
Gauss-Hermite quadrature on a cubic spline interpolation for

the valuation of Guaranteed Minimum Withdrawal Benefit

under Hull White model

Jiang Yu Nguwi

Premia 22

1 Guaranteed Minimum Withdrawal Benefit

At t = 0, Policy Holder (PH) pays a lump sum premium P to the insurance company. Denote
{ti : i = 0, 1, 2, ..., N} uniform grids of event time, where t0 < t1 < ... < tN . Event time is the
period where the withdrawal takes place. Note that there is no withdrawal at t = t0, the first
withdrawal occurs at t = t1.

There are two accounts created upon initialization of the policy. The first account is sub-
account, denote it as At. The second account is guaranteed account, denote it as Bt. The value of
sub-account and guaranteed account is initially set to the lump sum premium P , At0

= Bt0
= P .

The withdrawal frequency is set to be 1 by default (withdraw annually).
Denote the contract withdrawal rate G and withdrawal amount at time ti Wti

. PH can withdraw
cash up to the guaranteed account value, subject to penalty charges, κ, if the withdrawal amount
is more than G. The penalty charges is set to be 0.1 by default. Denote the amount PH receives
from withdrawing Wti

at ti fti
(Wti

). The function fti
(Wti

) can be expressed as follows:

fti
(Wti

) =

{

Wti
,if Wti

≤ G

Wti
− κti

(Wti
− G) ,if Bti

≥ Wti
> G.

Here, κt (the penalty charge) is allowed to change over time. By default, it follows the same
setting as in Table 1 of [3].

To illustrate the dynamics of sub-account and guaranteed account, denote A
t

(+)
i

and B
t

(+)
i

the

value of sub-account and guaranteed account right after withdrawal and A
t

(−)
i

and B
t

(−)
i

the value

of sub-account and guaranteed account right before withdrawal. The relationship between account
value before and after withdrawal can be expressed as follows:

(A
t

(+)
i

, B
t

(+)
i

, ti) = (max(A
t

(−)
i

− Wti
, 0), B

t
(−)
i

− Wti
, ti).

At t = tN , PH takes the maximum between the remaining balance in sub-account and the
remaining balance in guaranteed account subject to penaly charges. Hence, the final payoff is

u(AtN
, BtN

, tN ) = max(AtN
, ftN

(BtN
)).

Two cases of withdrawal for this product were considered. The first case, the static approach,
is when PH withdraw at the constant contract rate, G. The second case, the dynamic approach, is
when PH withdraw at a rate to maximise his overall benefits. The optimisation problem at each
withdrawal period is as follow:

Wti
= argmax

wti
∈[0,B

t
(−)
i

]

u(max(A
t

(−)
i

− wti
, 0), B

t
(−)
i

− wti
, ti) + fti

(wti
).
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2 Hull White model

We consider the following model for the stock price:

{

dSt = rtStdt + ωSStdZS
t

drt = κr(θr
t − rt)dt + ωrdZr

t ,

where ZS
t , Zr

t are Brownian motion and d < ZS
t , Zr

t >= ρSrdt.
Here, we only consider a particular case of the function θr

t , flat curve. By definition of flat

curve, θr
t = r̄0 +

ωr2

2κr2 (1 − exp(−2κr2

t)).

By default, the initial values of asset S0 is 1 and r0 is set to be 0.05. On the other hand the
parameters are by default set to be r̄0 = 0.05, ρSr = 0.5, κr = 1, ωr = 0.2, ωS = 0.2. By default,
the maturity is five years and the policy type is static (G = 20).

3 Gauss-Hermite quadrature on a cubic spline interpolation

We refer to [1] for complete description of the method. GHQC method works by estimating
integration problem by Gauss-Hermite quadrature. The integration problem is as follows:

u(A
t

(+)
n

, B
t

(+)
n

, rtn
) = E

t
(+)
n

[e
−

∫

tn+1

tn
r(τ)dτ

u(A
t

(−)
n+1

, B
t

(−)
n+1

, rtn+1
)|A

t
(+)
n

, B
t

(+)
n

, rtn
]

= E
t

(+)
n

[e
−

∫

tn+1

tn
r(τ)dτ

]

∫ ∫

p(A′, r′|A
t

(+)
n

, rtn
)u(A′, B

t
(−)
n+1

, r′)dA′dr′,

where p(A′, r′|A
t

(+)
n

, rtn
) is the joint conditional distribution of A and r. During withdrawal period,

there will be a jump in the value of contract. The jump condition is:

u(A
t

(+)
n

, B
t

(+)
n

, rtn
) =







u(max(A
t

(−)
n

− κ, 0), B
t

(−)
n

− κ, tn) + ftn
(κ) , if static;

max
wtn ∈[0,B

t
(−)
n

]
u(max(A

t
(−)
n

− wtn
, 0), B

t
(−)
n

− wtn
, tn) + ftn

(wtn
) , if dynamic.

(1)

To evaluate E
t

(+)
n

[e
−

∫

tn+1

tn
r(τ)dτ

], closed form solution is provided in [1]. However, we point out

that in [1], Vasicek model is used. Hence, some formulas are different in the case of Hull White
model.

E
t

(+)
n

[e
−

∫

tn+1

tn
r(τ)dτ

] = eAtn,tn+1 −r(tn)Btn,tn+1 ,

Btn,tn+1
=

1

κr
(1 − e−κr(tn+1−tn)),

Atn,tn+1
= (r̄0 − ωr2

2κr2
)(Btn,tn+1

+ tn − tn+1) − ωr2

4κr
B2

tn,tn+1

+
ωr2

4κr3
(2 − 2κr(tn+1 − tn) − 2e−κr(T −t) − 2e−κr(T +t) + e−2κrt + e−2κrT ).

