
Method of lines for the evaluation of barrier options under

Heston model

Ludovic Goudenège

Premia 22

1 Heston model

We consider the following model for the stock price:
{

dSt = rSt +
√

VtStdW S

t ,

dVt = κv(θv − Vt)dt + σv

√

VtdW V

t .
(1)

where r is the domestic rate (default value is 10% per year). Moreover there is dividend (variable
divid whose default value is 0%) and correlation factors between the two brownian motion given
by ρsv whose default value is 0.5.

The initial values of asset and variance are S = S0 and V = V0, whose default values are given
respectively by 100 and 0.01. The maturity is one year, the strike value K is 100, the barrier H is
110 and the rebate is 10.

Under these assumptions, we solve the following PDE

∂C

∂t
=

1

2
s2v

∂2C

∂s2
+

1

2
σ2

vv
∂2C

∂v2
+ ρsvσvsv

∂2C

∂s∂v

+rs
∂C

∂s
+ κv(θv − v)

∂C

∂v
− rC,

with the following boundary conditions

C(s, v, t) = 0 whenever s = 0,

C(s, v, t) = rebate whenever s = H,

∂C

∂v
(s, v, t) = 0 whenever v = Vmax,

for the call option, and

C(s, v, t) = K exp(−rt) whenever s = 0,

C(s, v, t) = rebate whenever s = H,

∂C

∂v
(s, v, t) = 0 whenever v = Vmax,

for the put option.

We refer to [1] where the complete method is described. For the variance grid we have used an
uniform grid between 0 and MIN(MAX(100V0, 1), 5). For the asset grid, we have used a refined
grid whose refinement occurs near the strike and the barrier. Due to the method the asset grid
does not start at S = 0 but only at S = 0.6 ∗ S0. For this reason, the boundary conditions have
been slightly modified for the put option in K exp(−rt) − s exp(−qt).

The sizes are given respectively for time, S-space and V-space by Nt, Ns and Nv whose default
values are 50, 500 and 50. This choice ensures good estimations for the prices of call or put options
in a large variety of parameters in approximately less than 3 seconds.

1

2 Method of line algorithm - System of ODE’s

The method of line algorithm consists in solving a system of coupled ODE’s given by

vms2

2

d2Cn
m

ds2
+ ρsvσvvms

V n
m+1 − V n

m−1

2∆v
+

σ2
vvm

2

Cn
m+1 − 2Cn

m + Cn
m−1

(∆v)2

+
κv(θv − vm)

2

Cn
m+1 − Cn

m−1

∆v
+

|κv(θv − vm)|

2

Cn
m+1 − 2Cn

m + Cn
m−1

∆v

+ (r − q)s
dCn

m

ds
− rCn

m −
Cn

m − Cn−1
m

∆τ
= 0,

or equivalently






















































dCn
m

ds
= V n

m

dV n
m

ds
=

−2

vms2

[

σ2
vvm

2

Cn
m+1 − 2Cn

m + Cn
m−1

(∆v)2

+
κv(θv − vm)

2

Cn
m+1 − Cn

m−1

∆v
+

|κv(θv − vm)|

2

Cn
m+1 − 2Cn

m + Cn
m−1

∆v

+ (r − q)sV n

m − rCn

m −
Cn

m − Cn−1
m

∆τ

+ ρsvσvvms
V n

m+1 − V n
m−1

2∆v

]

,

for m = 1, . . . , Nv − 1, n = 1, . . . , Nt, on the domain [Smin, Smax] discretized by Ns points. At the
boundary vNv

= Vmax i.e. m = Nv we use virtually Cn

Nv+1 = Cn

Nv−1 and V n

Nv+1 = V n

Nv−1 such that
the ODE for m = Nv has changed and has becomed

vNv
s2

2

d2Cn

Nv

ds2
+

σ2
vvNv

2

2Cn

Nv−1
− 2Cn

Nv

(∆v)2

+
|κv(θv − vNv

)|

2

2Cn

Nv−1
− 2Cn

Nv

∆v

+ (r − q)s
dCn

Nv

ds
− rCn

Nv

−
Cn

Nv

− Cn−1

Nv

∆τ
= 0,

or equivalently






























dCn

Nv

ds
= V n

Nv

dV n

Nv

ds
=

−2

vNv
s2

[

σ2
vvNv

Cn

Nv−1
− Cn

Nv

(∆v)2
+ |κv(θv − vNv

)|
Cn

Nv−1
− Cn

Nv

∆v

+ (r − q)sV n

Nv

− rCn

Nv

−
Cn

Nv

− Cn−1

Nv

∆τ

]

.

