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Abstract. Hash functions are a hot topic at the moment in cryptogra-
phy. Many proposals are going to be made for SHA-3, and among them,
some provably collision resistant hash functions might also be proposed.
These do not really compete with “standard” designs as they are usually
much slower and not well suited for constrained environments. However,
they present an interesting alternative when speed is not the main ob-
jective. As always when dealing with provable security, hard problems
are involved, and the fast syndrome-based cryptographic hash function
proposed by Augot, Finiasz and Sendrier at Mycrypt 2005 relies on the
problem of Syndrome Decoding, a well known “Post Quantum” problem
from coding theory. In this article we review the different variants and
attacks against it so as to clearly point out which choices are secure and
which are not.
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1 Introduction

At Mycrypt 2005 Augot, Finiasz and Sendrier proposed a new “provably collision
resistant” family of hash functions [I]. This family, called Fast Syndrome Based
hash function (or simply FSB), is provably collision resistant in the sense that
finding a collision for FSB requires to solve a hard problem of coding theory,
namely, the Syndrome Decoding problem. However, even if finding collisions
requires to solve an NP-complete problem, some algorithms still exist to solve
it and choosing secure parameters for the function turned out to be harder
than expected. As a consequence, some attacks were found making some of the
originally proposed parameters unsafe. The aim of this article is to review the
different FSB variants and the various attacks against them, and to clearly point
out which parameters are insecure and which are not.

The FSB construction is based on the Merkle-Damgard design. Therefore, we
only describe the compression function which is then iterated in order to obtain
the hash function. As a result, if finding collisions for this compression function
is hard, then finding collisions for the full hash function will also be hard. The
goal of this design is to be able to reduce the problem of finding collisions to the
syndrome decoding problem.

The compression function is composed of two sub-functions:

— First a constant weight encoding function which takes the s input bits of the
compression function and outputs a binary word of length n and Hamming
weight w,
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— Then a syndrome computation function which multiplies the previously ob-
tained constant weight word by a r X n binary matrix H and outputs the
resulting r bits (which in coding theory are usually called a syndrome). In
practice, as w is usually small, this multiplication is simply the XOR of w
columns of H.

Depending on the choice of the constant weight encoding algorithm and of the
matrix the FSB hash function can either be faster or safer, depending on what
matters the most. Up to now, two different choices have been proposed, and some
attacks on specific parameters sets have followed. In this article we first recall
these two constructions (see Section ) and then present all the known attacks
against them (see Section[d). In Section @ we discuss some other issues concerning
the FSB construction and eventually propose some up to date candidates in
Section

2 Description

As explained, the FSB compression function is composed of two sub-functions :
the constant weight encoding function takes s input bits and outputs a word of
length n and weight w, the syndrome computation function uses a binary matrix
‘H of size r x n and multiplies it by the previous low weight word to output r
bits.

2.1 Original Version

The original version of FSB was first presented in [I]. It uses reqular words for
constant weight encoding and matrix H is a random matrix.

Definition 1. A regular word of weight w and length n is a binary word of length
n containing exactly one non-zero bit in each of its w intervals of length " .

The reasons for these encoding/matrix choices are quite simple:

— Regular word encoding is the fastest possible constant weight encoding. If
w is a power of two, then, the constant weight encoding simply consists in
reading log, " input bits at a time in order to get the index of a column of
H.

— A random matrix was chosen for H for security reasons: it is widely believed
among coding theorists that random linear codes have good properties mak-
ing them hard to decode. As we will see in Section Bl finding collisions for
FSB is equivalent to decoding in a code of parity check matrix H, thus, using
a random matrix is probably a good choice.

2.2 Quasi-Cyclic Version

The main drawback of the original version is the size of the matrix H. The pa-
rameters proposed in [I] all involve using a matrix of at least a few hundred
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kilobytes (if not a few megabytes), which is a lot for most constrained envi-
ronments. For this reason, an improved version was presented in [6], still using
regular words for constant weight encoding, but this time using a quasi-cyclic
binary matrix H.

Definition 2. A r x n quasi-cyclic matriz is a matriz composed of " cyclic
blocs. Each v X r cyclic bloc is such that the i-th line of the bloc is a cyclic shift
by i — 1 positions of the first line of the bloc.

A quasi-cyclic matriz is thus entirely defined by its first line, and the size of
the cyclic blocs.

