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1 The problem being solved and what the function does.

1.1 Optimal trade execution : notation, model, objective.

This function/algorithm is the for the numerical solving of the problem of optimal
execution of an operation by an agent using the mean-square objective criterion.

1.1.1 Accountancy.

Let Bt be the amount of money on the risk-free bank account and αt be the number
of shares of the risky asset held, the price of a share being St, at time t.

The agent starts with an amount α0 = αI shares that they have to sell (if αI > 0)
or buy (if αI < 0) so as to have αT = αF = 0 at the deterministic terminal time T . By
default we will use the language of selling shares, although all quantities are algebraic.

The bank account starts at B0 = 0 and at the end is given by the random variable
BL = L(ST , BT , αT ). The reason this is not simply BT is because we do not force the
agent to use a trading strategy such that αT = αT − = 0, i.e. everything has been sold
in time. Rather, should αT be non-zero, the position is fire-liquidated over a small time
interval δt << T , so that αT + = αF = 0. The liquidation function L, which will be
made explicit below, is naturally such that L(ST , BT , 0) = BT .

1.1.2 Control, price model and price impact.

The agent’s control is the trading rate (vt)0≤t≤T . As the actions will depend on the
states of the world, this process is stochastic. The dynamics of the portfolio in the risk
asset is therefore given by

dαv
t

dt
= vt ⇐⇒ αv

t = αI +

∫ t

0
vsds.

The dynamics of the price of the asset is a geometric Brownian motion affected by a
permanent price impact,

dSt = St
(
η + g(vt)

)
dt + StσdWt.

Here, η and σ are the drift and volatility the price would have without the trading of
the agent. The trading permanently affects the drift, with linear price impact function
g(v) = κpv.

The dynamics of the bank account is given by

dBv
t

dt
= rBv

t − vtf(vt)St.

Here, r is the risk-free, instantaneous interest rate, which makes the bank account grow
(case of selling). The selling of −vtdt shares over [t, t + dt] at price f(vt)St generates
an extra income (note that vt ≤ 0 when selling). The “transaction cost and temporary
price impact” function is taken to be

f(v) =
(
1 + κssgn(v)

)
exp

(
sgn(v)κt|v|

β
)
.
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Here, κs is morally half the bid-ask spread normalized by the mid-price,
Sa

t −Sb
t

2St
, and is

therefore in [0, 1[. It is assumed to be constant, and can generally be thought of as a
transaction cost. The term exp

(
sgn(v)κt|v|

β
)

is the temporary price impact, with κt

and β being constants.

The liquidation function is given by

L(S, B, α) = B −
(−α

δt

)
f

(
−α

δt

)
S.

That is, −α
δt is the final trading rate (between T and T +) and the buying of the remaining

αF − α = −α shares generates a last income (if α > αF , i.e. there are still shares to
sell).

1.1.3 The objective function.

The agent is a mean-variance optimizer. Given a target mean value d for the fi-
nal bank account, the agent seeks to minimize the variance. We denote by Bv

L =
L(ST , Bv

T , αv
T ) the final amount on the bank account. So, for the given d, the opti-

mization problem is

min
v

Var
[
L(ST , Bv

T , αv
T )
]

= min
v

{
E
[(

Bv
L

)2]
− d2

}

under the constraints E
[
Bv

L

]
= d and v valued in Z.

(1)

Here, Z = [vmin, vmax] is the set of admissible trading rates, and we will write v ∈ Z
to mean that the control process v must be valued in Z at all times. Typically, we
normalize the initial number of shares and only selling/buying is allowed depending
on the case. For selling, we would have αI = 1, vmin < 0 and vmax = 0. For buying,
we would have α = −1, vmin = 0 and vmax > 0. But the formalism can of course
accommodate for other situations.

