
Ninomiya-Victoir scheme: strong convergence, antithetic version

and application to multilevel estimators

A. Al Gerbi, B. Jourdain∗ and E. Clément†

March 3, 2020

Premia 22

1 Summary of the paper

In [2] , we were interested in the computation, by Monte Carlo methods, of the expectation

Y = E [f (XT)], where f : Rn 7→ R is a given function such that E
[

f (XT)2
]

is finite and XT is

the solution, at time T ∈ R∗
+ of the stochastic differential equation of the form











dXt = b(Xt)dt +
d
∑

j=1
σj(Xt)dW j

t , t ∈ [0, T],

X0 = x.

(1.1)

Here, x ∈ Rn is the initial condition, W =
(

W 1, . . . , W d
)

is a d−dimensional standard Brownian

motion, b : Rn −→ Rn is the drift coefficient and σj : Rn −→ Rn, j ∈ {1, . . . , d}, are the Brownian
vector fields. We focused on minimizing the computational complexity subject to a given target
error ǫ ∈ R∗

+. To measure the accuracy of an estimator Ŷ , we considered the root mean square
error

RMSE
(

Ŷ , Y
)

= E
1

2

[

∣

∣

∣Y − Ŷ
∣

∣

∣

2
]

.

1.1 The multilevel Monte Carlo estimator

The multilevel Monte Carlo method, introduced by Giles in [3], consists in combining multiple
levels of discretization, using a geometric sequence of time steps hl = T/2l, l ∈ N, for example.

Denoting by X2l

a numerical scheme, with time step hl, the main idea of this technique is to
use the following telescopic summation to control the bias

E
[

f
(

X2L

T

)]

= E
[

f
(

X1
T

)]

+
L
∑

l=1

E
[

f
(

X2l

T

)

− f
(

X2l−1

T

)]

.

∗Université Paris-Est, Cermics (ENPC), INRIA, F-77455, Marne-la-Vallée, France e-mails: jour-
dain@cermics.enpc.fr, anis.al-gerbi@cermics.enpc.fr - This research benefited from the support of the “Chaire
Risques Financiers”, Fondation du Risque.

†Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, F-77454, Marne-la-Vallée, France, e-
mail: emmanuelle.clement@u-pem.fr.

1

Then, a generalized multilevel Monte Carlo estimator is built as follows

ŶMLMC =
L
∑

l=0

1

Ml

Ml
∑

k=1

Z l
k, (1.2)

where L ∈ N∗ is the last and finest level of discretization with time-step T/2L, (Ml)0≤l≤L ∈
(N∗)L+1 is the vector of sample sizes at each level,

(

Z l
k

)

0≤l≤L,1≤k≤Ml

are independent random

variables such that for, a given discretization level l ∈ {0, . . . , L}, the sequence
(

Z l
k

)

1≤k≤Ml

is

identically distributed and satisfies

E
[

Z0
]

= E
[

f
(

X1
T

)]

, (1.3)

and
∀l ∈ {1, . . . , L} ,E

[

Z l
]

= E
[

f
(

X2l

T

)

− f
(

X2l−1

T

)]

. (1.4)

Assume that, for a given discretization level l ∈ {0, . . . , L}, the computational cost of simulating
one sample Z l is Cλl2

l, where C ∈ R+ is a constant, depending only on the discretization scheme
and λl ∈ Q∗

+ is a weight, depending only on l. The computational complexity of ŶMLMC , denoted
by CMLMC , is given by

CMLMC = C
L
∑

l=0

Mlλl2
l. (1.5)

The natural choice for Z l, l ∈ {0, . . . , L}, considered in [3] is

Z0 = f
(

X1
T

)

, (1.6)

∀l ∈ {1, . . . , L} , Z l = f
(

X2l

T

)

− f
(

X2l−1

T

)

. (1.7)

For this canonical choice, it is natural to take λ0 = 1 and ∀l ∈ {1, . . . , L}, λl = 3/2. According to
Theorem 3.1 in [3] the optimal complexity C∗

MLMC , depends on the order α of weak convergence
of the scheme and the order β of convergence to 0 of the variance of Z l. Here, we recall this
complexity theorem.