Quasi-cyclic codes are very interesting as they decrease the size of the description
of the hash function a lot (a single line is enough). Moreover, it is proven in [§]
that when the size of the cyclic blocs is a prime p (and 2 is a generator of GF(p)),
these codes have properties similar to random codes.

Unfortunately, some of the parameters proposed in [6] were awkwardly se-
lected, making them subject to new attacks that we will present in the following
section.

3 Known Attacks

The aim of our hash function construction is to be collision resistant. As it
uses the Merkle-Damgard design, it is sufficient that our compression function is
collision resistant. We thus want to evaluate the complexity of the best collision
search algorithms against it. In practice, there are two ways to find a collision
in the FSB compression function:

— Either find a collision in the constant weight encoding algorithm: choosing
an injective encoding is enough to guarantee that no such collision exists,

— Or find two words of weight w having the same syndrome: that is, find two
words ¢ and ¢’ such that H x ¢ =H x ¢

As our compression function needs to compress, this second type of collision
always exists, our goal is thus only to make them hard to find!

Problem 1 (Collision search). Given a binary matrix H and a weight w, find a
word ¢ of non-zero weight < 2w such that H x ¢ = 0.

In other words, finding collisions for FSB requires to find a set of 2w or less
columns of H which XOR to zero.

3.1 Decoding Attack

The most natural algorithms to solve the collision problem for FSB are decoding
algorithms: if one considers H as the parity check matrix of a binary code, finding
a collision consists in looking for a code word of weight < 2w (which is roughly
equivalent to a decoding problem). Depending on the choice for the matrix H,
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this requires to either find a structure in H making this search easier, or find
a low weight code word in a random code (that is, assume that H contains no
specific structure making decoding easier).

For the original version of FSB, a truly random matrix is used for H, therefore,
the probability that a structure exists in H is negligible. For the quasi-cyclic
version, an obvious structure exists: the matrix is quasi-cyclic. Nevertheless, if
the quasi-cyclic length is well chosen, no specific decoding algorithm is known
and decoding can only be done as in a random code. However, as we will see in
Section [34] a bad choice for the quasi-cyclic length can make the search for low
weight code words much easier.

Considering no structure can be found in H, the best decoding algorithm for
a random binary code is the Canteaut-Chabaud algorithm [4]. This algorithm
is the most advanced of the information set decoding algorithms family and
is specifically designed to solve the hardest decoding instances, that is, finding
words of weight w close to the Gilbert-Varshamov bound when a single solution
exists. Here, the weights we are looking for are much larger (otherwise no com-
pression is possible) which places us in a domain where decoding is somehow
easier and where a large number of solutions exist. Giving a closed formula for
the complexity of this algorithm is very difficult, especially when many solutions
exist, but it is however possible to program an algorithm computing the best
possible work factor for a given set of parameters. Additionally, for the domain
of parameters we are considering, the Canteaut-Chabaud algorithm is almost
always slower than the generalized birthday technique we describe in the next
section. When choosing parameters we thus simply checked that the work factor
for this attack was above the expected security level, and this was always the case.

3.2 Wagner’s Generalized Birthday Technique

Wagner’s generalized birthday technique [10] is an extension of the standard
birthday collision search technique that uses any power of two number of lists
instead of only two. This technique takes advantage of the large number of
solutions and looks for specific solutions which can be found more efficiently. It
was first applied to FSB in [5].

Standard Birthday Technique. We are looking for 2w columns of ‘H which XOR
to 0. These columns are r bits long so we know that if we can build two lists
of 22 elements containing XORs of w columns of H, there is a high probability
that these two lists contain an identical element. Building these lists and finding
this collision can be done in time/space complexity O(22).

Generalized Birthday Technique. With Wagner’s generalized technique, one has

to build 2@ lists of 2441 elements containing XORs of 2“j columns of H. These

lists are then merged pairwise to obtain 24~ lists of XORs of ,”, columns of
‘H. However, in the resulting lists, instead of keeping all the possible elements,
only those starting with aj_l zeros are kept: this way, the size of the lists will
not increase. Then, these lists are once again merged pairwise, canceling afH
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bits again and so on, until only two lists are left and the standard birthday
technique can be used. With this technique, collisions can be found in time/space
complexity of O(2a+1), for any value of a such that enough elements are found
to populate the 2% starting lists.

