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Abstract

In this paper we develop an efficient approach based on a Machine Learning technique which allows

one to quickly evaluate insurance products considering stochastic volatility and interest rate. Specifically,

following De Spiegeleer et al. [10], we apply Gaussian Process Regression to compute the price and the

Greeks of a GMWB Variable Annuity. Starting from observed prices previously computed by means of a

Hybrid Tree PDE approach for some known combinations of model parameters, it is possible to approximate

the whole target function on a bounded domain. The regression algorithm consists of two main steps:

algorithm training and evaluation. In particular, the first step is the most time demanding, but it needs to

be performed only once, while the prediction step is very fast and it requires to be performed only when

evaluating the function. The developed method, as well as for the calculation of prices and Greeks, can also

be employed to compute the no-arbitrage fee, which is a common practice in the Variable Annuities sector.

We consider three increasing complexity models, namely the Black-Scholes, the Heston and the Heston Hull-

White models, which extend the sources of randomness up to consider stochastic volatility and stochastic

interest rate together. Numerical experiments show that the accuracy of the estimated values is high, while

the computational cost is much lower than the one required by a direct calculation with standard approaches.

Finally, we stress out that the analysis is carried out for a GMWB annuity but it could be generalized to

other insurance products. Machine Learning seems to be a very promising and interesting tool for insurance

risk management.
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1 Introduction

Variable Annuities are tax deferred investment contracts with insurance coverage. The popularity of such

products has been steadily increasing in the past years and the sales in the United States in 2017 amounted

to over $116 billions, which represents almost half of the total annuity sales in 2017 (Insured Retirement

Institute [19]).

In this paper, we focus on a particular Variable Annuity, which leads the living benefit riders (see [26]):

the Guaranteed Minimum Withdrawal Benefit (GMWB). The contract is initiated by making a lump sum

payment which is then invested in risky assets, usually a mutual fund. The benefit base, or guarantee

account balance, is initially set to the amount of the premium. The holder of the policy (PH) is entitled to

withdraw a fixed amount at contract anniversaries, even if the risky account has declined to zero. The PH

may withdraw more than the guaranteed amount upon payment of a penalty. When the contract reaches

maturity, the PH receives a final payoff depending on the residual risky account and on the final base benefit

and the contract ends.

To manage these products, insurance companies resort to hedging techniques, which require the valuation

and the calculation of the Greeks for a large number of policies. These products are fairly standardized and

once a GMWB is launched it may remain on company’s books for decades (see [26]): each company promotes

a limited number of products, which can however vary according to a set of parameters established during the

sale. Therefore, the companies do similar calculations many times, but varying the considered parameters.

Hence, it is decisive that the time needed for all of these calculations is as small as possible.

Researchers have engaged to develop new numerical techniques that are increasingly efficient and less

computationally expensive. For example, Bacinello et al. [1] and Bauer et al. [2] consider Monte Carlo

methods to price and compute the Greeks of GMWB products. Chen and Forsyth [7] and Donnelly et

al. [12] introduce partial derivative equations, while Luo and Shevchenko [21, 22] apply Gauss–Hermite

integration quadrature. Yang, Dai and Liu [9] and Costabile [8] propose pricing methods based on the use

of trees. Later, Ignatieva et al. [18] consider the Fourier Space Time-Stepping algorithm. More recently,

Goudenège et al. apply the Hybrid PDE method to GLWB and GMWB pricing and Greeks calculation

[14, 15].

However, as these techniques are more and more efficient, calculation times remain non-negligible, espe-

cially when the stochastic model considered to represent the market dynamics includes many random factors,

such as stochastic volatility ans stochastic interest rate.

The computations that insurance companies face depend on model parameters and contract parameters

which are only few and vary in a small range. This context is similar to what happens in the derivatives

world where there are many repeated evaluations of standardized products. To overcome these difficulties,

an innovative solution to speed up derivative pricing has been proposed by De Spiegeleer et al. [10]. They

suggest to apply Machine Learning techniques to predict the price of the derivatives from a training set made

of observed prices for particular combinations of model parameters. In particular, they consider Gaussian

Process Regression (GPR) which is a Bayesian non-parametric technique. All the information needed to

compute a function (the price or the Greeks of a derivative) can be summarized in a training set, then the

algorithm learns the function and it can be applied to make predictions.

In the last few years, Machine Learning techniques have been employed in the insurance field. Specif-

ically, Gan [13] studies the pricing of a large portfolio of Variable Annuities in the Black-Scholes model

using clustering and GPR. Unlike what De Spiegeleer et al. do, Gan considers fixed values for the market

parameters (interest rate and volatility), having to repeat the procedure at each change in market conditions.

Other applications of Machine Learning techniques in the insurance field are due to Deprez et al. [11] who
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employ regression tree boosting machine to model mortality. More recently, Wüthrich [27] employs Neural

Networks to extend Mack’s chain-ladder method.

In this paper we show that Machine Learning techniques can be applied in the Variable Annuities frame-

work and in particular in the scope of GMWB products as far as pricing and Greeks calculation is considered.

In particular, we consider three complexity-increasing models as stochastic framework, namely the Black-

Scholes model, the Heston model and the Heston Hull-White model. We show that, in each of these models,

it is possible to develop a regression method capable of predicting the prices and the Greeks of each policy,

for each combination of market and contract parameters within the training range. The training procedure

needs to be performed only once and the developed regression can be applied under various market condi-

tions and for different GMWB contracts. Moreover we also show that GPR can be applied effectively to

compute the no-arbitrage fee, that is the cost that makes the contract fair under a risk neutral probability.

Numerical tests show that the computational time can be reduced of several factors with a small loss of

accuracy. Moreover, the use of the BCD method (see Grippo and Sciandrone [16]) allows us to manage a

large amount of input data, thus improving the numerical results.

The reminder of the paper is organized as follows. In Section 2 we present the GMWB contract and we

explain how to evaluate it. In Section 3 we briefly review the GPR method and we explain how to apply it

in the GMWB scope. In Section 4 we report the results of some numerical tests. Finally, Section 5 draws

the conclusions.

