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Abstract

We describe a robust and stable lattice method which permits to obtain very

accurate American and European option prices under the CEV model.

Premia 22

1 Model specification

This brief note presents a robust tree method for pricing American and European
options under the CEV local volatility model. More precisely, we consider the CEV
diffusion (St)t≥0 described (under the risk neutral probability) by

dS(t) = (r − q)S(t)dt+ σS(t)βdWt, S(0) = S0 > 0, (1)

where σ > 0, β ∈ (0, 1), r ≥ 0 is the instantaneous risk free interest rate, q ≥ 0 is the
continous dividend. We underline that if β ∈ (0, 1/2) we choose the unic solution S
that once reached zero it remains zero for all subsequent times. In order to discretize
the CEV dynamics, we construct a tree by using the technique introduced by Nelson
and Ramaswamy in [4] and developed in [1] in the case of the CIR process.

2 The tree

Hereafter, we set T > 0 a given horizon (the option maturity time) and for a fixed
number N of discretization intervals of [0, T ], h = T/N will denote the common
length.
The simple binomial tree is built through a transformation of (St)t≥0 which gives a
unitary diffusion coefficient. According to the Itô’s formula, the transformation is

ψβ(s) :=
s1−β

σ(1 − β)
, s ≥ 0 .
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ψβ is twice differentiable in (0,+∞) and is invertible in [0,+∞), with inverse

gβ(y) = (σ(1 − β)y)
1

1−β , y ≥ 0 .

Setting Yt = ψβ(St), the Itô’s formula would give

dYt = (drift)dt+ dWt.

The term “dWt” gives the foremost contribution to the local movement of Yt and
the standard random walk (binomial recombining tree) for the Brownian motion at
times ih, i = 0, 1, . . . , N , lives on the lattice

(2k − i)
√
h, k = 0, 1, . . . , i.

So, we construct the tree associated to Yt = ψβ(St) as follows:

yi,k := ψβ(S0) + (2k − i)
√
h , i = 0, . . . , N, k = 0, . . . , i.

This is the binomial recombining lattice we start from. Actually, here the application
of the Itô’s formula is just heuristic – it cannot be really applied (S can reach 0 and
ψβ is not twice differentiable at 0) but we don’t care because we will never use the
diffusion Y : we just start from the lattice above. In fact, since at least heuristically
one has St = gβ(Yt), the tree for (St)t∈[0,T ] is built by the inverse positions gβ(yi,k)
on the nodes (i, k) such that yi,k ≥ 0. So, we define

si,k :=
(

S1−β
0 + σ(1 − β)(2k − i)

√
h

)
1

1−β 1{S
1−β
0 +σ(1−β)(2k−i)

√
h≥0}, (2)

i = 0, . . . , N, k = 0, . . . , i.

where 1 denotes the indicator function. We stress that i represents the discretized
time whereas k gives the position at time step i. Note moreover that the above
lattice is binomial recombining, since the yi,k’s are. Observe finally that, for i large,
the tree may collapse at 0.

The jump rule is now specified in order that the first local moment best fit the one
computed on the CEV dynamics (1) (see the forthcoming formulas (6)).
The down and up jump positions are defined as follows: starting from node (i, k),
whose position on the tree is si,k, we set the down-jump node (i + 1, kd(i, k)) and
the up-jump node (i+ 1, ku(i, k)) as

kd(i, k) = max{k∗ : 0 ≤ k∗ ≤ k and si,k + (r − q)si,kh ≥ si+1,k∗}, (3)

ku(i, k) = min{k∗ : k + 1 ≤ k∗ ≤ i+ 1 and si,k + (r − q)si,kh ≤ si+1,k∗}, (4)

with the understanding kd(i, k) = 0 and/or ku(i, k) = i + 1 if the associated set is
empty. This setting is called the multiple jump approach. This is because, differently
from the celebrated Cox-Ross-Rubinstein binomial discretization [2] of the Black and
Scholes model, the jumps are not necessarily the closest down/up node at time i+1:
here, in principle, one can have kd(i, k) < k and ku(i, k) > k + 1. This is done in
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order to account for non-constant drift and diffusion coefficients, which might bring
the process “far away”.
The probability that the discrete process jumps to (i+1, ku(i, k)) starting from (i, k)
is set as

pi,k = 0 ∨ (r − q)si,kh+ si,k − si+1,kd(i,k)

si+1,ku(i,k) − si+1,kd(i,k)

∧ 1 , (5)

and then, the jump to (i+ 1, kd(i, k)) happens with probability 1 − pi,k.