Depending on s and r, the size of the input and output of the compression
function, it is easy to evaluate the largest possible value for a, and thus the
best possible complexity for this attack. There are s input bits to the function,
meaning that 2° different inputs exist. Thus, 2° words of weight w can be built.
The number L of different words of weight 2;”_1 that can be built must thus
verify (QQL,l) < 2%. Additionally, if we want the attack to be possible, the size
L of the starting lists must be large enough, meaning that we need L > Qat1,
Thus, any valid parameter a must verify:

2(111 <98 r +1< S a small 2071 < S (1)
20-1 ) — at1 ¢ - 2a-1 a+1 "7

For s = r, it is interesting to note that a = 3 verifies the inequality. If we want
the function to compress (that is, s > r), a = 3 will thus always be possible,
and a security higher than 24 is never possible. This is why a final compression
function (see Section .2 will always be necessary.

3.3 Linearization

The linearization attack against FSB was presented in [9]. The idea of this attack
is that when w becomes large enough, the problem of finding a collision can be
linearized in order to reduce it to a linear algebra problem. A collision can then
be found in polynomial time!

There are two forms to this attack: first the straight-forward linearization,
then a extension making it possible to use this attack in some cases where it
could not normally apply.

Simple Linearization. Suppose w = ;. In this case, finding a collision consists

in finding r columns of H XORing to 0. Now, instead of looking for any word
of weight r and length n we restrict ourselves to very specific words: each of the
r columns of H will be chosen among one pair of columns, meaning that the
i-th column will be either h? or A}, where all the h{'} are different columns of
‘H. Finding a collision now requires to determine a binary vector B of length r
where the i-th bit of B decides which column to choose between h? and h!. Now
comes the linearization: we build a matrix H’ such that the i-th columns of H’
is bl = h! — hY. Now, we simply need to find B such that:

H x B= Zr:h?.
=1

This is a linear system to solve and it is done in polynomial time. Thus, as soon
as 2w > r, finding a collision for FSB can be done in polynomial time.
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Extension of the Attack. When w < 7, the previous attack can still be applied,
but the matrix H’ will no longer be square and the probability that a solution B
exists will probably be negligible. To improve this, one can use a larger alphabet:
instead of choosing two columns one can choose three columns of H at a time and
code two bits of B with them. However, three columns give three possibilities and
two bits of B require four columns (with the fourth column being the XOR of the
second and the third). Thus, each solution vector B using extended alphabets
will have probability }1 per set of three columns of being invalid. This solution
will thus increase the chance that a solution vector B can be found, but will
decrease the probability that this solution is realizable in practice. According
to [@], if 2w + 2w’ = r (with w’ < w), the probability that a valid solution is
found is:

3 2w’
( > % (0.28879 ~ 9~0-830w'~1.792
4

This attack is thus usable as soon as w > 27 but it will mostly be of interest
when w is close to .

3.4 Quasi-Cyclic Divisibility

This attack was presented in [7] and it exploits the divisibility of the cycle
length in the quasi-cyclic version of FSB. Suppose H is built of " cyclic blocs
of size 7 x r and there exists a divisor p or r such that r = p x /. Then,
Wagner’s generalized birthday technique can be applied on the length 7/ instead
of r. Instead of looking for any word of weight w and length n, we focus on
words having a “cyclic” syndrome: each time the i-th column of a bloc of H
is chosen, the p — 1 columns at position 7 + r/, i + 27,... cyclicly to i — 1/, are
also chosen. This way, a bloc-wise cyclic shift by 7’ positions of the input word
keeps it unchanged. This means that the syndrome of a word selected this way
also remains unchanged when cyclicly shifted by r’ positions. Thus, if the r’ top
positions of the syndrome are null, the whole syndrome is also null.

Focusing on the 1’ top rows of H and selecting only the previously described
words, we now need to apply Wagner’s technique to the following problem: find
% columns of a 7’ x " binary matrix XORing to 0. The largest possible value
f%r the parameter a ofp Wagner’s algorithm is smaller than before, but the attack
applies to 7 bits only and the final complexity drops significantly. When selecting
parameters for FSB, it is important that such an attack cannot be applied.

