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Abstract

Applying the wavelet approximation method proposed in [OO13], we price
the European option in Heston model. This method improved the accuracy
problem of COS method for call option (COS method has to rely on the put
call parity to compute the price of call option) and long maturity contract.
And this method can be extended to the extreme heavy tail model like CGMY
model.
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1 Option pricing with wavelet

Consider the risk-neutral valuation formula of an European option

v(x, t) = e−r(T −t)EQ(v(y, T )|x) = e−r(T −t)
∫

R
v(y, T )f(y|x)dy, (1.1)

where v(x, t) denotes the option value at time t with the state variable value x for
the underlying asset at time t, T is the maturity, t is the initial date, EQ the ex-
pectation operator under the risk-neutral measure Q, x and y are state variables of
the logarithm of the underlying asset at time t and T , respectively, f(y|x) is the
conditional probability density of y given x and r is the risk neutral interest rate.

Since the density function f(y|x) is expected to decay to zero as y goes to infinity,
the infinity integration range is truncated to [a, b] ⊂ R, the the risk-neutral price of
the European option is

vc(x, t) = e−r(T −t)
∫ b

a
v(y, T )f(y|x)dx. (1.2)
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According to the theory of multiresolution analysis (MRA), the conditional prob-
ability density truncated in a bounded interval [a, b],

f c(y|x) :=







f(y|x), if y ∈ [a, b],

0, otherwise.
(1.3)

can be generated by the scaling function φj with a unique sequence of coefficients
{cj

m,k}k∈Z ∈ l2(Z)

f c
m,j(y|x) =

(j+1)·(2m
−1)

∑

k=0

c
j
m,k(x)φj

m,k

(

(j + 1) · y − a

b− a

)

, j ≥ 0, (1.4)

where m is the scale of approximation and we consider only the scaling function
with order j = 0, 1. For j = 0 we have the scaling function of Haar wavelet system,
while for j = 1, we have the linear B-splines.

Then by applying the scaling function to the conditional probability density
function, the risk-neutral price of an European option can be computed by

vc
m,j(x, t) = e−r(T −t)

∫ b

a
v(y, T )f c

m,j(y|x)dy = e−r(T −t)
(j+1)·(2m

−1)
∑

k=0

c
j
m,k(x) · V j,α

m,k, (1.5)

where

V
j,α

m,k :=
∫ b

a
v(y, T )φj

m,k

(

(j + 1) · y − a

b− a

)

dy, (1.6)

with α is the option index, α = 1 for call and α = −1 for put.

2 Heston model and its characteristic function

We consider the Heston model for the underlying process, its dynamics is given by
the following stochastic differential equations,







dxt =
(

µ− 1
2
ut

)

dt+
√
utdW1t,

dut = λ (u− ut) dt+ η
√
utdW2t,

(2.1)

where xt denotes the log-asset price variable and ut the variance of the asset price
process. Parameters λ ≥ 0, u ≥ 0 and η ≥ 0 are called the speed of mean reversion,
the mean level of variance, and the volatility of volatility, respectively. Furthermore,
the Brownian motions W1t and W2t are assumed to be correlated with correlation
coefficient ρ. Under the risk neutral measure, µ = r − d, where r is the risk-free
interest rate and d is the dividend rate.
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The characteristic function of log-asset price xT given xt = x for model (2.1) is

ψ(w) = exp(−iwx) (2.2)

· exp

[

−iwµ(T − t) +
u0

η2

(

1 − e−D(T −t)

1 −Ge−D(T −t)

)

(λ+ iρηw −D)

]

· exp

{

λu

η2

[

(λ+ iρηw −D)(T − t) − 2 log

(

1 −Ge−D(T −t)

1 −G

)]}

,

with

D =
√

(λ+ iρηw)2 + (w2 − iw)η2 and G =
λ+ iρηw −D

λ+ iρηw +D
. (2.3)

The truncated bounds a and b of the Heston model (2.1) for (1.2) is the same as
for the COS method:

[a, b] := [x+ c1 − L
√
c2, x+ c1 + L

√
c2] , with x = xt − logK,

where L is a constant taking value large enough (L = 12 for Heston model in our
example) so that the truncated error satisfies the computation precise requirement,
and cn denotes the nth cumulant of xT − logK, which was provided in Appendix of
[FO09] with

c1 = µT +
(

1 − e−λT
) u− u0

2λ
− 1

2
uT,

c2 =
1

8λ3

[

ηTλe−λT (u0 − u)(8λρ− 4η) + λρη(1 − e−λT )(16u− 8u0) + 8λ2(u0 − u)(1 − e−λT )

+2uλT (−4λρη + η2 + 4λ2) + η2((u− 2u0)e
−2λT + u(6e−λT − 7) + 2u0)

]

.