We set (Sh
i )i=0,...,N the Markov chain running on the above lattice structure, that is:

• Sh
0 = S0;

• at time ih, the state space for Sh
i is given by {si,k : k = 0, . . . , i};

• given the current position si,k at time ih, the transition law at time (i + 1)h
is defined as

Πh(si,k; dx) := pi,kδ{si+1,ku(i,k)}(dx) + (1 − pi,k)δ{si+1,kd(i,k)}(dx),

δ{a} denoting the Dirac mass in a ∈ R.

The main fact of the above construction is that, for h small, it allows for an accurate
approximation of the first and second local moment computed on the CEV diffusion
(1): for every i = 0, . . . , N − 1 and k = 0, . . . , i, one can prove that

∫

(x− si,k) Πh(si,k; dx) = (r − q)si,k h+ o(h),
∫

(x− si,k)2 Πh(si,k; dx) = σsβ
i,k h+ o(h).

(6)

In fact, the following result holds.

Theorem 1. Let (S̄h
t )t∈[0,T ] denote the continuous-time process defined through the

linear interpolation (in time) of the chain (Sh
i )i=0,...,N :

S̄h
t = Sh

i +
t− ih

h

(

Sh
i+1 − Sh

i ), t ∈ [ih, (i+ 1)h], i = 0, . . . , N − 1. (7)

Then, if β ∈ [1/2, 1), the process (S̄h
t )t∈[0,T ] converges in law in the path space

C([0, T ]; [0,+∞)) to the CEV diffusion process (St)t∈[0,T ] in (1).

The proof can be developed following Nelson and Ramaswamy [4] or the classical
approach by Stroock and Varadhan [5]. A detailed proof can be found in [3].

3 The dynamic programming algorithm

We are interested in pricing European and American options with maturity T > 0
written on the CEV model (1) for the underlying asset price. We denote by Ψ the
function giving the payoff. For example, for vanilla options one has

call option: Ψ(x) = (x−K)+,

put option: Ψ(x) = (K − x)+,

K denoting the strike price.
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European Case

The price at time 0 of the European option with maturity T and payoff Ψ(ST ) is
given by

U0 = E

[

e−rT Ψ(ST )].

The numerical computation of U0 is done via the Markov chain (Sh
i )i=0,...,N , through

the approximated price
Ũ0 = E

[

e−rT Ψ(Sh
N)] .

By using the backward approach, Ũ0 = ũ0(S0), where ũ0 is the solution of the
following simple dynamic programming algorithm:







ũN(s) = Ψ(s), s ∈ {sN,k : k = 0, 1, . . . , N} ;

ũi(s) = e−rh
E(ũi+1(S

h
i+1) | Sh

i = s), s ∈ {si,k : k = 0, 1, . . . , i}.

By inserting the specifications (3), (4) and (5) of the tree, one can write







ũN(sN,k) = Ψ(sN,k), k ∈ {0, 1, . . . , N} ;

ũi(si,k) = e−rh
[

ũi+1(si+1,ku(i,k))pi,k + ũi+1(si+1,kd(i,k))(1 − pi,k)
]

, k ∈ {0, 1, . . . , i}.

American Case

The price at time 0 of the American option with maturity T and payoff (Ψ(St))t∈[0,T ]

is given by
U0 = supτ∈T0,T

E

[

e−rτ Ψ(Sτ )] ,

where Tt,T is the set of all the stopping times taking values in [t, T ]. The price U0 is
then approximated by means of the price computed on the Markov chain, that is,

Ũ0 = supτ∈T̃0,N
E

[

e−rτ Ψ(Sh
τ )] ,

where T̃j,N is the set of the stopping times taking values in {j, . . . , N}. By using the
standard theory of optimal stopping, one gets Ũ0 = ũ0(S0), where ũ is the solution
of the following dynamic programming algorithm:











ũN(s) = Ψ(s), s ∈ {sN,k : k = 0, 1, . . . , N} ;

ũi(s) = max
(

Ψ(s) , e−rh
E(ũi+1(S

h
i+1) | Sh

i = s)
)

, s ∈ {si,k : k = 0, 1, . . . , i}.

By inserting (3), (4) and (5), one has



















ũN(sN,k) = Ψ(sN,k), k ∈ {0, 1, . . . , N} ;

ũi(si,k) = max
(

Ψ(si,k) , e−rh
[

ũi+1(si+1,ku(i,k))pi,k + ũi+1(si+1,kd(i,k))(1 − pi,k)
]

)

,

k ∈ {0, 1, . . . , i}.
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