
Conditional Monte Carlo Learning for
diffusions

L. Abbas-Turki∗, B. Diallo†and G. Pagès‡

October 17, 2019

Abstract

We present a new algorithm based on a One-layered Nested Monte
Carlo (1NMC) to simulate functionals U of a Markov process X. The
main originality of the proposed method comes from the fact that it
provides a recipe to simulate Ut≥s conditionally on Xs. This recipe
can be used for a large number of situations including: Backward
Stochastic Differential Equations (BSDEs), Reflected BSDEs (RBS-
DEs), risk measures and beyond. In contrast to previous works, our
contribution is based on a judicious combination between regression
and 1NMC used for localization purpose. The generality, the stability
and the iterative nature of this algorithm, even in high dimension,
make its strength. It is of course heavier than a straight Monte Carlo
(MC), however it is far more accurate to simulate quantities that are
almost impossible to simulate with MC. Indeed, using the double layer
of trajectories, we explain how to estimate and control the bias prop-
agation. With this double layer structure, it is also possible to adjust
the variance for a better description of tail events. Moreover, the par-
allel suitability of 1NMC makes it feasible in a reasonable computing
time. This paper explains this algorithm and details error estimates.
We also provide various numerical examples with a dimension equal
to 100 that are executed in few minutes on one Graphics Processing
Unit (GPU).

∗Email: lokmane.abbas turki@sorbonne-universite.fr. LPSM (UMR 8001), Sorbonne
Université, 4, Place Jussieu 75005 Paris.
†Email: babacar.diallo@ca-cib.com. Quantitative Research GMD/GMT Crédit Agri-

cole CIB, 92160 Montrouge, France; LaMME, Univ. Evry, CNRS, Université Paris-Saclay,
91037, Evry, France; LPSM, Sorbonne Université, 4, Place Jussieu 75005 Paris.
‡Email: gilles.pages@sorbonne-universite.fr. LPSM (UMR 8001), Sorbonne Université,

4, Place Jussieu 75005 Paris.

1

Contents

1 Introduction 2

2 Conditional learning procedure: Notations and method 5
2.1 Iterative procedure, regression initialization and stabilization 5
2.2 Fine and coarse approximations 10
2.3 Regression computations: Bias control and variance adjust-

ment . 14

3 Some applications: Risk measures, BSDEs and RBSDEs 18
3.1 Conditional expectation and risk measures 18
3.2 BSDEs with a Markov forward process 22
3.3 RBSDEs with a Markov forward process 26

4 Error estimates and cutting bias propagation 29
4.1 Regression-based NMC and increasing the learning depth . . . 29
4.2 Regression with different starting points 33

5 Some numerical results 41
5.1 Allen-Cahn equation . 41
5.2 Multidimensional Burgers-type PDEs with explicit solution . . 42
5.3 Time-dependent reaction-diffusion-type example PDEs with

oscillating explicit solutions 44
5.4 A Hamilton-Jacobi-Bellman (HJB) equation 45
5.5 Pricing of European financial derivatives with different interest

rates for borrowing and lending 47
5.6 A PDE example with quadratically growing derivatives and

an explicit solution . 47
5.7 American geometric put option 49
5.8 Initial Margin . 52

1 Introduction

Numerous contributions in numerical methods based on Monte Carlo reached
recently their limits in dealing with the curse of dimensionality [5]. In con-
trast to previous works, our method is based on a judicious combination
between 1NMC and the use of regression. This paper is a natural progress
of an increasing interest in NMC started in [19, 21, 22] and used with re-
gression in [1, 7]. Considering a filtered probability space (Ω,F ,F0≤t≤T , P),

2

an Ft-Markov process (Xt)t∈[0,T] taking its values on Rd1 and the time dis-
cretization {t0, ..., t2L} =

{
0, T/2L, ..., T

}
, let Us be a functional of X defined

for s ∈ {t0, ..., t2L} by

(f) Us =Es

 t
2L∑

tk≥s

f(tk, Xtk , Xtk+1
)

=E

(
T∑

tk≥s

f(tk, Xtk , Xtk+1
)
∣∣∣Fs) ,

where Es (·) = E
(
·
∣∣∣Fs), the expectation is always considered under P , each

deterministic function f(tk, ·, ·) is B(Rd1)⊗B(Rd1)-measurable and assumed
to satisfy the square integrability E(f 2(tk, Xtk , Xtk+1

)) <∞ with convention
f(t2L , Xt

2L
, Xt

2L+1
) = f(t2L , Xt

2L
). The simulation of U is generic to all

BSDEs and RBSDEs examples presented in this paper. As nested simulations
involve heavy notations, it is easier to present the whole algorithm for the
simulation of U then apply it on specific examples.