2 The GMWB Contract and its Evaluation

In this Section we present the GMWB contract and the evaluation method. For a comprehensive treatment

we refer to Chen and Forsyth [7] and to Goudenège et al. [15].

2.1 The GMWB Contract

At contract inception the PH pays with a lump sum the premium P to the insurance company. Then, the

PH is entitled to perform withdrawals during each contract anniversary, starting from t = 1. When the

contract reaches maturity at t = T , the PH performs the last withdrawal, he receives a final payoff and the

contract ends.

The contract evolution is described by two state parameters, the account value (At, A0 = P ) and the

base benefit (Bt, B0 = P ), which change during the contract life according to the underlying fund value St

and to the PH withdrawals. Specifically, during the time between two consecutive contract anniversaries,

the base benefit Bt does not change, while the account value At follows the same dynamics of St, with the

exception that some fees, determined by the parameter α, are be subtracted from At:

dAt =
At

St
dSt − αAtdt. (2.1)

During the contract anniversaries, the PH is entitled to withdraw from his account a minimum amount

G which is usually equal to P/T . Let us denote A
t
(−)
i
, B

t
(−)
i

the contract state variables just before the i-th

contract anniversary occurs at time ti = i, and A
t
(+)
i
, B

t
(+)
i

the same state variables just after ti occurs.

Moreover, let Wi represent the amount withdrawn at time ti, which is required to be non-negative and

smaller than the base benefit B
t
(−)
i

.

If the amount withdrawn satisfies Wi ≤ G, then there is no penalty imposed, whereas, if Wi > G,

a proportional penalty charge κ (Wi −G) is imposed, which reduces the amount actually received by the
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PH. Therefore, the PH may not receive all the money he withdraws from the risky asset account: let

fi (Wi) :
[
0, B

t
(−)
i

]
→ R be the function of Wi denoting the cash flow received by the PH due to the

withdrawal at time ti, that is given by the following expression:

fi (Wi) =

{
Wi if Wi ≤ G
Wi − κ (Wi −G) if Wi > G.

The contract state variables just after the withdrawal are given by:

A
t
(+)
i

= max
(
A

t
(−)
i
−Wi, 0

)
and

B
t
(+)
i

= B
t
(−)
i
−Wi

After the last withdrawal, the PH receives the final payoff, which is worth

FP = max (AT , (1− κ)BT ) , (2.2)

and the contract terminates.

As far as the determination of Wi is concerned, we assume that the PH selects Wi in order to maximize

his total wealth, that is

Wi = argmax

wi∈
[
0,B

t
(−)
i

] V
(

max
(
A

t
(−)
i
− wi, 0

)
, B

t
(−)
i
− wi, vti , rti , t

+
i

)
+ fi (wi) , (2.3)

where vti is the volatility of the underlying fund and rti is the interest rate, which may change or be constant

depending on the considered model.

Thus, the value V of the GMWB contract at time t is completely settled by the account value A, the

base benefit B and, in case of stochastic volatility, by the volatility level vt.

2.2 The Stochastic Model for the Underlying and the GMWB Evaluation

For seek of comparison we consider three possible stochastic models for the underlying fund St, namely the

Black-Scholes model, the Heston model (Heston [17]) which provides stochastic volatility and the Heston

Hull-White model (see Kammeyer and Kienitz [20]) which provides both stochastic volatility and stochastic

interest rate.

The dynamics of St under a risk neutral probability in the Black-Scholes model is given by

dSt = rStdt+ σStdZt,

where Z is a Brownian motion. As opposed to the Black-Scholes model, the Heston model includes stochastic

volatility. In particular, the dynamics of St and of the volatility process vt are given by{
dSt = rStdt+

√
vtStdZ

S
t

dvt = kv (θv − vt) dt+ ωv
√
vtdZ

v
t ,

(2.4)

where ZS and Zv are Brownian motions such that d
〈
ZS
t , Z

v
t

〉
= ρvdt.

As opposed to the Black-Scholes and to the Heston model, the Heston Hull-White model includes both

stochastic volatility and stochastic interest rate. In particular, the dynamics of St, of the interest rate process

rt, and of the volatility process vt are given by
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
dSt = rtStdt+

√
vtStdZ

S
t

drt = kr (θr (t)− rt) dt+ ωrdZ
r
t ,

dvt = kv (θv − vt) dt+ ωv
√
vtdZ

v
t ,

(2.5)

where ZS , Zv and Zr are Brownian motions such that d
〈
ZS
t , Z

v
t

〉
= ρvdt, d

〈
ZS
t , Z

r
t

〉
= ρrdt and d 〈Zv

t , Z
r
t 〉 =

0. Here θr (t) is a deterministic function which is completely determined by the market values of the zero-

coupon bonds by calibration (see Brigo and Mercurio [6]). For seek of simplicity, we assume that the market

price of a zero-coupon bond at time t with maturity t̄ is given by PM (t, t̄) = e−r0(t̄−t), the so-called flat

curve case.

The parameters which identify the Black-Scholes model are the interest rate r and the volatility parameter

σ. The parameters which identify the Heston model are the interest rate r, the initial volatility v0, the rate

of mean reversion kv, the long run variance θv, the volatility of volatility ωv and the correlation between the

Brownian motions ρv. The parameters which identify the Heston Hull-White model are the initial interest

rate r0, the rate of mean reversion kr, the volatility of the interest rate ωr, the correlation ρr, the initial

volatility v0, the rate of mean reversion kv, the long run variance θv, the volatility of volatility ωv and the

correlation ρv.