Theorem 1.1. Assume that

E
[

f
(

X2l

T

)]

− Y =
c1

2αl
+ o

(

1

2αl

)

, (1.8)

and

V
(

Z l
)

=
c2

2βl
+ o

(

1

2βl

)

, (1.9)

for some constants c1 ∈ R∗ and c2 ∈ R∗
+ independent of l. Then, by choosing:

L∗ =











log2

(
√

2|c1|
ǫ

)

α











, (1.10)

and

∀l ∈ {0, . . . , L∗} , M∗
l =









2

ǫ2

√

V (Z l)

λl2l

L∗
∑

j=0

√

λj2jV (Zj)









, (1.11)

2

we get an optimal computational complexity:






























C∗
MLMC = O

(

ǫ−2
)

if β > 1,

C∗
MLMC = O

(

ǫ−2
(

log

(

1

ǫ

))2
)

if β = 1,

C∗
MLMC = O

(

ǫ−2+ β−1

α

)

if β < 1,

(1.12)

with RMSE
(

ŶMLMC , Y
)

bounded by ǫ. Here, ⌈x⌉, for x ∈ R+, denotes the unique n ∈ N∗

satisfying n − 1 < x ≤ n.

To obtain the estimation (1.9), the key point is that the simulation of X2l

and X2l−1

comes from
the same Brownian path. We easily bound the variance convergence rate from below using the
strong convergence rate γ of the numerical scheme, since in general, β ≥ 2γ for a smooth payoff.
To attain γ = 1, one has in general to simulate iterated Brownian integrals involving Lévy areas,
for which there is no known efficient method. To get around this difficulty, Giles and Szpruch
introduced, in [4], a Milstein scheme without Lévy areas and its antithetic version by swapping
the Brownian increments. In a multilevel Monte Carlo method, using the arithmetic average
of the modified Milstein scheme and its antithetic version in the finest grid, and the modified
Milstein scheme in the coarsest grid leads to β = 2 and α = 1. By this way, Giles and Szpruch
managed to improve the variance convergence rate without simulating the Lévy areas. To be
more specific, they choose Z l as follows

Z0
GS = f

(

XGS,1
T

)

, (1.13)

∀l ∈ {1, . . . , L} , Z l
GS =

1

2

(

f
(

X̃GS,2l

T

)

+ f
(

XGS,2l

T

))

− f
(

XGS,2l−1

T

)

. (1.14)

Here, XGS,2l

is the Giles and Szpruch scheme using a grid with time step hl = T/2l and X̃GS,2l

is an antithetic discretization defined by swapping each successive pair of Brownian increments
in the scheme. In [2], we proposed to adapt their technique to the Ninomiya-Victoir scheme,
which is known to exhibit weak convergence with order α = 2. We managed to reduce the
constant in the computational complexity by decreasing the number of discretization levels.

1.2 The Ninomiya-Victoir scheme and its antithetic version

To discretize (1.1) we consider the Ninomiya-Victoir scheme introduced in [5]. To deal with
the Ninomiya-Victoir scheme, it is more convenient to rewrite the stochastic differential equa-
tion (1.1) in Stratonovich form. Assuming C1 regularity for the Brownian vector fields, the
Stratonovich form of (1.1) is given by:











dXt = σ0(Xt)dt +
d
∑

j=1
σj(Xt) ◦ dW j

t

X0 = x

(1.15)

where σ0 = b − 1
2

d
∑

j=1
∂σjσj and ∂σj is the Jacobian matrix of σj defined as follows

∂σj =
(

∂xk
σij
)

i,k∈[[1;n]]
.

Now, we introduce some notations to define the Ninomiya-Victoir scheme and its antithetic
version.

3

• We consider two grids, a coarse grid with time step hl−1 = T/2l−1 and a fine grid with time

step hl = T/2l−1. The discretization times (tk)0≤k≤2l−1 and
(

tk+ 1

2

)

0≤k≤2l−1−1
are defined

by ∀k ∈
{

0, . . . , 2l−1
}

, tk = khl−1, and ∀k ∈
{

0, . . . , 2l−1 − 1
}

, tk+ 1

2

=
(

k + 1
2

)

hl−1.

• For V : Rn −→ Rn Lipschitz continuous, exp(tV)x0 denotes the solution, at time t ∈ R,
of the following ordinary differential equation in Rn

{

dx(t)
dt

= V (x(t))
x(0) = x0.

(1.16)

• Let η2l

= (ηk)1≤k≤2l be a sequence of independent, identically distributed Rademacher
random variables independent of W .

