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Abstract

We derive closed form analytical approximations in terms of series expansions for option prices and
implied volatilities in a 2-hypergeometric stochastic volatility model with correlated Brownian motions. Our
computation of implied volatilities exhibits the well known skew and smile phenomena on implied volatility
surfaces, depending on the values of the correlation parameter.
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1 Introduction

Stochastic volatility models have been introduced as realistic models for the motion of asset prices in financial
markets. The most well-known of such models is the Heston [5] model, which however has one major drawback
as its stochastic volatility may reach zero in finite time unless one imposes the Feller condition, and this poses
potential problems in model calibration, cf. e.g. § 6.5.2 of Henry-Labordère [4]. In view of this, the α-
hypergeometric stochastic volatility model has been introduced by Da Fonseca and Martini [1] to ensure strict
positivity of volatility. In the α-hypergeometric model the dynamics of the asset price St at time t and the
volatility Vt are governed by

dSt = Ste
VtdW 1

t , dVt =

(

a −
c

2
eαVt

)

dt + ηdW 2
t , (1)

c > 0, η > 0, a ∈ R, α > 0, and W 1
t and W 2

t are correlated Brownian motions satisfying 〈W 1, W 2〉t = ρt.
In this model the risk free rate r is taken to be equal to 0 and the value of c can be used to set the price of
volatility risk.
Stochastic volatility models generally do not admit explicit solutions, and this has motivated the development
of approximate expansions. In Fouque et al. [2] a method to obtain series expansions for European option
prices has been proposed in the Heston model. This expression does not depend on the value of stochastic
volatility which is a key quantity in the Heston model. A more accurate approximation has been proposed in
Han et al. [3] for European option prices in the Heston model, see also Kim [6] under stochastic interest rates.
In this paper we extend the method of [3], see also [7], in order to derive series expansions in the 2-
hypergeometric model of [1]. In particular, our analytical approximate solution depend on the underlying
stochastic volatility. We derive implied volatility estimates which display the well known phenomena of skew
and smile. We also derive the delta estimates.
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2 Stochastic volatility

We start with a general class of stochastic volatility models in which the dynamics of the asset price and
volatility processes are given by

dSε
t = Sε

t p(t, V ε
t )dW 1

t , dV ε
t = u(t, V ε

t )dt + εh(t, V ε
t )dW 2

t ,

where ε > 0. Recall that under absence of arbitrage, the vanilla option price of an option with payoff g (Sε
T )

takes the form
f (t, Sε

t , V ε
t ) := E [g (Sε

T ) | Ft]

where (Ft)t∈[0,T ] is the filtration generated by (W 1
t , W 2

t )t∈[0,T ], and the function f(t, x, v) solves the PDE

∂f

∂t
+ u(t, v)

∂f

∂v
+

x2

2
p2(t, v)

∂f

∂x2
+ ερxp(t, v)h(t, v)

∂2f

∂x∂v
+

ε2

2
h2(t, v)

∂2f

∂v2
= 0, (2)

cf. e.g. (2.17) in [2], with the terminal condition f(T, x, v) = g(x).

We start by expanding f(t, x, v) as

f(t, x, v) = f0(t, x, v) + εf1(t, x, v) + o(ε). (3)

By plugging in the expansion (3) into the pricing PDE (2) we get the system of equations

∂fn

∂t
+ L0fn + L1fn−1 + L2fn−2 = 0, n ∈ N,

with fn = 0, n ≤ −1, f0(T, x, v) = g(x) and fn(T, x, v) = 0, n ≥ 1. In particular the operators L0, L1 and L2

are given by

L0 = u(t, v)
∂

∂v
+

x2

2
p2(t, v)

∂2

∂x2
, L1 = ρxp(t, v)h(t, v)

∂2

∂x∂v
, L2 =

1

2
h2(t, v)

∂2

∂v2
. (4)

3 Deterministic volatility

When n = 0 we have
∂f0

∂t
+ L0f0 = 0,

(

S0
t

)

t∈[0,T ] and
(

V 0
t

)

t∈[0,T ] are given by

dS0
t = S0

t p
(

t, V 0
t

)

dW 1
t , dV 0

t = u
(

t, V 0
t

)

dt

and the vanilla option price

f0

(

t, S0
t , V 0

t

)

= E

[

g
(

S0
T

) ∣

∣

∣Ft

]

can be computed by the Black-Scholes formula as

f0

(

t, S0
t , V 0

t

)

= E

[

(

S0
T − K

)+
∣

∣

∣

∣

Ft

]

= E

[

(

S0
t exp

(

Zσ
(

t, V 0
t

)

−
1

2
σ2
(

t, V 0
t

)

)

− K

)+
∣

∣

∣

∣

∣

Ft

]

,

where Z ≃ N (0, 1) is independent of Ft and

γ2
(

t, V 0
t

)

:=

∫ T

t
p2
(

u, V 0
u

)

du, t ∈ [0, T ].