Next we will derive the coefficients V j,α
m,k and c

j
m,k in (1.5).

3 Coefficients V
j,α
m,k

Here we consider the approximation by Haar wavelet, i.e. j = 0. For the approxi-
mation by B-splines, i.e. j = 1, please refer to Section 3.3.2 of [OO13].

For an European option with strike K and payoff function at time of maturity
T as [α(ST −K)]+, the option value at time T is

v(y, T ) = [αK(ey − 1)]+,

with α = 1 for call option and α = −1 for put option. By applying into (1.2) the
above option value and the Haar wavelet for φj

m,k(j = 0)

φ0
m,k(x) =







2m/2, k
2m ≤ y−a

b−a
< k+1

2m ,

0, otherwise,
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we have for k = 0, 1, · · · , 2m − 1 and a < 0 < b,

V
0,1

m,k :=
∫ b

a
K(ey − 1)+φ0

m,k

(

y − a

b− a

)

dy =
∫ b

0
K(ey − 1)φ0

m,k

(

y − z

b− a

)

dy

=







2m/2K
(

eγk − eδk + δk − γk

)

, γk > 0,

0, otherwise,
(3.1)

where the upper script 0, 1 in V
0,1

m,k denotes j = 0 for Haar wavelet and α = 1 for

call option and △m := b−a
2m , βk := a+ k△m, γk := βk + △m, δk := max(0, βk).

Similarly we derive the coefficient for an European put option with strike K and
payoff function (K − ST )+,

V
0,−1

m,k :=
∫ b

a
K(1 − ey)+φ0

m,k

(

y − a

b− a

)

dy =
∫ 0

a
K(1 − ey)φ0

m,k

(

y − z

b− a

)

dy

=







2m/2K
(

eβk − eξk + ξk − βk

)

, βk < 0,

0, otherwise,
(3.2)

with ξk = min(0, γk).

If a < b < 0, then V
0,1

m,k = 0, V 0,−1
m,k = 2m/2K

(

eβk − eγk + γk − βk

)

, for k =

0, · · · , 2m−1. And conversely, if 0 < a < b, then V 0,−1
m,k = 0, V 0,1

m,k = 2m/2K
(

eγk − eβk + βk − γk

)

,
for k = 0, · · · , 2m − 1.

4 Coefficients c
j
m,k

We consider the approximation in a fixed interval [a, b] and provide the computation
formula here, for the derivation of the formula please refer to Section 3.1 of [OO13].

The coefficients cj
m,k, k = 1, · · · , (j + 1) · (2m − 1) can be approximated as

c
j
m,k ≈ 1

Mdk

(

Qm,j(d) + (−1)kQm,j(−d) + 2
M−1
∑

s=1

R(Qm,j(de
ihs)) cos(khs)

)

, (4.1)

where M = 2m, d > 0 is the radius and taking value of 0.9995 in our example, h = π
M

and hs = sh for all s = 0, · · · ,M.

Qm,j(z) :=
2

m
2 (j + 1)z−

2m(j+1)a

b−a f̂
(

2m(j+1)
b−a

i · log(z)
)

(log(z))j+1

(b− a)(z − 1)j+1
, (4.2)

f̂(w) is the Fourier transform of f(y|x), i.e. the characteristic function of the con-
ditional probability density function

f̂(w) =
∫ +∞

−∞

e−iwyf(y|x)dy.
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For Heston model (2.1), the characteristic function f̂(w) is given as ψ(w) in (2.2).
For the approximation in R, please refer to Section 3.2 of [OO13].
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