When previous contributions target estimations of Utk for k = 0, ..., 2L

knowing some realization of {Xtj}0≤j≤k (m0 = 1, ...,M0), our purpose is to
simulate approximations {Um0,m1

tk,s
}s≥tk+1

, with (m0 = 1, ...,M0) and (m1 =
1, ...,M1), of {Us}s≥tk+1

conditionally on the realization {Xm0
tj }0≤j≤k. This

task requires the simulation of a first layer (Xm0)m0=1,...,M0 of trajectories that
are kept in the machine’s memory, then a second unstored layer (Xm0,m1)m1=1,...,M1

of trajectories, on the top of the first layer, only used to learn how should we
perform approximations {Um0,m1

tk,s
}s≥tk+1

.Although more complex, this proce-
dure provides much more information on the process U . In particular, we use

1

M1

M1∑
m1=1

(
f(tk, X

m0
tk
, Xm0,m1

tk+1
) + Um0,m1

tk,tk+1

)
to have the first layer approximation

Um0
tk

of Utk . Knowing the second layer approximation Um0,m1 , we can com-
pute quantiles on U or, even more remarkable, can simulate another process
Ũ that satisfies equation (f̃) (Replace f by f̃ in equation (f)) with an f̃ that

can be a function of U like for instance f̃(tk, x, y) = f(tk, Utk(x), Utk+1
(y)).

Consequently, when sufficient assumptions are satisfied, we can learn how to
compute functionals of functionals of X with the same 1NMC. This latter
fact makes possible a straightforward simulation of Valuation Adjustments
[1] as long as one can write them as a composition of functionals then start
simulating by the innermost functional till the most outer composition.

Although we are not the first to propose a learning procedure for BSDEs
[12], we are the first to do it using nested Monte Carlo instead of a neural
network. To the best of our knowledge, we are also first to provide a com-
prehensive presentation of an iterative algorithm where the accuracy of the
estimator {Um0

tk
}k=0,...,2L improves by adding more regression steps and thus

3

by increasing the learning depth. Thanks to our method, one can easily bal-
ance between complexity and accuracy. Moreover, it is possible to improve
the accuracy in a parareal fashion [24] which increases further the parallel
scalability of the algorithm. In addition to that, we use equality

E(Us) = E

Us′ + s′∑
tl+1>s

f(tl, Xtl , Xtl+1
)


true for s′ > s, and its localized version for each interval [a, b]

E
(
Us1{Us∈[a,b]}

)
= E

1{Us∈[a,b]}

Us′ + s′∑
tl+1>s

f(tl, Xtl , Xtl+1
)

 ,

to present a nonparametric method to effectively estimate and control the
bias. In the same fashion, we detail a variance adjustment procedure based
on the equality

E (Vars(Us′)) = E
(
Es
(
[Us′ − Es(Us′)]2

))
= E

(
[Us′ − Es(Us′)]2

)
.

true for s′ > s, and its localized version for each interval [a, b]

E
(
Vars(Us′)1{Vars(Us′′)∈[a,b]}

)
= E

(
1{Vars(Us′′)∈[a,b]}[Us′ − Es(Us′)]2

)
,

true for s′ > s and s′′ > s. The proposed variance adjustment strategy
makes possible the nested simulation of distribution tails without requiring an
importance sampling technique [20]. The good representation of tail events,
via variance adjustment, becomes necessary for some nonlinear problems
especially RBSDEs. Both bias control and variance adjustment shows that:
1NMC makes possible a very fine tracking of the bias of the first layer fine
estimator Um0 and the variance of the second layer coarse estimator Um0,m1 .

Focusing on the simulation of U given in (f), Section 2 introduces the
method as well as notations. Section 2 also presents the iterative procedure,
the bias control and the variance adjustment strategy on the approximation
of U . Section 3 illustrates the presented method on some standard problems
involving BSDEs, RBSDEs and risk measures. These examples show how
the algorithm should be adapted to different situations, in particular how to
set: iterations, bias control and variance adjustment for BSDEs and optimal
stopping problems. Section 4 details the required assumptions in a general
diffusion setting. It also provides different error estimates associated to our
method and gives a sense to the overall approximation procedure. Section 5
shows the robustness of our method on highly dimensional problems beyond
what is known to be possible in previous papers.