1.2 Determination of the optimal frontier vs strategy and value for a
given expectation

1.2.1 The efficient frontier.

The real goal here is not so much to solve the problem (1) for a given d, but rather
to draw the efficient frontier. In the (SD,E) space (SD in abscissa and E in ordinate),
for each expectation d, there is a minimal standard deviation Σd : all points with higher
Σ are not optimal and not “realized”, points with lower Σ are not accessible. The curve
d 7→ (Σd, d) is the efficient frontier. This is what the function returns.

Remark 1.1 (On the duality with maximization of the mean, etc.). TBDL.
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1.2.2 Lagrange multiplier.

In order to solve the problem (1), one can use a Lagrange multiplier. That is, for
fixed d, we consider the problem

opt
γ∈R

min
v∈Z

Lag(v, γ) = E
[(

Bv
L

)2]
− d2 − γ

(
E
[
Bv

L

]
− d

)
. (2)

The solution is at a critical point for Lag. For fixed γ, the problem of finding v such that
∂Lag

∂v = 0,↔minv∈Z Lag(v, γ), is easier because unconstrained. For fixed v, ∂Lag
∂γ = 0⇔

the constraint is satisfied.
In practice, and for fixed d, the solution to problem (2) is often sought as follows.

First, for fixed γ, solve the minimization problem over v :

min
v∈Z

Lag(v, γ) = E
[(

Bv
L

)2]
− d2 − γ

(
E
[
Bv

L

]
− d

)
.

This leads to an optimal control v∗(γ), with an associated variance Var∗(γ) = Var[B
v∗(γ)
L ]

and expectation Exp∗(γ) = E[B
v∗(γ)
L ] =: d∗(γ). Then, find the γ∗ such that the con-

straint E[B
v∗(γ∗)
L ] = d∗(γ∗) = d is satisfied.

Let us look more closely at that minimization problem over v. Notice that

Lag(v, γ) = E
[(

Bv
L −

γ

2

)2]
−

γ2

4
− d2 + γd. (3)

So we have the same minimizers v∗ if we solve

min
v∈Z

E
[(

Bv
L −

γ

2

)2]
. (4)

Interestingly, this problem (4) does not depend on d. By solving it, we obtain a control

v∗(γ), the value V (γ) = E
[(

B
v∗(γ)
L − γ

2

)2]
, and we can compute d∗(γ) = E[B

v∗(γ)
L ]. We

can then obtain the original value Var∗(γ) for γ =
(
d∗
)−1

(d).

Now, hopefully enough, the function d∗ (which does not depend on d) is continuous
and strictly monotonic. Or at least a bijection. So when d spans its domain, γ spans its

domain. Consequently, rather than drawing d 7→
(
Var∗

(
(d∗)−1(d)

)1/2
, d
)
, we will draw

the curve γ 7→
(
Var∗(γ)1/2, d∗(γ)

)
. For this, we only need to solve the problem (4) as γ

varies.

1.3 HJB approach.

1.3.1 Dependence on Bt and other state variables.

The optimal trading rate v∗ at time t surely depends on the current price St and
the number of shares αt remaining to liquidate. It does not seem clear that it should
depend on Bt. Indeed, whatever has been amassed so far will have a deterministic and
therefore non-risky growth until T , and whatever will be gained and at what risk from
selling between t and T depends on the present and future actions. The value V of the
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problem (4) can also be considered when starting from any time t ∈ [0, T ], with current
price St and number of shares αt.

However, the problem (4) is a target problem for B : we seek to minimize the L2-
distance between BL and γ/2. So it sounds obvious that, for a given target, the current
amount Bt on the bank account matters. In fact, problem (4) is not about (the expected
utility of ?) the trading gains BL−B0, or BL−Bt, but about bringing B close to γ/2.
This argument holds also when thinking about targeting an expected wealth of d. The
result does depend on the current wealth on the bank account.

So we seek for v∗ and V as functions of (St, Bt, αt, t) (the explicit dependence in γ
being omitted).