On the coarsest grid, the Ninomiya-Victoir scheme

(

XNV,2l−1,η2
l

tk

)

k∈{0,...,2l−1}
is defined induc-

tively by XNV,2l−1,η2
l

t0
= x, and for k ∈

{

0, . . . , 2l−1 − 1
}

,

• if η2k+1 = 1:

XNV,2l−1,η2
l

tk+1
= exp

(

hl−1

2
σ0
)

exp
(

∆W d,c
tk+1

σd
)

. . . exp
(

∆W 1,c
tk+1

σ1
)

exp

(

hl−1

2
σ0
)

XNV,2l−1,η2
l

tk
,

(1.17)

• and if η2k+1 = −1:

XNV,2l−1,η2
l

tk+1
= exp

(

hl−1

2
σ0
)

exp
(

∆W 1,c
tk+1

σd
)

. . . exp
(

∆W d,c
tk+1

σ1
)

exp

(

hl−1

2
σ0
)

XNV,2l−1,η2
l

tk
,

(1.18)

where ∆W c
tk+1

= Wtk+1
− Wtk

. Similarly, on the finest grid, the Ninomiya-Victoir scheme
(

XNV,2l,η2
l

tk

)

k∈{0,...,2l−1}
is defined inductively by XNV,2l,η2

l

t0
= x, and for k ∈

{

0, . . . , 2l−1 − 1
}

,

• if η2k+1 = 1:

XNV,2l,η2
l

t
k+ 1

2

= exp

(

hl

2
σ0
)

exp

(

∆W d,f
t
k+ 1

2

σd

)

. . . exp

(

∆W 1,f
t
k+ 1

2

σ1
)

exp

(

hl

2
σ0
)

XNV,2l,η2
l

tk
,

(1.19)

• and if η2k+1 = −1:

XNV,2l,η2
l

t
k+ 1

2

= exp

(

hl

2
σ0
)

exp

(

∆W 1,f
t
k+ 1

2

σd

)

. . . exp

(

∆W d,f
t
k+ 1

2

σ1
)

exp

(

hl

2
σ0
)

XNV,2l,η2
l

tk
,

(1.20)

• if η2k+2 = 1:

XNV,2l,η2
l

tk+1
= exp

(

hl

2
σ0
)

exp
(

∆W d,f
tk+1

σd
)

. . . exp
(

∆W 1,f
tk+1

σ1
)

exp

(

hl

2
σ0
)

XNV,2l,η2
l

t
k+ 1

2

,

(1.21)

4

• and if η2k+2 = −1:

XNV,2l,η2
l

tk+1
= exp

(

hl

2
σ0
)

exp
(

∆W 1,f
tk+1

σd
)

. . . exp
(

∆W d,f
tk+1

σ1
)

exp

(

hl

2
σ0
)

XNV,2l,η2
l

t
k+ 1

2

,

(1.22)

where ∆W f
t
k+ 1

2

= Wt
k+ 1

2

− Wtk
, ∆W f

tk+1
= W f

tk+1
− W f

t
k+ 1

2

. The antithetic scheme is defined

by the same iterative equations, except that the Brownian increments ∆W f
t
k+ 1

2

and ∆W f
tk+1

are

swapped. More precisely, the antithetic version of the Ninomiya-Victoir scheme

(

X̃NV,2l−1,η2
l

tk

)

k∈{0,...,2l−1}
,

with respect to

(

XNV,2l,η2
l

tk

)

k∈{0,...,2l−1}
, is defined inductively by X̃NV,2l−1,η2

l

t0
= x, and for

k ∈
{

0, . . . , 2l−1 − 1
}

,

• if η2k+1 = 1:

XNV,2l,η2
l

tk+1
= exp

(

hl

2
σ0
)

exp

(

∆W d,f
t
k+ 1

2

σd

)

. . . exp
(

∆W 1,f
tk+1

σ1
)

exp

(

hl

2
σ0
)

XNV,2l,η2
l

tk
,

(1.23)

• and if η2k+1 = −1:

XNV,2l,η2
l

t
k+ 1

2

= exp

(

hl

2
σ0
)

exp
(

∆W 1,f
tk+1

σd
)

. . . exp
(

∆W d,f
tk+1

σ1
)

exp

(

hl

2
σ0
)

XNV,2l,η2
l

tk
,

(1.24)

• if η2k+2 = 1:

