encoders which simplifies the
generalization of several crucial notions to the quantum set-
ting. For instance, it allows to define in a straightforward way
a state diagram for the quantum analogue of a convolutional
code which arises naturally from this circuit representation.
This state diagram will be particularly helpful for defining
and studying fundamental issues related to turbo-codes such as
recursiveness and non-catastrophicity of the constituent convo-
lutional encoders. The circuit representation is also particularly
well suited to present the decoding algorithm of quantum
convolutional codes.

A. Linear block codes

A rate k
n classical linear code C can be specified by a full-

rank (n− k)× n parity-check matrix H over F2:

C = {c | HcT = 0}. (1)

Alternatively, the code can be specified by fixing the encoding
of each information word c ∈ Fk2 through a linear mapping
c 7→ c = cG for some full-rank k×n generator matrix G over
F2 that satisfies GHT = 0. Since G has rank k, there exists
an n× k matrix over F2 that we denote by a slight abuse of
notation by G−1 satisfying GG−1 = 1lk where for any integer
k, 1lk denotes the k × k identity matrix. Similarly, since H
has rank n − k, there exists a n × (n − k) matrix H−1 over
F2 satisfying HH−1 = 1ln−k.

k

n−k
nl

s
pV

Fig. 1. Circuit representation of encoder (l : s)V = p. Slashed wires with
integer superscript j indicate a j-bit input/output. The l-bit input are called the
logical bits, the other (n−k)-bit input are called syndrome or stabilizer bits,
and the n-bit output are the physical bits. The string p ∈ Fn

2 is a codeword
if and only if s = 0n−k .

Lemma 1: The right inverses H−1 and G−1 can always be
chosen such that (H−1)TG−1 = 0.

Proof: Let B = (H−1)TG−1. The substitution H−1 →
H−1 +GTBT preserves the property HH−1 = 1l and fulfills
the desired requirement.

We will henceforth assume that the right inverses H−1 and
G−1 are chosen to fulfill the condition of Lemma 1.

To study the analogy between classical linear binary codes
and stabilizer codes, we view a rate k

n classical linear code and
its encoding in a slightly unconventional fashion. We specify
the encoding by an n × n invertible encoding matrix V over
F2. The code space is defined as

C =
{
c = (c : 0n−k)V | c ∈ Fk2

}
, (2)

where we use the following notation.
Notation 1: For an n-tuple a ∈ A n and an m-tuple b ∈

A m over some alphabet A , we denote by a : b the n + m-
tuple formed by the concatenation of a followed by b.

Given the generator matrix G and parity check matrix H of
a code, the encoding matrix V can be fixed to

V =
(

G
(H−1)T

)
. (3)

This matrix is invertible:

V −1 =
(
G−1, HT

)
(4)

and satisfies V V −1 = 1ln following Lemma 1. Clearly, the
encoding matrix V : Fn2 → F2

2 specifies both the code space
and the encoding. The output b = aV of the encoding matrix
V is in the code space if and only if the input is of the form
a = (c : 0n−k) where c ∈ Fk2 . This follows from the equalities
aV = cG = c ∈ C and (c : s)V HT = s.

The encoding matrix also specifies the syndrome associated
to each error. When transmitted on a bit-flip channel, a
codeword c will result in the message m = c + p for some
p ∈ Fn2 . The error p can be decomposed into an error syndrome
s ∈ Fn−k2 and a logical error l ∈ Fk2 as pV −1 = (l : s). This
is conveniently represented by the circuit diagram shown at
Fig. 1, in which time flows from left to right. In such diagrams,
the inverse V −1 is obtained by reading the circuit from right to
left, running time backwards. This circuit representation is at
the core of our construction of quantum turbo codes, it greatly
simplifies all definition and analysis.

A probability distribution P(p) on the error p incurred dur-
ing transmission induces a probability distribution on logical

m

m

k

n−k

n

...

m

k

n−k

m

k

n−k

n

n

li

li−1

li+1

si+1

si−1

si

wi−2

wi+1

pi+1

pi−1

pi

...

U

U

U

Fig. 2. Circuit diagram of a convolutional encoder with seed transformation
U .

transformation and syndromes

P(l, s) = P(p)
∣∣∣
p=(l:s)V −1

. (5)

We call P(l, s) the pullback of the probability P(p) through
the gate V . Maximum likelihood decoding lML : Fn−k2 → Fk2
consists in identifying the most likely logical transformation l
given the syndrome s

lML(s) = argmaxlP(l|s) (6)

where the conditional probability is defined the usual way

P(l|s) =
P(l, s)∑
l′ P(l′, s)

. (7)

Similarly, we can define the bit-wise maximum likelihood de-
coder liML : Fn−k2 → F2 which performs a local optimization
on each logical bit

liML(s) = argmaxliP(li|s), (8)

where the marginal conditional probability is defined the usual
way

P(l|s) =
∑

l1,...li−1,li+1,...lk

P(l1, . . . lk|s). (9)

B. Convolutional codes

We define now a convolutional code as a linear code whose
encoder V has the form shown at Fig. 2. The circuit is built
from repeated uses of a linear invertible seed transformation
U : Fn+m

2 → Fn+m
2 shifted by n bits. In this circuit,

particular attention must be paid to the order of the inputs
as they alternate between syndrome bits and logical bits. The
total number of identical repetition is called the duration of
the code and is denoted N . The m bits that connect gates
from consecutive “time slices” are called memory bits. The
encoding is initialized by setting the first m memory bits to
w0 = 0m. There are several ways to terminate the encoding,
but we here focus on a padding technique. This simply consists
in setting the k logical bits of the last t time slices i =
N + 1, N + 2, . . . N + t equal to li = 0k, where t is a free
parameter independent of N . The rate of the code is thus
k/n+O(1/N).

w1 w2 wm

...

...

...

f0 f1 fm−1 fm

qmqm−1q1

l

p1

p2

Fig. 3. Representation of convolutional encoder as a linear filter. The labels
f and q take value 0 and 1 and indicate respectively the absence or presence
of the associated wire. Although linear, this transformation is not invertible.

Note that in this diagram, we use a subscript to denote the
different elements of a stream. For instance, pi denotes the n-
bit output string at time i. The jth bits of pi would be denoted
by a subscript as pji , or simply pj when the particular time i
is clear from context. This convention will be used throughout
the paper.

This definition of convolutional code differs at first sight
from the usual one based on linear filters built from shift
register and feed-back lines. An example of a linear filter for
a rate 1/2 (systematic and recursive) convolutional encoder
is shown at Fig. 3. An other common description of this
encoder would be in terms of its rational transfer function
which related the D-transform of the output p(D) to that of
the input l(D). Remember that the D-transform of a bit stream
x1 : x2 : x3 : . . . is given by x(D) =

∑
i xiD

i. For the code
of Fig. 3, the output’s D-transforms are

p1(D) = l(D) (10)

p2(D) =
f0 + f1D + . . .+ fmD

m

1 + q1D + . . .+ qmDm
l(D) (11)

where the inverse is the Laurent series defined by long
division. The code can also be specified by the recursion
relation

wji = wj−1
i−1 for j > 1

w1
i = li +

m∑
j=1

qjw
j
i−1

p2
i = f0(

m∑
j=1

qjw
j
i−1 + li) +

m∑
j=1

fjw
j
i−1

= f0li +
m∑
j=1

(fj + f0qj)w
j
i−1.

These definitions are in fact equivalent to the circuit of
Fig. 2 with the seed transformation U specified by Fig. 4. Note
that we can assume without lost of generality that fm = 1 or
qm = 1 (or both), and these two cases lead to different seed
transformations. The generalization to arbitrary linear filters is
straightforward. In terms of matrices, the seed transformation
associated to this convolutional code encodes the relation
(pi : wi) = (wi−1 : li : si)U with U given by

...

...

...

...

...

...

li

si

p1
i

p2
i

w1
i

wm
i

w2
i

w3
i

w1
i−1

w2
i−1

wm−1
i−1

wm
i−1

...

...

...

...

...

...

...

...

q1

q2

qm−1

f1

f2

fm−1

f0

qm

...

...

...

...

...

...

li

si

p1
i

p2
i

w1
i

wm
i

w2
i

w3
i

w1
i−1

w2
i−1

wm−1
i−1

wm
i−1

...

...

...

...

...

...

...

...

q1

q2

qm−1

f1

f2

fm−1

f0fm

Fig. 4. Seed transformation circuit for convolutional code of Fig 3. Top:
Case fm = 1. Bottom: Case qm = 1. The labels f and q take value 0 and 1
and indicate respectively the absence or presence of the associated gate. Both
circuits are entirely built from controlled-nots, and is therefore invertible. As
its name indicates, the controlled-not acts by negating the target bit ⊕ if and
only if the control bit • is in state 1.

U =

n︷︸︸︷
µP

m︷︸︸︷
µM

ΛP ΛM
ΣP ΣM

}m}k
}n−k

. (12)

where

µP =

 0 f1 + f0q1
...

...
0 fm + f0qm

 , µM =

q1
q2 1lm−1

...
qm 0 0 0

 ,

ΛP = (1, f0), and ΛM = (1 0m−1). The two other components
depend on whether fm = 1 or qm = 1. In the former case
ΣP = (0, f0) and ΣM = (1 0m−1) while in the latter case
ΣP = (0, 1) and ΣM = (0m).

Not only does the circuit of Fig. 2 produce the same
encoding as the linear filter of Fig. 3, it also has the same
memory states. More precisely, the value contained in the jth
shift register at time i in Fig. 3 is equal to the value of the
jth memory bit between gate i and i + 1 on Fig. 2. This is
important because it allows to define the state diagram (see
Sec. IV-B) directly from the circuit diagram Fig. 4.

Of particular interest are systematic recursive encoders that
are defined as follows.

Definition 1 (Systematic encoder): An encoder is system-
atic when the input stream is a sub-stream of the output stream.

Definition 2 (Recursive encoder): A convolutional encoder
is recursive when its rational transfer function involves gen-
uine Laurent series (as opposed to simple polynomials).

Systematic encoders copy the input stream in clear in one
of the output stream. Typically they have transfer functions of
the form pj(D) = lj(D) for j = 1, . . . , k and arbitrary pj(D)
for j > k, so pji is a copy of lji . The systematic character of
the code considered in the above example is most easily seen
from Fig. 3: p1 is a copy of the input l. Systematic encoders

are used to avoid catastrophic error propagation. This term will
be defined formally in the quantum setting, but it essentially
means that an error affecting a finite number of physical bits
is mapped to a logical transformation on an infinite number
of logical bits by the encoder inverse. Catastrophic encoders
cannot be used directly in standard turbo-code schemes. The
problem is that the first iteration of iterative decoding does not
provide information on the logical bits. This is due to the fact
that as the length of the convolutional encoder tends to infinity
and in the absence of prior information about the value of the
logical bits, the logical bit error rate after decoding tends to 1

2 .
A recursive encoder has an infinite impulsive response: on

input l of Hamming weight 1, it creates an output of infinite
weight for a code of infinite duration N . Recursiveness is also
related to the presence of feed-back in the encoding circuit,
which is easily understood from the linear filter of Fig. 3.
Except when the polynomial

∑
qiD

i factors
∑
fiD

i, an
encoder with feed-back will be recursive. It is essential to use
as constituent recursive convolutional codes in classical turbo-
codes schemes to obtain families of turbo-codes of unbounded
minimum distance and with performances which improve with
the block size.

III. QUANTUM MECHANICS AND QUANTUM CODES

In this section, we review some basic notions of quantum
mechanics, the stabilizer formalism, and the decoding problem
for quantum codes. The stabilizer formalism is introduced in
two steps. In Sec. III-B, stabilizer codes are defined the usual
way, as subspaces of the Hilbert space stabilized by an Abelian
subgroup of the Pauli group. In the following Sec. III-C, an
equivalent definition of a stabilizer code is derived in terms of
its action on the effective Pauli group. Although redundant
for quantum information scientists, this establishes a clear
relation between classical codes and quantum stabilizer codes,
and allows to highlight the crucial distinctions. Particular
emphasis is put on the role of the encoder because it leads
to a straightforward quantization of convolutional codes and
turbo-codes. The encoder also provides an intuitive picture for
the logical cosets, which are an important distinction between
classical codes and quantum stabilizer codes.