There are multiple approaches to evaluate the GMWB contract and to compute the Greeks. As far as

the Black-Scholes model is considered, we apply the finite difference PDE method already employed by Chen

and Forsyth [7] in the GMWB framework. As far as the Heston model is considered, we apply the Hybrid

PDE method, introduced by Briani et al. [4] and already employed by Goudenège et al. [15] in the GMWB

framework. In short, the Hybrid PDE method exploits a recombining tree to describe the possible evolution

of the volatility process and solves a two-dimensional PDE at each node, assuming the value of the volatility

as locally constant. With regard to the Heston Hull-White model, we consider a multidimensional version

of the Hybrid PDE method, introduced by Briani et al. [5] never applied before in the Variable Annuities

framework. In short, this extension uses a multidimensional tree to describe the volatility and interest rate

processes together and solves a two-dimensional PDE at each node, assuming the values of the volatility and

of the interest rate as locally constant.

3 Gaussian Process Regression for GMWB

3.1 Gaussian Process Regression

In this Section, we present a brief review of Gaussian Process Regression and for a comprehensive treatment

we refer to Rasmussen and Williams [25].

Gaussian Process Regression (also known as GPR) is a class of non-parametric kernel-based probabilistic

models which represents the input data as the random observations of a Gaussian stochastic process. The

most important advantage of this approach in relation to other parametric regression techniques is that

it is possible to effectively exploit a complex dataset which may consist of points sampled randomly in a

multidimensional space.

In general, a Gaussian process G is a collection of random variables defined on a common probability

space (Ω,F , P ), any finite number of which have consistent joint Gaussian distributions. We are interested

in Gaussian processes for which the random variables in G are indexed by a point x ∈RD, D ∈ N. Therefore,

for all x ∈ RD, G (x, ·) : Ω → R is a Gaussian random variable and if X={xi|i = 1, . . . , n} ⊂ RD then
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(G (x1) , . . . ,G (xn))
>

is a random Gaussian vector. Moreover, a Gaussian process is fully specified by its

mean function µ (x) : RD → R and by its covariance function k (x,x′) : RD × RD → R.

Now, let us consider a training set D of n observations (the input data), D = {(xi, yi) |i = 1, . . . , n} where

X = {xi|i = 1, . . . , n} ⊂ RD denotes the set of input vectors and Y = {yi|i = 1, . . . , n} ⊂ R denotes the set

of scalar outputs. These observations are modeled as the realization of the sum of a Gaussian process and a

noise source. Specifically,

yi = fi + εi (3.1)

where {fi = G (xi) |i = 1, . . . , n} is a Gaussian process and {εi|i = 1, . . . , n} are i.i.d. random variables such

that εi ∼ N
(
0, σ2

n

)
. Moreover, the distribution of f = (f1 . . . fn) is assumed to be given by

f ∼ N (0,K (X,X)) , (3.2)

where K (X,X) is a n× n matrix with K (X,X)i,j = k (xi,xj). Thus

y ∼ N
(
0,K (X,X) + σ2

nIn
)
, (3.3)

where In is the n× n identity matrix.

Now, in addition, let us consider a test set X̃ of m points {x̃j |j = 1, . . . ,m}. The realizations f̃j = G (x̃j)

are not known but rather we want to estimate them considering the observed realizations of G in D. The a

priori joint distribution of y and f̃ =
(
f̃1 . . . f̃m

)
is given by

[
y

f̃

]
∼ N

[ 0n

0m

]
,

 K (X,X) + σ2
nIn K

(
X, X̃

)
K
(
X̃,X

)
K
(
X̃, X̃

)  (3.4)

where K
(
X̃, X̃

)
is a m×m matrix given by K

(
X̃, X̃

)
i,j

= k (x̃i, x̃j), K
(
X, X̃

)
is a n×m matrix given

by K
(
X, X̃

)
i,j

= k (xi, x̃j) and K
(
X̃,X

)
is a m× n matrix given by K

(
X̃,X

)
i,j

= k (x̃i,xj).

Since we know the values for the training set, we can consider the conditional distribution of f̃ given y.

It is possible to prove that f̃ |X̃,y, X follows a Gaussian distribution given by

f̃ |X̃,y, X ∼ N
(
E
[
f̃ |X̃,y, X

]
, Cov

[
f̃ |X̃,y, X

])
, (3.5)

where

E
[
f̃ |X̃,y, X

]
= K

(
X̃,X

) [
K (X,X) + σ2

nIn
]−1

y (3.6)

and

Cov
[
f̃ |X̃,y, X

]
= K

(
X̃, X̃

)
−K

(
X̃,X

) [
K (X,X) + σ2

nIn
]−1

K
(
X, X̃

)
. (3.7)

Therefore, a natural choice consists in predicting the values f̃ through E
[
f̃ |X̃,y, X

]
. Moreover, also confi-

dence intervals for such a prediction can be computed.

The computation in (3.6) requires the knowledge of the covariance function K and of the noise variance

σ2
n. A typical used covariance function is the Automatic Relevance Determination Squared Exponential

(ARD SE) kernel, which is given by

k (x,x′) = σ2
f exp

(
−1

2

D∑
k=1

(xk − x′k)
2

l2k

)
, (3.8)
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where σ2
f is called the signal variance and lk is called the length-scale along the k direction. The parameters

σ2
f , l1, . . . , lD of the kernel function and σ2

n of the noise are called hyperparameters and need to be estimated.

A common approach is to consider the maximum likelihood estimates which can be obtained by maximizing

the log-likelihood function of the training data, that is by maximizing the following function:

− 1

2
log
(
det
(
K (X,X) + σ2

nIn
))
− 1

2
y>
[
K (X,X) + σ2

nIn
]−1

y. (3.9)

Generally, one assumes the mean of the Gaussian process G to be zero, but this is not necessary. Con-

versely, it may be interesting to model the mean by using a deterministic function µ (X). In this case, the

predictive value becomes

E
[
f̃ |X̃,y, X

]
= µ

(
X̃
)

+K
(
X̃,X

) [
K (X,X) + σ2

nIn
]−1

(y − µ (X)) . (3.10)

The function µ can be modeled using a set of basis functions, such as polynomials. In particular, when

we consider a linear basis, the function µ is approximated via h (x)β, where h (x) = (1, x1, . . . , xD) and

β ∈ Rn+1 is a vector of coefficients estimated via the observed data. We stress out that in this paper we

employ an ARD SE kernel and a linear basis function.