1.3.2 The HJB PDEs.

We want to determine V (St, Bt, αt, t) = E(St,Bt,αt,t)

[(
Bv∗

L −
γ
2

)2]
and U(St, Bt, αt, t) :=

E(St,Bt,αt,t)

[
Bv∗

L −
γ
2

]
. V probably solves the HJB PDE





− Vt = LV + rBVB + min
v∈Z

{
− vf(v)SVB + vVα + g(v)SVS

}

V (S, B, α, T ) =
(
L(S, B, α)−

γ

2

)2
.

Here, Lf = σ2

2 fSS + ηSfS . Solving this produces V (S0, B0, αI , 0) = V (γ) for a given γ,
as well as the optimal strategy (v∗(St, Bt, αt, t))0≤t≤T . Meanwhile U solves





− Ut = LU + rBUB +
{
− v∗f(v∗)SUB + v∗Uα + g(v∗)SUS

}

U(S, B, α, T ) = L(S, B, α)−
γ

2
.

1.4 Dependence on γ, change of variable, PDEs to solve.

1.4.1 Change of variables.

V and U depend on γ through their terminal condition. For each γ, one has to solve
the PDEs above with a different terminal condition. Instead, we consider the following
variable, which compares Bt to the actualized target :

Bt = Bt −
γ

2
e−r(T −t).

Since L is affine in the variable B, we have

BL = L(ST , BT , αT )−
γ

2
= L

(
ST , BT −

γ

2
, αT

)
= L(ST ,BT , αT ) =: BL.

So the problem (4) is nothing but

min
v∈Z

E
[(
Bv

L

)2]
. (5)

Rewrite as V(St,Bt, αt, t) = V (St, Bt, αt, t) its dynamic value function, and U(St,Bt, αt, t) =
E(St,Bt,αt,t)

[
Bv∗

L

]
= U(St, Bt, αt, t). However, for simplicity, I use the same notation for

the optimal control function in the B variable, v∗(St,Bt, αt, t).
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The controlled dynamics of B is easily found to be

dBv
t

dt
= rBv

t − vtf(vt)St.

So it is the same exact same problem as with B. (Remark : I suppose one could also
simply have done the change of variable directly in the PDEs, without rethinking the
optimization problem.)

1.4.2 The PDEs effectively solved.

For V :



− Vt = LV + rBVB + min

v∈Z

{
− vf(v)SVB + vVα + g(v)SVS

}

V(S,B, α, T ) = L(S,B, α)2.
(6)

For U :



− Ut = LU + rBUB +

{
− v∗f(v∗)SUB + v∗Uα + g(v∗)SUS

}

U(S,B, α, T ) = L(S,B, α).
(7)

1.4.3 Coming back to B, γ, and the efficient frontier.

We have

B0 = B0 −
γ

2
e−rT ⇐⇒ γ = 2(B0 − B0)erT .

For fixed B0, reading along the B0 axis at time 0 translated into reading various values
of γ. (We will actually draw the frontier parametrized by B0, so ❀ γ = γ(B0).)

Then, we have

U(S0,B0, αI , 0) = E
[
Bv∗

L

]
= E

[
Bv∗

L

]
−

γ

2
,

so

d∗
(
γ
)

= E
[
Bv∗

L

]
= U(S0,B0, αI , 0) +

γ(B0)

2
.

Also, we have

V(S0,B0, αI , 0) = E
[
(Bv∗

L )2] = E
[(

Bv∗

L −
γ

2

)2]
= E

[
(Bv∗

L )2]− γE
[
Bv∗

L

]
+

γ2

4
,

so

Var∗(γ) = E
[
(Bv∗

L )2]− E
[
Bv∗

L

]2
= V(S0,B0, αI , 0) + γE

[
Bv∗

L

]
−

γ2

4
− E

[
Bv∗

L

]2

= V(S0,B0, αI , 0) + γd∗
(
γ
)
−

γ2

4
− d∗

(
γ
)2

.

(Remark : it seems to me as if, in the paper, Forsyth only computes E
[
(Bv∗

L )2
]

... )
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1.5 Similarity and dimension-reduction (option in the algorithm).