A. Qubits and the Pauli group

A qubit is a physical system whose state is described by
a unit-length vector in a two-dimensional Hilbert space. The
two vectors of a given orthonormal basis are conventionally
denoted by |0〉 and |1〉. We identify the Hilbert space with
C2 in the usual way with the help of such a basis. The state
of a system comprising n qubits is an unit-lenght vector in
the tensor product of n two-dimensional Hilbert spaces. It
is a space of dimension 2n which can be identified with
(C2)⊗n ' C2n . It has a basis given by all tensor products
of the form |x1〉 ⊗ · · · ⊗ |xn〉, where the xi ∈ {0, 1} and the
inner product between two basis elements |x1〉 ⊗ · · · ⊗ |xn〉
and |y1〉 ⊗ · · · ⊗ |yn〉 is the product of the inner products of
|xi〉 with the corresponding |yi〉. In other words, this basis is
orthonormal.

The error model we consider in this paper is a Pauli-
memoryless channel which is defined with the help of the
three Pauli matrices

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

These matrices anti-commute with each other and satisfy the
following multiplication table

× X Y Z

X I iZ −iY
Y −iZ I iX
Z iY −iX I

where I denotes the 2 × 2 identity matrix. The action of
these operators on the state of a qubit is obtained by right
multiplication |ψ〉 → P|ψ〉, with |ψ〉 viewed as an element of
C2.

These matrices generate the Pauli group G1 which is readily
seen to be the set

{±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}.

They also form all the errors which may affect one qubit in
our error model. If we have an n-qubit system then the errors
which may affect it belong to the Pauli group Gn over n qubits
which is defined by

Gn = G⊗n1

= {εP1 ⊗ · · · ⊗ Pn|ε ∈ {±1,±i},Pi ∈ {I,X,Y,Z}}

This group is generated by i and the set of Xi’s and Zi’s for
i = 1, 2, . . . , n which are defined by:

Notation 2:

Xi ,

i− 1 times︷ ︸︸ ︷
I⊗ · · · ⊗ I⊗X⊗

n− i times︷ ︸︸ ︷
I⊗ · · · ⊗ I

Zi ,

i− 1 times︷ ︸︸ ︷
I⊗ · · · ⊗ I⊗Z⊗

n− i times︷ ︸︸ ︷
I⊗ · · · ⊗ I

In quantum mechanics two states are physically indis-
tiguishable if they differ by a multiplicative constant. This
motivates the definition another group of errors, called the
effective Pauli group, obtained by taking the quotient of Gn
by {±I,±iI}.

Definition 3 (Effective Pauli group): The effective Pauli
group Gn on n qubits is the set of equivalence classes [P] for
P in Gn, where the equivalence class [P] is the set of elements
of Gn which differ from P by a multiplicative constant. We
will also use the notation I ,[I], X ,[X], Y ,[Y], Z ,[Z] and
Xi = [Xi], Zi = [Zi].

All the effective Pauli groups Gn are Abelian. (G1,+) is
isomorphic to (F2 × F2,+) where the group operation of G1

corresponds to bitwise addition over F2×F2. As a consequence
effective Pauli operators will always be represented in the
following way: I ↔ (0, 0), X ↔ (1, 0), Y ↔ (1, 1) and
Z ↔ (0, 1). Since Gn ∼= Gn1 , we view P ∈ Gn either as an n-
tuple (P i)ni=1 with entries in G1 or as 2n-tuple with entries in
F2 obtained by replacing each Pi by its corresponding binary

representation. Gn is generated by the Xi and Zi, and we
introduce the following notation.

Notation 3: For P in Gn, we denote by P x and P z the
only elements of Gn satisfying:

1) P = P x + P z , and
2) P x ∈ {I,X}n,P z ∈ {I, Z}n.
An important property of Gn is that any pair of elements

P,Q either commutes or anti-commutes. This leads to the
definition of an inner product “?” for elements P = (Pi)1≤i≤n
and Q = (Qi)1≤i≤n of Gn such that P ? Q =

∑n
i=1 Pi ? Qi

mod 2. Here, Pi ? Qi = 1 if Pi 6= Qi, Pi 6= I and Qi 6= I;
and Pi ? Qi = 0 otherwise.

Fact 1: P,Q ∈ Gn commute if and only if [P] ? [Q] = 0.
This product can also be defined with the help of the

following matrix which will appear again later in the definition
of symplectic matrices.

Notation 4:
Λn , 1ln ⊗ X.

By viewing now elements of Gn as binary 2n-tuples we have:
Definition 4 (Inner product): Define the inner product ? :

Gn ×Gn → F2 by P ? Q = PΛnQT .
Gn is an F2-vector space and we use the ? inner product to

define the orthogonal space of a subspace of Gn as follows.
Definition 5 (Orthogonal subspace): Let V be a subset of

Gn. We define V ⊥ by

V ⊥,{P ∈ Gn : P ? Q = 0 for every Q ∈ V }.
V ⊥ is always a subspace of Gn and if the space spanned by
V is of dimension t, then V ⊥ is of dimension 2n− t.

From the fact that two states are indistiguishable if they
differ by a mutiplicative constant, a Pauli error may only be
specified by its effective Pauli group equivalence to which
it belongs. A very important quantum error model is the
depolarizing channel. It is in a sense the quantum analogue
of the binary symmetric channel.

Definition 6 (Depolarizing channel): The depolarizing
channel on n qubits of error probability p is an error model
where all the errors which occur belong to Gn and the
probability that a particular element P is chosen is equal
to (1 − p)n−weight(P)

(
p
3

)weight(P)
where weight(P) is the

number of coordinates of P which differ from I .
In other words, the coordinates of the error are chosen

independently: there is no error on a given coordinate with
probability 1 − p and there is an error on it of type X,Y or
Z each with probability p

3 .

B. Stabilizer codes: Hilbert space perspective

A rate k
n quantum error correction code is a 2k dimensional

subspace C of (C2)⊗n. It can be specified by a unitary
transformation V : C2n → C2n :

C =
{
|ψ〉 = V(|ψ〉 ⊗ |0n−k〉) | |ψ〉 ∈ C2k

}
. (13)

This definition directly reflects Eq. (2). As in the classical
case, the matrix V specifies not only the code but also the
encoding, that is the particular embedding (C2)⊗k → (C2)⊗n.
An importance distinction however is that in the quantum

case, the dimension of the matrix V is exponential in the
number of qubits n. To obtain an efficiently specifiable code,
we choose V from a subgroup of the unitary group over
(C2)⊗n called the Clifford group. In fact, not only are Clifford
transformations over n qubits efficiently specifiable, they can
also be implemented efficiently by a quantum circuit involving
only O(n2) elementary quantum on 1 and 2 qubits (see
Theorem 10.6 in [29] for instance).

Definition 7 (Clifford transformation and Clifford group):
A Clifford transformation over n qubits is a unitary transform
V over (C2)⊗n which leaves the Pauli group over n qubits
globally invariant by conjugation

VGnV
† = Gn.

The set of Clifford transformations is a group and is called
the Clifford group over n qubits.

This definition naturally leads to the action of the Clifford
group on elements of the Pauli group.

Definition 8 (Action of Clifford transformation on Pauli):
A Clifford transformation V acts on the Pauli group as

Gn → Gn

P 7→ P′ = VPV†

It also acts on the effective Pauli group by the mapping [P] 7→
[P′].

The last mapping is F2-linear and there is a square binary
matrix V of size 2n which is such that

[VPV†] = [P]V.

This matrix will be called the encoding matrix.
Definition 9 (Encoding matrix): The encoding matrix V

associated to an encoding operation V, which is a Clifford
transformation over n qubits, is the binary matrix V of size
2n× 2n such that for any P ∈ Gn we have

[VPV†] = [P]V.
Clearly then, a Clifford transformation on n qubits can be
specified by its associated encoding matrix V on F2n

2 together
with a collection of 2n phases. This shows that Clifford trans-
formations are efficiently specifiable as claimed. It can readily
be verified that the rows of V , denoted Vi i = 1, 2, . . . , 2n,
are equal to

V2i−1 = [VXiV
†], (14)

V2i = [VZiV
†]. (15)

Since conjugation by a unitary matrix V does not change the
commutation relations, the above equations implies that the
encoding matrix is a symplectic matrix, whose definition is
recalled below.

Definition 10 (Symplectic transformation): A n-qubit sym-
plectic transformation is a 2n × 2n matrix U over F2 that
satisfies

UΛnUT = Λn.
By definition, symplectic transformation are invertible and
preserve the inner product ? between n-qubit Pauli group

elements. Conversely, every symplectic matrices always cor-
respond to a (non-unique) Clifford transformation.

A stabilizer code is thus a quantum code specified by
Eq. (13), but with V in the Clifford group. The code C (but
not the encoding) can equivalently be specified with n − k
independent mutually commuting elements of Gn of order 2
as follows:

Definition 11 (Stabilizer code): The stabilizer code C as-
sociated to the stabilizer set {Hi, i = 1..n − k}, where the
Hi’s are independent mutually commuting elements of Gn of
order 2 and different from −1, is the subspace of (C2)⊗n of
elements stabilized by the Hi’s, that is

C = {|ψ〉 | Hi|ψ〉 = |ψ〉, 1 ≤ i ≤ n− k}. (16)
This is the usual definition of stabilizer codes. The Hi play

a role analogous to the rows of the parity-check matrix of a
classical linear code, and this connection will be formalized
in the next section. To see the equivalence between this
definition and Eq. (13), set Hi = VZk+iV

†. These operators
are independent and of order 2 since they are conjugate to
the Zi which are independent and of order 2. Now, consider
a |ψ〉 ∈ C as defined in Eq. (13). For all Hi, we have

Hi|ψ〉 = VZi+kV
†V(|ψ〉 ⊗ |0n−k〉) (17)

= V(|ψ〉 ⊗ Zi|0n−k〉) = |ψ〉, (18)

where we used the fact that Z|0〉 = |0〉. Hence, |ψ〉 satisfies
the condition of Def. 11. Conversely, for any state |ψ〉 ∈ C
according to Def. 11, we have

Zk+iV
†|ψ〉 = V†Hi|ψ〉 (19)

= V†|ψ〉, (20)

which implies that the k+ ith qubit of V†|ψ〉 must be in state
|0〉. Since this holds for all i = 1, 2, . . . , n − k, we conclude
that the two definitions are equivalent. This equivalence has
the following consequence:

Fact 2: A stabilizer code of length n associated to n − k
independent generators Hi is of dimension 2k.

Since X,Y,Z are all of order 2, all the generators of order
2 in Gn are of the form ±P where P is a tensor product of n
matrices all chosen among the set {I,X,Y,Z}. Thus, we can
specify the generators Hi of the stabilizer code by giving only
the associated effective Pauli group elements together with
a sign for each generator. Changing the sign of a stabilizer
generator changes the code, but not its properties1. More
precisely, the set of Pauli errors which can be corrected by
such a code does not depend on the signs which have been
chosen. Hence, we can specify a family of “equivalent” codes
by specifying instead of the Hj’s the set of Hj ,[Hj] =
V Zj+k. It is important to note that these elements have to
be orthogonal: the fact that the Hi’s commute translate into
the orthogonality condition Hi ?Hj = 0. Thus, the Hi span a
linear space called the stabilizer space, that we denote C(I)
for reasons that will become apparent later.

1This is strictly true for Pauli channels which are considered here. For a
general noise model, error correcting properties may actually depend on the
sign of the stabilizer generators.

Thus, in analogy with classical linear codes, a stabilizer
code (or more precisely an equivalent class thereof) can be
efficiently specified by an encoding matrix V on F2n

2 . This
matrix also provides an efficient description of the encoding
up to a set of phases. There is another analogy with a
classical encoding matrix that will be crucial for our definition
of quantum turbo-codes. Assume that we concatenate two
stabilizer codes and that these codes are encoded by Clifford
transformations. The result of the concatenation is also a
stabilizer code (because Clifford transformations form a group)
and the resulting encoding matrix is just the product of the two
encoding matrices of each constituent code. This reflects the
fact that the encoding matrices provide a representation of the
Clifford group.

Fact 3: Let V1 and V2 be two Clifford transformations over
n qubits with encoding matrices V1 and V2 respectively. Then
V2V1 is a Clifford transformation with encoding matrix V1V2.

Proof: Consider the Clifford transformation V , V2V1.
It suffices to verify the statement on a generating set of the
Pauli group: [

VXiV
†] =

[
V2V1XiV

†
1V
†
2

]
=

[
V1XiV

†
1

]
V2 (21)

= XiV1V2

Equation (21) uses the fact that V1XiV
†
1 belongs to Gn. The

same kind of result holds for the Zi’s and this completes the
proof.

C. Stabilizer codes: effective Pauli group perspective
As presented in the previous section, stabilizer codes are

a special class of quantum codes that, in analogy to classical
linear codes, can be specified by an encoding matrix V on F2n

2 .
However, the analogy between stabilizer codes and classical
linear codes is much richer and is best seen by considering
stabilizer codes from the perspective of the effective Pauli
group. The main advantage of this perspective is that the
effective Pauli group Gn is discrete, its elements can be
specified by 2n-bit strings. This section will present stabilizer
codes from this perspective, which will then be used in the rest
of this paper. Whenever possible, the presentation will directly
mirror that of section II.