XNV,2l,η2
l

tk+1
= exp

(

hl

2
σ0
)

exp

(

∆W d,f
t
k+ 1

2

σd

)

. . . exp

(

∆W 1,f
t
k+ 1

2

σ1
)

exp

(

hl

2
σ0
)

XNV,2l,η2
l

t
k+ 1

2

,

(1.25)

• and if η2k+2 = −1:

XNV,2l,η2
l

tk+1
= exp

(

hl

2
σ0
)

exp

(

∆W 1,f
t
k+ 1

2

σd

)

. . . exp

(

∆W d,f
t
k+ 1

2

σ1
)

exp

(

hl

2
σ0
)

XNV,2l,η2
l

t
k+ 1

2

.

(1.26)

With regards to the multilevel Monte Carlo estimator, we propose to choose

Z0
NV = f

(

XNV,1,η1

T

)

, (1.27)

and, ∀l ∈ {1, . . . , L} ,

Z l
NV =

1

4

(

f

(

X̃NV,2l,η2
l

T

)

+ f

(

X̃NV,2l,−η2
l

T

)

+ f

(

XNV,2l,η2
l

T

)

+ f

(

XNV,2l,−η2
l

T

))

− 1

2

(

f

(

XNV,2l−1,η2
l

T

)

+ f

(

XNV,2l−1,−η2
l

T

))

.

(1.28)

Under some regularity assumptions, in [2], we proved that the order of convergence to 0 of the
variance of Z l

NV is β = 2, which leads to an optimal complexity O
(

ǫ−2
)

. More precisely, we
proved the following result.

5

Proposition 1.2. Assume that f ∈ C2 (Rn,R) with bounded first and second order derivatives,

b ∈ C2 (Rn,Rn) with bounded first and second order derivatives, ∀j ∈ {1, . . . , d}, σj ∈ C3 (Rn,Rn)
with bounded first and second order derivatives and with polynomially growing third order deriva-

tives, and that ∀j, m ∈ {1, . . . , d}, ∂σjσm has bounded first order derivatives. Then:

∀p ≥ 1, ∃c ∈ R∗
+, ∀l ∈ N∗, E

[

∣

∣

∣Z l
NV

∣

∣

∣

2p
]

≤ c

22pl

where Z l
NV is defined by (1.28).

1.3 Practical procedure

Now we present the practical procedure used to implement the multilevel estimators. Putting
together the elements already discussed, the algorithm that we used for the multilevel Monte
Carlo with the Ninomiya-Victoir scheme is as follows. We begin by estimating the weak error
constant c1 in (1.8), the constant c2 which comes from the variance estimation (1.9) and checking
the orders of weak and strong convergence. When the asymptotic behavior (1.8) of the bias of
the scheme is satisfied, one has

E
[

Z l
NV

]

∼ c1 (1 − 2α)

2αl
. (1.29)

Using a regression with few values of
(

l,
∣

∣

∣E
[

Z l
NV

]∣

∣

∣

)

, we estimate c1 and check the order α of

weak convergence. In the same way, we estimate c2 and check the strong order β of variance
convergence to 0, using a regression in (1.9). Then we estimate V

(

Z0
NV

)

using a standard Monte
Carlo estimator V̂0. After that, for a given ǫ we define L∗ using (1.10) then we set

M∗
0 =









2

ǫ2

√

V̂ 0

λ0





√

λ0V̂ 0 +
L∗
∑

j=1

√

c2λj2j(1−β)













(1.30)

and

∀l ∈ {1, . . . , L∗} , M∗
l =









2

ǫ2

√

c2

λl2l(β+1)





√

λ0V̂ 0 +
L∗
∑

j=1

√

c2λj2j(1−β)













. (1.31)

With regards to the wights (λl)0≤l≤L∗ , a reasonable choice is to take λ0 = 1 and ∀l ∈ {1, . . . , L∗} , λl =
5. Finally, we compute the multilevel Monte Carlo estimator with the Ninomiya-Victoir scheme

Ŷ NV
MLMC =

L∗
∑

l=0

1

M∗
l

M∗
l

∑

k=1

Z l,k
NV .