The development of the GPR model can be divided in the training step and the evaluation step (also

called testing step). The training step only requires the knowledge of the training set D and it consists in

estimating the β vector, the hyperparameters and the matrix product A =
[
K (X,X) + σ2

nIn
]−1

(y − µ (X)).

The evaluation step can be computed only after the training step has been accomplished and it consists in

obtaining the predictions via the computation of µ
(
X̃
)

+ K
(
X̃,X

)
A. We stress out that the training

step is independent of the test set X̃. Thus one can store the values computed during the training step and

perform the evaluation step many times with a small computational cost, which is O (n ·m).

Finally, we observe that the computation of the product matrix A (exact method) can be quite expensive

since it involves the computation and the storage of a n × n matrix. Thus, for a large value of n (say

n > 10000), using the exact method for parameter estimation and making predictions can lead to technical

difficulties. One of the approximation methods to overcome the storage of a large matrix is the Block

Coordinate Descent (BCD) method (Bo and Sminchisescu [3]). The BCD method consists in computing A

as the solution of the following optimization problem

A = argminB

1

2
B>

[
K (X,X) + σ2

nIn
]
B −B> (y − µ (X)) , (3.11)

which can be solved by means of the block coordinate descent algorithm without the storage of any large

matrix (see Grippo and Sciandrone[16]).

3.2 Applying the GPR to the GMWB Contract

We aim to to apply the GPR method to GMWB products to speed up the computation of the price and of

the Greeks. The modeling process starts by computing a training set D. The predictor set X consists of n

combinations of the product, market and model parameters. Specifically, as far as the Black-Scholes model

is considered, the predictors are r, σ, α and κ. When the Heston model is considered, the predictors are r,

v0, kv, θv, ωv, ρv, α and κ. When the Heston Hull-White model is considered, the predictors are r, kr, ωr,

ρr v0, kv, θv, ωv, ρv, α and κ. We stress out that we can avoid considering the premium P as a predictor

since the price V of the GMWB contract is directly proportional to P, that is V/P does not depend on P .

Similarly Greeks can be obtained from the Greeks computed for a particular value of P : for example, one

can prove that ∆ does not depend on the considered value of P . Moreover we do not consider the contract
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maturity among the predictors since this is a discrete parameter which usually varies in a small set (usually

T = 5, 10 or 20) and one can compute an independent GPR for each value of T .

Pseudo-random combinations are sampled uniformly over a fixed range for each parameter. Specifically,

n combinations of the parameters are sampled through the Faure sequence (Niederreiter [24]) which permits

to cover efficiently all the domain of the parameters and yields better results than a random sample.

For each parameter combination, we compute the price and then, observed data are passed to the GPR

algorithm. Once the training step is finished, the model is ready to estimate prices. In order to asses

the performances of the algorithm, we compare the exact price with the GPR predicted price for both the

training set and a testing set consisting m random combinations of the parameters. The same procedure is

performed for the Greeks.

In the scope of Variable Annuities, calculating the no-arbitrage fee is a common practice. In practice, this

means computing the particular value of α which makes the initial value of the policy equal to the premium

and thus it is also known as the fair cost of the policy. This value is usually computed by employing the

secant method, seeking to equate the initial premium and the initial policy value. Once we have a GPR

estimator, the search for this value can be carried out very efficiently using the estimator to evaluate the

price of the function during the various steps of the secant algorithm.

4 Numerical Results

In this Section we report some numerical results. Specifically, in the first test we show the accuracy of the

PDE and of the Hybrid PDE algorithms in pricing and in computing Delta and the no-arbitrage fees in the

three stochastic models. Subsequently, we try to replicate the results of De Spiegeleer et al. [10], applying

the method in the case of a put option. Then, in the following two tests, we apply the GPR method to

predict the price and the Greek ∆ of a GMWB contract respectively. Finally, in the last test, we apply the

GPR method to predict the no-arbitrage fee. The PDE and Hybrid PDE algorithms have been implemented

in C++, whereas the regression algorithm has been implemented using MATLAB and computations have

been performed on a PC equipped with 8 GB of RAM and a 2.5GHz i5-7200u processor.

Let Y be the target function which we want to predict (price, Greek or no-arbitrage fee). The performance

of the GPR algorithm is measured in terms of the following indicators which depend on the maximum

and average absolute and relative error. Specifically, we compute the RMSE (Root Mean Squared Error)

RMSE =
√

1
m

∑m
i=1 (Y (xi)− YGPR (xi))

2
, the RMSRE (Root Mean Squared Relative Error) RMSRE =√

1
m

∑m
i=1

(
Y(xi)−YGPR(xi)

Y(xi)

)2

, the MaxAE (Maximum Absolute Error) MaxAE = maxi |Y (xi)− YGPR (xi)|

and the MaxRE (Maximum Relative Error) MaxRE = maxi

∣∣∣Y(xi)−YGPR(xi)
Y(xi)

∣∣∣ .
4.1 Testing PDE and HPDE methods

We show the accuracy of the considered methods, which are involved in the computation of the data employed

in both the training and testing steps. We stress out that we compute the results by means of the finite

difference PDE method in the case of the Black-Scholes model and by means of the Hybrid PDE method in

the reminder models. Input parameters are reported in Tables 1, 2 and 3 while results are available in Table

4. In particular we compute the price, the Delta and the no-arbitrage fee considering several configurations

with increasing number of time and space steps (see Goudenège et al. [14, 15] for further details). Numerical

results suggested that a few steps is enough to obtain accurate values for all the three stochastic models.

The computational times are very small for the Black-Scholes model, they increase in the Heston model and
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Name Symbol Value

Premium P 100

Maturity T 10 years

Interest rate r 0.02

Initial volatility σ 0.245

Fees α 0.05

Penalty κ 0.05

Table 1: The parameters employed when considering the Black-Scholes model.

