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1 Introduction

The following method proposed by [!] deals with an efficient particle method for com-
puting the price of a forward starting call spreads asset considering a path-dependent
volatility model (PDV) where the instantaneous volatility depends on the path followed
by the asset price so far.

2 Theoretical framework

We consider the following path-dependent volatility model, :

dSt = St . O'(t, (Su,u S t)) . th

We have chosen to take zero interest rates and dividends.

In this article, we choose a set of path dependent variables X; and a function o (t, Sy, X¢)
so that the path-dependent volatility is given by o(t, (Sy,u < t)) = o(t, S, Xy) .
In order to calibrate the model to the market smile of S ;we multiply o(¢,S;, X;) by a
leverage function [(t,S;).

The PDV model is now the following :

dSt = St . O'(t, St,Xt) . l(t, St) . th

From Ito-Tanaka’s formula, this model is exactly calibrated to the market smile if we
have

Elo(t, S, X¢)?|St] - U(t, S¢)* = opup(t, St)?

As a result, the calibrated model satisfies the non-linear McKean differential equation :

U(ta St7 Xt)
=t
VE[o(t, S, X0)?[SH]
The particle method, explained in the next section, is a very efficient and elegant

Monte Carlo method that computes the above conditional expectation, hence the leverage
function :

dSt O'Dup(t, St) . th

Tpup(t, S)
\/E[O’(t, St, Xt)2|St = S]

I(t,8) =

1



3 Numerical algorithm

3.1 Path-dependent volatility

The following path-dependent volatility that we will consider was proposed by [1]. It
suggests that the volatility at ¢t depends on the spot value at ¢ — A through the following
expression :

a(t,St,Xt):6 +ol

1{%§1} {5£>1}

with Xy = S;_a and o, o parameters to be defined.
One question remains : How do we compute the conditional expectation ?

3.2 Particle method to compute E[a?|S; = s]

We usually approximate E[aZ|S; = s] by :

M (iV25(Si —
Ela?)5, = s = =l 00 —0)
i=10(5¢ — 5)

With § being a regularizing kernel. Yet this method requires a computational time far
too high if we do it for each Monte Carlo sample.

Thus instead of computing E[o (¢, S¢)?|S; = s| for all Monte Carlo samples. We decide
to compute it only L times with L << M.
L is often called the number of bins : each bin being a same-sized interval containing %
spot values.
In order to choose which spot value in which bin, we classify the spot values S! in the
ascending order and each one of them will belong to a bin depending on its rank.
At t for the i'" sample, if S belongs to the L bin then we approximate the conditional
expectation by :

> jiertipin 0(t, S7)?
i

L

Elo(t, 57)*ISi] =

This way we can compute the leverage function L(t, S}) for each sample with acceptable
computation time.

3.3 Simulation scheme

We discretize [0,7] on a regular grid of size N, with step size A = % We use the
following exponential scheme :
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Sij+a = Sij - exp (U(J, Sij) -~k 1 9Dup inj

7.[/[/1.._
vN-EC; " 2 EC;-N

with S;0 = So , EC;; = E[o(j, S},X§)2|St] and (W; ;) being an independent brownian
motion.



4 Numerical experiments

We test the algorithm on forward starting call spreads with payoff :

— Ka)

with the following parameters :

(S| 6 | ¢ | Ki | Ky |
| 1[0.32]0.08]0.95]1.05 |

We use N = 120 times steps, T" = 12 months, M = 10000 particles and the local
volatility opyp = 20%.
The conditional expectation is computed with L = 100 bins.

We get the following price at T' : 0.02168

Furthermore we can compute the price in volatility points of the forward starting call
spreads at each month. For the i month, we compute O’flTM by dichotomy :

ST.
E((STTZ — ") =Cps(1,6{M)
i—1

)

where Cpg(K, o) denotes the Black-Scholes price of a call with Sp = 1, r = ¢ = 0 and
T =1 month.
Then the price in volatility points at ¢ is 100 - Ao such as Ao satisfies :

A
) — Cps(Ka, o ™M — i)

Ao
— Ko)"| = Cps(Ky, 08 ™ + — g 5
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We get the following evolution of the price in volatility points, where PDV is the path-
dependent volatility model and LV is the local volatility model ( dS; = S - 0 pyp - dW5)
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5 Correlated models

Let’s apply this method for the correlated model where we have two rates S' and
1
S? following local volatility dynamics and S'? = % be the cross rate. We now have the
following equations :

ds} =oy(t,S})- S} - daw}
dS? = oo(t,S?) - S% . dW?
d< Wla W2 >= p(tv Stla StQ)
The two driving processes W' and W? are two brownian motions; they have a local
instantaneous correlation p(t, S, %) € [0, 1].
We can demonstrate that this model is calibrated to the market smile of the cross rate
S12 if and only if :
1
E[S(03(t, S}) + 03(t, S7) = 2p(t, 5}, 7)o (t, S})oa(t, S2))| 28] s

Sl
E[S?1%]

The following p satisfies this condition :

St St St
E[S? (02 (t, ) + 03(t, 57))I5h] — ofa(t, 5h)E[S?| 5]
2E[S7o(t, S )oa(t, 52)\%]

p(t, S¢,S7) =

For our problem we choose the following volatility dynamics :

Sl

52
a2(t,53):ag+5l+tst2

1 Sl

S 52
0'12(t, St2)—0'1+5 Sl
t 1+s2

Then we can simulate the rates of this correlated model with the following scheme model,
similar to the previous one for the path-dependent volatility model.

5.1 Simulation scheme

1 ol 01(j75i1,j) 1 10%(‘77‘911,]) _ ( Sl )02(]7‘9z’2,j) ( 511]752 )
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5.2 Numerical experiments

We test the algorithm for a put on worst with payoff :

1 o2 S} S%
g(S7,57) = (K —min(—5-, o)+
So " So

with the following strike K = 0.95, and o1 = 20% , o9 = 30%, § = 0.05. All the other
parameters M, N, L ... are the same as the previous section.
We finally get the following price at T" for our model with the put on worst : 0.1304
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