1.4 Application to the Heston model

The Heston model is an asset price model which assumes that the implied volatility, denoted by
V , evolves according to an autonomous Cox-Ingersoll-Ross SDE:















dUt = (r − δ − 1

2
Vt)dt +

√

VtdW 1
t

dVt = κ(θ − Vt)dt + σ
√

Vt

(

ρdW 1
t +

√

1 − ρ2dW 2
t

)

,
(1.32)

where

6

• θ ∈ R∗
+ is the long implied variance, or long run average price variance; as t tends to

infinity, the expected value of Vt tends to θ,

• κ ∈ R∗
+ is the rate at which Vt reverts to θ,

• σ ∈ R∗
+ is the volatility of the implied volatility and determines the variance of Vt,

• r ∈ R the annualized risk-free interest rate, continuously compounded,

• δ ∈ R∗
+ is the annualized continuous yield dividend,

• ρ ∈]−1, 1[is the correlation between the two Brownian motion (ie stock price and implied
volatility).

The asset price S is given by St = exp(Ut). To ensure that the zero boundary is not attainable
for the volatility process, one has to assume that 2κθ ≥ σ2. The main difficulty is located in
0, where the square root is not Lipschitz. In this 2−dimensional model, the Brownian vector

fields are given by σ1

(

u
v

)

=

(√
v

ρσ
√

v

)

, σ2

(

u
v

)

=

(

0

σ
√

1 − ρ2
√

v

)

and the drift coefficient is

b

(

u
v

)

=

(

r − δ − 1
2v

κ (θ − v)

)

. The Stratonovich drift is given by σ0 = b − 1
2

(

∂σ1σ1 + ∂σ2σ2
)

:

σ0

(

u
v

)

=

(

r − δ − 1
2v

κ (θ − v)

)

− 1

2





(

0 1
2
√

v

0 ρσ

2
√

v

)(√
v

ρσ
√

v

)

+





0 0

0
σ
√

1−ρ2

2
√

v





(

0

σ
√

1 − ρ2
√

v

)





=

(

r − δ − 1
2v − 1

4ρσ

κ (θ − v) − σ2

4

)

.

Therefore, setting ξ = θ − σ2

4κ
, the Ninomiya-Victoir scheme, for a given uniform grid, is induc-

tively defined by:

1st step:

Ū0
tk+1

= UNV,η
tk

+
1

2

(

r − δ − 1

2
ρσ − 1

2
ξ

)

t1 +
1

2κ
(v − ξ)

(

exp

(

−1

2
κt1

)

− 1

)

,

V̄ 0
tk+1

=
(

V NV,η
tk

− ξ
)

(

exp

(

−1

2
κt1

)

− 1

)

+ ξ.

2nd step:
If ηk+1 = 1:

Ū1,η
tk+1

= Ū0
tk+1

+
√

V̄ 0
tk+1

∆W 1
tk+1

+
1

4
ρσ
(

∆W 1
tk+1

)2
,

V̄ 1,η
tk+1

=

(

√

V̄ 0
tk+1

+
1

2
σρ∆W 1

tk+1

)2

,

Ū2,η
tk+1

= Ū1,η
tk+1

,

V̄ 2,η
tk+1

=

(

√

V̄ 1,η
tk+1

+
1

2
σ
√

1 − ρ2∆W 2
tk+1

)2

.

If ηk+1 = −1:
Ū1,η

tk+1
= Ū0,η

tk+1
,

7

V̄ 1,η
tk+1

=

(

√

V̄ 0
tk+1

+
1

2
σ
√

1 − ρ2∆W 2
tk+1

)2

,

Ū2,η
tk+1

= Ū1,η
tk+1

+
√

V̄ 1,η
tk+1

∆W 1
tk+1

+
1

4
ρσ
(

∆W 1
tk+1

)2
,

V̄ 2,η
tk+1

=

(

√

V̄ 1,η
tk+1

+
1

2
σρ∆W 1

tk+1

)2

.

3rd step:

UNV,η
tk+1

= Ū2,η
tk+1

+
1

2

(

r − δ − 1

2
ρσ − 1

2
ξ

)

t1 +
1

2κ
(v − ξ)

(

exp

(

−1

2
κt1

)

− 1

)

,

V NV,η
tk+1

=
(

V̄ 2,η
tk+1

− ξ
)

(

exp

(

−1

2
κt1

)

− 1

)

+ ξ.