What happens if we look at the problem from time t, with (St, Bt) ← (ξSt, ξBt)?
Since d(St, Bt) is linear in (St, Bt), the process (ξS, ξB) has the exact same dynamics
(same η, g(v), σ, r, vf(v)). In addition to that, the liquidation function L is linear in
(S, B), so L(ξS, ξB, α) = ξL(S,B, α). These 2 arguments (which don’t depend on the
form of the price impact) seem enough to me to explain why

V(ξSt, ξBt, αt, t) = ξ2V(St,Bt, αt, t) and U(ξSt, ξBt, αt, t) = ξU(St,Bt, αt, t).

This implies that, for arbitrary B∗,

V(St,Bt, αt, t) =
(Bt

B∗

)2
V
(B∗St

Bt
,Bt, αt, t

)

U(St,Bt, αt, t) =
(Bt

B∗

)2
U
(B∗St

Bt
,Bt, αt, t

)
.

Notice however that this can be used only for a B∗ of the same sign as Bt, so that B∗St

Bt

remains > 0 : otherwise the RHS is not defined.
This remark of the similarity/scaling property in the problem leads to the possibility

of reducing the spatial dimension, by eliminating the B grid.
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2 The algorithm.

We now explain the algorithm for solving the PDEs (6) and (7).

2.1 Semi-Lagrangian approach.

The approach consists in interpreting part of the equation as an ODE along some
path. Consider the path

(
Xt = (St,Bt, αt)

)
0≤t≤T

defined, for a control (vt)0≤t≤T , by

dSv
t

dt
= g(v)St ,

dBv
t

dt
= rBv

t − vtf(vt)S
v
t and

dαv
t

dt
= vt.

Still denote by V the path Vt = V(Sv
t ,Bv

t , αv
t , t). We have

dVt

dt
= . . . = Vt + rBtVB +

{
− vtf(vt)StVB + vVα + g(vt)StVS

}
(evaluated at (St,Bt, αt, t)).

The PDEs (6)-(7) can therefore (...) be rewritten





min
vt∈Z

dVt

dt
+ LV = 0

V(S,B, α, T ) = L(S,B, α)2
and





dUv∗

t

dt
+ LU = 0

U(S,B, α, T ) = L(S,B, α)

.

2.2 Domain discretization.

The PDEs are initially set on the domain D = R+ × R × [vmin, vmax] × [0, T ].
For the numerical solving of the PDEs, we need to reduce it to the bounded domain
D = [0, Smax]× [Bmin,Bmax]× [αmin, αmax]× [0, T ]. This domain is then discretized into
a grid D̂ = {xn

ijk} defined below.
We use Nt time-intervals, NS intervals in the S direction, NB intervals in the B

direction and Nα intervals in the α direction. Define the grid points

tn = n∆t where ∆t =
T

Nt
and n ∈ {0, . . . , Nt},

Si = i∆S where ∆S =
Smax

NS
and i ∈ {0, . . . , NS},

Bj = Bmin + j∆B where ∆B =
Bmax − Bmin

NB
and j ∈ {0, . . . , NB},

αk = αmin + k∆α where ∆α =
αmax − αmin

Nα
and k ∈ {0, . . . , Nα}.

I will also use the notation xijk = (Si,Bj , αk) and xn
ijk = (Si,Bj , αk, tn).

2.3 Boundary conditions.

There is nothing to do regarding the boundaries in the B and α directions. Indeed,
only first derivatives appear in the PDEs (which can always be computed easily at the
boundary), and even they won’t be used because of the semi-Lagragian approach.
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The set of admissible controls, however, should possibly be changed at the boundary.
Denoting by Zn

ijk the set of admissible controls at the node xn
ijk, one should take Zn

i,j,0 =
[0, vmax] and Zn

i,j,Nα
= [vmin, 0]. In general, with only buying or only selling actions

allowed, one of these intervals will be the whole Z and the other the singleton 0. But
we do not need to worry about this too much since, more generally, Zn

ijk will be chosen
at each point so that α driven by v remains in D.

