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1. Lévy processes: basic facts

In recent years more and more attention has been given to stochastic models of
financial markets which depart from the traditional Black-Scholes model. At this
moment a wide range of models is available. One of the tractable empirical models
are jump diffusions or, more generally, Lévy processes. We concentrate on the one-
dimensional case. For an introduction on these models applied to finance, we refer
to Cont and Tankov (2004).

A Lévy process is a stochastically continuous process with stationary independent
increments (for general definitions, see e.g. Sato (1999)). A Lévy process may have
a Gaussian component and/or pure jump component. The latter is characterized by
the density of jumps, which is called the Lévy density. A Lévy process Xt can be
completely specified by its characteristic exponent, ψ, definable from the equality
E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to the one-dimensional case).

The characteristic exponent is given by the Lévy-Khintchine formula:

ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1|y|≤1)ν(dy), (1)

where σ2 ≥ 0 is the variance of the Gaussian component, and the Lévy measure
ν(dy) satisfies

∫

R\{0}
min{1, y2}ν(dy) < +∞. (2)

Assume that under a risk-neutral measure chosen by the market, the price process
has the dynamics St = S0e

Xt , where Xt is a certain Lévy process. Then we must
have E[eXt ] < +∞, and, therefore, ψ must admit the analytic continuation into a
strip ℑξ ∈ (−1, 0) and continuous continuation into the closed strip ℑξ ∈ [−1, 0].

Example 1. If Lévy measure of a jump diffusion process is given by normal distri-
bution:

ν(dx) =
λ

δ
√

2π
exp

(

−(x− γ)2

2δ2

)

dx,

then we obtain Merton model. The parameter λ characterizes the intensity of jumps.
The characteristic exponent of the process is of the form

ψ(ξ) =
σ2

2
ξ2 − iµξ + λ

(

1 − exp
(

−δ2ξ2

2
+ iγξ

)

)

, (3)

where σ, δ, λ ≥ 0, µ, γ ∈ R.
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Example 2. The characteristic exponent of a pure jump KoBoL process (a.k.a.
CGMY model) of order ν ∈ (0, 2), ν 6= 1 is given by

ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ], (4)

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.
Note that Boyarchenko and Levendorskǐi (2000, 2002) consider a more general

version with c± instead of c, as well as the case ν = 1 and cases of different exponents
ν±. If ν ≥ 1 or µ = 0, then the order of the KoBoL process equals to the order of
the infinitesimal generator as PDO, but if ν < 1 and µ 6= 0, then the order of the
process is ν, and the order of the PDO −L = ψ(D) is 1.

Example 3. If Lévy density is given by exponential functions on negative and positive
axis:

F (dy) = 1(−∞;0)(y)c+λ+e
λ+ydy + 1(0;+∞)(y)c−(−λ−)eλ−

y,

where c± ≥ 0 and λ− < −1 < 0 < λ+, then we obtain Kou model (see Kou (2002)).
The characteristic exponent of the process is of the form

ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
. (5)

2. Model free volatility index and volatility swap

Let St denote the value of a stock or stock index at time t. We assume that the
volatility product starts at time zero and ends at time T . Assume that St is modeled
by some stochastic process, then the annualized expected quadratic variation of log-
returns over the time interval [0;T ] is determined by

QT =
1

T
E

[

[lnS, lnS]T

]

,

where [lnS, lnS] denotes the quadratic variation of lnS.

Now consider swaps written on the volatility Q
1/2
T . A volatility swap is an instru-

ment which allows investors to trade future realized (or historical) volatility against
current implied volatility. The quantity

IV = Q
1/2
T · 100

is called “fair strike of a volatility swap in annual volatility points”. If the underlying
asset is a stock index, IV can be used as a volatility index of the local financial
market.

Volatility swaps on volatility are derivatives written on Q
1/2
T :

Volatility swap with fixed strike K pays the holder

V olS(K,T ) = Q
1/2
T −K.