Assuming ξ ≥ 0, the Ninomiya-Victoir scheme is well defined and the volatility process is always
positive (see [1]), whereas the Giles-Szpruch scheme and usual schemes such as the Euler scheme
are not well defined since they can lead to negative values of the volatility process for which the
square root is not defined at the next step. That is why it is preferable to use the Ninomiya-
Victoir scheme to discretize the Heston model. In addition, for ξ < 0, in section 3.1 of [1],
Alfonsi proposed a modification of the Ninomiya-Victoir scheme preserving the positivity of the
volatility and the weak order two.

2 Code in C/C++

In this section, we provide a documentation for our code written in C/C++. The aim is to price

an European put option , in the Heston model, E
[

exp (−rT) (K − ST)+

]

, for a given maturity

T and strike K, using our multilevel Monte Carlo technique.

The routine void Brownian(double* W,int l,double T) simulates Brownian increments on
a grid, with time step hl = T/2l. Arguments:

• the pointer double* W is an array with size 2l,

• the integer int l corresponds to the level of the grid,

• the real double T corresponds to the final time.

It writes the result in the array W.

The routine void Antithetic_Brownian(double* W,int l) swaps the two consecutive Brow-
nian increments of the already existing Brownian increments W on a grid, with time step
hl = T/2l. Arguments:

• the pointer double* W is an array with size 2l, which contains Brownian increments,

• the integer int l corresponds to the level of the grid.

It writes the result in the array W.

The routine void Coarse_Brownian(double* W,int l) sums each consecutive Brownian
increments of the already existing Brownian increments W on a grid, with time step hl = T/2l.
Arguments:

8

• the pointer double* W is an array with size 2l, which contains Brownian increments,

• the integer int l corresponds to the level of the grid.

It writes the result in the sub-array
(

W [0], . . . , W [2l−1 − 1]
)

.

The routine void Bernoulli(bool* Eta,int l) simulates independent Bernoulli random vari-
ables on a grid with 2l steps. Arguments:

• the pointer bool* Eta is an array with size 2l,

• the integer int l corresponds to the level of the grid.

It writes the result in the array Eta.

The routine void Coarse_Bernoulli(bool* Eta,int l) extracts, from the array Eta, with

size 2l, the sub-array
(

Eta[0], Eta[2] . . . , Eta[2l−1]
)

. Arguments:

• the pointer bool* Eta is an array with size 2l,

• the integer int l corresponds to the level of the grid.

It writes the result in the sub-array
(

Eta[0], . . . , Eta[2l−1 − 1]
)

.

The routine void Antithetic_Bernoulli(bool* Eta,int l) flips each component of the boolean
array Eta, with size 2l. Arguments:

• the pointer bool* Eta is an array with size 2l,

• the integer int l corresponds to the level of the grid.

It routine writes the result in the array Eta.

In the following:

• the real double T corresponds to the maturity, in years, of the European put option,

• the real double K corresponds the strike, of the European put option,

• the real double theta corresponds to the parameter θ, in the Heston model,

• the real double kappa corresponds to the parameter κ, in the Heston model,

• the real double sigma corresponds to the parameter σ, in the Heston model,

• the real double r corresponds to the parameter r, in the Heston model,

• the real double delta corresponds to the parameter δ, in the Heston model,

• the real double rho corresponds to the parameter ρ, in the Heston model,

9

and we assume that θ ≥ σ2

4κ
.

The routines void Fine_NV_Scheme, void Antithetic_NV_Scheme and void Coarse_NV_Scheme

simulate, respectively the Ninomiya-Victoir schemes, XNV,2l,η2
l

T , X̃NV,2l,η2
l

T and XNV,2l−1,η2
l

T in
the framework of the Heston model. The three routines takes the same arguments:

double* W1,double* W2,bool* Eta,int l,double T,double &x,double &v,double kappa,double
theta,double sigma,double r,double delta, double rho.

• The pointer double* W1 is an array with size 2l, which contains Brownian increments on
a grid with time step hl = T/2l.

• the pointer double* W2 is an array with size 2l, which contains Brownian increments on
a grid with time step hl = T/2l and independent of the ones in W1.

• the pointer bool* Eta is an array with size 2l, which contains independent Bernoulli random
variables.

• the integer int l corresponds to the level of the grid,

• the real double &x corresponds to the logarithm of the initial value of the stock price at
time 0, ie log (S0),

• the real double &v corresponds to the initial value of the implied volatility at time 0.

The results, which are log
(

SNV
T

)

and V NV
T are respectively placed in x and v.

The routines double Put(double x,double K,double T,double r) computes exercise value
of an European put option. Arguments:

• the double x corresponds to the logarithm of the stock price, ie x = log (ST).

