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1 The problem to solve

Pricing of an option in a local volatility model.

The underlying

It follows (under the pricing measure) the SDE

dSt = St µ dt+ St lv(t, St) dWt = St µ dt+ σ(t, St) dWt,

where the diffusion coefficient σ(t, s) = s lv(t, s). In the model,

• µ = r − q, where r is the risk-free interest rate and q is the dividends rate,

• S starts at the spot price S0,

• the local volatility function is given by either

lv(t, s) =
15

s
or lv(t, s) = 0.01 + 0.01 t+ 0.1 e−s/100.

The payoff

A vanilla call or put, of payoff p(ST ) = (ST −K)+ or (K − ST )+ respectively, where

• T is the maturity and

• K is the strike.

The price

The price sought is given by

V0 = e−rTE
[
p(ST )

]
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2 The algorithm

The above problem is a particular case of having to compute V0 = E[g(XT )] where X
follows an SDE

X0 = x0

dXt = b(t,Xt)dt+ σ(t,Xt)dWt.

The standard technique is to discretize the SDE to obtain a computable (and simu-
latable) approximation X̃T for XT and then do a Monte Carlo integration of the random
variable g(X̃t). The algorithms presented in [1] instead provide a computable/simulatable
random variable ψ such that V0 = E[ψ]. Therefore, given a number M ∈ N

∗ of samples,
and random variables (ψm)m=1...M i.i.d. ∼ ψ, the estimator

V̂ M
0 =

1

M

M∑

m=1

ψm

is an unbiased estimator for V0.

General idea

Generally speaking, ψ is constructed in the following way. Let β > 0 and let (τk)k∈N∗ be
i.i.d. ∼ E(β). We associate to these inter-arrival times the arrival times Tk defined by
T0 = 0 and then Tk+1 = (Tk +τk+1)∧T , as well as the Poisson counting process (Nt)t∈[0,T ].

The idea is then to simulate the switching-diffusion X̂ starting at x0, with drift and
diffusion coefficients b̂, σ̂ : ([0, T ] × R)2 −→ R, such that on each interval [Tk, Tk+1],

dX̂t = b̂(Tk, X̂Tk
, t, X̂t)dt+ σ̂(Tk, X̂Tk

, t, X̂t)dWt.

One then computes weights Wk depending on Tk−1, X̂Tk−1
, Tk, X̂Tk

,∆WTk+1
,∆Tk+1, where

∆WTk+1
= WTk+1

−WTk
and ∆Tk+1 = Tk+1 − Tk. Finally, ψ is defined by

ψ = eβT
[
g(X̂T ) − g(X̂NT

)1{NT >0}

] NT∏

k=1

Wk.

Clearly, in order to have an exactly simulatable ψ, one must ensure that the SDE
chosen for X̂ is solvable explicitly, and that X̂Tk+1

is a function of Tk, X̂Tk
and ∆WTk+1

.
A major issue is that, if constructed without care, the random variable ψ is likely to be
integrable but of infinite variance. So V̂ M

0 is then not a good estimator for V0.

The case of scalar driftless SDEs

For this type of SDE, where b = 0 and σ is arbitrary, an appropriate set of switching-
diffusion, weights and thus ψ is given in [1].
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The idea for X̂ is to take a higher-order Euler–Maruyama scheme, with b̂ = 0 and
σ̂(s, y, t, x) = σ(s, y) + σx(s, y)(x− y), so the SDE for X̂ is, over [Tk, Tk+1],

dX̂t =
(
σ(Tk, X̂Tk

) + σx(Tk, X̂Tk
)(X̂t − X̂Tk

)
)
dWt =

(
ck

1 + ck
2X̂t

)
dWt,

where

ck
1 = σ(Tk, X̂Tk

) − σx(Tk, X̂Tk
)X̂Tk

and ck
2 = σx(Tk, X̂Tk

).

The solution is given by

X̂Tk+1
=





if ck
2 = 0 then X̂Tk+1

= X̂Tk
+ σ(Tk, X̂Tk

)∆WTk+1

if ck
2 6= 0 then X̂Tk+1

= −
ck

1

ck
2

+
(ck

1

ck
2

+ X̂Tk

)
eck

2
∆WTk+1

− 1

2
(ck

2
)2∆Tk+1 .

The weights Wk are given as follows. Define the Malliavin weight

Wk = −σx(Tk, X̂Tk
)
∆WTk+1

∆Tk+1
+

∆W 2
Tk+1

− ∆Tk+1

(∆Tk+1)2
,

as well as

σk = σ(Tk, X̂Tk
), σ̃k = σ(Tk−1, X̂Tk−1

) + σx(Tk−1, X̂Tk−1
)(X̂Tk

− X̂Tk−1
)

ak = σ2
k, ãk = σ̃2

k

and finally the weight

Wk =
1

β

ak − ãk

2ak
Wk.

Define also

PF = eβT
(
g(X̂T ) − g(X̂TNT

)1{NT >0}

)
.

The use of an antithetic variable is made over the last time-step, [TNT
, T ]. So, define

X̂−
T =





if cNT

2 = 0 then X̂T − = X̂TNT
+ σ(TNT

, X̂TNT
) (−1) ∆WTNT +1

if cNT

2 6= 0 then X̂−
T = −

cNT

1

cNT

2

+
(cNT

1

cNT

2

+ X̂TNT

)
e

c
NT

2
(−1) ∆WTNT +1

− 1

2
(c

NT

2
)2∆TNT +1 ,

as well as the Malliavin weight

W−
NT

= −σx(TNT
, X̂TNT

)
(−1)∆WTNT +1

∆TNT +1
+

(
(−1)∆WTNT +1

)2
− ∆TNT +1

(∆TNT +1)2
,

the weight

W
−
NT

=
1

β

aNT
− ãNT

2aNT

W−
NT
,

and also

PF− = eβT
(
g(X̂−

T ) − g(X̂TNT
)1{NT >0}

)
.
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With the above quantities defined (and computed), the random variable ψ used is given
by

ψ =
PF WNT

+ PF− W
−
NT

2

NT −1∏

k=1

Wk.

The case of a LV model with linear drift

The SDE of interest,

dSt = St µ dt+ St lv(t, St) dWt = St µ dt+ σ(t, St) dWt,

does not fit into the driftless SDE case. However, we can do a simple transform (a
discounting) to obtain one. Define Xt = e−µtSt. It satisfies the SDE

dXt = 0 dt+ e−µtσ(t, St) dWt

= e−µtσ(t, eµtXt) dWt

= σ̂(t,Xt) dWt,

which is indeed driftless. So the algorithm described above can be applied to compute

V0 = e−rTE[p(ST )] = e−rTE[p(eµTXT )] = e−rTE[g(XT )].

3 The parameters in the PREMIA code

Model parameters

Variable name Meaning

spot spot price S0

annual_dividend_rate dividend rate Q, annual, in %, such that q = ln(1 +Q/100)

annual_interest_rate interest rate R, annual, in %, such that r = ln(1 +R/100)

lv_type integer giving the function lv (hence σ, σ̂) to use

Payoff parameters

Variable name Meaning

strike strike of the call/put

T maturity

payoff_type integer giving the payoff function p to use

Numerical parameters

Variable name Meaning

M number of MC samples

β parameter β of the exponentially distributed times
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