4 Other Issues

4.1 TV Weakness

As pointed out in [7] another weakness of the original FSB compression function
lies in the way the input to the compression function is handled. In particular,
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the chaining bits (or IV) and the message bits are simply concatenated, and
no mixing whatsoever is applied. When using regular words, this means that
the output of the compression function is simply the XOR of two independent
hashes: one resulting from the IV bits, the other one from the message bits. If
one can find a collision on the message part of the compression function (this will
be somehow harder than a normal collision as less input bits are available), then
this collision is IV independent. This has no influence on the collision resistance
of the function, but it is a problem when using the hash function as a MAC or
as a PRF for example: the resistance to some attacks falls from the cost of an
inversion (or second preimage) to the cost of building a message only collision
(which will probably be just above the cost for building a standard collision).

In order to avoid such problems, the best thing would be to mix the input bits
through a diffusion function. However, such a mixing is quite costly and would
severely reduce the throughput of the hash function. The best solution is thus
probably to integrate this diffusion in the constant weight encoding function. As
stated in Section 5] a simple interleaving of the message bits with the IV bits
is enough to avoid this problem.

4.2 Final Compression Function

Another issue with the FSB compression function is the ratio between the se-
curity against collision and the output size of the function. A hash function is
expected to have a security of 22 against collisions if it outputs r-bits hashes.
With FSB, we have seen in Section that if our compression function is to
compress, an attack in 24 will always be possible. The solution is thus to use a
final compression function: use FSB to hash the message into a large hash, and
then use a final compression function g to reduce the size of the hash from r
to 7’ bits, where 1’ is twice the bit security of FSB against collisions. However,
finding a suitable function ¢ is not straight-forward:

— If g is collision resistant, then using FSB hash and then g will lead to a
collision resistant hash function. However, even if ¢ is not collision resistant,
building a collisions on the complete hash from a collision on g will not be
easy: it requires to invert FSB. So requiring collision resistance for g is clearly
too much.

— If g is a linear function, then g can be applied to all the columns of H and
finding a collision on the whole function will only require to find a collision
on a matrix H’ of size 7’ x n. Thus the security against collisions will be less

than 2 u .

Apart from this, it is hard to state anything relevant about the final compres-
sion function and we believe that most non-linear compression function could do
the trick. However, as far as provable security is concerned, choosing a provably
collision resistant function g is probably the only choice at the moment.
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5 Possible Candidates

5.1 Constant Weight Encoding

There are many ways to perform constant weight encoding, spanning from the
one to one encoding where all words of weight w are equiprobable, to the regular
word encoding. The first one is the most bit efficient (the compression function
will have the largest possible input for some given parameters n and w), the
second one is the fastest. When dealing with hash functions, speed is usually
a very important factor and fast constant weight encoding would be a natural
choice, however, concerning security, all results on the hardness of syndrome
decoding consider random words of weight w, not regular words (or words with
any other structure). Luckily, when looking for collisions, a collision for any
given constant weight encoding is also a collision for the one to one encoding:
any pair of words of weight w (even with a strong structure) can be coded with
the one to one equiprobable encoding. Thus, finding collisions for FSB using
regular words can not be easier than finding collisions for FSB using a more bit
efficient encoding.

However, no proof can be given that finding collisions for regular words is
indeed harder than with the one to one equiprobable encoding. Thus, when
choosing parameters for FSB, we will consider the security of FSB with one to
one constant weight encoding, even if a faster encoding is used in practice.

The conclusion of this is that using regular word encoding is certainly the
best choice for efficiency. However, as seen in Section 1] using such an encoding
causes IV weakness issues. In order to avoid these issues it is necessary that every
index of a non-zero bit of the constant weight word depends from the value of
both the IV and the message. This way, no IV independent collision can be built.
Interleaving the bits coming from the IV (or chaining value) with those of the
message is thus a solution. Depending on the parameters chosen for the function,
different interleavings will be possible.

5.2 Matrix Choice

The choice of the matrix H is also very important for the efficiency of FSB.
Of course, for optimal security, nothing can be better than a truly random ma-
trix, but in this case the description of the hash function will be very large and
will not be suitable for memory constraint devices and for most hardware im-
plementations. Thus, using matrices that can be described with a single line is
important if FSB is ever to be used in practice.

The results of Gaborit and Zémor [§] tend to prove that well chosen quasi-
cyclic codes have good properties making them suitable candidates. However,
this requires that r is a prime number, which will certainly make implementation
less efficient than using powers of two. Our idea is thus to use a truncated quasi-
cyclic matrix instead of a standard quasi-cyclic matrix.

