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1 Introduction

The following method proposed by [1] deals with an efficient particle method for com-
puting the price of a forward starting call spreads asset considering a path-dependent
volatility model (PDV) where the instantaneous volatility depends on the path followed
by the asset price so far.

2 Theoretical framework

We consider the following path-dependent volatility model, :

dSt = St · σ(t, (Su, u ≤ t)) · dWt

We have chosen to take zero interest rates and dividends.

In this article, we choose a set of path dependent variables Xt and a function σ(t, St, Xt)
so that the path-dependent volatility is given by σ(t, (Su, u ≤ t)) = σ(t, St, Xt) .
In order to calibrate the model to the market smile of S ,we multiply σ(t, St, Xt) by a
leverage function l(t, St).

The PDV model is now the following :

dSt = St · σ(t, St, Xt) · l(t, St) · dWt

From Itô-Tanaka’s formula, this model is exactly calibrated to the market smile if we
have

E[σ(t, St, Xt)
2|St] · l(t, St)

2 = σDup(t, St)
2

As a result, the calibrated model satisfies the non-linear McKean differential equation :

dSt = St
σ(t, St, Xt)

√

E[σ(t, St, Xt)2|St]
σDup(t, St) · dWt

The particle method, explained in the next section, is a very efficient and elegant
Monte Carlo method that computes the above conditional expectation, hence the leverage
function :

l(t, S) =
σDup(t, S)

√

E[σ(t, St, Xt)2|St = S]
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3 Numerical algorithm

3.1 Path-dependent volatility

The following path-dependent volatility that we will consider was proposed by [1]. It
suggests that the volatility at t depends on the spot value at t − ∆ through the following
expression :

σ(t, St, Xt) = σ̄1
{

St

Xt
≤1}

+ σ1
{

St

Xt
>1}

with Xt = St−∆ and σ̄, σ parameters to be defined.
One question remains : How do we compute the conditional expectation ?

3.2 Particle method to compute E[a2
t |St = s]

We usually approximate E[a2
t |St = s] by :

E[a2
t |St = s] =

∑M
i=1(ai

t)
2δ(Si

t − s)
∑M

i=1 δ(Si
t − s)

With δ being a regularizing kernel. Yet this method requires a computational time far
too high if we do it for each Monte Carlo sample.

Thus instead of computing E[σ(t, St)
2|St = s] for all Monte Carlo samples. We decide

to compute it only L times with L << M .
L is often called the number of bins : each bin being a same-sized interval containing M

L

spot values.
In order to choose which spot value in which bin, we classify the spot values Si

t in the
ascending order and each one of them will belong to a bin depending on its rank.
At t for the ith sample, if Si

t belongs to the Lth bin then we approximate the conditional
expectation by :

E[σ(t, Si
t)

2|St] =

∑

j:j∈Lthbin σ(t, S
j
t )2

M
L

This way we can compute the leverage function L(t, Si
t) for each sample with acceptable

computation time.

3.3 Simulation scheme

We discretize [0, T ] on a regular grid of size N , with step size ∆ = T
N

. We use the
following exponential scheme :

Si,j+∆ = Si,j · exp

(

σ(j, Si,j) · σDup
√

N · ECi,j

· Wi,j − 1

2

σ2
Dup · σ(j, Si,j)2

ECi,j · N

)

with Si,0 = S0 , ECi,j = E[σ(j, Si
j , Xi

j)2|St] and (Wi,j) being an independent brownian
motion.
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4 Numerical experiments

We test the algorithm on forward starting call spreads with payoff :

(
ST

ST −1

− K1)+ − (
ST

ST −1

− K2)+

with the following parameters :

S0 σ̄ σ K1 K2

1 0.32 0.08 0.95 1.05

We use N = 120 times steps, T = 12 months, M = 10000 particles and the local
volatility σDup = 20%.
The conditional expectation is computed with L = 100 bins.

We get the following price at T : 0.02168

Furthermore we can compute the price in volatility points of the forward starting call
spreads at each month. For the ith month, we compute σAT M

i by dichotomy :

E((
STi

STi−1

− 1)+) = CBS(1, σAT M
i )

where CBS(K, σ) denotes the Black-Scholes price of a call with S0 = 1, r = q = 0 and
T = 1 month.
Then the price in volatility points at i is 100 · ∆σ such as ∆σ satisfies :

E[(
STi

STi−1

− K1)+ − (
STi

STi−1

− K2)+] = CBS(K1, σAT M
i +

∆σ

2
) − CBS(K2, σAT M

i − ∆σ

2
)

We get the following evolution of the price in volatility points, where PDV is the path-
dependent volatility model and LV is the local volatility model ( dSt = St · σDup · dWt)
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5 Correlated models

Let’s apply this method for the correlated model where we have two rates S1 and
S2 following local volatility dynamics and S12 = S1

S2 be the cross rate. We now have the
following equations :

dS1
t = σ1(t, S1

t ) · S1
t · dW 1

t

dS2
t = σ2(t, S2

t ) · S2
t · dW 2

t

d < W 1, W 2 >t= ρ(t, S1
t , S2

t )

The two driving processes W 1 and W 2 are two brownian motions ; they have a local
instantaneous correlation ρ(t, S1, S2) ∈ [0, 1].

We can demonstrate that this model is calibrated to the market smile of the cross rate
S12 if and only if :

E[S2
t (σ2

1(t, S1
t ) + σ2

2(t, S2
t ) − 2ρ(t, S1

t , S2
t )σ1(t, S1

t )σ2(t, S2
t ))|S1

t

S2

t

]

E[S2
t |S1

t

S2

t

]
= σ2

12(t,
S1

t

S2
t

)

The following ρ satisfies this condition :

ρ(t, S1
t , S2

t ) =
E[S2

t (σ2
1(t, S1

t ) + σ2
2(t, S2

t ))|S1

t

S2

t

] − σ2
12(t,

S1

t

S1

t

)E[S2
t |S1

t

S2

t

]

2E[S2
t σ1(t, S1

t )σ2(t, S2
t )|S1

t

S2

t

]

For our problem we choose the following volatility dynamics :

σ1(t, S1
t ) = σ1 + δ

S1
t

1 + S1
t

σ2(t, S2
t ) = σ2 + δ

S2
t

1 + S2
t

σ12(t,
S1

t

S2
t

) = σ1 + δ

S1

t

S2

t

1 +
S1

t

S2

t

Then we can simulate the rates of this correlated model with the following scheme model,
similar to the previous one for the path-dependent volatility model.

5.1 Simulation scheme

S1
i,j+∆ = S1

i,j exp

(

σ1(j, S1
i,j)√

N
W 1

i,j − 1

2

σ2
1(j, S1

i,j)

N
−

σ1(j, S1
i,j)σ2(j, S2

i,j)ρ(j, S1
i,j , S2

i,j)

N

)

S2
i,j+∆ = S2

i,j exp

(

σ2(j, S2
i,j)√

N
(ρ(j, S1

i,j , S2
i,j)W 1

i,j +
√

1 − ρ(j, S1
i,j , S2

i,j)2W 2
i,j) − 1

2

σ2
2(j, S2

i,j)

N

)
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5.2 Numerical experiments

We test the algorithm for a put on worst with payoff :

g(S1
T , S2

T ) = (K − min(
S1

T

S0

,
S2

T

S0

)+

with the following strike K = 0.95, and σ1 = 20% , σ2 = 30%, δ = 0.05. All the other
parameters M, N, L ... are the same as the previous section.
We finally get the following price at T for our model with the put on worst : 0.1304
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