Finally, in the S direction, we take LV = 0 at S0 = 0 and SNS
= Smax.

2.4 Approximation of the second-order operator.

We use the approximation by centered finite differences. At xn
ijk = (Si,Bj , αk, tn),(

LV
)
(xn

ijk) ≈ (LV)n
ijk where

(LV)n
ijk =

σ2S2
i

2

Vn
i+1,j,k − 2Vn

i,j,k + Vn
i−1,j,k

(∆S)2
+ rSi

Vn
i+1,j,k − V

n
i−1,j,k

2∆S

=

(
σ2S2

i

2(∆S)2
−

rSi

2∆S

)

︸ ︷︷ ︸
āi

Vn
i−1,j,k +

(
−

σ2S2
i

(∆S)2

)

︸ ︷︷ ︸
b̄i

Vn
i,j,k +

(
σ2S2

i

2(∆S)2
+

rSi

2∆S

)

︸ ︷︷ ︸
c̄i

Vn
i+1,j,k,

for all j ∈ {0, . . . , NB}, k ∈ {0, . . . , Nα}, and for all i ∈ {1, . . . , NS − 1}. At i = 0 and
i = NS , we take (LV)n

ijk = 0, so āi = b̄i = c̄i = 0.

2.5 Approximation of the Lagrangian ODE.

2.5.1 Time-discretization

We look at the time interval [tn, tn+1], the approximate solution being known at
time tn+1, and to be computed for time tn. Given the grid point xn

ijk = (Si,Bj , αk, tn),
and a control vn

ijk, the derivative along the path (Xt(v
n
ijk))tn≤t≤tn+1 is approximated as

dVt

dt
≈

1

∆t

(
V̂ n+1

ijk − V n
ijk

)
.

In the above, V̂ n+1
ijk is an approximation of V at the point x̂n+1

ijk = (Ŝi, B̂j , α̂k, tn+1).

This point is computed by solving the ODE for X between tn and tn+1 with the frozen
control vn

ijk. So we obtain

Ŝi = Sie
g(vn

ijk
)∆t,

B̂j = Bjer∆t − vn
ijkf(vn

ijk)Si
eg(vn

ijk
)∆t − er∆t

g(vn
ijk)− r

α̂k = αk + vn
ijk∆t.

If the control vn
ijk is admissible (see below), x̂n+1

ijk lies in a box of the numerical domain

(more specifically : its spatial component x̂ijk does, the time tn+1 is exactly on the
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grid). The value of V at this point is approximated by interpolation of the values of
Vn+1 at the grid points forming the vertices of the box where x̂n+1

ijk lies. This gives

V̂n+1
ijk (vn

ijk). And then we will want to compute

min
vt∈Z

dVt

dt
≈ min

vn
ijk

∈Zn
ijk

1

∆t

(
V̂n+1

ijk (vn
ijk)− Vn

ijk

)
=

1

∆t

(
min

vn
ijk

∈Zn
ijk

V̂n+1
ijk (vn

ijk)− Vn
ijk

)
.

For U , there is no optimization to do, we just use the (vn
ijk)∗ computed for V. So the

approximation is

dUv∗

t

dt
≈

1

∆t

(
Ûn+1

ijk

(
(vn

ijk)∗
)
− Un

ijk

)
.

2.5.2 Interpolation.

For the fixed grid point xn
ijk and associated x̂n+1

ijk , the interpolation is done as follows.
Define

i0 =

⌊
Ŝi − 0

∆S

⌋
, λi =

Ŝi − Si0

∆S
,

j0 =

⌊
B̂j − Bmin

∆B

⌋
, λj =

B̂j − Bj0

∆B
,

k0 =

⌊
α̂k − αmin

∆α

⌋
, λk =

α̂k − αk0

∆α
.

Each index is in {0, . . . , N}, and each λ ∈ [0, 1[.

Interpolation when similarity reduction is OFF.