Then, we would need to calculate distribution of ln A and r. Denote lnA
t

(+)
n

= x∗ and rtn
= r∗.

The conditional joint distribution of lnA
t

(−)
n+1

and rtn+1
given x∗ and r∗ is bivariate Normal density

distribution. Its mean, variance and covariance are as follow:

2



µr(r∗) = r∗e−κr∆n + (r̄0 − ωr2

κr2
)bn +

ωr2

2κr2
an +

ωr2

2κr2
b2

n;

τ2
r =

ωr2

2κr
an;

µx(x∗, r∗) = x∗ +
bn

κr
(r∗ +

bnωr2

2κr2
) + (r̄0 − ωr2

κr2
)(∆n − bn

κr
) − ρArωSωr

κr2
(κr∆n − bn) − (α +

1

2
ωS2)∆n

− ωr2

4κr3
(2(1 − κr∆n) − 4e−κr∆n + e−2κr∆n + 1);

τ2
x = ωS2∆n +

ωr2

2κr3
(2κr∆n − 4bn + an) +

2ρSrωSωr(κr∆n − bn)

κr2
;

ρxr =
1

τxτr

(
ρSrωSωrbn

κr
+

ωr2

2κr2
(2bn − an)).

where bn = 1 − e−κr∆n , an = 1 − e−2κr∆n and ∆n = tn+1 − tn. Then, the conditional joint
distribution of Y1 = (lnA

t
(−)
n+1

− µx)/τx and Y2 = (rtn+1
− µr)/τr is standard bivariate Normal

density distribution.

Now, denote a =
1

2
(
√

1 + ρxr +
√

1 − ρxr) and b =
1

2
(
√

1 + ρxr −
√

1 − ρxr).As proposed by

Shevchenko & Luo, by a change of variable Y1 =
√

2(aZ1 + bZ2) and Y2 =
√

2(bZ1 + aZ2), the
integration problem becomes

u(A
t

(+)
n

, B
t

(+)
n

, rtn
) = eAtn,tn+1 −r(tn)Btn,tn+1

1

π

∫ +∞

−∞

∫ +∞

−∞

e−Z2
1 −Z2

2 u(Z)(Z1, B
t

(−)
n+1

, Z2)dZ1dZ2.

The key idea is to basically solve the above integration problem using Gauss Hermite quadra-
ture.

To approximate the integration problem, Gauss Hermite quadrature is applied to every grid
point (Am, rk), m = 0, 1, ..., M, and k = 0, 1, ..., K. Then, Xm = ln(Am) and rk are discretized

according to [2] with parameters Sleft = 0.8S0, Sright = 1.2S0, ξmax = 20S0, ξmin =
S0

10000
,

d1 =
S0

20
, Rmax = 10r0, c = r0, d3 =

Rmax

400
.

Note that we define ξmin =
S0

10000
instead of 0 because if we set it to be 0, we have trouble

defining ln(S).
We then have the following approximation (details please see [1]):

u(Am, B
t

(+)
n

, rk) ≈ eAtn,tn+1 −r(tn)Btn,tn+1
1

π

q1,q2
∑

i=1,j=1

λ
(q1)
i λ

(q2)
j u(Aijkm, B

t
(−)
n+1

, rijk), (2)

Aijkm = exp(
√

2τx(aξ
(q1)
i + bξ

(q2)
j ) + µx(Xm, rk)), (3)

rijk =
√

2τr(bξ
(q1)
i + aξ

(q2)
j ) + µr(rk). (4)

We provide two possible simulations. The coarser one sets m1 = 50, m3 = 30, and the order of
Hermite polynomial for S and r are 5 and 3 respectively; the coarser one sets m1 = 150, m3 = 50,
and the order of Hermite polynomial for S and r are 9 and 5 respectively. By default, it uses the
finer simulation.

4 Implementation

The implementation of the method can be summarised as follows:
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• Step 1 Uniformly discretize guaranteed account space Bj , j = 0, 1, ..., J. Discretize sub-account
space and interest rate space (Am, rk), m = 0, 1, ..., M, and k = 0, 1, ..., K according to the
above.

• Step 2 For each grid point, initialize the value of the contract u(A
t

(−)

N

, B
t

(−)

N

, rtN
) = max(A

t
(−)

N

, (1−
κ)B

t
(−)

N

+ κ ∗ min(G, B
t

(−)

N

)).

• Step 3 For each given B̄, use bicubic spline in A and r to obtain continuous function of
u(A, B̄, r). Then, the value of u(A

t
(+)

N−1

, B
t

(+)

N−1

, rtN−1
) is evaluated by 2.

• Step 4 Jump condition 1 is applied to evaluate u(A
t

(−)

N−1

, B
t

(−)

N−1

, rtN−1
). If evaluating for dynamic

case, one-dimensional cubic spline is applied in B to choose the optimal withdrawal amount.

• Step 5 Repeat step 3 and step 4 for t = tN−1, tN−2, ..., t0.

• Step 6 Obtain u(At0
, Bt0

, rt0
) and compare the value to At0

. Repeat step 1 to step 5 until we
find the value of α such that u(At0

, Bt0
, rt0

) = At0
.This α is the fair fee that the insurance

company should charge on PH. Secant method is used to find α.
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