We note that in the α-hypergeometric model (1) with η = 0 the integral
∫ T

t eαV 0
u du can be computed in closed

form as

∫ T

t
eαV 0

u du =
2

αc
log

(

1 +
αc

2
eαV 0

t

∫ T −t

0
eαasds

)

=
2

αc
log

(

1 +
αc

2
eαV 0

t

eαa(T −t) − 1

αa

)

,

cf. § 2.1.1 of [1], and this yields the following proposition.
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Proposition 1. In the 2-hypergeometric model (1) with η = 0 the European call price

f0

(

t, S0
t , V 0

t

)

= E

[

(

S0
T − K

)+
∣

∣

∣

∣

Ft

]

under the terminal condition f0(T, x, v) = (x − K)+ is given by

f0(t, x, v) = xΦ (d+(t, x, v)) − KΦ (d−(t, x, v)) ,

where Φ is the standard Gaussian cumulative distribution function,

d±(t, x, v) =
1

γ(t, v)

(

log

(

x

K

)

±
γ2(t, v)

2

)

, and γ2(t, v) =
1

c
log

(

1 + ce2v e2a(T −t) − 1

2a

)

. (5)

In the case of a put option the function f0(t, x, v) can be obtained as

f0(t, x, v) = −xΦ (−d+(t, x, v)) + KΦ (−d−(t, x, v)) , t ∈ [0, T ],

by a standard call-put parity argument. In the remainder of this paper we work in the 2-hypergeometric model
with α = 2.

4 Second order expansion

In this section we consider small values of the volatility of volatility by replacing η in (1) with εηeV ε

t γ4(t, V ε
t ),

ε > 0, i.e. we have

dSε
t = Sε

t eV ε

t dW 1
t , dV ε

t =

(

a −
c

2
e2V ε

t

)

dt + εηeV ε

t γ4(t, V ε
t )dW 2

t ,

and from (4) the operators L0, L̃1 and L̃2 are given by

L0 =

(

a −
c

2
e2v

)

∂

∂v
+

x2

2
e2v ∂2

∂x2
, L̃1 = ηρxe2vγ4(t, v)

∂2

∂x∂v
, L̃2 =

η2

2
e2vγ8(t, v)

∂2

∂v2
.

In particular, we look for an expansion of the form

f(t, x, v) = f0(t, x, v) + εf̃1(t, x, v) + ε2f̃2(t, x, v) + o(ε2), (6)

where
∂f0

∂t
+ L0f0 = 0,

∂f̃1

∂t
+ L0f̃1 + L̃1f0 = 0,

∂f̃2

∂t
+ L0f̃2 + L̃1f̃1 + L̃2f0 = 0,

f0(T, x, v) = (x − K)+, f̃1(T, x, v) = 0, f̃2(T, x, v) = 0.

Note that our approximation (Sε
t , V ε

t )t∈[0,T ] does not lie within the class of 2-hypergeometric models.

Proposition 2. The first and second order coefficients appearing in the expansion (6) are given by

f̃1(t, x, v) = −ηρK
d−(t, x, v)

c3γ2(t, v)
φ (d−(t, x, v))

(

e−cγ2(t,v)
(

c2γ4(t, v) + c2γ2(t, v) + 2
)

− 2 +
c3

3
γ6(t, v)

)

,

f̃2(t, x, v) =
η2

c
Kφ (d−(t, x, v))

(

A3(t, v)

γ(t, v)
+ d−(t, x, v)B3(t, v) +

(d−(t, x, v))2

γ(t, v)
B3(t, v)

)

+ η2ρ2Kφ (d−(t, x, v)) (C3(t, v)

+
2D(t, v)

3c7γ4(t, v)

(

(d−(t, x, v))4

3γ(t, v)
− d−(t, x, v) +

(d−(t, x, v))3

3

)

+
(d−(t, x, v))2

γ5(t, v)
E3(t, v)

)

, t ∈ [0, T ],

where φ(x) is the standard Gaussian probability density function, γ(t, v) is defined in (5) and the functions

Ai, Bi, Ci, D, Ei are given below for i = 1, 2, 3.