The crucial point is that the Pauli operators form a linear
basis for the linear operators on (C2)⊗n, any 2n × 2n matrix
can be expressed as

A =
∑

P∈Gn

αPP (22)

for some set of complex αP. Some operators on (C2)⊗nleave
C globally invariant. They are obtained from Eq. (22) with
αP 6= 0 only for those P satisfying [P] ? Hj = 0 for all
j = 1, 2, . . . , n−k. Indeed, it is easy to see that such operators
map C to itself. Consider a state |ψ〉 ∈ C , and suppose that
[P] ? Hj = 0 for all j = 1, 2, . . . , n− k. Then

HiP|ψ〉 = (−1)([Hi]?[P])PHi|ψ〉 (23)
= P|ψ〉 (24)

so P|ψ〉 is in C . The fact that all operators that map C to
itself have this form follows directly from the fact that the
Pauli group forms a basis of operators.

Hence, the effect of the noise on C can be fully char-
acterized by its effect on the Pauli operators that leave the
codespace globally invariant. This motivates the following
definition of a stabilizer code:

Definition 12 (Discrete stabilizer code): The discrete sta-
bilizer code C associated to the stabilizer set {Hi, i =
1..n−k}, where the Hi’s are independent mutually orthogonal
elements of Gn, is the subspace of Gn orthogonal to the Hi,
that is

C = {P ∈ Gn | Hi ? P = 0, 1 ≤ i ≤ n− k}, (25)

or more succinctly C = C(I)⊥.
Notation 5: Given a quantum code C, a codeword is an

effective Pauli operator that is an element of the code.
Thus, the code consists of those effective Pauli operators
that map C to itself. When the combined effect of a noise
operator followed by error correction leaves each element of
C invariant, then we can conclude that it does not affect the
elements of C . This is the main advantage of the stabilizer
formalism: it allows to discretize a seemingly continuous
problem by characterizing the errors on the (continuous) set
C through their effect on the discrete set C. Viewing effective
Pauli operators as elements of F2n

2 , we can define the parity-
check matrix of the stabilizer code as follows.

Definition 13 (Parity-check matrix): The parity-check ma-
trix H of a quantum code with stabilizer set {H1, . . . ,Hn−k}
is the binary matrix of size (n − k) × 2n with rows
H1, . . . ,Hn−k.

The encoding matrix V provides a succinct definition of the
stabilizer space C(I) and the code space C:

C(I) =
{
P = (In : Sz)V | Sz ∈ {I, Z}n−k

}
C =

{
L = (L : In−k)V | L ∈ Gk

}
+ C(I).

Notice how this definition of the code C is almost identical
to the classical definition Eq. (2), save for the presence of the
additional C(I). Just like in the classical case, the parity-check
matrix is a sub-matrix of the encoding matrix V :

Fact 4: The parity-check matrix of a stabilizer with en-
coding matrix V is the sub-matrix obtained from the rows
{j = 2i : i = k + 1, k + 2, . . . n} of V .
This follows from the fact that Hj = VZk+jV

† and Eq. (14).

D. Decoding
As in the classical setting, decoding a quantum code is

syndrome-based. When a Pauli error Pn ∈ Gn affects the
encoded register, it is possible to perform a physical mea-
surement whose outcome is called the error syndrome, which
reveals partial information about the error. The error syndrome
can be expressed in terms of the parity-check matrix:

Definition 14 (Syndrome): The syndrome s(P) of an error
P ∈ Gn for a stabilizer code with parity-check matrix
{H1, . . . ,Hn−k} is defined by

s(P) ,([P] ? Hi)1≤i≤n−k.

The set of (effective) Pauli errors with zero syndrome is
the code itself C = C(I)⊥. It forms a F2-linear subspace.
The orthogonality properties of the Hi’s imply that C(I) ⊂
C(I)⊥ = C. Just like in the classical setting, C forms the
set of undetectable errors. There is however an important
distinction: not all undetectable errors different from the
identity are harmful. Indeed errors in C(I) cannot be detected,
but they do not affect the encoded state by definition, c.f.
Eq. (16). Hence, C(I) is the set of harmless undetectable
errors. It may be checked that all other undetectable affect at
least a subspace of the code. Hence, C \ C(I) is the set of
harmful undetectable errors. Let us now describe the decoding
problem in some details.

When transmitted on a Pauli channel, an encoded state
|ψ〉 = V(|ψ〉⊗ |0n−k〉) (where |ψ〉 belongs to C2k) will result
in a state P|ψ〉 for some P ∈ Gn. Upon inverting the encoding
we obtain the state

V†P|ψ〉 = V†PVV†|ψ〉 (26)
= V†PV(|ψ〉 ⊗ |0n−k〉) (27)
= (L|ψ〉)⊗ (S|0n−k〉) (28)

for some L ∈ Gk and S ∈ Gn−k. Since global phases are
irrelevant, we can consider instead the effective Pauli error
P = [P] with corresponding decomposition PV −1 = (L : S),
with L ∈ Gk and S ∈ Gn−k. Like in the classical case, this
is conveniently represented by the circuit diagram of Fig. 5.

k

n−k
n

V
L

S
P

Fig. 5. Circuit representation of encoder (L : S)V = P . The operator
P ∈ Gn is a codeword if and only if S ∈ {I, Z}n−k .

At this point however, the analogy with the classical case
partially breaks down. As described in Section II, in the
classical setting a bit-flip error p can be decomposed as
pV −1 = (l : s). In that case, s is the error syndrome and
is therefore known. Decoding then consists in identifying the
most likely l given knowledge of s. In the quantum case
however, S is only partially determined by the error syndrome
s(P). Indeed, we can decompose S as S = Sx + Sz (c.f.
Notation 3), and notice that s(P) reveals only Sx. More
precisely, we have the relation

Sx =
n−k∑
i=1

(Xi)si(P)

where (X)0 = I , (X)1 = X , and si(P) is the i-th entry
of s(P). In other words, Sx has a X at position i if the ith
syndrome bit si(P) = 1, and otherwise it has a I . This is due
to two facts:

1) Using Xi ? Zj = δij , we know that the i-th component
of Sx is X if (L : S) ? Zi+k = 1 and I otherwise,

2) The i-th error syndrome bit is given by (c.f. Defini-
tion 14) si(P) = P ? Hi = (PV −1) ? (HiV

−1) = (L :

S) ? Zi+k where we have used the fact that symplectic
transformations preserve the symplectic inner product.

Hence, two physical errors P = (L : Sx + Sz)V and P ′ =
(L : Sx + S′z)V = P + (Ik : Sz + S′z)V have the same
error syndrome Sx, so cannot be distinguished. However, they
also yield the same logical transformation L, so they can be
corrected by the same operation (namely applying L = L−1

again). Therefore, they cannot and need not be distinguished
by the error syndrome: such errors are called degenerate. This
reflects the fact that the Hi = Zi+kV ∈ C(I) are harmless
undetected errors, and motivates the following definition.

Definition 15 (Logical coset): Given an encoding matrix
V , the logical coset C(L) associated to the logical transfor-
mation L ∈ Gk is defined as

C(L) = {P = (L : Sz)V | Sz ∈ {I, Z}n−k} (29)
= (L : In−k)V + C(I). (30)

The union of these cosets is the code itself.

C =
⋃
L∈Gk

C(L). (31)

The fact that quantum codes are coset codes will have
important repercussions. In particular, maximum likelihood
decoding consists in identifying the logical coset C(L) with
highest probability given Sx. As in the classical setting (c.f.
Eq. (5)) the pullback of the probability distribution on physical
errors P(P) induces a probability distribution on logical
transformations and error syndromes

P(L, Sx) =
∑
Sz

P(P)
∣∣∣
P=(L:Sx+Sz)V −1

(32)

and maximum likelihood decoding consists in identifying the
most likely logical transformation L given the syndrome Sx.
More formally:

Definition 16 (Maximum likelihood decoder): The
maximum likelihood decoder LML : {I,X}n−k → Gk
is defined by

LML(Sx) = argmaxLP(L|Sx) (33)

where the conditional probability is defined the usual way

P(L|Sx) =
P(L, Sx)∑
L′ P(L′, Sx)

. (34)

Definition 17 (Qubit-wise maximum likelihood decoder):
The qubit-wise maximum likelihood decoder LiML :
{I,X}n−k → G1 is defined by

LiML(Sx) = argmaxLiP(Li|Sx) (35)

where the marginal conditional probability is defined the usual
way

P(Li|Sx) =
∑

L1,...Li−1,Li+1,...Lk

P(L1, . . . Lk|Sx). (36)

Equation (32) differs from its classical analogue Eq. (5) by
a summation over Sz which reflects the coset structure of
the code. Aside from this distinction, the maximum-likelihood
decoders are defined as in the classical case.

IV. QUANTUM TURBO-CODES

In this section, we describe quantum turbo-codes obtained
from interleaved serial concatenation of quantum convolu-
tional codes. This first requires the definition of quantum
convolutional codes. We will define them through their circuit
representation as in [30] rather than through their parity-check
matrix as in [14], [17], [1]: this allows to define in a natural
way the state diagram and is also quite helpful for describing
the decoding algorithm.

A. Quantum convolutional codes

A quantum convolutional encoder can be defined quite
succinctly as a stabilizer code with encoding matrix V given
by the circuit diagram of Fig. 6. The circuit is built from
repeated uses of the seed transformation U shifted by n qubits.
In this circuit, particular attention must be paid to the order
of the inputs as they alternate between stabilizer qubits and
logical qubits. This is a slight deviation from the convention
establish in the previous section, and it is convenient to
introduce the following notation to label the different qubits
appearing in the encoding matrix of a quantum stabilizer code.

Definition 18: The positions corresponding to L are called
the logical positions and the positions corresponding to S are
called the syndrome positions.
The total number of identical repetition of the seed transforma-
tion U is called the duration of the code and is denoted N . The
m qubits that connect gates from consecutive time slices are
called memory qubits. The encoding is initialized by setting
the first m memory qubits in the |0m〉 state. To terminate the
encoding, set the k information qubits of the last t time slices
in the |0k〉 state, where t is a free parameter independent of
N . The rate of the code is thus kN/(n(N + t) +m) which is
of the form k/n+O(1/N) for fixed t.

k

n−k

n

ULi

Mi

Mi−1

Si

Pi

m

m

Fig. 6. Circuit diagram of a quantum convolutional encoder with seed
transformation U . The superscript indicating the number of qubits per wire
are omitted for clarity, and can be found on Fig. 7.

Formally, a quantum convolutional code can be defined as
follows.

Definition 19 (Quantum convolutional encoder): Let n, k,
m, and t be integers defining the parameters of the code,
and N the duration of the encoding. Let U be an (n + m)-
qubit symplectic matrix called the seed transformation. The
encoding matrix V of the quantum convolutional encoder is a

Mi−1

Li

Si Mi

Pi}

Fig. 7. Seed transformation circuit.

symplectic matrix over m+ n(N + t) qubits given by

V =
N+t∏
i=1

U[(i−1)n+1..in+m]

where [a..b] stands for the integer interval {a, a +
1, . . . , b} and where U[(i−1)n+1..in+m] acts on an element
(P1, . . . , Pm+n(N+t)) ∈ Gm+n(N+t) such that its image
(P ′1, . . . , P

′
m+n(N+t)) satisfies: (P ′(i−1)n+1, . . . , P

′
in+m) =

(P(i−1)n+1, . . . , Pin+m)U and all other Pi are given by
P ′i = Pi. The syndrome symbols correspond to the positions
belonging to [1..m] ∪

⋃
i∈[1..N][(i − 1)n + m + k + 1..in +

m] ∪
⋃
i∈[N+1..(N+t)][(i− 1)n+m..in+m].

It will be convenient to decompose an element P in
Gn(N+t)+m as P = (P1 : P2 : · · · : PN+t) where the Pi
belong to Gn for i in {1, 2, . . . , N + t−1} and PN+t belongs
to Gn+m. This decomposition directly reflects the structure of
the output wires appearing on the right-hand-side of the circuit
diagram of Fig. 6.

Similarly, we will decompose the Pauli-stream obtain by
applying the inverse encoder to P as

(S0 : L1 : S1 : · · · : LN : SN : SN+1 : · · · : SN+t) ,PV −1,

where S0 belongs to Gm, the Li’s all belong to Gk, the Si’s
belong to Gn−k for i in {1, . . . , N} and the SN+j’s belong
to Gn for j in {1, . . . , t}. This decomposition directly reflects
the structure of the input wires appearing on the left-hand-side
of the circuit diagram of Fig. 6.

