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1 Calibrated local and stochastic volatility model
We consider the following class of models for the stock price S:

dSy = rSydt + f(Yy)o(t, Sp) S dW;Y,
dY; = by (Yy)dt + oy (Y;)dW) . (1)

Here, r is the interest rate, assumed to be constant, f : R - R, 0 : R2 - R, by : R - R, 0y : R — R are
deterministic functions, and W, WY are unidimensional Brownian motions that have correlation p € [~1,1]. We
also assume that the market prices of all puts P(7, K) with maturity 7" > 0 and strike K > 0 are encoded in a
Dupire local volatility function op,, : R*? — R, i.e.:

VT, K > 0,E {erT (K — S{;’“P) ] = P(T,K),
+

where
AP = rSPdt + opuy (1,SP) SPTAWE.

T Dup (t7$)

As presented in [?], with the choice o(t,z) = VEI2(Y)]Si=2]
t)|Ot=T

T>0and K >0,

we have that under existence of the process S, for

E[e™" (K - Sr),] = P(T, K).
The goal is to simulate a solution to the SDE nonlinear in the sense of McKean satisfied by the logspot X = log(5):

B 1 (%) . ) .
dX, = (r - §ma%uz)(t’ex )) dt + WUDup(t7€X )AWX,

dY; = by (Y3)dt + oy (Y;)dW)Y . (2)
2 Half step scheme

Given a finite time horizon T' > 0, the explicit Euler scheme associated with (X,Y") using n € N* steps with constant
time step A = % is given by

1 2(yr " Y
dXZL — r— 7#0%1@@7 eXTt) dt + f( Tt,) UDup(t7 eXTt )th17
2E [f2(Y2)|X2] E [f2(Y2)|X2]
dY;* = by (Y)dt+oy (Y])dW2,
(XY) ~ o ¥



where for t € [0, 7], 7 := |2 | L is the last discretization time before ¢. The presence of the conditional expectation
in the diffusion X prevents the simple use of explicit Euler scheme discretizing in time the diffusion. One way of
overcoming that difficulty is to use kernel approximations of the conditional expectation and introduce a particle
system, as proposed in [?]. In our framework, we assume the ellipticity of the diffusion coefficient, that is the
existence of a constant ¢ such that

f()

Vt,z,y € Ry x R xR,
VE[f2(Y))| X, = 1]

opup(t,e®) > a > 0.

This enables us to introduce a half-step algorithm. Let (Z Lzl

B+l )kzo’ (Zlg)kzo be two families of i.i.d. standard

centered normal variables. The half-step algorithm is initialized with (X'(h ?0> deterministic and evolves inductively

according to

% > > 1
Xg:wr% - ng + b”)l( tk,A + (a},tk _QQIdl) 2 \/ZZ;,

Xor = X0, +Jka+1,

YtTkL-H = Y;fk + by (Y;:T;:) A+oy (f/t:f) \/ZZ,?, (4)
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As (Z,i7 Z;+%,ZE) and (th,Yt") are independent, the conditional law of the term

PO

> <k<n-10b2, =r— L
where we defineforn > 1land 0 < k <n 1,bX7tk r E[f?( k)IX"] Dup

(t,e X5 #)and @'y, =

(&’}(,tk—QQIdl) VAZL + oVAZ!
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Ww.I.t. (XQ,YZZ) is the normal centered distribution with variance matrix Aa’ ,, , so the half step scheme (4) and
the explicit Euler scheme (3) are equivalent in the sense that the vectors (ka Yr ) 0<k<n and (Xt’i , K’;)nggn have

the same law.

3 Associated particles system

The advantage of the half step scheme is that in the elliptic case, it is possible to obtain a representation of the
conditional expectation as a ratio of convolution against gaussian kernels. That is expressed in the following result
[?, Proposition 3.3.1], where G, is the one dimensional centered gaussian density with variance v > 0.

Proposition. Let (¢,7,v) be a random variable with values in R X R x R. Let us assume that Z ~ N (0,1) and is
independent of (§,7). Let o > 0 and let us define x := & + aZ. The following assertions hold:
(i) for any measurable and bounded function ¥ : R x R = R, we have that

E [ (x,7)] = /R B[ (2.7) Gon (z — €)] do.

(i) Let (é, ) be a copy of (£,7) independent of x. For ¢ : R x R — R a measurable function such that v (x,7)
is integrable, we have almost surely that

E[¢ (x,7) Gaz (x — )| ]
E[Gax (x = )| A]
One natural implementation would be to introduce a particle system associated with the half-step scheme (4).

Let N € N* be the number of particles and let the function 'V be defined for z,z1,...,xx € R and 41, ...,yny € R
by

E [y (x,7)Ix] =

£ 30 2 (y;) Goza (2 — )

%Z;V:1 GQQA (Z—l‘j) (5)

FN (2,81, ey N YLy ooy YN ) =

(t,e tk).



bei.i.d. random variables with law i (dirac) and which are independent of (Z ;’i, zZh

i\ N ~si,N 2,
Let (X5, v vz .
1<i<N +3 E>0,1<i<N

The dynamics is given by

XY = X b A (g o) VAZY

Pt o= Xl atVAZL,

Yt = YN by (YY) Aoy (8 YY) VAZE (6)
PO XN N

; Ji, N 1
Here, forn > 1,0 <k <n—-1, N > 1,1 <i < N, by}" =r— §WJDW(Q,6 o), ayyt =
A t

POy XN
EY (thk,i,N) UDup(tkv e ' ) and
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