Proof. The expression of f̃1 and f̃2 can be computed by similar arguments from the Feynman-Kac formula
and the expected value. For simplicity of exposition we skip the corresponding computations, which are quite
extensive. �
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We have

A1(t, v) =
σ8(t, v)

2c
+

5γ6(t, v)

4c2
+

2γ4(t, v)

c3
+

9γ2(t, v)

4c4
+

3

2c5
+

3

8c6γ2(t, v)
, A2(t, v) = −

γ8(t, v)

c
−

5γ6(t, v)

c2
−

16γ4(t, v)

c3

−
24

c4
γ2(t, v) −

48

c5
−

24

c6γ2(t, v)
, A3(t, v) = −

γ8(t, v)

10c
+ e−2cγ2(t,v)A1(t, v) + A2(t, v)e−cγ2(t,v) +

93

4c5
+

189

8c6γ2(t, v)
,

B1(t, v) = −
γ6(t, v)

4c2
−

γ4(t, v)

2c3
−

3γ2(t, v)

4c4
−

3

4c5
−

3

8c6γ2(t, v)
, B2(t, v) =

γ6(t, v)

c2
+

4γ4(t, v)

c3
+

12γ2(t, v)

c4
+

24

c5

+
24

c6γ2(t, v)
, B3(t, v) =

γ8(t, v)

10c
+ e−2cγ2(t,v)B1(t, v) + B2(t, v)e−cγ2(t,v) −

189

8c6γ2(t, v)
, C1(t, v) = −

γ5(t, v)

c2
+

γ3(t, v)

2c3

+
3γ2(t, v)

c4
+

4γ(t, v)

c4
+

9

2c5
+

21

2c5γ(t, v)
+

9

2c6γ2(t, v)
+

9

c6γ3(t, v)
+

9

4c7γ4(t, v)
+

15

4c7γ5(t, v)
, C2(t, v) = −

3γ5(t, v)

c2

−
9γ3(t, v)

c3
−

6γ2(t, v)

c4
−

64γ(t, v)

c4
−

36

c5
−

120

c5γ(t, v)
−

36

c6γ2(t, v)
+

24

c6γ3(t, v)
−

36

c7γ4(t, v)
+

24

c7γ5(t, v)
,

C3(t, v) = −
7γ7(t, v)

30c
−

2γ(t, v)

c4
+ C1(t, v)e−2cγ2(t,v) + C2(t, v)e−cγ2(t,v) +

189

2c6γ3(t, v)
+

135

4c7γ4(t, v)
−

111

4c7γ5(t, v)
,

D(t, v) = e−2cγ2(t,v)
(

ecγ2(t,v)
(

c3γ6(t, v) − 3
)

+ 3cγ2(t, v)

(

c

2
γ2(t, v) + 1

)

+ 3

)2

, E1(t, v) =
γ10(t, v)

c2
+

γ8(t, v)

c3

−
15γ6(t, v)

c4
−

27γ4(t, v)

c5
−

51γ2(t, v)

2c6
−

12

c7
, E2(t, v) =

2γ10(t, v)

c2
+

2γ8(t, v)

c3
+

17γ6(t, v)

c4
+

216γ4(t, v)

c5
+

24γ2(t, v)

c6

+
24

c7
, E3(t, v) =

γ12(t, v)

15c
+

4γ6(t, v)

c4
−

189γ2(t, v)

2c6
+ E1(t, v)e−2cγ2(t,v) + e−cγ2(t,v)E2(t, v) −

492

c7
.

Note that in the case of put options, only the function f0(t, x, v) is modified by the standard call-put parity
argument, while higher order terms such as f̃1(t, x, v) and f̃2(t, x, v) remain unchanged.

5 Implied volatility

In this section we provide an estimation of the implied volatility. σimp which is determined by the equation

fBS
(

t, x, T, K, σimp
)

= f(t, x, v),

where fBS
(

t, x, T, K, σimp
)

is the classical Black-Scholes function, cf. e.g. Da Fonseca and Grasselli [?] in
multi-factor models.

