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Abstract

It is well known that the reality of stock prices movement can be captured by the Heston model introduced
in [4]. A exact solution for the model is also presented in [4]. However, the solution is an integrals in the
complex plane, posing significant difficulties in numerical evaluation. Hence, in [2], Zhang et al. present a
closed form solutions for option prices and implied volatilities which is accurate when compared with the
exact solutions. In this summary, we present the main results of [2] and also provide an approximation for
the Delta.

Keywords: Stochastic volatility; Option pricing; Heston model.
Mathematics Subject Classification: 91G20; 91B70; 35A35.

Premia 22

1 Introduction

The Heston model [3] has the following dynamics:

dS; = rSdt + /v SedWY,
dvt = /{(0 — Ut) dt—l—fﬁdW?, (1)

where 1 is the rate of return of the stock, 6 is the long run average price volatility, « is the rate of vy reversion
to 6 and ¢ is the volatility of the volatility. W and W}’ are 2 Brownian motions satisfying (W?*, W), = pt.
We set the interest rate r and dividend rate q to 0 in this paper as one can always introduce a discounted
financial instruments and a discount factor e~9" in the stock price process to eliminate the effect or r and q
respectively. We introduce a parameter e which is the speed of fast mean reversion and replace x with £ and
¢ with % to obtain a fast mean-reverting process when 0 < ¢ << 1 (see [1]). It can be show that the option
price f (t,s,v) satisfy the following PDE:
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where \ (¢, s,v) = Av3 is the price of volatility risk. We also have the payoff function to be f(T,s,v) =
(s — K)T for a call and f(T,s,v) = (K —s)T for a put where K is the strike price. We will set A = 0 as we
can always introduce a change of variables & = k + \/e£\ and 0 = %9 for A\ # 0. Thus, Equation (2) becomes

2
ot O fort st et Sspofut 5500 =0 g

“nprivault@ntu.edu.sg
fSHEQ0002@e.ntu.edu.sg



We have in [3] the exact solution of Equation (3) expressed as 2 integrals of a complex function. However, in
[5] and [6], we see that there are significant difficulties in the numerical evaluation of these integrals. Therefore,
in [1], Fouque et al. developed a method with the following price expansion for a European call:

CZC()—l-\ECl—i—..., (4)

where Cy = sN (d) — KN (do) and C; = —1pSdaK ¢ (dy) with dy = % and dy = dy — /0 (T — )

with the following implied volatility expansion

&' =69+ ea1 + ..., (5)

where 69 = V0 and 6, = —p€ g—i\/ T —t. Here, we see that the approximate solution does not depend on the
stochastic volatility, so in this summary, we present the method in [2] by Zhang et al. which provide a more
accurate analytical approximate solution that do depends on the stochastic volatility.

2 Main results

The approximate solutions derived in [2] for the option prices, implied volatility and delta are provided in this
section.

Theorem 1 (Theorem 1, [2]). Let 7 =T —t and z = 01 + ¢ (1 - 67%) (v—46). We have the following series
expansion for the option price f:

f=fotVefi+efot..., (6)
where
sN (dt) — KN (d7), or call
fo(S,Z): ( )7 ( ) N f (7)
KN (—d~)—sN (—=d"), for put
fi (7,5,2) = g1 (7, 2) Gy (s,2),  for call and put (8)
p) (T7872) =92 (Ta Z) Go (372)+h2 (T7 Z) Hy (S,Z)+m2 (Ta Z) Ms (872)7 Jor call and put. (9)
Here, we have d* = w, N (z) is the cumulative distribution function of the standard normal distri-
bution and

g1 (1.2) = A(7) 2+ 0B (), gg(T,z):%(A(T)z—i—@B(T))Q,
ho (1,2) =C(1)24+60D (1), mo(r,2)=FE(1)2+60F (1),
e - _122—§ - -2 + - + (7—)3
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where ¢ () is the probability density function of the standard normal distribution and
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Theorem 2 (Theorem 2, [2]). The implied volatility can be approzimated by

F(r)= %5 (1-eF) 25 (1-e7) +
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where
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Theorem 3. The Delta, A, has the following expression:

dfo ofr | 0f
A= — S —=. 11
ds +ﬁ85 +66$ (11)
Here,
afy N(d*)—l—(b(d\/;)—Kd)s(j/;), for call
s —N(—d+)+¢(\7§+)—K¢(;;g), for put
%:gl%, for call and put
dfs  0Go OH, IM,
g—QQg—i—hgg—{—mg 95 for call and put
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