At the boundary v = 0, we have an upwinding scheme in volatility such that

κvθv

Cn
1 − Cn

0

∆v
+ (r − q)s

dCn
0

ds
− rCn

0 −
Cn

0 − Cn−1

0

∆τ
= 0,

or equivalently
dCn

0

ds
=

1

(r − q)s

[

κvθv

Cn
0 − Cn

1

∆v
+ rCn

0 +
Cn−1

0 − Cn
0

∆τ

]

.

But it is suggested in the article [1] that we do not use this equation. Instead we use a quadratic
interpolation of the values in v1, v2 and v3 to compute the value at v0 = 0.

3 Riccati equations

For each system of ODE’s we use a Riccati transformation given by

Cn

m(s) = Rm(s)V n

m(s) + W n

m(s)

2

where R and W are solutions to the following ODE’s on [Smin, H]

dRm

ds
= 1 − Bm(s)Rm(s) − Am(s)Rm(s)2, Rm(S∗) = Γ,

dW n
m

ds
= −Am(s)Rm(s)W n

m(s) − Rm(s)P n

m(s), W n

m(S∗) = αn.

To obtain V n

m we finally solve the ODE on [Smin, H]

dV n
m

ds
= Am(s)(Rm(s)V n

m(s) + W n

m(s)) + Bm(s)V n

m(s) + P n

m(s),

with the boundary condition V n

m(S∗) = νn

m. For m = 1, . . . , Nv − 1 we have the expressions

Am(s) =
2

vms2

[

σ2
vvm

(∆v)2
+

|κv − θvvm|

∆v
+ r +

1

∆τ

]

,

Bm(s) =
−2(r − q)s

vms2
,

Pm(s) =
−2

vms2

[

σ2
vvm

2

Cn
m+1(s) + Cn

m−1(s)

(∆v)2
+

Cn−1
m (s)

∆τ

+
κv − θvvm

2

Cn
m+1(s) − Cn

m−1(s)

∆v
+

|κv − θvvm|

2

Cn
m+1(s) + Cn

m−1(s)

∆v

]

−
ρsvσv

s

V n
m+1(s) − V n

m−1(s)

∆v
.

For the boundary at v = VNv
, we obtain the systems

ANv
(s) =

2

vNv
s2

[

σ2
vvNv

(∆v)2
+

|κv − θvvNv
|

∆v
+ r +

1

∆τ

]

,

BNv
(s) =

−2(r − q)s

vNv
s2

,

PNv
(s) =

−2

vNv
s2

[

σ2
vvNv

Cn

Nv−1
(s)

(∆v)2
+

Cn−1

Nv

(s)

∆τ
+ |κv − θvvNv

|
Cn

Nv−1
(s)

∆v

]

.

The Riccati transformation is based on the choice for S∗, S∗, Γ, αn and νn

m. They are given
respectively by the following tables:

Variables Call Put
S∗ Smin Smin

Γ 0 0
αn 0 K exp(−rt) − s exp(−qt)
S∗ H H

νn

m

rebate − W n
m(H)

Rm(H)

rebate − W n
m(H)

Rm(H)

Table 1: Variables for ODE’s in European case.

where bn

m is the early exercice border found with monitoring of the function φ(s) = Rm(s) +
W n

m(s) − (s − K) for the call option and φ(s) = −Rm(s) + W n

m(s) − (K − s) for the put option.
And where Θ = MAX(H − K, rebate) and Λ = MAX(K − Smin, K exp(−rt) − Smin exp(−qt)).
It is clear that the ODE’s are solved forward or backward with respect to the value of S∗ and S∗,
and obviously the ODE’s for R and W are not solved in the same way than the ODE for V .