Name Symbol Value

Interest rate r 0.02

Initial volatility v0 0.06

Rate of mean reversion kv 2.00

Long run variance θv 0.06

Volatility of volatility ωv 0.60

Correlation ρv −0.55

Table 2: The parameters employed when considering the Heston model. Contract parameters are the same

as in Table 1.

they become considerable in the Heston Hull-White model. For this reason we propose to use the GPR

technique.

4.2 Put options

Let us consider the case of a Put option, just as done by De Spiegeleer et al. [10]. In particular, we focus on

the Heston and on the Heston Hull-White models. The fixed values and the ranges for the input parameters

are reported in Tables 5 and 6. Results are shown in Table 7.

4.3 Pricing Results

We test the ability of the GPR model to predict the price of a GMWB contract, that is the vector y which

represents the observed prices of a GMWB contract.

Tables 8, 9 and 10 report the ranges for the input parameters. The GPR algorithm has been trained

considering n = 1250, 2500, 5000, 10000, or 20000 combinations of parameters. The training method is the

exact one for n < 20000 and otherwise is the BCD method. The regression model has been tested on both

input data and m = 20000 additional parameters combinations sampled randomly. Numerical results are

reported in Table 11 while the scatter plot of the estimation errors is shown in Figure 4.2.

4.4 Greeks Results

We test the ability of the GPR model to predict the Greeks of a GMWB contract. In particular, we focus on

the first derivative ∆, which is crucial in hedging. Thus, in this numerical experiment, the vector y represents
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Name Symbol Value

Initial interest rate r0 0.02

Rate of mean reversion kr 0.50

Volatility of interest rate ωr 0.05

Correlation ρr 0.20

Initial volatility v0 0.06

Rate of mean reversion kv 2.00

Long run variance θv 0.06

Volatility of volatility ωv 0.60

Correlation ρv −0.55

Table 3: The parameters employed when considering the Heston Hull-White model. Contract parameters

are the same as in Table 1.

Black-Scholes model

Time and space steps 125× 125 250× 250 500× 500 1000× 1000

Price 100.58
(3.1e−2)

100.59
(5.6e−2)

100.59
(2.7e−1)

100.59
(4.5e−1)

Delta 0.3125
(3.1e−2)

0.3124
(5.6e−2)

0.3125
(2.7e−1)

0.3125
(4.5e−1)

No-arbitrage fee 541.50
(8.1e−2)

542.69
(1.8e−1)

543.02
(7.0e−1)

543.19
(1.7e+0)

Heston model

Time and space steps 125× 125 250× 250 500× 500 1000× 1000

Price 99.37
(9.2e−2)

99.43
(2.6−1)

99.44
(1.3e+0)

99.45
(7.2e+0)

Delta 0.3274
(9.2e−2)

0.3298
(2.6−1)

0.3306
(1.3e+0)

0.3310
(7.2e+0)

No-arbitrage fee 456.28
(3.5−1)

459.60
(1.5e+0)

460.65
(7.2e+0)

461.11
(4.9e+1)

Heston Hull-White model

Time and space steps 125× 125 250× 250 500× 500 1000× 1000

Price 102.31
(1.2e+0)

102.33
(1.6e+1)

102.34
(2.0e+2)

102.33
(3.0e+3)

Delta 0.3225
(1.2e+0)

0.3245
(1.6e+1)

0.3252
(2.0e+2)

0.3255
(3.0e+3)

No-arbitrage fee 701.73
(1.1e+1)

703.59
(9.8e+2)

703.68
(1.2e+3)

703.80
(1.8e+4)

Table 4: PDE and Hybrid PDE computation results. The values in brackets are the computational times

measured in seconds. The no-arbitrage fee is expressed in bps.
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Name Symbol Range

Spot S0 100

Dividend q [0.00, 0.03]

Interest rate r [0.01, 0.02]

Initial volatility V0 [0.02, 0.10]

Rate of mean reversion kv [1.4, 2.6]

Long run variance θv [0.02, 0.10]

Volatility of volatility ωv [0.45, 0.75]

Correlation ρv [−0.7,−0.4]

Maturity T
[
11
12
, 1
]

Strike K [70, 130]

Table 5: The range of the parameters for Put options when considering the Heston model.

Name Symbol Range

Spot S0 100

Dividend q [0.00, 0.03]

Initial interest rate r0 [1.4, 2.6]

Rate of mean reversion kr [0.02, 0.10]

Volatility of interest rate ωr [0.45, 0.75]

Correlation ρr [−0.7,−0.4]

Initial volatility V0 [0.02, 0.10]

Rate of mean reversion kv [1.4, 2.6]

Long run variance θv [0.02, 0.10]

Volatility of volatility ωv [0.45, 0.75]

Correlation ρv [−0.7,−0.4]

Maturity T
[
11
12
, 1
]

Strike K [70, 130]

Table 6: The range of the parameters for Put options when considering the Heston Hull-White model.

Figure 4.1: Out-of-sample price predictions with a GPR model trained on 10000 points (Black-Scholes model

on the left, Heston model in the middle and Heston Hull-White on the right).
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Put option pricing (Heston model)

European American

Size of training set 5000 10000 20000 5000 10000 20000

RMSE 1.99e-02 1.73e-02 1.55e-02 2.47e-02 2.12e-02 2.02e-02

In-sample RMSRE 3.91e-03 3.11e-03 2.78e-03 3.88e-03 2.89e-03 2.82e-03

prediction MaxAE 1.87e-01 2.16e-01 2.47e-01 2.45e-01 3.08e-01 2.88e-01

MaxRE 9.47e-02 5.60e-02 4.77e-02 7.56e-02 3.41e-02 3.34e-02

RMSE 2.06e-02 1.69e-02 1.50e-02 2.57e-02 2.10e-02 1.94e-02

Out-of-sample RMSRE 4.68e-03 3.48e-03 2.88e-03 4.46e-03 3.10e-03 2.84e-03

prediction MaxAE 2.72e-01 2.39e-01 2.12e-01 5.64e-01 4.59e-01 3.91e-01

MaxRE 1.71e-01 9.42e-02 6.22e-02 1.39e-01 7.09e-02 4.89e-02

Put option pricing (Heston Hull-White model)