While the Pj are related to the Lj and Sj via a matrix V
of dimension 2(N + t)n+ 2m, the convoluted structure of V
can be exploited to recursively compute this transformation
without the need to manipulate objects of size increasing
with N . This requires the introduction of auxiliary memory
variables Mj ∈ Gm. The recursion is initialized by setting

(MN+t−1 : SN+t) ,PN+tU
−1. (37)

The Sj for i ∈ {N+1, . . . , N+t−1} are obtained by recursion
on i:

(Mi−1 : Si) ,(Pi : Mi)U−1 (38)

and the Mi−1, Li, Si for i in {1, . . . , N} are obtained from
the recursion

(Mi−1 : Li : Si) ,(Pi : Mi)U−1 (39)

Finally, set
S0 = M0. (40)

Any Clifford transformation U on n+m qubits can be used
as a seed transformation and defines a convolutional code. It
will be useful to decompose U into blocks of various sizes

U =

2n︷︸︸︷
µP

2m︷︸︸︷
µM

ΛP ΛM
ΩP ΩM

}2m}2k
}2(n−k)

. (41)

Just like in the classical case, this definition of quantum
convolutional code can easily be seen to be equivalent to the
ones that have previously appeared in the literature [14], [17],
[1]. In particular, the D-transform associated to the code can
easily be obtained from the sub-matrices of V appearing in
Eq. (41). However, these concepts will not be important for
our analysis.

Our definition of convolutional code is stated in terms of
their encoding matrix V . From this perspective, convolutional
codes are ordinary, albeit very large, stabilizer codes. How-
ever, there are important aspects of convolutional codes that
distinguish them from generic stabilizer codes.

As mentioned in the previous section, stabilizer codes have
in general encoding circuits using a number of elements
proportional to the square of the number of physical qubits.
Convolutional codes have by definition circuit complexity that
scales linearly with N for fixed m: each application of the
seed transformation U requires a constant number of gates,
and this transformation is repeated N + t times.

The most important distinction however has to do with the
decoding complexity. The maximum-likelihood decoder of a
stabilizer code consists in an optimization over the logical
cosets, of which there are 4K where K denotes the the number
of encoded qubits. Without any additional structure on V ,
maximum-likelihood decoding is an NP-hard problem [5].
Quantum convolutional codes on the other hand have decoding
complexity that scales linearly with K. The algorithm that
accomplishes this task will be described in details in Sec. V.

B. State diagram

We will now define some properties of convolutional codes
that will play important roles in the analysis of the perfor-
mance of turbo codes. Most of these definitions rely on the
the state diagram of a convolutional code, which is defined
similarly as in the classical case.

Definition 20 (State diagram): The state diagram of an en-
coder with seed transformation U and parameters (n, k,m) is
a directed multigraph with 4m vertices called memory-states,
each labeled by a M ∈ Gm. Two vertices M and M ′ are
linked by an edge M → M ′ with label (L,P) if and only if
there exists L ∈ Gk, P ∈ Gn and a Sz ∈ {I, Z}n−k such
that

P : M ′ = (M : L : Sz)U, . (42)

The labels L and P are referred to as the logical label and
physical label of the edge respectively.

Thus, the state diagram represents partial information about
the transformation (M : L : Sz) → (P : M ′) generated
by the seed transformation U . Partial information because all

information about Ss is discarded. Note that Sz ∈ {I, Z}n−k,
so the state diagram only contains information about the
streams of Pauli operators that remain in the set of codewords
C. The restriction on the Sz input can be lifted if we instead
consider the effective seed transformation

Ueff ,

2n︷︸︸︷
µP

2m︷︸︸︷
µM

ΛP ΛM
ΣP ΣM

}2m}2k
}n−k

. (43)

where the matrix [ΣP : ΣM] is obtained by removing every
second row from the matrix [ΩP : ΩM] (i.e. the rows which
represent the action on the Xi). This definition will be conve-
nient for later analysis.

The state diagram of the seed transformation represented
at Fig. 8 is shown at Fig. 9. For instance, the self-loop at I
labeled (I, II) represents the trivial fact that (I : I : I)U =
(II : I). The edge from Y to I labeled (Y,XZ) represents
the transformation (Y : Y : I)U = (XZ : I), and so on.

I

X

Z

Y

I,II

I,ZZ
Z,X

X

Z,II

Z,YY I,YY

Z,ZZ
I,XX

Z,ZI
I,IZ
I,ZIZ,IZ

X,ZXIY, Y

,YIY X,XZ

Y,XZ
X,YI

X,IYY,ZX

Z,YX
I,XY
I,YXZ,XY

Y,ZYX,IX X,X
I

Y,YZ X,Y
Z

Y,X
I

Y,IX X,Z
Y

Fig. 8. Seed transformation for an n = 1, k = 1, and m = 1
quantum convolutional code. It corresponds to a unitary transform which maps
|a〉 ⊗ |b〉 ⊗ |c〉 to |a〉 ⊗ |a + b〉|a + b + c〉 for a, b, c ∈ {0, 1}. Therefore
the seed transformation U acts as follows on the Zi and Xi: Z1U =
(Z, I, I)U = (Z, I, I), X1U = (X, X, X), Z2U = (Z, Z, I), X2U =
(I, X, X), Z3U = (I, Z, Z), X3U = (I, I, X).

V
In

V
O

u
tπ

Σ
(N

O
u
t)

Σ
(N

In
)

SOut

SIn
POut

SOut

Fig. 9. State diagram for the seed transformation shown at Fig. 8.

The state diagram is crucial for analyzing the properties of
the associated code, and also for defining some of its essential
features. Here, we give some definitions based on the state
diagram that will be important in our analysis.

Definition 21 (Path): A path in the state diagram is a se-
quence of vertices M1,M2, . . . such that Mi →Mi+1 belongs
to the state diagram.
Each element of C is naturally associated to a path in the state
diagram, which corresponds to the memory states visited upon
its encoding. The physical- and logical-weight of a codeword
can be obtained by adding the corresponding weights of the
edges in the path associated to the codeword. More generally,
we will refer to the weight of a path as the sum of the weight
of its edges.

Definition 22 (Zero-physical-weight cycle): A zero-
physical-weight cycle is a closed path in the state diagram
that uses only edges with zero-physical weight.

In the state diagram of Fig. 9 for example, there are two
zero-physical-weight cycles corresponding to the transforma-
tions (I : I : I)U = (II : I) and (Z : Z : Z)U = (II : Z).

Definition 23 (Non-catastrophic encoder): An encoder C
is non-catastrophic if and only if the only cycles in its state
diagram with physical-weight 0 have logical weight 0.

We see for instance that the state diagram of our running
example is catastrophic due to the presence of the self-loop
with label (Z, II) at state Z: this cycle has physical weight
0 and logical weight 1. To understand the consequences of a
catastrophic seed transformation, consider the act of inverting
the encoding transformation of the associated convolutional
encoder. This is done by running the circuit of Fig. 6 back-
wards. Suppose that a single Y error affected the transmitted
qubits. More specifically, at time i, 1 ≤ i ≤ N , there is
a Y on the lower physical wire of the seed transformation
of Fig. 8 (i.e. P 2

i = Y) and everything else is I . Since
(IY : I)U−1 = (Z : Y : X), this will result in a Z in
the memory qubit Mi−1, a Y in the logical qubit Li, and a X
in the stabilizer qubit Si. The Si = X triggers a non-trivial
syndrome, which signals the presence of an error. Moreover,
because of the self-loop at M = Z that has non-zero logical-
weight but zero physical-weight, this error will continue to
propagate without triggering additional syndrome bits, while
creating Z’s in Li−1 and Mi−2, and in Li−2 and Mi−3, and so
on. Thus, an error of finite physical-weight results in an error
of unbounded logical-weight, and a finite syndrome. This is
the essence of catastrophic error propagation.

Catastrophic encoders may have large minimal distances,
but perform poorly under iterative decoding. All the codes
we have considered in our numerical simulations were non-
catastrophic. In fact, they even satisfied a stronger condition:

Definition 24 (Completely non-catastrophic code): A com-
pletely non-catastrophic code is such that the only loop in its
state diagram with physical-weight zero is the self-loop at Im.

In the classical setting, non-catastrophicity is insured for
instance by the use of systematic encoders. For such encoders,
the logical string c is contained as a substring of the encoded
string c = cV . Systematic quantum encoding can be obtained
by setting the first k columns of ΛP = 1lk and the first k
columns of ΣP = µP = 0 (c.f. Eq. (43)). However, this
would imply that the stabilizers act trivially on the first k
output qubits, resulting in a minimal distance equal to 1.
We conclude that it is not possible to design a systematic
quantum encoder with minimal distance greater than 1. Thus,
non-catastrophicity is a condition that needs to be built in by
hand. Fortunately, it can be efficiently verified directly on the
state diagram and we have made great use of this fact.

In the classical setting, turbo-codes can be designed with a
minimal distance that grows polynomially with N when the
inner code is recursive. Recall that recursive means that the
encoder has an infinite impulsive response: when a single 1
is inputed at any logical wire of the encoding circuit Fig. 2
and every other input is 0, the resulting output has infinite
weight for a code of infinite duration. This definition can be
generalized to the quantum setting.

Definition 25 (Quasi-recursive encoder): Consider execut-
ing the encoding circuit of Fig. 6 on an input containing a
single non-identity Pauli operators on a logical wire, with all
other imputs set to I . The corresponding encoder V is quasi-
recursive when the resulting output has infinite weight when
the code has infinite duration N .

However, it can be verified that this notion of recursiveness
is too weak to derive a good lower bound on the minimal
distance of turbo codes. This departure from the theory of
classical codes stems from the fact that quantum codes are
coset codes. As in the classical case, the proper definition
of a recursive encoder demands that it generates an infinite
impulsive response. The novelty comes from the fact that
this must be true for every elements in the coset associated
to the impulsive logical input: not only must the encoded
version of Xi, Yi, and Zi have weight growing with the
duration of the code N , but so must every elements of C(Xi),
C(Yi), and C(Zi). Formally, we can define recursive quantum
convolutional encoders in two steps:

Definition 26 (Admissible path): A path in the state dia-
gram is admissible if and only if its first edge is not part
of a zero physical-weight cycle.

Definition 27 (Recursive encoder): A recursive encoder is
such that any admissible path with logical-weight 1 starting
from a vertex belonging to a zero physical-weight loop does
not contain a zero physical-weight loop.

Once again, this property can be directly and efficiently
tested given the seed transformation of the convolutional code
by constructing its state diagram.

C. Interleaved serial concatenation

Quantum turbo codes are obtained from a particular form
of interleaved concatenation of quantum convolutional codes.
Interleaving is slightly more complex in the quantum setting
since in addition to permuting the qubits it is also possible
to perform a Clifford transformation on each qubit which
amounts to permute X,Y and Z. More precisely:

Definition 28 (Quantum interleaver): A quantum
interleaver Π of size N is an N -qubit symplectic
transformation composed of a permutation π of the N
qubit registers and a tensor product of single-qubit symplectic
transformation. It acts as follows by multiplication on the
right on GN :

(P1, . . . , PN) 7→ (Pπ(1)K1, . . . , Pπ(N)KN)

where K1, . . . ,KN are some fixed symplectic matrices acting
on G1.

It follows that interleavers preserves the weight of N -Pauli
streams. An interleaved serial concatenation of two quantum
encoders has three basic components:

1) An outer code encoding kOut qubits by embedding them
in a register of nOut qubits, with encoder V Out,

2) An inner code encoding kIn qubits by embedding them
in a register of nIn qubits, with encoder V Out and which
is such that kIn = nOut,

3) A quantum interleaver Π of size N = nOut = kIn.

The resulting encoding matrix of the interleaved concate-
nated code is a symplectic matrix V acting on GnIn such that

V = V ′OutΠ′V In,

with the action of V ′Out and Π′ on GnIn being defined by

(L : SOut : SIn)V ′Out = ((L : SOut)V Out : SIn) (44)

for (L : SOut : SIn) ∈ GkOut ×GnOut−kOut ×GnIn−kIn , and

(L′ : SIn)Π′ = (L′Π : SIn) (45)

for L′ ∈ GnOut . These relations are summarized at Fig. 10.
The rate of the concatenated code is equal to kOut

nIn =
kOut

nOut
kIn

nIn , that is the product of the rates of the inner code
and the outer code.

A serial quantum turbo-code is obtained from this inter-
leaved concatenation scheme by choosing V Out and V In as
quantum convolutional encoders.

