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1 Problem formulation

We consider the following model for the stock price:

dSt = (’f’ - q)Stdt + \/VtStthS
AV, = a(B—V)dt +wV/VdWw,

with o, 8 and w € Ry, where W;° and W) are Gaussian processes, where r
is the interest rate, ¢ is a foreign interest or dividend, and with the correlation
between the two implied Gaussian processes given by

(AW, dw}) = pdt

Using a martingale approach for an european or an american option (call or
put), we can prove that the price is given by the solution of the following partial
differential equation Under these assumptions, we solve the following PDE
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with the following boundary conditions for the call option
U(s,v,t) =0 whenever s = 0,
ou
a—(s, v,t) =exp(—qt) whenever s = Spax,
s
%—Z(s, v, 1) =0 whenever v = Viax,

and the following boundary conditions for the put option

U(s,v,t) = Kexp(—rt) whenever s =0,
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By default, the initial values are S = Sy = 100 and V = Vj = 0.01, the
maturity 7' is one year and the strike value is 100, such that C(z,v,0) =
(b(Sp exp(x) — K))T where b = 1 for the call and b = —1 for the put. In
the case of the american options, we should add the possibility to exercice the
option before the maturity which is easily implemented in the partial differential
equation by taking the maximum compared to the pay-off at any time.

Following [2], we define the exposure of an option at a futur time ¢t < T by
E(t) := max(U(S, Vi, t),0)

where U(Sy, V4, t) is the (mark-to-market) value of financial derivatives contract
at time ¢t. The present Expected Exposure at a future time ¢ < 7' is defined by

EE(t) :=E[E(t)|Fo]

where Fj is the filtration at time ¢ = 0 and the expectation is computed under
the risk-neutral measure Q.
Finally the credit valuation adjustment (CVA) is given by

CVA(,T) == (1 - R) /T
0

where R is the recovery rate, D(0,t) is the risk-free discount factor and PD(t)
denotes the default probability of the counter-party at time t.

2 ADI finite difference scheme

We refer to [1] where a similar method is described to solve the partial differential
equation. We have used the same grids whose sizes are given respectively for
time, S-space, V-space by Ny, Ng and N,. The default values are 40, 100 and 20.
This choice ensures very good estimations for the prices of call or put options
in a large variety of parameters in less than 1 second.

The Douglas scheme described in [1] has been implemented, but the methods
for all the others schemes are potentially already in the code, since all the
necessary functions are already implemented. See also the documentation for
the Heston model.

3 Computing CVA by Monte-Carlo procedure

The method developed in [2] is based on a Monte-Carlo procedure using all the
prices already computed at all times. It suffices to describe how to compute the
expectation and the integral to obtain a complete methodology.

First the recovery rate R is a fixed value (default is 0.4 = 40%). Then we
have to define the default probability of the counter-party at time ¢, which is



actually given by an exponential survival probability with hazard rate A defined
by
PD(t)dt = exp(—At) — exp(—=A(t + dt)),
and given a time-step A; we can define the factor ¢(t,A;) := exp(—At) —
exp(—A(t+ A¢)) and D(0,t) = exp(—rt).
Now the CVA can be approximated by the following formula

Ny
CVA(O,T) ~ (1—R)>_ D(0,kA)q(kA, A)EE(EA,).
k=1
Finally we need to compute the expected exposure which is given by a Monte-
Carlo procedure of M scenari on asset S and variance V.

M N

>N D(0, kA (kA Ay) max(U(Sia, , Vi, - ), 0).

m=1 k=1

(1-R)

CVAQ,T) ~

4 Implementation

The main program fixes the variables and compute the grid in space and vari-
ance variables. It calls the function compute_CVA which first call the function
compute_all_prices. This function computes all the prices for all time ¢ in
the time grid, for all asset value S in the asset grid, and for all variance value
V in the variance grid. It uses the ADI technics described in [1] returning a
three-dimensional array U[Nt x Ns x Nuv].

Next the function compute_CVA simulates the asset and variance scenario,
see also the Alfonsi algorithm for the Heston model. For all values of S}’; and
VA, at time kA; we do an interpolation in the array U using neighborhood
points. We make the sum of all this values over M scenari (default value is
15000).
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