4

2 Conditional learning procedure: Notations

and method

In Section 2.1, we present the algorithm steps and what should be done to
stabilize it. As needed for any learning method, the initialization is also
explained in Section 2.1. This will set the stage to express, in Section 2.2,
the regression based approximations as an output of an iterative procedure.
Details on the computation of the regression are provided in Section 2.3
that also includes a bias control and a variance adjustment necessary when
targeting the tail events.

2.1 Iterative procedure, regression initialization and
stabilization

Using a sufficiently fine discretization {t0, ..., t2L} = {0,∆t, 2∆t, ..., T} with
∆t = T/2L, one simulates M0 realizations (Xm0

tk
)m0=1,...,M0

k=1,...,2L
of the Markov

process X starting at a deterministic point X0 = x0 ∈ Rd1
with the following

induction

Xm0
tk

= Etk−1
(Xm0

tk−1
, ξm0
tk

), when k ≥ 1 and Xm0
t0 = x0, (2.1)

where (ξm0
tk

)m0=1,...,M0

k=1,...,2L
are independent realizations of an Rd2 random vector

ξ and (Etk)k=0,...,2L−1 : Rd1+d2 → Rd1 are Borel-measurable functions. We

use Xm0,1
tk

, ..., Xm0,d1
tk

to denote the d1 components of the vector Xm0
tk

. The

sample (Xm0
tk

)m0=1,...,M0

k=1,...,2L
stays on the machine memory and is supposed to

approximate accurately (Xt)t∈[0,T] in a sense explained in Section 4.
For a decreasing sequence (sj)j=0,...,2L that takes its values in the time

discretization set {t0, ..., t2L}, an extra simulation conditional to the starting
Xm0
sj

is needed for the learning procedure. Introducing independent realiza-
tions
(ξm0,m1
tj ,tk

)
(m0,m1)∈{1,...,M0}×{1,...,M1+M ′1}
k∈{j,...,2L},j∈{1,...,2L} of the random vector ξ that are also in-

dependent from (ξm0
tk

)m0=1,...,M0

k=1,...,2L
, we set for tk−1 ≥ sj

Xm0,m1
sj ,tk

= Etk−1
(Xm0,m1

sj ,tk−1
, ξm0,m1
sj ,tk

) and Xm0,m1
sj ,sj

∣∣∣
m1=1,...,M1+M ′1

= Xm0
sj
. (2.2)

We use Xm0,m1,1
sj ,tk

, ..., Xm0,m1,d1
sj ,tk

to denote the d1 components of the vector
Xm0,m1
sj ,tk

. For sj ≤ sl ≤ sk, we also introduce the notation Xm0,m1
sj ,sl:sk

and ξm0,m1
sj ,sl:sk

for respectively (Xm0,m1
sj ,sl

, Xm0,m1

sj ,sl+∆t
, ..., Xm0,m1

sj ,sk−∆t
, Xm0,m1

sj ,sk
) and

(ξm0,m1
sj ,sl

, ξm0,m1

sj ,sl+∆t
, ..., ξm0,m1

sj ,sk−∆, ξ
m0,m1
sj ,sk

).

5

For a positive integer L′ ∈]L/2, L], the value of each term of the sequence
(sj)j=0,...,2L is given by its corresponding term in (T − sij)j=0,...,2L which is de-
fined iteratively for i = 0, ..., L−L′ starting with a homogeneously distributed
sequence where each term is repeated 2L−L

′
times as follows

(s0
j)j=1,...,2L =

{
T

2L′
, ...,

T

2L′
, ...,

(2L
′− 1)T

2L′
, ...,

(2L
′− 1)T

2L′
, T, ..., T

}
, s0

0 = 0. (2.3)

We denote S i the set of values taken by (T − sij)j=0,...,2L , for example S0 =

{T, (2L′ − 1)T/2L
′
, ..., T/2L

′
, 0}.

The goal of iterations is to reduce an error term (eT−sij)
i=0,...,L−L′
j=1,...,2L

to make

it smaller than some threshold error ε. The expression of the R-valued ran-
dom processes e and ε will be given in definitions 2.1, 3.1 and 3.2.