European American

Size of training set 5000 10000 20000 5000 10000 20000

RMSE 2.13e-02 1.97e-02 1.84e-02 2.56e-02 2.42e-02 2.17e-02

In-sample RMSRE 4.47e-03 4.24e-03 3.81e-03 4.16e-03 3.61e-03 3.18e-03

prediction MaxAE 1.87e-01 2.40e-01 2.14e-01 2.44e-01 3.66e-01 2.96e-01

MaxRE 7.03e-02 8.16e-02 6.03e-02 5.30e-02 5.51e-02 5.49e-02

RMSE 2.27e-02 2.02e-02 1.85e-02 2.96e-02 2.56e-02 2.26e-02

Out-of-sample RMSRE 5.13e-03 4.23e-03 3.73e-03 5.07e-03 3.81e-03 3.26e-03

prediction MaxAE 3.05e-01 2.54e-01 2.08e-01 4.40e-01 4.07e-01 3.40e-01

MaxRE 1.76e-01 8.34e-02 6.48e-02 1.70e-01 8.31e-02 4.28e-02

Table 7: Performances of the GPR method in computing the price of a Put option.

Name Symbol Range

Premium P 100

Maturity T 10 years

Interest rate r [0.01, 0.03]

Initial volatility σ [0.10, 0.30]

Fees α [0.00, 0.10]

Penalty κ [0.00, 0.20]

Table 8: The range of the parameters when considering the Black-Scholes model.
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Name Symbol Range

Premium P 100

Maturity T 10 years

Interest rate r [0.01, 0.03]

Initial volatility v0 [0.02, 0.10]

Rate of mean reversion kv [1.40, 2.60]

Long run variance θv [0.02, 0.10]

Volatility of volatility ωv [0.45, 0.75]

Correlation ρv [−0.70,−0.40]

Fees α [0.00, 0.10]

Penalty κ [0.00, 0.20]

Table 9: The range of the parameters when considering the Heston model.

Name Symbol Range

Premium P 100

Maturity T 10 years

Initial interest rate r0 [0.01, 0.03]

Rate of mean reversion kr [0.05, 0.75]

Volatility of interest rate ωr [0.005, 0.10]

Correlation ρr [0.05, 0.35]

Initial volatility v0 [0.02, 0.10]

Rate of mean reversion kv [1.40, 2.60]

Long run variance θv [0.02, 0.10]

Volatility of volatility ωv [0.45, 0.75]

Correlation ρv [−0.70,−0.40]

Fees α [0.00, 0.10]

Penalty κ [0.00, 0.20]

Table 10: The range of the parameters when considering the Heston Hull-White model.
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Pricing (Black-Scholes model)

Size of training set 1250 2500 5000 10000 20000

RMSE 3.90e-02 3.46e-02 3.36e-02 3.23e-02 2.83e-02

In-sample RMSRE 3.87e-04 3.44e-04 3.33e-04 3.21e-04 2.81e-04

prediction MaxAE 1.49e-01 1.31e-01 1.64e-01 2.09e-01 1.53e-01

MaxRE 1.43e-03 1.33e-03 1.52e-03 1.69e-03 1.42e-03

RMSE 4.77e-02 3.82e-02 3.44e-02 3.27e-02 2.83e-02

Out-of-sample RMSRE 4.69e-04 3.77e-04 3.41e-04 3.24e-04 2.81e-04

prediction MaxAE 4.84e-01 4.59e-01 3.24e-01 2.74e-01 1.60e-01

MaxRE 3.93e-03 3.62e-03 2.55e-03 2.16e-03 1.41e-03

Speed-up ×25000 ×13000 ×6300 ×3100 ×1700

Pricing (Heston model)

Size of training set 1250 2500 5000 10000 20000

RMSE 4.17e-02 4.08e-02 4.02e-02 4.00e-02 3.69e-02

In-sample RMSRE 4.12e-04 4.03e-04 3.97e-04 3.94e-04 3.64e-04

prediction MaxAE 1.79e-01 1.84e-01 2.34e-01 2.68e-01 2.26e-01

MaxRE 1.78e-03 1.85e-03 2.30e-03 2.61e-03 2.20e-03

RMSE 7.49e-02 5.91e-02 4.67e-02 4.31e-02 3.78e-02

Out-of-sample RMSRE 7.33e-04 5.79e-04 4.63e-04 4.23e-04 3.73e-04

prediction MaxAE 8.10e-01 6.28e-01 4.68e-01 3.06e-01 2.28e-01

MaxRE 7.69e-03 5.96e-03 4.51e-03 2.94e-03 2.23e-03

Speed-up ×95000 ×48000 ×24000 ×12000 ×6000

Pricing (Heston Hull-White model)

Size of training set 1250 2500 5000 10000 20000

RMSE 6.60e-02 6.72e-02 7.00e-02 6.96e-02 6.88e-02

In-sample RMSRE 6.21e-04 6.35e-04 6.61e-04 6.58e-04 6.49e-04

prediction MaxAE 2.79e-01 3.16e-01 3.87e-01 5.23e-01 5.59e-01

MaxRE 2.80e-03 3.40e-03 4.16e-03 5.71e-03 6.17e-03

RMSE 7.49e-02 5.91e-02 4.67e-02 4.31e-02 3.78e-02

Out-of-sample RMSRE 7.33e-04 5.79e-04 4.63e-04 4.23e-04 3.73e-04

prediction MaxAE 8.10e-01 6.28e-01 4.68e-01 3.06e-01 2.28e-01

MaxRE 7.69e-03 5.96e-03 4.51e-03 2.94e-03 2.23e-03

Speed-up ×420000 ×210000 ×110000 ×52000 ×26000

Table 11: Performances of the GPR method in computing the price.
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Figure 4.2: Out-of-sample Delta predictions with a GPR model trained on 10000 points (Black-Scholes model

on the left, Heston model in the middle and Heston Hull-White on the right).