It returns exercise value, ie f (ST) = exp (−rT) (K − ST)+.

In the following:

• the real double x corresponds to the logarithm of the initial value of the stock price at
time 0, ie log (S0),

• the real double v corresponds to the initial value of the implied volatility at time 0,

• the real double epsilon corresponds to the target error ǫ.

The routines Crude_Monte_Carlo_NV and , Antithetic_Monte_Carlo_NV compute,

using a standard Monte Carlo method, respectively the expectations E

[

f

(

SNV,2l,η2
l

T

)]

and

E
[

Z l
NV

]

together with their associated variance. Here f denotes the payoff of a put option and

Z l
NV is defined by (1.28). Both routines write the results in the variable mean and the variable

variance (see below), and take the same arguments:

10

(double &mean,double &variance,int l,long M,double K,double T,double x,double
v,double kappa,double theta,double sigma,double r,double delta, double rho).

• the integer int l corresponds to the level of the grid,

• the integer long M corresponds to the sample size of the Monte Carlo method,

The routine Intermediate_Step(double &c1,double &c2,double &alpha,double &beta,int
Lmax,long M,double K,double T,double x, double v,double kappa, double theta,
double sigma, double r,double delta, double rho) estimates the parameters c1 ,c2, α and
β as described in section 1.3. It writes the results in the variables c1, c2, alpha, beta respectively.
Arguments:

• the integer int Lmax corresponds to the number of levels used to compute the regression
(we advise to take Lmax = 4),

• the integer long M corresponds to the sample size of the Monte Carlo method (we advise
to take M between 104 and 105).

The routine Last_Level(int &L,double epsilon,double c1,double alpha) computes the
optimal finest level of discretization L∗ defined by (1.10). It writes the result in the variable L.
Arguments:

• the real double epsilon corresponds to the target error of the multilevel Monte Carlo
method,

• the real double c1 corresponds to the previous estimation of the constant c1,

• the real double alpha corresponds to the previous estimation of the constant α.

The routine Optimal_Parameters(long* Ml,int L,double epsilon,double c2,double
beta,double Var0) computes the optimal sample size (M∗

l)0≤l≤L∗ defined by (1.30) and (1.31).
Arguments:

• The pointer long* Ml is an array with size L + 1, which will contain, at the end of the
procedure, the optimal sample size.

• the integer int L corresponds to the previous optimal finest level of discretization,

• the real double epsilon corresponds to the target error of the multilevel Monte Carlo
method,

• the real double c2 corresponds to the previous estimation of the constant c2,

• the real double beta corresponds to the previous estimation of the constant β,

• the real double Var0 corresponds to an estimation of the variance V
[

Z0
NV

]

.

11

The routine Antithetic_Multi_Level_NV(double &price_MC,double &variance_MC,double
K,double T,double S, double v,double kappa, double theta, double sigma, dou-
ble r,double delta, double rho,double epsilon,int Lmax=4, long M=100000) im-
plement the multilevel Monte Carlo method, for the pricing of an European put option. It
writes the result in the double price_MC,double, together with its associated variance in vari-
ance_MC. The arguments Lmax and long M correspond to the ones in the routine Interme-
diate_Step.

References

[1] A. Alfonsi. Affine Diffusions and Related Processes: Simulation, Theory and Applications,
ISBN-13: 9783319052205, 2015. 8

[2] A.Al Gerbi, B. Jourdain, E. Clément, Ninomiya-Victoir scheme: strong convergence, an-
tithetic version and application to multilevel estimators, arXiv:1508.06492v2, 2015. 1, 3,
5

[3] M.B. Giles. Multi-level Monte Carlo path simulation. Operations Research, 56(3):607-617,
2008. 1, 2

[4] M.B. Giles, L. Szpruch. Antithetic multilevel Monte Carlo estimation for multi-dimensional
SDEs without Lévy area simulation, Annals of Applied Probability, 24(4):1585-1620, 2014.
3

[5] S. Ninomiya, N. Victoir. Weak approximation of stochastic differential equations and ap-
plication to derivative pricing. Applied Mathematical Finance 15, 107-121, 2008. 3

12

	Summary of the paper
	The multilevel Monte Carlo estimator
	The Ninomiya-Victoir scheme and its antithetic version
	Practical procedure
	Application to the Heston model

	Code in C/C++