3

Variables Call Put
S∗ Smin H

Γ 0 0
αn 0 rebate

S∗ bn

m bn

m

νn

m







1, if bn

m < H
Θ − W n

m(H)

Rm(H)
, else.







−1, if bn

m > Smin

Λ − W n
m(Smin)

Rm(Smin)
, else.

Table 2: Variables for ODE’s in American case.

4 Implementation

The implementation of the method of lines for the evaluation of barrier option in Heston model is
relatively easy. But the main difficulty is in the loop over all the variance lines for a fixed time. In
fact, given a time tn and a variance vm, solving the ODE in Cn

m is quite easy since the ODE’s are
not singular. But since the coefficient of the ODE’s depends on values Cn

m−1, Cn

m+1 and Cn−1
m , we

have an implicit system of ODE’s.

The idea is to start with given values (those at time n−1) for all the variables, solve the system
for m = 1 using these given values, update the value Cn

1 , solve the system for m = 2 using again
given values for Cn

3 but this new value for Cn

1 , etc. At m = Nv the value CNv+1 is not needed and
the loop finishes. Finally compute the value of Cn

0 with quadratic interpolation.

At this point, restart the same algorithm for the same time n − 1 at m = 1 but use the values
found during the preceding algorithm for all the variables. Loop again while the difference between
two iterations are greater than 10−8. Actually in the american put option case, there are multiple
iteration where there is no convergence of this algorithm and we have fixed to 50 the maximum
number of iteration. This lack of convergence is due to the early exercice border which can jump
from one point to another and reversely between two iterations.

Most of the functions are very short. I detail here the principal functions.

static int find_early_exercice(double K, double *sgrid, int Ns, int call_or_put,

double *sol_R, double *sol_W) This function monitors the value of R + W or −R + W with
respect to the payoff. It finds the index where there will be a early exercice.

static void solve_R_edo(double coeff_A, double coeff_B, double *sgrid, int Ns,

double initial, double *sol_R)

static void solve_R_edo_backward(double coeff_A, double coeff_B, double *sgrid,

int Ns, double terminal, double *sol_R)

static void solve_W_edo(double coeff_A, double *coeff_P, double *coeff_Q,

double *sgrid, int Ns, double initial, double *sol_R, double *sol_W)

static void solve_W_edo_backward(double coeff_A, double *coeff_P, double *coeff_Q,

double *sgrid, int Ns, double terminal, double *sol_R, double *sol_W)

static void solve_V_edo_backward(double coeff_A, double coeff_B, double *coeff_P,

double *coeff_Q, double *sgrid, int Ns, double terminal, double *sol_R,

double *sol_W, double *sol_V)

static void solve_V_edo_call_american(double coeff_A, double coeff_B,

double *coeff_P, double *coeff_Q, double *sgrid, int Ns, double terminal,

int index, double *sol_R, double *sol_W, double *sol_V)

static void solve_V_edo_put_american(double coeff_A, double coeff_B,

double *coeff_P, double *coeff_Q, double *sgrid, int Ns, double initial,

int index, double *sol_R, double *sol_W, double *sol_V)

All these functions have explicit names and they solve the ODE’s with trapezoidal rules.

4

static void solve_lines_europ(...)

static void solve_lines_american(...)

These two functions solve the ODE’s over one variance line from m = 1 to m = Nv.

static void compute_price_new(..., double *ptprice, double *ptdelta)

This function makes the loop over time iterations and the loop over one variance line until conver-
gence. It makes also all memory allocations, initializations and memory deallocations. It returns
the value of the price and the delta of the product.

References

[1] Carl Chiarella, Boda Kang, Gunter H. Meyer The evaluation of barrier option prices under
stochastic volatility. Computers and Mathematics with Applications 64 (2012) 2034-2048. 1,
2

5

	Heston model
	Method of line algorithm - System of ODE's
	Riccati equations
	Implementation