S0

L1

S2

S1

L2

LN

SN

SN+1

SN+t
PN+t

PN+1

PN

P2

P1

PN+t−1

SN+t−1{
{

{

}

. . .

. . .

U

U

U

U

U

U

Fig. 10. Circuit diagram for a turbo encoder.

D. Figure of merit

There are a number of in-equivalent ways of characterizing
the performance of a code. The minimum distance d of a code
is the weight of the lowest weight Pauli error P in C \C(I).
Using a minimum distance decoder (which is sub-optimal due
to the presence of degenerate errors) allows to correct all errors
of weight less or equal to d−1

2 . Hence, codes with high d are
good, although a large d is not necessary to achieve good error
suppression. The minimal distance is arguably the most basic
figure of merit of a code.

A quantity that is more informative is the weight enumera-
tor, which counts the number of undetected harmful errors of
each weight. For a convolutional code however, as the number
NL of encoded qubits tends to infinity, the weight enumerator
will be infinite. Indeed, because of the translational invariance
of the encoding circuit, finite error patterns come in an infinite
number of copies obtained by translation. Instead, we can
consider the distance spectrum of a non-catastrophic encoder,
which is defined as follows.

Definition 29 (Distance spectrum): The distance spectrum
(F (w))w≥0 of a non-catastrophic convolutional encoder is a
sequence for which F (w) is the number of admissible paths

in the state diagram starting and ending in memory states that
are part of zero-weight cycles, and with physical weight w
and logical weight greater than 0.
An other relevant quantity is the distance spectrum for logical-
weight-one elements of C, which is defined similarly.

Definition 30 (Logical-weight-one distance spectrum):
The distance spectrum for logical-weight-one codewords
F1(w) of a non-catastrophic convolutional encoder is the
number of admissible paths in the state diagram starting and
ending in memory states that are part of zero-weight cycles,
and with physical weight w and logical weight 1.

It can easily be seen that the minimum distance of a turbo-
code obtained from the concatenation of two convolutional
codes is no greater than dOut

∗ ∗dIn
1 where d1 = minw{F1(w) >

0} and the free minimal distance is d∗ = minw{F (w) > 0}.
The free distance is defined similarly to the classical case
by the smallest weight of a harmful undetected error in the
convolutional code with infinite time duration. It is so-to-
speak a kind of typical minimal distance for convolutional
codes, ignoring finite-size effects. To maximize the minimum
distance of the turbo-code, we must use outer codes with large
free distances d∗ and inner encoders with large value of d1.
Recursive encoders for instance have d1 proportional to N ,
and therefore serve as ideal inner codes. However, it happens
that we cannot use recursive encoders as inner codes as we
will see in the next section. Hence, a good rule of thumb is to
use inner encoders that minimize the value of F1(w) at small
w, and similarly use an outer code which minimizes the value
of F (w) at small w. These will result in a turbo-code with a
distance spectrum that is small at low distances.

Finally, given an error model, the word error rate (WER)
and qubit error rate (QER) provide a good operational figure
of merit. The QER is the probability that an individual logical
qubit is incorrectly decoded. In other words, the QER repre-
sents the fraction of logical qubits that have errors after the
decoding. The WER is the probability that at least one qubit in
the block is incorrectly decoded. We expect in general QER
� WER. Indeed, the WER is thus a much more strenuous
figure of merit that the QER. For instance, if N qubits are
encoded in N/k block codes for some constant k, then as
N increases, the WER approaches 1 exponentially while the
QER remains constant. As we will see, turbo-codes have a
completely different behavior. In general, we will be interested
in the WER averaged over the choice of interleaver π.

E. Recursive convolutional encoders are catastrophic

In the classical setting, non-catastrophic and recursive con-
volutional encoders are of particular interest. When used as the
inner encoder of a concatenated coding scheme, the resulting
code has a minimal distance that grows polynomially with
their length and offer good iterative decoding performances.
More precisely, random serial turbo-codes have a minimum

distance which is typically of order N
dOut
∗ −2

dOut
∗ when the inner

encoder is recursive, where N is the length of the concatenated
code and dOut

∗ the free distance of the outer code [21]. That

the encoder be non-catastrophic is important to obtain good
iterative decoding performances.

This result and its proof would carry over the quantum
setting almost verbatim with our definition of recursive en-
coders. The quantum case is slightly more subtle due to the
coset structure of the code. Unfortunately, such encoders do
not exist :

Theorem 1: Quantum convolutional recursive encoders are
catastrophic.
This result is perhaps surprising since the notions of catas-
trophic and recursive are quite distinct in the classical setting.
Nonetheless, the stringent symplectic constraints imposed to
the seed transformation U gives rises to a conflicting relation
between them. The proof of Theorem 1 is rather involved.
Here we present its main steps and leave the details to the
appendix.

The proof involves manipulation of the rows of the effective
encoding matrix Eq. (43) and for that reason, it is more
appropriate to view effective Pauli operators as elements of
F2n

2 . The proof proceeds directly by demonstrating that the
state diagram of any recursive convolutional encoder contains
a directed cycle with zero physical weight and non-zero logical
weight. We first need a characterization of the memory states
M that can be part of a zero physical weight cycle. We break
this into three steps. First, we characterize the set of states
that are the endpoint of edges in the state diagram with zero
physical weight edges. In other words, we want to find all
possible values for the memory element M ′ in F2m

2 such that
there exist M ∈ F2m

2 , S ∈ Fn−k2 , and L ∈ F2k
2 such that

(M : L : S)Ueff = (02n : M ′).
Lemma 2: Given a seed transformation U , let S to be the

subspace of F2m
2 spanned by the rows of ΣM. The set of

endpoints of edges with zero physical label is equal to S⊥

and conversely, any M in S⊥ is the end vertex in the state
diagram of exactly one edge of zero physical weight.

If the state diagram contains a zero physical weight cycle,
it is therefore necessarily supported on the subset of vertices
S⊥. However, edges of zero physical weight with endpoints
vertices in S⊥ may originate from vertices outside S⊥. Such
edges are not part of zero-physical weight cycles. The next step
is thus to characterize the set of endpoints of edges with zero
physical label and starting point in S⊥. Since in the absence
of other inputs each time interval modifies the memory state
by M →MµM, we intuitively expect this set to be S⊥0 , where
S0 is the smallest subspace containing S and stable by µM.
This is confirmed by the following lemma.

Lemma 3: Given a seed transformation U , let

S0 ,
∞∑
i=0

SµiM. (46)

For any element M ′ of S⊥0 , there exists a unique element M
in S⊥0 , such that there is an edge of physical weight 0 from
M to M ′.

This lemma narrows down the set of vertices in the state
diagram that can support zero physical weight cycles. In

particular, we can define a sub-graph of the state diagram
obtained from the vertex set S⊥0 and directed edges with trivial
physical labels. This subgraph is guaranteed to have constant
indegree 1 for all its vertices, but some of its vertices may
have no outgoing edges. These would definitely not be part
of a cycle. To ensure that all vertices in the subgraph have a
positive number of outgoing edges, we must once more restrict
its set of vertices. The (left) nullspace of µiM’s will play a
fundamental role.

Notation 6: Let µ be a linear mapping from F2m
2 to itself.

We denote by Null(µ) the (left) nullspace of µ, that is

Null(µ) = {M ∈ F2m
2 |Mµ = 02m}.

Notation 7: Let N0 ,
∑∞
i=1 Null(µiM) and V0 = S0 + N0.

Let G be a sub-graph of the state diagram obtained from the
vertex set V⊥0 and edges with trivial physical label. This graph
is called the kernel graph of the quantum convolutional code
with seed-transformation U .

By replacing the vertex set S⊥0 by V⊥0 , our goal was to
eliminate any vertex with no outgoing edge. This turns out to
be successful as shown by the following lemma.

Lemma 4: The kernel graph has constant indegree 1 and
positive outdegree for any vertex.

Thus, any cycle with zero physical weight must be sup-
ported on the kernel graph of the seed transformation. The
next step in order to prove Theorem 1 is to demonstrate
that when the quantum convolutional encoder is recursive, its
corresponding kernel graph G does not only consist of the
single zero vertex with a self-loop attached to it, corresponding
to the trivial relation (02m : 02k : 0n−k)Ueff = (02n : 02m).

Lemma 5: The kernel graph of a recursive quantum convo-
lutional encoder has strictly more than one vertex.
This result is an essential distinction between the quantum and
the classical case. In the classical case, when the memory state
is non-zero, it is always possible to create a non-zero physical
output for instance by copying the state of the memory at the
output. But this is not possible quantum-mechanically.

Before proving that G contains a cycle with non-zero
logical weight, we will first prove that it contains at least one
edge with non-zero logical weight. For this purpose, let us
characterize the subset of edges with zero physical weight and
zero logical weight.

Lemma 6: Given a seed transformation U , let L be the
subspace of F2m

2 spanned by the rows of ΛM and ΣM. The
set of endpoints of edges of zero physical and logical weight
is equal to L⊥.
This result and its proof are structurally similar to Lemma 2,
except that S has been replaced by L . From this, we conclude:

Lemma 7: The kernel graph of a recursive quantum con-
volutional encoder contains an edge with non-zero logical
weight.
Armed with this result, we are now in a position to prove the
main result of this section.

Proof: (of Theorem 1) Consider a recursive quantum
convolutional encoder and its associated kernel graph. By
Lemma 7, this graph has at least one edge with non-zero

logical weight. Let us say that it goes from M0 to M1. From
Lemma 4, we can follow a directed path of arbitrary length l
with (M0,M1) as starting edge :

M0 →M1 → · · · →Mt−1 →Mt.

If the length of the path is greater than the number of vertices
of the graph it must contain at least twice the same vertex.
Moreover, M0 must be part of this cycle. Otherwise, we would
have a path of the form M0 → M1 → . . .Mj → Mj+1 →
· · · → Ml = Mj with j > 0. In this case, Mj would have
indegree 2 which is impossible. In other words, there is a
directed cycle in the state diagram with zero physical weight
and non-zero logical weight. The corresponding convolutional
encoder is therefore catastrophic.

V. DECODING

This section describes the decoding procedure for turbo-
codes operated on memoryless Pauli channels. With an n-
qubit memoryless Pauli channel, errors are elements of Gn
distributed according to a product distribution P(P1 : P2 : . . . :
Pn) = f1(P1)f2(P2) . . . fn(Pn). The depolarizing channel
described in Section III is a particular example of such a
channel where all fj are equal. We note that our algorithm can
be extended to non-Pauli errors using the belief propagation
algorithm of [24], but leave this generalization for a future
paper. The decoding algorithm we present is an adaptation
to the quantum setting of the usual “soft-input soft output”
algorithm used to decode serial turbo-codes (see [2]). It differs
from the classical version in several points.

1) As explained in Subsection III-D, for decoding a quan-
tum code we do not consider the state of the qubits
directly (which belong to a continuous space and which
cannot be measured without being disturbed) but instead
consider the Pauli error (which is discrete) that has af-
fected the quantum state. Decoding consists in inferring
the transformation that has affected the state rather than
inferring what the state should be.

2) Decoding a quantum code is related to classical “syn-
drome decoding” (see [26, chapter 47]) with the caveat
that errors differing by a combination of the rows of
the parity-check matrix act identically on the codewords.
Thus, maximum-likelihood decoding consists in identi-
fying the most likely error coset given the syndrome.
The coset with largest probability can differ from the
one containing the most likely Pauli error.

3) We cannot assume as in the classical case that the soft-
input soft-output decoder of the convolutional quantum
code starts at the zero-state and ends at the zero-state.
This is related to the fact that the memory is described
in terms of the Pauli error that has affected the qubits
rather than reflecting a property of the encoded state.
Instead, we perform a measurement which reveals partial
information (the X component) about the first memory
element.

Let us now describe how each constituent convolutional
code is decoded with a soft-input soft-output decoder.

A. Decoding of convolutional codes

As stated in Definition 17, qubit-wise maximum likelihood
consists in finding the logical operator Li that maximizes
the marginal conditional probability P(Li|Sx). We call the
algorithm that computes this probability – but without re-
turning the Li that optimizes it – a soft input soft output
(SISO) decoder. The purpose of this section is to explain how
such a decoder can be implemented efficiently for quantum
convolutional codes.

We choose to base our presentation solely on the circuit
description of the code. Our algorithm is essentially equivalent
to a sum-product algorithm operated on the trellis of the code
[32]. However, the novelties of quantum codes listed in the
previous section requires some crucial modifications of the
trellis-based decoding. We find that these complication are
greatly alleviated when decoding is formulated directly in
terms of the circuit.