The point x̂n+1
ijk , lies : when projected on the S axis, between Si0 and Si0+1, when

projected on the B axis, between Bj0 and Bj0+1, when projected on the α axis, between
αk0 and αk0+1. Specifically, we have

x̂ijk = (1− λj)(1− λk)(1− λi) xi0,j0,k0 +(1− λj)(1− λk)λi xi0+1,j0,k0

+ (1− λj)λk(1− λi) xi0,j0,k0+1 +(1− λj)λkλi xi0+1,j0,k0+1

+ λj(1− λk)(1− λi) xi0,j0+1,k0 +λj(1− λk)λi xi0+1,j0+1,k0

+ λjλk(1− λi) xi0,j0+1,k0+1 +λjλkλi xi0+1,j0+1,k0+1.

We therefore interpolate V̂n+1
ijk (vn

ijk) as

V̂n+1
ijk = (1− λj)(1− λk)(1− λi) V

n+1
i0,j0,k0

+(1− λj)(1− λk)λi V
n+1
i0+1,j0,k0

+ (1− λj)λk(1− λi) V
n+1
i0,j0,k0+1 +(1− λj)λkλi V

n+1
i0+1,j0,k0+1

+ λj(1− λk)(1− λi) V
n+1
i0,j0+1,k0

+λj(1− λk)λi V
n+1
i0+1,j0+1,k0

+ λjλk(1− λi) V
n+1
i0,j0+1,k0+1 +λjλkλi V

n+1
i0+1,j0+1,k0+1.
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Remark : in order to avoid doing tests to know whether i0 = NS , j0 = NB or
k0 = Nα, it will be convenient to consider that the grid goes to “index max +1” and
write the formula as is. It won’t be a problem because, in such a case, λi = 0, λj = 0
or λk = 0 (respectively).

Naturally, the same is done to compute Ûn+1
ijk

(
(vn

ijk)∗
)
.

Interpolation when similarity reduction is ON.

When the similarity is used, we can reduce the dimension of the problem. In that
case, the B-grid with NB points is replaced by a grid with 2 points. Let B∗ = 1 > 0,
and define B0 = −B∗ and B1 = +B∗, so j ∈ {0, 1}.

Now, for any xn
ijk ∈ D̂, and a control vn

ijk, the point x̂n+1
ijk is computed as previously.

The admissibility (cf below) is check at that point (though whether B̂j ∈ [Bmin,Bmax]
is not so important, morally, it is more Ŝi and α̂k that matter, but let us not change
this). We then want to approximate the value of V at x̂n+1

ijk . For this, we first note that

V(x̂n+1
ijk ) = V(Ŝi, B̂j , α̂k, tn+1) =





( B̂j

B1

)2
V
(B1Ŝi

B̂j

,B1, α̂k, tn+1
)

if B̂j > 0,

( B̂j

B0

)2
V
(B0Ŝi

B̂j

,B0, α̂k, tn+1
)

if B̂j < 0.

So, define α̃k = α̂k,

B̃j = B1 and S̃i =
B1Ŝi

B̂j

if B̂j > 0,

B̃j = B0 and S̃i =
B0Ŝi

B̂j

if B̂j < 0,

and x̃n+1
ijk = (S̃i, B̃j , α̃k, tn+1). Then interpolate the value Ṽn+1

ijk ≈ V(x̃n+1
ijk ) as above and

deduce V̂n+1
ijk ≈ V(x̂n+1

ijk ) from the similarity identity.

Essentially the same goes for U , since

U(x̂n+1
ijk ) = U(Ŝi, B̂j , α̂k, tn+1) =





( B̂j

B1

)
U
(B1Ŝi

B̂j

,B1, α̂k, tn+1
)

if B̂j > 0,

( B̂j

B0

)
U
(B0Ŝi

B̂j

,B0, α̂k, tn+1
)

if B̂j < 0.