In the most well-known model-free approaches such as the CBOE method, the
price of variance derivative may be approximated by some portfolio (the so called
replicating portfolio) of some amount of underlying and derivatives on it. One may
find the construction of replicating portfolio e.g. in Bossu et al. (2005) and Buehler
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(2009). The alternative approach developed in Fukasawa et. al. (2011) is based on
the implied volatility integration. Both methods begin with the assumption that St
follows some diffusion process of the type:

dSt

St
= µ(t, St, ...)dt+ σ(t, St, ...)dWt

where Wt is a Wiener process, and the drift µ and the volatility σ are unknown
coefficients (either deterministic or stochastic). If St is a continuous semimartingale,
the following auxiliary formula can be applied:

E

[

[lnS, lnS]T

]

= −QSE

[

ln

(

ST

E[ST ]

)]

, (6)

where QS = 2 and E[] is the risk-neutral expectation. Notice that in the case of
models admitting jumps (e.g. Lévy models) the multiplier QS in (6) may be different
from 2.

The analysis of power variation of log-returns for RTS index in Grechko and
Kudryavtsev (2016,2017) under the RFBR project No.15-32-01390 “Mathematical
Methods of Analysis and Risk Management on Russian Stock Market”shows that in-
dices based on the (diffusion) model free volatility formula (see e.g. M. Fukasawa et.
al. (2011))

σ2 =
1

T
E

[

[lnS, lnS]T

]

= −QS

T
E

[

ln

(

ST

E[ST ]

)]

, QS = 2, (7)

give a bad estimation for a realized variation in the case of Russian financial market.
The method CBOE applied by Moscow Stock Exchange to estimate RVI is appli-

cable for diffusion processes or jump-diffussion processes with rare jumps only. On
the other hand, the research in Grechko and Kudryavtsev (2016,2017) shows that
the most adequate models for the RTS index are Lévy processes with infinite activ-
ity jumps and without a diffusion component. There are many empirical studies on
American and European financial markets (see e.g. Cont and Tankov (2004) and
the bibliograpy therein) supporting the fact that pure non-Gaussian Lévy models
are more adequate than diffusion models. In the case of Lévy models the multiplier
QS in formula (7) is differ from 2 and can be found by the following formula in Carr
et al. (2012):

QS =
E

[

[lnS, lnS]T

]

lnE[ST ] − E[lnST ]
. (8)

The new index formula implemented into Premia is based on the variation repre-
sentation via market option prices. Denote by F the forward price of S0 to be paid
at time T , K the strike price, P (K) and C(K), respectively, the market put and call
prices at strike level K. Then a new model free volatility index for Levy processes
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can be expressed in terms of “out-of-the-money” (OTM) market option prices:

E

[

[lnS, lnS]T

]

= V ar(ln(ST )) = E[ln2(ST )] − E2[ln(ST )], (9)

E[ln2(ST )] = ln2 K0 + 2 lnK0

(

F

K0

− 1
)

+ (10)

+ 2

[

∫ ∞

K0

C(K)
1 − lnK

K2
dK +

∫ K0

0
P (K)

1 − lnK

K2
dK

]

.

If one needs to construct the replicating portfolio, then QS in (8) should be ex-
pressed via market option prices. The denomenator ofQS we approximate as follows.

lnE[ST ] − E[lnST ] = −E

[

ln
(

ST

F

)]

=

K0
∫

0

P (K)

K
dK + 2

∞
∫

K0

C(K)

K
dK + 2

F
∫

K0

K − F

K2
dK.

Notice that a similar formula is used to approximate E2[ln(ST )] in (9).
The algorithm implemented into the program platform Premia consist of the

following steps.

• input a set of European put and European call prices of the same maturity
at different strike levels and a strike volatility swap;

• define “at-the-money” strike price K0, which corresponds to the strike with
a minimal difference between the correspondent put and call prices;

• define the forward price by using the call-put parity formula
• select a set of valid out-of-the-money (OTM) calls and puts to be used;
• approximate the integral in (10) by using Simpson’s rule;
• output “fair strike of a volatility swap” IV (see (9)-(10)) and “volatility swap

price” V olS in annual volatility points.

References
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