Since the distinction between trellis-based and circuit-based
decoding are technical rather conceptual, we will present
the procedure in details and omit its derivation from first
principles. As usual, when operated on a memoryless Pauli
channel, the whole procedure is nothing but Bayesian updating
of probabilities.

Consider a quantum convolutional code with parameters
(n, k,m, t), seed transformation U and duration N as shown
at Fig 6. We use the same notation as in Subsection IV-A
and denote by V the associated encoding matrix. Let us recall
that it maps Gn(N+t)+m to itself. As in Subsection IV-A we
decompose an element P in Gn(N+t)+m (i.e. an error on the
channel) as P = (P1 : P2 : · · · : PN+t) where the Pi’s belong
to Gn for i in {1, 2, . . . , N + t − 1} and PN+t belongs to
Gn+m. It will be convenient to denote the coordinates of each
Pi by P ji , i.e. Pi = (P 1

i : P 2
i : . . . : Pni) where the P ji ’s

belong to G1.
Similarly, we will decompose the Pauli-stream obtain by

applying the inverse encoder to P as

(S0 : L1 : S1 : · · · : LN : SN : SN+1 : · · · : SN+t) ,PV −1,

where S0 belongs to Gm, the Li’s all belong to Gk, the Si’s
belong to Gn−k for i in {1, . . . , N} and the SN+j’s belong
to Gn for j in {1, . . . , t}.

As explained in Subsection IV-A, the Li and Si can be
obtained from the Pi via a recursion relation Eqs (37-39)
which uses auxiliary memory variables Mi. This recursive pro-
cedure can be understood intuitively from the circuit diagram
of Fig. 6. It simply consists in propagating the effective Pauli
operator P from the right to the left-hand-side of the circuit.
This can be done in N + t steps, each step passing through a
single seed transformation U , and the memory variables Mj

simply represent the operators acting on the memory qubit
between two consecutive seed transformations. The decoding
algorithm actually follows the same logic. As explained in
Sec. III-D, the probability on L and S is obtained from the
pullback of P(P) through the encoder V (c.f. Eq. (32)). For
a convolutional code, this pullback can be decomposed into

π−1

SISOOut SISOIn

(Sx)Out

P(P)Out

P(P |Sx)In

P(L|Sx)In

P(L)Out

P(L|Sx)Out P(P)In
π

(Sx)In

Fig. 11. Information flow in the iterative turbo decoding procedure.

elementary steps, each step passing through a single seed
transformation U and computing intermediate probabilities on
the memory variables.

In addition to the procedure just outlined, the decoder
must also update the probability P(L) obtained from the
pullback of P(P) conditioned on the value of the observed
syndrome. This operation is slightly more subtle, and requires
not only the pullback of probabilities through the circuit,
but also their pushforward (propagating from the left to the
right-hand-side of the circuit). For that reason, the decoding
algorithm presented at Algorithm 1 will consist of three steps,
a backward pass (Algorithm 2), a forward pass (Algorithm
3), and a local update (Algorithm 4). As indicated by their
names, these respectively perform a pullback of probabilities,
a pushforward of probabilities, and finally an operation that
combines these two probabilities into the final result.

Our description of these algorithms make use of the follow-
ing notation:

S , (Si)0≤i≤N+t (47)
S≤i , (Sj)0≤j≤i (48)
S>i , (Sj)i<j≤N+t (49)

and we denote by UP the binary matrix formed by the 2n first
columns of U and by UM the binary matrix formed by the
2m last columns of U . This means that

Pi = (Mi−1 : Li : Si)UP
Mi = (Mi−1 : Li : Si)UM ,

where the Mi are defined from Equations (37),(38) and (39).
The notation P(Mi) ∝ . . . means that entries of the vector
((P(Mi = µ))µ∈Gm are proportional to the corresponding
right-hand side term, the proportionality factor being given
by normalization. Finally, for any integer n, we denote
[n] ,{1, 2, . . . , n}.

B. Turbo decoder

A turbo code is built from the interleaved serial concatena-
tion of two convolutional codes. The decoding of such a code
uses the SISO decoder of its constituent convolutional codes
in an iterative way that is schematically illustrated at Fig. 11.

The inner code is first decoded as described above but
without any information on the logical random variables:
PIn(Lji) is the uniform distribution. The distribution PIn(P ji)
is given directly by the channel model. The only output which
is used in the following step is the output distribution on
the logical variables given the syndrome measured on the

inner code : PIn(Lji |Sx) (Sx really refers to the part of
the syndrome measured for the inner code and not to the
whole syndrome, but we do not attach a “In” to it to avoid
cumbersome notation).

Then, the outer code is decoded with the SISO algorithm,
using as input distribution for the logical variables, as in the
previous case, the uniform distribution. The input distribution
of the physical variables POut(P ji) is deduced from the logical
output distribution of the inner decoder :

POut(P j
π

iπ = γ) = PIn(LjiK
j
i = γ|Sx),

where iπ and jπ are such that (iπ, jπ) = π(i, j), and the Kj
i

are the single-qubit symplectic transformations that appear in
the quantum interleaver Π. This yields the output distributions
POut(P ji |Sx) and P(Lji |Sx) (again, Sx only refers to the
part of the syndrome attached to the outer code). This step is
terminated by estimating the most likely error coset L̂, setting

L̂ji = argmaxγ
{
POut(Lji = γ|Sx)

}
.

To iterate this procedure, use the output probability
POut(P ji |Sx) as information on the logical variables of the
inner code : in other words, set as input distribution for inner
SISO decoding

PIn(Lji = γ) = POut(P j
π

iπ = γKiπ

jπ |Sx),

and the distribution of the physical variables are set by the
physical channel as before. This is represented by the feedback
loop on Fig. 11 where information from the outer decoder is
returned to the inner decoder.

This procedure can be repeated an arbitrary number
of times, with each iteration yielding an estimate of the
maximum-likelihood decoder of the outer code. The iterations
can be halted after a fixed number of rounds, or when the
estimate does not vary from one iteration to the next. Although
the decoding scheme is exact for both constituent codes, the
overall turbo-decoding is sub-optimal. The reason for this is
that although PIn(P) is memoryless, the induced channel
POut(P) = on the outer code obtained from POut(P j

π

iπ) =
PIn(LjiK

j
i |Sx) is not. The decoder ignores this fact and only

uses the marginals POut(P ji) of POut(P). This is the price
to pay for an efficient decoding algorithm.

VI. RESULTS

The convolutional codes we used for our construction of
turbo-codes are for the most part generated at random. That
is, we first generate a random seed transformation U of desired
dimensions. Using its state diagram, we then test whether the
corresponding encoder is catastrophic, and if so we reject it
and start over. Non-catastrophicity is the only criterion that
we systematically imposed.

As a first sieve among the randomly generated non-
catastrophic seed transformations, we can study their distance
spectrums and make some heuristic test based on it. Example

Algorithm 1: The SISO algorithm for quantum convolutional codes

INPUTS:
P(P ji) for i ∈ [N + t], j ∈ [n], (and j ∈ [n+m] when i = N + t) From physical noise model
P(Lji) for i ∈ [N], j ∈ [k] From turbo decoder
Sx From syndrome measurement

OUTPUTS:
P(P ji |Sx) for i ∈ [N + t], j ∈ [n] (and j ∈ [n+m] when i = N + t),
P(Lji |Sx) for i ∈ [N], j ∈ [k]

ALGORITHM :
backward pass
forward pass
local update

Algorithm 2: Backward pass

INPUTS:
Same as SISO algorithm

OUTPUTS:
P(Mi|Sx>i) for i ∈ [N + t].

ALGORITHM :
{Initialization: P(Mn+t) is given directly by the physical noise model.}
for all γ ∈ Gm do

P(Mn+t = γ)← Πm
j=1P(Pn+j

N+t = γj)
end for
{Recursion: first t steps}
for i = N + t− 1 to N + 1 do

P(Mi|Sx>i) ∝
∑

σ∈Gn:σx=Sxi

[
P(Pi+1 = (Mi : σ)UP)P(Mi+1 = (Mi : σ)UM |Sx>i+1)

]
end for
{Recursion: last N steps}
for i = N to 1 do

P(Mi|Sx>i) ∝
∑
λ∈Gk

σ∈Gn−k:σx=Sxi

[
P(Li = λ)P(Pi+1 = (Mi : λ : σ)UP)P(Mi+1 = (Mi : λ : σ)UM |Sx>i+1)

]

end for

of good seed transformations obtained from this procedure are

U(3,1,3) =

2085
926
2053
1434
910
3943
1484
2881
3212
2250
68
331

U(3,1,4) =

13159
10335
13127
6554
10319
14441
10625
5835
832
13893
11916
11329
8204
5570

U(2,1,4) =

610
3323
760
1591
2500
942
2290
794
1535
2202
2859
809

where each row is specified by the integer corresponding to
the binary entry. The subscript on the encoders specify its
parameters (n, k,m). Hence, the first two codes have rate
1
3 but differ by the size of their memory. The third code
has a higher rate of 1

2 . The first few values of the distance
spectrum of logical-weight-one codewords for these quantum
convolutional code are given at Table I, while the distance
spectrum of all codewords are listed at Table II.

Based on those values, we conclude that the turbo-codes
obtained from concatenation of code using seed transformation
U(3,1,4) with itself has a minimal distance no greater that 6×
4 = 24. Similarly, the codes obtained by the concatenation
of U(3,1,4) with itself has minimal distance no greater than
7 × 6 = 42, and the one obtained from the concatenation of
U(2,1,4) with itself has 8× 6 = 48.

These are upper bounds on the minimal distance and do

Algorithm 3: Forward pass

INPUTS:
Same as SISO algorithm

OUTPUTS:
P(Mi|Sx≤i) for i ∈ {0, . . . , N + t− 1}.

ALGORITHM :
{Initialization: }
for all γ ∈ Gm do

if γx = Sx0 then
P(M0 = γ|Sx0)← 1

2m

else
P(M0 = γ|Sx0)← 0

end if
end for {Recursion: }
for i = 1 to N + t+ 1 do

P(Mi|Sx≤i) ∝
∑

µ∈Gm,λ∈Gk
σ∈Gn−k:σx=Sxi
Mi=(µ:λ:σ)UM

[
P(Li = λ)P (Pi = (µ : λ : σ)UP) P

(
Mi−1 = µ|Sx≤i−1

)]

end for

Algorithm 4: Local update

INPUTS:
Same as SISO algorithm
P(Mi|Sx>i) for i ∈ [N + t] From backward pass
P(Mi|Sx≤i) for i ∈ {0, . . . , N + t− 1} From forward pass

OUTPUTS:
P(P ji |Sx) for i ∈ [N + t], j ∈ [n] (and j ∈ [n+m] for i = N + t)
P(Lji |Sx) for i ∈ [N] and j ∈ [k]

ALGORITHM :
for i = 1 to N + t do

P(Li|Sx) ∝
∑
µ∈Gm

σ∈Gn−k:σx=Sxi

[
P(Li)P

(
Mi−1 = µ|Sx≤i−1

)
P (Pi = (µ : Li : σ)UP) P (Mi = (µ : Li : σ)Um|Sx>i)

]

P(Pi|Sx) ∝
∑

µ∈Gm,λ∈Gk
σ∈Gn−k:σx=Sxi
Pi=(µ:λ:σ)UP

[
P(Pi)P(Li = λ)P(Mi−1 = µ|Sx≤i−1)P (Mi = (µ : λ : σ)UM |Sx>i)

]

end for
{Marginalization: }
Compute P(Lji |Sx) from P(Li|Sx)
Compute P(P ji |Sx) from P(Pi|Sx)

not translate directly into the performance of the code. On the
one hand, the actual minimal distance of a turbo-code depends
on the interleaver, which we chose completely at random. In
all cases, there are most likely lower weight codewords than
the estimate provided by these lower bounds, but those are
atypical. On the other hand, the codes are not decoded with
a minimum distance decoder, so even a true large minimal
distance does not imply low WER.