So, first, interpolate the value Ũn+1
ijk ≈ U(x̃n+1

ijk ) as above and deduce Ûn+1
ijk ≈ U(x̂n+1

ijk )
from the similarity identity.
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2.5.3 Solving the optimization problem.

At time tn and at point xijk, we must solve an optimization problem over vn
ijk. The

admissible controls are those vn
ijk ∈ Z = [vmin, vmax] such that x̂n

ijk ∈ D.
Forsyth suggests not to use a standard optimization procedure, over a continous set

Z or Zn
ijk, because the problem is likely to have many local minima. Instead, the set of

controls is discretized as well. So we consider a given a number Nv + 1 of equidistant
controls in [vmin, vmax], identified by

vl = vmin + l∆v where ∆v =
vmax − vmin

Nv
and l ∈ {0, . . . , Nv}.

The optimization is then reduced to a full search over the vl’s. So the computation
of minvn

ijk
∈Zn

ijk
V̂n+1

ijk is done as follows. For l = 0 to Nv :

• Take vl and compute xn
ijk(vl). If it does not lie in the bounded domain D, then

this control is not admissible and is discarded.

• If xn
ijk(vl) ∈ D, then compute V̂n+1

ijk (vl) and compare to the running minimum.

At the end, we have the optimal (vn
ijk)∗ and the V̂n+1

ijk

(
(vn

ijk)∗
)

used for computing Vn
ijk.

2.6 Summary of the schemes for V and U .

Putting together subsections 2.1, 2.4 and 2.5, the scheme is the following. Having
computed the approximated solution at time tn+1, we move to time tn, and for each
node (ijk) we define

Vn
ijk = min

vn
ijk

∈Zn
ijk

V̂n+1
ijk (vn

ijk) +
(
LV
)n

ijk
∆t = V̂n+1

ijk

(
(vn

ijk)∗
)

+
(
LV
)n

ijk
∆t.

Notice that this is an implicit scheme. Since
(
LV
)n

ijk
= āiV

n
i−1,j,k + b̄iV

n
i,j,k + c̄iV

n
i+1,j,k,

we end up having

(−āi∆t)︸ ︷︷ ︸
ai

Vn
i−1,j,k + (1− b̄i∆t)︸ ︷︷ ︸

bi

Vn
i,j,k + (−c̄i∆t)︸ ︷︷ ︸

ci

Vn
i+1,j,k = V̂n+1

ijk

(
(vn

ijk)∗
)

︸ ︷︷ ︸
di,(j,k)

.

From the boundary conditions we have, for i = 0, a0 = inexistant, b0 = 1, c0 = 0, while
for i = NS , aNS

= 0, bNS
= 1 and cNS

= inexistant.

For U , we define

Un
ijk = Ûn+1

ijk

(
(vn

ijk)∗
)

+
(
LU
)n

ijk
∆t.

So we end up solving, for each (jk), the system

ai U
n
i−1,j,k + bi U

n
i,j,k + ci U

n
i+1,j,k = Ûn+1

ijk

(
(vn

ijk)∗
)

︸ ︷︷ ︸
ei,(j,k)

.
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2.7 The parameters of the algorithm

Model parameters

Variable name Meaning

T horizon

σ volatility of the asset

η natural drif of the asset

r interest rate

κp permanent impact parameter

κs cost parameter

κt temporary impact parameter

β temporary impact parameter

ratemax max trading rate (absolute value)

δt time of final liquidation (strenght of penalty)

S0 initial price of asset

αI inital number of shares

B0 initial amount on the bank account

In the code, αmin, αmax, vmin and vmax are not parameters, but are determined from
αI . If αI = 1 (or > 0), i.e. we are selling, then αmin = 0 and αmax = αI , vmin = −ratemax

and vmax = 0. Same thing for buying.

Numerical parameters

Variable name Meaning

Smax max value of S

Bmin min value of B

Bmax max value of B

Nt number of time-steps

NS number of S-intervals

NB number of B-intervals

Nα number of α-intervals

Nv number of v-intervals
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