Definition 3. A r x n matriz ‘H is a truncated quasi-cyclic matriz if it can be
divided in "' blocs of size r x r and each bloc is the top left sub-bloc of a p x p
cyclic bloc.
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With this definition, any matrix H built of blocks which are Toeplitz matrices
will be a truncated quasi-cyclic matrix with p > 27, but in order to be as close
as possible to standard quasi-cyclic matrices, we will always choose r very close
to p. Then, the description of the r X n matrix H can be reduced to a “first line”
of ™ x p bits and the values of p and r.

As explained in [§], in order for p to be a suitable choice it must be prime,
and 2 must be a generator of GF(p). Hence, it is easy to check the best p for
a given r: one simply needs to test the primes greater than r one by one until
2 is a generator. For example, for » = 512 we get p = 523, for r = 768 we get
p =773 and for r = 1024 we get p = 1061.

5.3 Choosing Parameters

When choosing parameters we want Wagner’s attack to be the most efficient
so that we precisely control the security of FSB. As seen in Section B2 this
security only depends on the output size r and the input size s of the compres-
sion function. As stated in Section [B.I] we want to measure the security of the
construction when using a one to one constant weight encoding, which means,
s is not the effective number of bits that the compression function will read,
but s = log, (). Once 7 and s are chosen to obtain the desired security level,
one simply needs to select a convenient value for w (and deduce n), such that
linearization attacks are impossible.

Concerning previously proposed parameters, all those proposed in [6] use a
quasi-cyclic matrix of cyclicity a power of 2 and are thus all subject to the attack
of Section 3.4t none of these parameters should be used. Three sets of parameters
were proposed in the original paper [1]:

— Short hash has its security reduced to 2722 as the security gained from using

regular words is no longer taken into account.

— Fast hash is subject to the extended linearization attack and has its security
reduced to 2599,

— The Intermediate proposal however still has a security above
still be considered safe.

280 and can

Parameters for 80-bit Security. Choosing r = 512 and a security of 280 against
collisions we get from Equation (IJ) that s < 1688. Now, to avoid linearization
attacks we need w < Z = 128. If we choose w = 128, we get for n = 2'8 a value
s = 1587 which is suitable. Our first proposition is thus to use:

r=>512,n =28 w=128,

with regular word encoding, and a truncated quasi-cyclic matrix with p = 523.
For the IV interleaving, each of the w positions are coded by 11 input bits,
4 of which are taken from the IV and the rest from the message. With these
parameters FSB reads input blocs of 896 bits and outputs 512 bits. These bits
can then be compressed to 160 bits using a suitable final compression function.
The matrix H is described by 267 776 bits (~ 32.7kB).
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Parameters for 128-bit Security. For 128-bit security we need r larger than 512.
We can use r = 768 and obtain s < 2048. If we pick w = 192 and n = 3 x 2% we
get s = 1999 and linearization attacks are impossible. Our proposition is to use:

r=768,n=3x2Y w=192,

with regular word encoding, and a truncated quasi-cyclic matrix with p = 773.
Each position is coded using 9 input bits, so the IV interleaving will take 4 bits
from the IV and 5 bits from the message each time. FSB thus reads input blocs
of 960 bits and output 768 bits which, at the end, need to be compressed to 256
bits. The matrix H is described by 98944 bits (~ 12kB).

The same parameters, using a shorter n = 3 x 2!% will probably be more
efficient as each position will be coded with 8bits, 4 from the IV and 4 from the
message, even if only 768 bit blocs are read instead of 960 bit blocs. Moreover,
it will have a shorter description (~ 6kB) and the security against collisions will
be a little higher (about 2133).

6 Conclusion

Taking into account all the different attacks against FSB, it is still possible
to select parameters that offer both a high level of security (relying on well
identified problems) and a satisfying efficiency. Also, apart from the choice of
the final compression function, the other choices that had to be made for FSB
seem clear: use regular word encoding (with IV interleaving) and a truncated
quasi-cyclic matrix. For the final compression function, using a provably secure
pseudo-random generator could be a good choice: use the output of FSB as
an IV and generate the desired number of bits of output. One could then use
the generators of Blum-Blum-Shub [3], or preferably for post-quantum security
QUAD [2].
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