The WER of a quantum turbo-code on a depolarization

channel can be estimated using Monte Carlo methods. An
error P ∈ GN is generated randomly according to the channel
model probability distribution. The syndrome associated to this
error are evaluated, and based on their value, the decoding
algorithm (see Sec. V) is executed. The decoding algorithm
outputs an error estimate P ′. If P−P ′ ∈ C(I), the decoding is
accepted, otherwise it is rejected. In other words, the decoding
is accepted only if all NL encoded qubits are correctly
recovered. The WER is then the fraction of rejected decodings.

w U(3,1,3) U(3,1,4) U(2,1,4)

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 2 0 0
7 4 3 0
8 8 0 2
9 16 7 0
10 35 0 3
11 70 34 2
12 143 0 0
13 295 156 2
14 634 0 10
15 1 362 586 12
16 2 802 0 37
17 5 714 2 827 38
18 11 526 0 121
19 23 674 11 430 86
20 48 817 0 280

TABLE I
DISTANCE SPECTRUM F1(w) OF LOGICAL-WEIGHT-ONE CODEWORDS

w U(3,1,4) U(3,1,4) U(2,1,4)

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 1 0 0
5 11 0 6
6 47 11 82
7 265 70 442
8 1 275 324 3 379
9 6 397 1 596 24 074
10 31 785 7 773 174 997
11 160 311 40 971 1 253 748
12 801 232 206 959 9 033 087

TABLE II
DISTANCE SPECTRUM F (w)

The WERs as a function of the depolarizing probability p
are shown for a selection of codes on Fig. 12-14. Perhaps the
most striking features of those curves is the existence of a
pseudo-threshold value of p below which the WER decreases
as the number of encoded qubits is increases. Since the codes
have a bounded minimal distance, this is not a true threshold in
the sense that as we keep increasing the number of encoded
qubits, the WER should start to increase. However, we see
that for modest sizes NL of up to 4000, this effect is not
observed. We do see however that the improvement appears
to be saturating around these values. The pseudo-threshold is
particularly clear for the seed transformation U(3,1,3), where
it is approximately 0.098, and for the seed transformation
U(2,1,4) where it is approximately 0.067. Its value for the seed
transformation U(3,1,4) is not as clear, but seams to be between
0.95 and 0.11.

These values should be compared with the hashing bound,
whose value is approximately 0.16024 for a rate 1

9 code and
0.12689 for rate 1

4 . We can also compare with the results

obtained from LDPC codes in [27, Figure 10] by evaluating
the depolarizing probability p at which the WER drops below
10−4. For a rate 1

4 , this threshold was achieved at pth ≈ 0.033
(note the convention fm = 2

3p) for LDPC codes while the
turbo-code shown at Fig. 14 has pth ≈ 0.048. It should also be
noted that this improved threshold is achieved with a smaller
block size than that used for the LDPC in [27]; a larger block
should further improve this result.

0.08 0.09 0.1 0.11 0.12 0.13
0.00001

0.0001

0.001

0.01

0.1

1
50
100
250
500
2000
4000

Fig. 12. WER vs depolarizing probability p for the quantum turbo-
code obtained from the concatenation of the convolutional code with seed
transformation U(3,1,3) with itself, for different number of encoded qubits
NL. Each constituent convolutional code has m = 3 qubits of memory and
have rate 1

3
, so the rate of the turbo code is 1

9
.

0.08 0.09 0.1 0.11 0.12 0.13
0.00001

0.0001

0.001

0.01

0.1

1
50
100
250
500
2000
4000

Fig. 13. WER vs depolarizing probability p for the quantum turbo-
code obtained from the concatenation of the convolutional code with seed
transformation U(3,1,4) with itself, for different number of encoded qubits
NL. Each constituent convolutional code has m = 4 qubits of memory and
have rate 1

3
, so the rate of the turbo code is 1

9
.

As expected, changing the rate of the code directly affects
the value of the pseudo threshold. This is seen by comparing
either of Figs. 12 or 13 to Fig. 14. The effect of the memory
size is however less obvious. Comparing Fig. 12 and 13, it
appears that the effect of a larger memory is to sharpen the
slope of the WER profile below the pseudo threshold for fixed

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08
0.00001

0.0001

0.001

0.01

0.1

1
250
500
1000

Fig. 14. WER vs depolarizing probability p for the quantum turbo-
code obtained from the concatenation of the convolutional code with seed
transformation U(2,1,4) with itself, for different number of encoded qubits
NL. Each constituent convolutional code has m = 4 qubits of memory and
have rate 1

2
, so the rate of the turbo code is 1

4
.

NL. In other words, the main impact of the memory size is
not in the value of the pseudo threshold, but rather in the
effectiveness of the error suppression below that threshold.
This conclusion is somewhat supported by Fig. 15 where the
WER is plotted for a variety of memory configurations. In all
cases, the slope of the WER increases with the memory size.

0.08 0.085 0.09 0.095 0.1

0.0001

0.001

0.01
(1,4)
(2,4)
(3,4)
(4,4)
(1,5)
(2,5)
(3,5)

Fig. 15. WER vs depolarizing probability p for a quantum turbo code
encoding NL = 100 qubits and rate 1

9
with different memory configurations

(mIn, mOut).

VII. CONCLUSION

In this article, we have presented a detailed theory of
quantum serial turbo-codes based on the interleaved serial
concatenation of quantum convolutional codes. The descrip-
tion and analysis of these codes was greatly simplified by the
use of a circuit representation of the encoder. In particular,
this representation provides a simple definition of the state
diagram associated to a quantum convolutional code, and

enables a simple and intuitive derivation of their efficient
decoding algorithm.

By a detailed analysis of the state diagram, we have shown
that all recursive convolutional encoders have catastrophic
error propagation. Recursive convolutional encoders can be
constructed and yield serial turbo-codes with polynomial min-
imal distances. However, they offer extremely poor iterative
decoding performances due to their unavoidable catastrophic
error propagation. The encoders we have used in our con-
structions are thus chosen to be non-catastrophic and non-
recursive. While the resulting codes have bounded minimal
distance, we have found that they offer good iterative decoding
performances over a range of block sizes and word error rates
that are of practical interest.

Compared to quantum LDPC codes, quantum turbo-codes
offer several advantages. On the one hand, there is complete
freedom in the code design in terms of length, rate, memory
size, and interleaver choice. The freedom in the interleaver
is crucial since it is the source of the randomness that is
responsible for the success of these codes. On the other
hand, the graphical representation of turbo-codes is free of 4-
cycles that deteriorate the performances of iterative decoding.
Finally, the iterative decoder makes explicit use of the code’s
degeneracy. This feature is important because turbo-codes, like
LDPC codes, have low-weight stabilizers and are hence greatly
degenerate.

In future work, we hope to surmount the obstacle of catas-
trophic error propagation. A concrete avenue is the generalized
stabilizer formalism of operator quantum error correction
[33], which could circumvent the conclusions of our theorem
established in the context of subspace stabilizer codes. Doping
[44] is an other possibility that we will investigate.
Acknowledgments — David Poulin is supported in part by
the Gordon and Betty Moore Foundation through Caltech’s
Center for the Physics of Information, by the National Science
Foundation under Grant No. PHY-0456720, and by the Natural
Sciences and Engineering Research Council of Canada.

Jean-Pierre Tillich is supported in part by the French ANR
Defis program under contract ANR-08-EMER-003 (COCQ
project).

APPENDIX

To prove Lemma 2, we first establish some simple facts:
Fact 5: The subspace of F2n+2m

2 orthogonal to all the rows
of Ueff is the space spanned by the rows of its submatrix
[ΣP : ΣM]. Similarly, the subspace of F2n+2m

2 orthogonal to

all the rows of
[
µP µM
ΣP ΣM

]
is the space spanned by the rows

of
[
ΛP ΛM
ΣP ΣM

]
.

Proof: The subspace V of F2n+2m
2 orthogonal to all the

rows of Ueff is of dimension 2n+ 2m− (2m+ 2k+n− k) =
n − k. We observe now that the rows of [ΣP : ΣM] are all
independent and all orthogonal to the rows of Ueff. They form
therefore a basis of V . This finishes the proof of the first

statement. The second one is obtained by similar arguments.

Proof: (of Lemma 2) Let M ′ ∈ F2m
2 be such that there

exist M ∈ F2m
2 , S ∈ Fn−k2 , and L ∈ F2k

2 such that (M : L :
S)Ueff = (02n : M ′). Notice now that (02n : M ′) is spanned
by the rows of Ueff and is therefore orthogonal to all the rows
of the matrix [ΣP : ΣM]. This implies that M ′ belongs to S⊥.
Conversely, any row vector of the form (02n : M ′) with M ′

belonging to S⊥ is orthogonal to all the rows of [ΣP : ΣM]
and is therefore spanned by the rows of Ueff. This implies that
there exist M ∈ F2m

2 , S ∈ Fn−k2 , and L ∈ F2k
2 such that

(M : L : S)Ueff = (02n : M ′). Furthermore, it can be noticed
from the fact that the rows of Ueff are independent, that if such
an (M : L : S) exists, it is unique.

The proof of Lemma 3 requires a straightforward Fact and
a Lemma.

Fact 6: For any M,M ′ ∈ F2m
2 we have

(MµP : MµM) ? (M ′µP : M ′µM) = M ?M ′

Proof: This is straightforward consequence of the or-
thogonality relations satisfied by the first 2m rows of U .

Lemma 8: Let T ∈ F2m
2 and let M ′ be such that there

exist M ∈ F2m
2 , S ∈ Fn−k2 , and L ∈ F2k

2 such that (M : L :
S)Ueff = (02n : M ′). We have

M ′ ? TµM = M ? T. (50)
Proof: We observe that

M ′ ? TµM = (02n : M ′) ? (TµP : TµM)
= (MµP + LΛP + SΣP :

MµM + LΛM + SΣM) ? (TµP : TµM)
= (MµP : MµM) ? (TµP : TµM)

where the last equation follows from the fact that any row
of [ΛP : ΛM] or [ΣP : ΣM] is orthogonal to all the rows of
[µP : µM]. From this, we conclude that

M ′ ? TµM = M ? T.

Proof: (of Lemma 3) Since M ′ ∈ S⊥, there exist by
Lemma 2, M ∈ F2m

2 , S ∈ Fn−k2 , and L ∈ F2k
2 such that

(M : L : S)Ueff = (02n : M ′). Let T ∈ S0. Using Lemma 8
we obtain

M ′ ? TµM = M ? T

Notice now that M ′ ? TµM = 0 since TµM ∈ S0. From this
M?T = 0. This shows that M belongs to S⊥0 too. The unicity
of M is a consequence of Lemma 2.

The following lemma is used in the proof of Lemma 4.
Lemma 9: Let µ be a linear mapping from F2m

2 to itself.
Let V be a subspace of F2m

2 such that µ(V) ⊂ V and which
contains the null space of any positive power of µ. Then for
any M in V ⊥ there exists M ′ in V ⊥ such that for any T in
F2m

2 :
M ? T = M ′ ? Tµ.

Proof: We are first going to prove this statement in the
case

V =
∞⋃
t=1

Null(µt).

This is a subspace of F2m
2 since the Null(µt)’s are nested sets

:
Null(µ) ⊂ Null(µ2) ⊂ · · · ⊂ Null(µt) ⊂

Let us consider the space Im(µt) generated by the rows of µt.
Since F2m

2 ⊃ Im(µ) ⊃ Im(µ2) ⊃ . . . there must exist a posi-
tive t such that Im(µt)) = Im(µt+1). In this case, µ(Im(µt)) =
Im(µt). This implies that the restriction of µ to Im(µt) is a
one-to-one mapping and that Null(µt) ∩ Im(µt) = {02m}.
Since dim(Null(µt)) + dim(Im(µt)) = 2m, we can form a
basis (T1, . . . Tl, Tl+1, . . . , T2m) of F2m

2 such that (T1, . . . , Tl)
spans Null(µt) and (Tl+1, . . . , T2m) spans Im(µt). Moreover,
all the Null(µv)’s are equal for v greater than or equal to t.
This follows directly from the fact that the Im(µv)’s are all
equal in this case. This can be checked by using the relations
dim(Null(µv)) + dim(Im(µv)) = 2m. From these equalities,
we deduce that dim(Null(µt)) = dim(Null(µt+1)) = · · · =
dim(Null(µv)) = The Null(µv)’s are nested sets and
therefore Null(µt) = Null(µt+1) = · · · = Null(µv) =
This implies that V = Null(µt). We define Ui for i in
{l + 1, . . . , 2m} as the unique element in F2m

2 such that
Uiµ = Ti. There exists a unique M ′ such that

M ′ ? Ti = 0 for i ∈ {1, . . . , l} (51)
M ′ ? Ti = M ? Ui for i ∈ {l + 1, . . . , 2m} (52)

This M ′ belongs to V ⊥ by Equation (51). Note now that we
have defined M ′ in such a way that M ? T coincides with
M ′?Tµ over the basis (T1, . . . , Tl, Ul+1, . . . , U2m). Therefore,
by linearity of the ? product, we have M ? T = M ′ ? Tµ for
all T in F2m

2 .
The general case is direct consequence of this particular

case. We define M ′ similarly by Equations (51) and (52) and
it is readily checked that M ′ belongs to V ⊥.

