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1 Problem formulation

We consider the following model for the stock price:

dSt = (7" - q)Stdt + \/ZTtStthS
dvy = ofB —v)dt + w\ /o dWY,

with a, 8 and w € R, where W;° and W} are Gaussian processes, where r is
the interest rate, g is a foreign interest or dividend, and with the correlation
between the two implied Gaussian processes given by

(AW, dW) = pdt

We also consider two counter-parties, a seller B and a buyer C, with zero
recovery bond price, such that

dPB,, = TPB(t)PBtdt—PBthgg
dPc, = rp, (t)PCtdt — PcthtC

where JP and JE are two independent jump processes that may jump from 0
to 1 on default of B or C, respectively.

Using a martingale approach for an European or an American option (call
or put), we can prove that the price is given by the solution of the following
partial differential equation

The value of the defaultable derivative, V(t, Si,ve, JB,JE), includes the var-
ious adjustments, whereas the value without default risk, V'(¢,S¢, v4), does not
include any counterparty adjustment and equals the well-known Heston PDE
derivative value.

Under these assumptions, we solve the following PDE

oV . .
E‘FAV—(T-F)\B-I-)\())V = SFM+
7/\B(M++RBM7)7/\C(M7+R0M+)

V(T,S,v) = H(S)



where sp represents the funding costs of the entity, \g =rp, —7r, A\c =rp, —r
and M the mark-to-market value, the differential operator A is given by
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and H(S) denotes the payoff function.
According to the two common scenarios for the choice of the mark-to-market
value at default, M, two different PDEs problems are obtained. When M =V,
a nonlinear problem is posed

— +AV =V = spVt4+Ap(1—Rp)V™ +Ac(1— Re)VH
V(T,S,v) = H(S).

With M =V, a linear problem is deduced

v N .
EJF.AV*(TJF)\BwL)\C)V = spVT
—()\B + Rc)\c)v_ — ()\C + RB)\B)V+

V(T,S,v) = H(S).

Note that the function V is the solution of the classical Heston PE model
given by
ov
E + .AV —rV =0
V(T,S,v) = H(S).

Considering V=V+ U, we obtain the problem which models the XVA
under the following forms.

With M =V
ou + - +
oy TAU=1U = sp(V+U)"+Ap(1 = Rp)(V +U)~ + Ac(l = Re)(V +U)
u,s,v)y = 0.
With M =V
ou
E"’AU—(T"‘/\B"’)\C)U = spV™T
+(/\B — RC/\0)V_ + ()\C — RB)\B)V+

UuT,s,v)y = 0.
Following [2], we define the exposure of an option at a future time ¢ < T by
E(t) := max(U(St, Vi, t),0)

where U (S, v, t) is the (mark-to-market) value of financial derivatives contract
at time ¢t. The present Expected Exposure at a future time ¢ < T is defined by

EE(t) := E[E(t)|Fo]



where Fy is the filtration at time ¢ = 0 and the expectation is computed under
the risk-neutral measure Q.
Finally the XVA is given by

T T
XVA(®,T) ;:(kRC)/ EE*(t)dPDC(t)Jr(lfRB)/ EE*(t)dPDg(t)
0 0
+FS /O EE*(t)dt

where Rp and R¢ are the recovery rates form B and C respectively, D(0,t)
is the risk-free discount factor and PDg(t) and PD¢(t) denote the default
probability of the counter-party, B and C respectively, at time .

By default, the initial values are Sy = 100 and V = 0.01, the maturity 7T is
one year and the strike value is 100, such that H(S,v,0) = (b(S — K))* where
b =1 for the call and b = —1 for the put. In the case of the American options,
we should add the possibility to exercice the option before the maturity which is
easily implemented in the partial differential equation by taking the maximum
compared to the pay-off at any time.

2 Numerical solution methods

In order to solve the previously defined models numerically, various numeri-
cal techniques are proposed. We focus on the nonlinear problem, as the linear
version can be addressed in a very similar way. First of all, we need to apply
a localization procedure to define a suitable finite domain and define appro-
priate boundary conditions. Moreover the time discretization is based on the
Lagrangian method, which is combined with a piecewise linear finite element
spatial discretization. Comparing with the literature, finite difference methods,
in particular ADI-type methods [1], have been successfully applied to solve the
classical Heston PDE. Non-uniform meshes in both spatial directions, S and v
are then used. In particular, a mesh with clustered grid points at (S,v) = (K, 0)
is built. Here, we will work with a finite element method to solve the PDE, and
employ a uniform mesh for simplicity. This set of numerical methods is pro-
posed to solve the nonlinear problem, the solution of which will be the discrete
adjustment value, including CVA, DVA and FVA. For the linear problem the
same numerical techniques can be applied. Note that the fixed point iterative
scheme is not needed in this case.

3 Implementation

The main program fixes the variables and compute the grid in space and variance
variables. Next it creates the matrix representing the operator A.
The main core of the program is a loop over the time where we successively



e Build the second member of the problem (using the method of caracteris-
tics)

e Compute the solution without boundary condition of a linear system by
calling a LU procedure

e Impose the conditions of the problem

e Compute the solution without boundary condition of a linear system by
calling a LU procedure

e Make the same four steps on the XVA vector
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