
MODEL INDEPENDENT BOUNDS FOR FORWARD-START OPTIONS

1. Introduction

The following method proposed in [1] deals with a method for obtaining model indepen-
dent bounds for exotic options using linear programming methods.

2. Theoretical Framework

We consider a fixed exotic option depending only on the value of a single asset S at some
discrete times t1 < . . . < tn whose payoff we denote with Φ.
The standard no arbitrage approach consist in fixing a model, that is a probability measure
P on R

n under which the coordinate process (Si)
n
i=1 is required to be a martingale, calibrated

to the existing call options prices C(ti,K) K ∈ R, and then giving as a fair price EP[Φ].
This procedure is equivalent to require that each of the one dimensional marginals of P
follows a specific law µi with Cumulative Distribution function given by

Fi(K) = 1− lim
ε→0

1

ε
[C(ti,K)− C(ti,K + ε)] .

The primal optimal transport problem consists in considering the set M(µ1, . . . , µn) of all
the martingale measures P on the space R

n having fixed marginals P1 = µ1, . . . ,Pn = µn

and finding

P = inf{EP[Φ], P ∈ M(µ1, . . . , µn)} . (2.1)

To this primal problem is associated a dual problem which consist in the construction of
the semi-static sub-hedging strategy consisting in the sum of vanilla options and a delta
strategy. The strategy we consider are of the form

Ψ(ui),(∆j)(s1, . . . , sn) =
n
∑

i=1

ui(si) +
n−1
∑

j=1

∆j(s1, . . . , sj)(sj+1 − sj) (2.2)

for some µi-integrable function ui and bounded function ∆j , and they are sub-hedging in
the sense that

Ψ(ui),(∆j) ≤ Φ .

For each martingale measure P ∈ M(µ1, µn), we have

EP[Φ] ≥ EP[Ψ(ui),(∆j)] = EP[
n
∑

i=1

ui(Si)] =
n
∑

i=1

Eµi [ui(Si)] , (2.3)

which leads to consider the following dual problem:

D = sup

{

n
∑

i=1

Eµi [ui(Si)] such that∃∆1, . . . ,∆n−1 : Ψ(ui),(∆j) ≤ Ψ

}

. (2.4)

It has been proved in [1] that under the condition

Φ(s1, . . . , sn) ≥ −K(1 + |s1|+ . . .+ |sn|) .
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for some K > 0 there is no duality gap, i.e. P = D. Moreover if Φ(s1, . . . , sn) ≤ K(1 +
|s1|+ . . .+ |sn|)

sup{EP[Φ], P ∈ M(µ1, . . . , µn)} = inf

{

n
∑

i=1

Eµi [ui(Si)] s.t. ∃∆1, . . . ,∆n−1 : Ψ(ui),(∆j) ≤ Ψ

}

In [1] it has also been showed that it is enough to consider sub-hedging (and super-hedging)
strategies in which the functions ui are linear combinations of call options, which restrict
us to consider:

b+
n
∑

i=1

mi
∑

l=1

Ai,l(si −Ki,l)
+ +

n−1
∑

j=1

∆j(s1, . . . , sj)(sj+1 − sj) (2.5)

which give price

b+
n
∑

i=1

mi
∑

l=1

Ai,lC(ti,Ki,l) .

3. Numerical Algorithm

In our algorithm we consider the case of a Forward start option, that is

Φ = (s2 −Ks1)
+ .

Due to the dependence only on two maturities, the dual problem associated to the upper
bound becomes










inf b+
∑2

i=1

∑mi

l=1Ai,lC(ti,Ki,l)

s.t.

F (s1, s2) = b+
∑2

i=1

∑mi

l=1Ai,l(si −Ki,l)
+ +∆1(s1)(s2 − s1) ≥ (s2 −Ks1)

+ .

(3.1)

It is immediate to see that s2 7→ F (s1, s2)−(s2−Ks1)
+ is piecewise linear in s2 and obtains

its extremal values for s2 = {K2,l}l, s2 = 0, s2 = ∞, s2 = Ks1. The above constraints thus
reduce to a m2+3 constraints parametrized by s1. Due to the low dimension of the problem
it can be easily solved with a simplex method discretizing the distribution of s1. In the
implementation we have used the library GLPK but we plan to soon substitute it with an
In house one.

3.1. Numerical experiments. The measures µ1 and µ2 are deduced from the prices of call
options written on the S&P500 with t1 = 0.25 years and t2 = 0.78 years with m1 = m2 = 10.

We discretized the values of s1 on a spatial grid with L = 201 points and we obtained
the results from Table 3.1.

Since in the Forward start option the constraints system has (m2 + 3) ∗ L rows and
1+m1+m2+L columns, in the case of study, the system has 2613 rows and 222 columns,
for a total of 580086 elements of which only 30394 non zero. We have also tried to increase
the number of discretization points up to 500, but we have noticed no significant variation
in the optimal prices found.

We notice that the difference in implied volatility is quite significant, between 6 and 15
percentage points as can be also seen in Figure3.1.
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K 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Minimum Price 241.37 185.60 129.84 74.73 29.50 2.99 0.04
Maximum Price 249.95 193.44 137.38 88.33 48.47 23.47 11.74

impvol Minimum 0.39 0.33 0.26 0.19 0.14 0.09 0.07
impVol Maximum 0.51 0.41 0.32 0.27 0.23 0.21 0.22

4. Correlated problems: Asian options

A related problem which we studied is the case of Asian option treated in [2]. The main
problem in this case is the fast growth of the dimension of the problem as the number of
dates for which we study the dual increases.

In fact, even reducing the dimension of the constraints on the last variable as in the
Forward start case, the system of constraints has Ln ∗ (m2 + 3) rows and 1 +

∑n
1=1mi +

L
(Ln−1

−1)
L−1 columns.
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