Proof: (of Lemma 4) We know from Lemma 3 that for
any element M ′ in S⊥0 , there exists a unique M in S⊥0 such that
there is an edge of zero physical weight in the state diagram
which goes from M to M ′. To prove that the kernel graph
has constant indegree 1 we just have to prove that when M ′

belongs to the subset V⊥0 of S⊥0 the corresponding M also
belongs to this subset. Since for any T ∈ N0 we have M ′?T =
0 and since N0 is stable by applying µM to the left we obtain
for a such a T , M ? T = M ′ ? TµM = 0. This shows that M
also belongs to N ⊥0 which shows that M belongs to V⊥0 .

On the other hand, by applying Lemma 9 with V = V0, we
know that for any vertex M of the kernel graph, there is an
M ′ belonging also to V⊥0 such that for any T in F2m

2 :

M ? T = M ′ ? TµM.

Note that given such an M ′ there is a unique M which
satisfies the aforementioned equality for all T . Therefore M

is necessarily the starting vertex of the unique directed edge
of physical weight 0 having as endpoint M ′.

Proof: (of Lemma 5) We just have to prove that the set
V0 is not equal to the whole space F2m

2 . We proceed by
contradiction. Assume that V0 = F2m

2 . Notice now that there
exists a finite number t such that

V0 = Null(µtM) +
t∑
i=0

SµiM.

For such a t, any M in F2m
2 can be expressed as a sum M =

N +
∑t
i=0 Tiµ

i
M, where N is in Null(µtM) and the Ti’s all

belong to S , i.e. they are of the form Ti = SiΣM for some
Si ∈ Fn−k2 . Consider now a finite path starting at the origin
with logical weight 1 and non-zero physical weight. We denote
by M its endpoint (which is viewed as an element in F2m

2).
We decompose Mµt+1

M as explained before

Mµt+1
M = N +

t∑
i=0

St−iΣMµ
i
M

where the Si’s belong to Fk2 . The path of length t which starts
at M and which corresponds to the sequence of pairs of logical
transformations/stabilizer transformations (02k : S0)→ (02k :
S1)→ · · · → (02k : St) will go from point M to

Mµt+1
M +

t∑
i=0

St−iΣMµ
i
M = N.

By extending this path by feeding in t zero transformations
(02k : 0n−k) we go from vertex N to µt(N) which is equal
to 02m by definition. This path may then continue by feeding
in additional zero transformations and will stay at the zero
vertex forever. This contradicts the fact that the quantum code
is recursive.

Proof: (of Lemma 6) Let M ′ be an element of F2m
2 for

which there exist M ∈ F2m
2 and S ∈ Fn−k2 , such that (M :

02k : S)Ueff = (02n : M ′). (02n : M ′) is spanned by the
rows of [µP : µM] and [ΣP : ΣM]. By Fact 6, this implies
that (02n : M ′) is orthogonal to all the rows of the matrices
[ΛP : ΛM] and [ΣP : ΣM]. Hence M ′ should belong to L⊥. On
the other hand, any (02n : M ′) for which M ′ belongs to L⊥

is orthogonal to all the rows of [ΛP : ΛM] and [ΣP : ΣM] and
is therefore spanned by the rows of [µP : µM] and [ΣP : ΣM].

Proof: (of Lemma 7) This amounts to prove that there
exists a vertex in the kernel graph which does not belong to
L⊥. The set of vertices of the kernel graph is V⊥0 . Therefore,
we need to find an element of L that is not in V0. In particular,
we would be done if there existed a row of ΛM which does
not belong to V0.

Assume the opposite. Let t be the integer such that V0 =
Null(µtM) +

∑t
i=0 SµiM. Then, for every L in F2m

2 of weight
1 and any integer k, there exists S0, S1, . . . , St in Fn−k2 and
a N in Null(µtM) such that

LΛMµ
k
M = N +

t∑
i=0

St−iΣMµ
i
M.

Consider a finite path of non-zero physical weight and logical
weight 1 starting at the origin and ending at a vertex M .
Assume that this path corresponds to the sequence of pairs
of logical/stabilizer inputs

(02k : S0)→ (02k : S1)→ · · · →
(02k : Si−1)→ (L : Si)→ (02k : Si+1)→ · · · → (02k : Su),

(i.e. the only time where the logical transformation is non-zero
is at time i and is equal to L which is assumed to be of weight
1). The final memory state would then be

M = LΛMµ
u−i
M +

u∑
i=0

Su−iΣMµ
i
M. (53)

Since, by assumption, the rows of ΛM are in V0, there exists
S′0, . . . , S

′
t in Fn−k2 and N ′ in Null(µtM) such that

LΛMµ
u+t+1−i
M +

u∑
i=0

Su−iΣMµ
i+t+1
M = N ′ +

t∑
i=0

S′t−iΣMµ
i
M.

(54)
Thus, if we extend the path by the sequence of inputs

(02k : S′0)→ (02k : S′1)→ · · · → (02k : S′t),

we arrive at the vertex M ′ which satisfies

M ′ = Mµt+1
M +

t∑
i=0

S′t−iΣMµ
i
M

= LΛMµ
u+t+1−i
M +

u∑
i=0

Su−iΣMµ
i+t+1
M

+
t∑
i=0

S′t−iΣMµ
i
M

= N ′

Extending this whole sequence by adding t zero transforma-
tions (02k : 0n−k) will bring this path back to the origin
since N ′ in in the kernel of µtM. Once at the origin, then
encoder can remain in that state forever without any additional
physical output. This implies that the code is non recursive,
and completes the proof.

REFERENCES

[1] S. A. ALY, A. KLAPPENECKER, AND P. K. SARVEPALLI, On quantum
and classical BCH codes, IEEE Trans. Info. Theor., 53 (2007), p. 1183.

[2] S. BENEDETTO, D. DIVSALAR, G. MONTORSI, AND F. POLLARA,
Serial concatenation of interleaved codes: performance analysis, design,
and iterative decoding, IEEE Trans. Info. Theor., 44 (1998).

[3] C. H. BENNETT, D. P. DIVINCENZO, AND J. A. SMOLIN, Capacities of
quantum erasure channels, Phys. Rev. Lett., 78 (1997), pp. 3217–3220.

[4] C. H. BENNETT, D. P. DIVINCENZO, J. A. SMOLIN, AND W. K.
WOOTTERS, Mixed state entanglement and quantum error-correcting
codes, Phys. Rev. A, 54 (1996), p. 3824, quant-ph/9604024.

[5] E. R. BERLEKAMP, R. J. MCELIECE, AND H. VAN TILBORG, On the
inherent intractability of certain coding problems, IEEE Trans. Info.
Theor., 24 (1978), p. 384.

[6] C. BERROU, A. GLAVIEUX, AND P. THITIMAJSHIMA, Near shannon
limit error-correcting coding and decoding, in ICC’93, Genève, Switzer-
land, May 1993, pp. 1064–1070.

[7] R. C. BOSE AND D. K. RAY-CHAUDHURI, On a class of error-
correcting binary group codes, Info. Contr., 3 (1960).

[8] A. R. CALDERBANK AND P. W. SHOR, Good quantum error-correcting
codes exist, Phys. Rev. A, 54 (1996), pp. 1098–1105, quant-ph/9512032.

[9] T. CAMARA, H. OLLIVIER, AND J.-P. TILLICH, Constructions and
performance of classes of quantum ldpc codes, 2005, quant-ph/0502086.

[10] H. F. CHAU, Good quantum convolutional error correction codes and
their decoding algorithm exist, 1998, quant-ph/9806032.

[11] , Quantum convolutional correcting codes, Phys. Rev. A, 58
(1998), pp. 905–909.

[12] I. DEVETAK, The private classical capacity and quantum capacity of a
quantum channel, IEEE Trans. Info. Theor., 51 (2005), p. 44.

[13] D. P. DIVINCENZO, P. W. SHOR, AND J. A. SMOLIN, Quantum-channel
capacity of very noisy channels, Phys. Rev. A, 57 (1998), pp. 830–839,
quant-ph/9706061.

[14] J. G. D. FORNEY, M. GRASSL, AND S. GUHA, Convolutional and tail-
biting quantum error-correcting codes, 2005, quant-ph/0511016.

[15] R. G. GALLAGER, Low Density Parity Check Codes, M.I.T. Press,
Cambridge, Massachusetts, 1963.

[16] D. GOTTESMAN, Stabilizer codes and quantum error correction, PhD
thesis, California Institute of Technology, Pasadena, CA, 1997, quant-
ph/9705052.

[17] M. GRASSL AND M. RÖTTELER, Non-catastrophic encoders and en-
coder inverses for quantum convolutional codes, in Proc. ISIT, IEEE,
2006, p. 1109.

[18] M. HAGIWARA AND H. IMAI, Quantum quasi-cyclic ldpc codes, 2007,
quant-ph0701020.

[19] M. HASTINGS, Quantum belief propagation, 2007, arXiv:0706.4094.
[20] A. HOCQUENGHEM, Codes correcteurs d’erreurs, Chiffres, 2 (1959),

p. 147.
[21] N. KAHALE AND R. URBANKE, On the minimum distance of parallel

and serially concatenated codes, in Proc. IEEE Int. Symp. Info. Theo.
(ISIT’98), 1998, p. 31.

[22] E. KNILL AND R. LAFLAMME, Theory of quantum error-correcting
codes, Phys. Rev. A, 55 (1997), p. 900, quant-ph/9604034.

[23] C. LAUMANN, A. SCARDICCHIO, AND S. SONDHI, Cavity method for
quantum spin glasses on the Bethe lattice, 2007, arXiv:0706.4391.

[24] M. LEIFER AND D. POULIN, Quantum graphical models and belief
propagation, to appear in Ann. Phys., (2007), arXiv:0708.1337.

[25] S. LLOYD, Capacity of the noisy quantum channel, Phys. Rev. A, 55
(1997), p. 1613.

[26] D. J. C. MACKAY, Information Theory, Inference and Learning Algo-
rithms, Cambridge University Press, Cambridge, UK, October 2003.

[27] D. J. C. MACKAY, G. MITCHISON, AND P. L. MCFADDEN, Sparse
graph codes for quantum error-correction, IEEE Trans. Info. Theor., 50
(2004), pp. 2315–2330, quant-ph/0304161.

[28] M. MÉZARD AND A. MONTANARI, Constraint Satisfaction Networks in
Physics and Computation, Clarendon Press, 2007.

[29] M. A. NIELSEN AND I. L. CHUANG, Quantum Computation and
Quantum Information, Cambridge University Press, Cambridge, UK,
2000.

[30] H. OLLIVIER AND J.-P. TILLICH, Description of a quantum convolu-
tional code, Phys. Rev. Lett., 91 (2003), p. 177902, quant-ph/0304189.

[31] , Quantum convolutional codes: fundamentals, 2004, quant-
ph/0401134.

[32] , Trellises for stabilizer codes: definition and uses, Phys. Rev. A,
74 (2006), p. 032304, quant-ph/0512041.

[33] D. POULIN, Stabilizer formalism for operator quantum error correction,
Phys. Rev. Lett., 95 (2005), p. 230504, quant-ph/0508131.

[34] D. POULIN, Optimal and efficient decoding of concatenated quantum
block codes, Phys. Rev. A, 74 (2006), p. 052333, quant-ph/0606126.

[35] D. POULIN AND E. BILGIN, Belief propagation for interacting systems
on sparse graphs, 2007, arXiv:0710.4304.

[36] D. POULIN AND Y.-J. CHUNG, On the iterative decoding of sparse
quantum codes. in preparation.

[37] I. S. REED AND G. SOLOMON, Polynomial codes over certain finite
fields, J. SIAM, 8 (1960), p. 300.

[38] C. E. SHANNON, A mathematical theory of communication, Bell System
Tech., 27 (1948), pp. 379, 623.

[39] P. SHOR, Msri workshop on quantum computation.
http://www.msri.org/publications, 2002.

[40] P. W. SHOR, Scheme for reducing decoherence in quantum computer
memory, Phys. Rev. A, 52 (1995), p. 2493.

[41] G. SMITH AND J. A. SMOLIN, Degenerate coding for Pauli channels,
2006, quant-ph/0604107.

[42] A. M. STEANE, Error correcting codes in quantum theory, Phys. Rev.
Lett., 77 (1996), p. 793.

[43] , Simple quantum error correcting codes, Phys. Rev. A, 54
(1996), p. 4741.

[44] S. TEN BRINK, Designing iterative decoding schemes with the extrinsic
information transfer chart, AEU Int. J. Electron. Commun., 54 (2000),
p. 389.

[45] J. S. YEDIDIA, Advanced mean field methods: theory and practice, MIT
Press, 2001, ch. An idiosyncratic journey beyond mean field theory,
p. 21.