Figure 4.3: Out-of-sample no-arbitrage fee predictions with a GPR model trained on 10000 points (Black-

Scholes model on the left, Heston model in the middle and Heston Hull-White on the right).

the observed ∆ of a GMWB contract. Numerical results are reported in Table 12 while the scatter plot of

the estimation errors is shown in Figure 4.1.

4.5 No-arbitrage Fee Results

We test the ability of the GPR model to compute the no-arbitrage fee of a GMWB contract. In this numerical

experiment, is the vector y represent the observed price of a GMWB contract. We employ the secant method

to compute the fair value of α for m = 20000 randomly generated parameters combinations and we compare

the predicted value with the exact one. Numerical results are reported in Table 13 while the scatter plot of

the estimation errors is shown in Figure 4.3.

4.6 Numerical Remarks

Tables 11, 12 and 13 show the performance of the developed approach. Errors are very small in all the

considered cases, indicating that the predictions are very accurate. The most interesting aspect is the gain

in terms of computation time: it is reduced by thousands of times, in particular for the Heston Hull-White

model.

Moreover, Table 14 shows the computational time for the training step. The cost of the training step

depends on both the size of the training step, the considered model and the target function (price or Delta).

We observe that the required time is high when the size of the training set is n = 20000 because in this case
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Delta Computation (Black-Scholes model)

Size of training set 1250 2500 5000 10000 20000

RMSE 4.25e-04 3.79e-04 3.65e-04 3.76e-04 3.71e-04

In-sample RMSRE 1.95e-03 1.84e-03 1.79e-03 1.81e-03 1.89-03

prediction MaxAE 1.99e-03 2.28e-03 2.35e-03 3.26e-03 3.14e-03

MaxRE 1.41e-02 2.00e-02 1.55e-02 2.82e-02 1.99e-02

RMSE 7.67e-04 5.73e-04 4.52e-04 4.10e-04 3.84e-04

Out-of-sample RMSRE 4.05e-03 2.88e-03 2.43e-03 2.06e-03 1.96e-03

prediction MaxAE 1.35e-02 9.79e-03 7.12e-03 5.14e-03 3.65e-03

MaxRE 1.62e-01 9.28e-02 8.36e-02 4.18e-02 3.10e-02

Speed-up ×25000 ×13000 ×6300 ×3100 ×1700

Delta Computation (Heston model)

Size of training set 1250 2500 5000 10000 20000

RMSE 4.26e-04 4.40e-04 4.99e-04 5.37e-04 5.72e-04

In-sample RMSRE 1.97e-03 1.92e-03 2.23e-03 3.34e-03 3.22e-03

prediction MaxAE 2.70e-03 2.61e-03 3.47e-03 4.70e-03 6.37e-03

MaxRE 3.09e-02 2.48e-02 3.93e-02 2.10e-02 1.86e-02

RMSE 1.81e-03 1.25e-03 9.43e-04 8.11e-04 6.64e-04

Out-of-sample RMSRE 1.15e-02 7.94e-03 6.58e-03 4.75e-03 4.20e-03

prediction MaxAE 1.78e-02 1.27e-02 1.26e-02 8.49e-03 8.02e-03

MaxRE 6.82e-01 3.38e-01 3.11e-01 2.07e-01 1.70e-01

Speed-up ×90000 ×44000 ×23000 ×12000 ×6000

Delta Computation (Heston Hull-White model)

Size of training set 1250 2500 5000 10000 20000

RMSE 2.98e-04 5.67e-04 6.92e-04 8.25e-04 8.17e-04

In-sample RMSRE 1.19e-03 2.14e-03 3.53e-03 4.25e-03 3.62e-03

prediction MaxAE 1.49e-03 3.29e-03 4.57e-03 7.32e-03 8.49e-03

MaxRE 1.73e-02 3.12e-02 1.58e-01 2.73e-01 2.48e-01

RMSE 2.38e-03 1.86e-03 1.47e-03 1.19e-03 1.04e-03

Out-of-sample RMSRE 1.08e-02 7.86e-03 7.02e-03 5.63e-03 4.17e-03

prediction MaxAE 2.72e-02 1.83e-02 1.92e-02 1.27e-02 1.15e-02

MaxRE 4.13e-01 3.41e-01 3.22e-01 2.33e-01 2.15e-01

Speed-up ×410000 ×200000 ×100000 ×52000 ×26000

Table 12: Performances of the GPR method in computing Delta.
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No-arbitrage fee Computation (Black-Scholes model)

Size of training set 1250 2500 5000 10000 20000

RMSE 2.79e-04 2.24e-04 1.99e-04 1.83e-04 1.61e-04

RMSRE 1.14e-02 9.80e-03 8.73e-03 8.49e-03 7.46e-03

MaxAE 2.54e-03 1.91e-03 1.29e-03 1.52e-03 1.11e-03

MaxRE 8.87e-02 7.45e-02 6.08e-02 4.83e-02 4.09e-02

Speed-up ×25000 ×13000 ×6300 ×3100 ×1700

No-arbitrage fee Computation (Heston model)

Size of training set 1250 2500 5000 10000 20000

RMSE 4.83e-04 3.71e-04 3.04e-04 2.64e-04 2.26e-04

RMSRE 1.33e-02 1.08e-02 8.91e-03 7.88e-03 7.05e-03

MaxAE 5.14e-03 3.38e-03 2.68e-03 2.63e-03 2.21e-03

MaxRE 1.41e-01 9.26e-02 8.27e-02 7.95e-02 7.30e-02

Speed-up ×96000 ×48000 ×24000 ×12000 ×6100

No-arbitrage fee Computation (Heston Hull-White model)

Size of training set 1250 2500 5000 10000 20000

RMSE 1.02e-03 8.33e-04 7.19e-04 6.15e-04 5.62e-04

RMSRE 2.32e-02 1.91e-02 1.69e-02 1.47e-02 1.42e-02

MaxAE 1.52e-02 1.64e-02 1.51e-02 1.58e-02 1.12e-02

MaxRE 3.31e-01 2.72e-01 2.39e-01 2.33e-01 1.84e-01

Speed-up ×410000 ×200000 ×100000 ×52000 ×26000

Table 13: Performances of the GPR method in computing the no-arbitrage fee.
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Training time (Black-Scholes model)

Size of training set 1250 2500 5000 10000 20000

Price 15 45 48 48 1602

Delta 22 76 83 92 1616

Training time (Heston model)

Size of training set 1250 2500 5000 10000 20000

Price 35 103 117 123 2417

Delta 23 108 115 121 2583

Training time (Heston Hull-White model)

Size of training set 1250 2500 5000 10000 20000

Price 49 154 185 188 3219

Delta 32 110 128 142 3144

Table 14: The computational time (in seconds) to train the GPR algorithm.

the BCD algorithm is used in place of the exact computation.