Theorem 3. The implied volatility σimp admits the series expansion

σimp(t, x, v) = σ0(t, x, v) + εσ1(t, x, v) + ε2σ2(t, x, v) + o(ε2),

where

σ0(t, x, v) = γ(t,v)√
T −t

, σ1(t, x, v) = f̃1(t,x,v)

K
√

T −tφ(d−(t,x,v))
and

σ2(t, x, v) = f̃2(t,x,v)

K
√

T −tφ(d−(t,x,v))
− d+(t, x, v)d−(t, x, v)

σ2
1
(t,x,v)

2σ0(t,x,v) .

Proof. The implied volatility σimp is determined by equating

fBS
(

t, x, T, K, σimp
)

= f(t, x, v) = f0(t, x, v) + εf̃1(t, x, v) + ε2f̃2(t, x, v) + o(ε2),

where fBS is the classical Black-Scholes function with implied volatility σimp. Expressing the implied volatility
as a power series

σimp(t, x, v) = σ0(t, x, v) + εσ1(t, x, v) + ε2σ2(t, x, v) + o(ε2)
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in ε, we expand fBS
(

t, x, T, K, σimp
)

and using a Taylor expansion in terms of ε to obtain

fBS
(

t, x, T, K, σimp
)

= fBS(t, x, T, K, σ0(t, x, v)) +
(

εσ1(t, x, v) + ε2σ2(t, x, v)
) ∂fBS

∂σ
(t, x, T, K, σ0(t, x, v))

+
1

2
ε2σ2

1(t, x, v)
∂2fBS

∂σ2
(t, x, T, K, σ0(t, x, v)) + · · ·

The first three terms of the implied volatility expansion are obtained by identification of coefficients in the
above expressions. �

6 Delta

In this section, we provide an estimation of the Delta, ∆ which is approximated by Equation (6).

Theorem 4. The Delta, ∆ admits the series expansion

∆ (t, x, v) =
∂f0 (t, x, v)

∂x
+ ε

∂f̃1 (t, x, v)

∂x
+ ε2 ∂f̃2 (t, x, v)

∂x
,

where

∂f0 (t, x, v)

∂x
=







Φ (d+ (t, x, v)) + φ(d+(t,x,v))
γ(t,v) − Kφ(d−(t,x,v))

xγ(t,v) , for call

−Φ (−d+ (t, x, v)) + φ(−d+(t,x,v))
γ(t,v) − Kφ(−d−(t,x,v))

xγ(t,v) , for put

∂f̃1 (t, x, v)

∂x
= −ηρK

1 + (d− (t, x, v))2

xc3γ3 (t, v)
φ (d− (t, x, v))

(

e−cγ2(t,v)
(

c2γ4 (t, v) + c2γ2 (t, v) + 2
)

− 2 +
c3γ6 (t, v)

3

)

, for call and

∂f̃2 (t, x, v)

∂x
=

η2

c
K

d− (t, x, v)

xγ (t, v)
φ (d− (t, x, v))

(

A3 (t, v)

γ (t, v)
+ d− (t, x, v) B3 (t, v) +

(d− (t, x, v))2

γ (t, v)
B3 (t, v)

)

+
η2

c
Kφ (d− (t, x, v))

(

A3 (t, v)

γ (t, v)
+

B3 (t, v)

xγ (t, v)
+

2d− (t, x, v)

xγ2 (t, v)
B3 (t, v)

)

+ η2ρ2K
d− (t, x, v)

xγ (t, v)
φ (d− (t, x, v))

(

C3 (t, v) +
2D (t, v)

3c7γ4 (t, v)

(

(d− (t, x, v))4

3γ (t, v)
− d− (t, x, v) +

(d− (t, x, v))3

3

)

+
(d− (t, x, v))2

γ5 (t, v)
E3 (t, v)

)

+ η2ρ2Kφ (d− (t, x, v))

(

C3 (t, v) +
2D (t, v)

3c7γ4 (t, v)

(

4 (d− (t, x, v))3

3xγ2 (t, v)
−

1

xγ (t, v)
+

(d− (t, x, v))2

xγ (t, v)

)

+
2d− (t, x, v)

xγ6 (t, v)
E3 (t, v)

)

, for call and put.
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