Finally, Table 15 shows the predicted price, Delta and no-arbitrage fee for the same GMWB policy

considered in Table 4. We observe that the estimates are very accurate and the gain in terms of computational

time is considerable, especially for the Heston Hull-White model.

5 Conclusions

In this paper we have presented how Gaussian Process Regression can be applied in the insurance field

to address the problem of pricing and hedging a GMWB Variable Annuity with stochastic volatility and

stochastic interest rate. The computational time is considerably reduced as the greater computational effort

is carried out during the training phase, which must be performed only once before the actual use of the

model while computing a single prediction and it has a linear cost in the number of input observation. The

use of a quasi-Monte Carlo methods and of a general kernel allow us to obtain good results. Moreover, the

use of the Block Coordinate Descent method allows one to manage a large amount of observed data. The

resulting model can be applied to compute the prices of the policies, for hedging purposes, or to compute

the no-arbitrage cost of a policy.

We conclude observing that the same approach may be applied to all types of Variable Annuities contracts.
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GPR prediction (Black-Scholes model)

Size of training set 1250 2500 5000 10000 20000

Price 100.62
(4.2e−5)

100.62
(1.3e−4)

100.61
(1.7e−4)

100.62
(3.5e−4)

100.61
(6.2−4)

Delta 0.3127
(4.5e−5)

0.3126
(9.6e−5)

0.3126
(1.9e−4)

0.3125
(3.2e−4)

0.3125
(6.6e−4)

No-arbitrage fee 544.23
(1.9e−2)

543.75
(1.9e−2)

543.74
(2.7e−2)

543.73
(2.8e−2)

543.91
(3.0e−2)

GPR prediction (Heston model)

Size of training set 1250 2500 5000 10000 20000

Price 99.44
(7.4e−5)

99.44
(1.7e−4)

99.44
(3.0e−4)

99.44
(5.7e−4)

99.44
(1.1e−3)

Delta 0.3318
(7.7e−5)

0.3310
(1.6e−4)

0.3312
(3.2e−4)

0.3310
(5.9e−4)

0.3310
(1.1e−3)

No-arbitrage fee 461.13
(1.4e−2)

461.36
(2.0e−2)

461.20
(2.5e−2)

461.42
(2.8e−2)

461.32
(3.1e−2)

GPR prediction (Heston Hull-White model)

Size of training set 1250 2500 5000 10000 20000

Price 102.34
(8.5e−5)

102.33
(2.2e−4)

102.33
(4.6e−4)

102.33
(6.8e−4)

102.33
(1.3e−3)

Delta 0.3242
(8.4e−5)

0.3245
(1.9e−4)

0.3245
(4.2e−4)

0.3245
(7.4e−4)

0.3246
(1.4e−3)

No-arbitrage fee 702.34
(1.8e−2)

704.15
(1.9e−2)

704.05
(2.5e−2)

704.29
(2.8e−2)

704.71
(3.4e−2)

Table 15: GPR computation results. The values in brackets are the computational times measured in

seconds. The no-arbitrage fee is expressed in bps.
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Appendices

A MATLAB code

In this Appendix we give some details about the MATLAB code used to implement the GPR algorithm. In

particular, we have used the R2018b version of the software.

Once input data have been loaded as column vectors, predictors are stored in a Table. For example,

aiming to predict the price of a GMWB policy in the Black-Scholes model, we write the following code:

p r e d i c t o r s i n = t a b l e ( I n t e r e s t r a t e i n , V o l a t i l i t y i n , Fee in , Pena l ty in ) ;

r e s p o n s e i n = P r i c e i n ;

Then, we train the model by calling the function fitrgp as follows:

my GPR model=f i t r g p ( p r e d i c t o r s i n , r e sponse in , ’ BasisFunction ’ , ’ l i n e a r ’ , . . .

’ KernelFunction ’ , ’ ardsquaredexponent ia l ’ , ’ Standardize ’ , t rue ) ;

The fitgrp function has several options and thus, for further details we refer the interest reader to the

webpage [23]. Finally, once the model has been trained, one can obtain predictions:

p r e d i c t o r s o u t = t a b l e ( I n t e r e s t r a t e o u t , V o l a t i l i t y o u t , Fee out , Pena l ty out ) ;

r e sponse out = my GPR model . pred ictFcn ( p r e d i c t o r s o u t ) ;
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[27] M. V. Wüthrich. Neural networks applied to chain–ladder reserving. European Actuarial Journal,

8(2):407–436, 2018.

22

https://www.willistowerswatson.com/en/insights/2018/12/variable-annuities-market-pressures-push-the-case-for-model-sophistication
https://www.willistowerswatson.com/en/insights/2018/12/variable-annuities-market-pressures-push-the-case-for-model-sophistication

	Introduction
	The GMWB Contract and its Evaluation
	The GMWB Contract
	The Stochastic Model for the Underlying and the GMWB Evaluation

	Gaussian Process Regression for GMWB
	Gaussian Process Regression
	Applying the GPR to the GMWB Contract

	Numerical Results
	Testing PDE and HPDE methods
	Put options
	Pricing Results
	Greeks Results
	No-arbitrage Fee Results
	Numerical Remarks

	Conclusions
	Appendices
	MATLAB code