We set j∗0 = si0

∣∣∣
i=1,...,L−L′

= max(∅) = 0, for each step i = 1, ..., L− L′ we

define Qi = 2L−L
′−i and (ŝi−1

j)j=0,...,2L
When j ≤ j∗i−1 define ŝi−1

j = si−1
j

Otherwise, for j′ > j∗i−1/Qi set ŝij

∣∣∣Qij′
j=Qi(j′−1)+1

=
si−1
Qij′

+ si−1
Qi(j′−1)

2
,

(2.4)

and we denote Ŝ i−1 the set of values taken by (T − ŝi−1
j)j=0,...,2L . Then, we

consider the following actualization strategy:

1. Compute
(
eS

i−1

T−si−1
j

)
j>j∗i−1

2. Use j∗i = j∗i−1∨max
({
j > j∗i−1; eS

i−1

T−si−1
k

< εS
i−1

T−si−1
k

for k ≤ j
})

with x ∨
y = max(x, y) to define

sij = si−1
j 1j≤j∗i + ŝi−1

j 1j>j∗i . (2.5)

The notation sij

∣∣∣Qij′
j=Qi(j′−1)+1

is used for siQi(j′−1)+1, ..., s
i
Qij′

. In Figure 1, we

illustrate how this discretization strategy is implemented, in particular we
chose L′ > L/2.
Remark 2.1. Expression (2.5) ensures that si2L is always equal to T . Thus
s2L = 0 which will be involved in definitions 2.1, 3.1 and 3.2 to introduce
both a simulated value and an average on learned values at time 0.

6

Figure 1: An example for (2.5) when i = 0, 1, L = 5 and L′ = 3.

In (2.2), we simulate M1 + M ′
1 conditional realizations of X in order to

keep those indexed from m1 = M1 + 1 to m1 = M1 +M ′
1 for the approxima-

tion of regression matrices. Consequently, we made explicit the independence
between trajectories used for the estimation of regression matrices and those
used in the backward induction. To reduce the complexity of the algorithm
and memory occupation, trajectories used for regression matrices can be sim-
ulated offline then erased from the memory. Given m0, if an inner trajectory
from {Xm0,m1}m1=1,...,M1 is needed α times in the backward induction, we
simulate α independent copies of it and use each copy once. This reduces
further memory occupation as well as any superfluous dependence structure.

For each ordered couple (j < k) of indices that take their values in
{1, ..., 2L}, we introduce a stabilization operator

T m0

tj ,tk,M
′
1

: Rd1 3 x 7→ tΓ̃m0

tj ,tk,M
′
1

(
x−Xm0

tk

)
∈ Rd′1 (d′1 ≤ d1), (2.6)

that performs a linear combination of the components of
(
x−Xm0

tk

)
using

Γ̃m0

tj ,tk,M
′
1

that contains some eigenvectors from Γm0

tj ,tk,M
′
1

obtained with the

eigenvalue decomposition

Γm0

tj ,tk,M
′
1
Λm0

tj ,tk,M
′
1

tΓm0

tj ,tk,M
′
1

(2.7)

of the regression matrix

1

M ′
1

M1+M ′1∑
m1=M1+1

(
Xm0,m1
tj ,tk

−Xm0
tk

)
t
(
Xm0,m1
tj ,tk

−Xm0
tk

)
(2.8)

where t is the transposition operation.
Once factorization (2.7)=(2.8) is performed, we obtain the diagonal ma-

trix Λm0

tj ,tk,M
′
1

= diag

({
λm0,l
tj ,tk,M

′
1

}
l=1,...,d1

)
of decreasing positive eigenvalues.

7

Then, we define Λ̃m0

tj ,tk,M
′
1

= diag

({
λm0,l
tj ,tk,M

′
1

}
l=1,...,d′1

)
as the truncation of

Λm0

tj ,tk,M
′
1

with d′1 defined by

d′1 = min

k ∈ {1, .., d′′1},
k∑
l=1

λm0,l
tj ,tk,M

′
1
≥ 95%

d′′1∑
l=1

λm0,l
tj ,tk,M

′
1

 , (2.9)

where d′′1 keeps only eigenvalues that make the regression problem well-

conditioned i.e. The ratio
λm0,l
tj ,tk,M

′
1

λm0,1
tj ,tk,M

′
1

∣∣∣
l=1,...,d′′1

has to be bigger than 10−6 in

single precision or bigger than 10−15 in double precision floating represen-
tation [30]. In addition to ensuring a well-conditioned regression problem,
equality (2.9) also performs a principal component analysis [30]. At the same

time that we set the components of Λ̃m0

tj ,tk,M
′
1
, we define the matrix Γ̃m0

tj ,tk,M
′
1

that contains only the eigenvectors in Γm0

tj ,tk,M
′
1

that are associated to Λ̃m0

tj ,tk,M
′
1
.

Regressing with respect to tΓ̃m0

tj ,tk,M
′
1

(
Xm0,m1
tj ,tk

−Xm0
tk

)
∈Rd′1 (d′1 ≤ d1), in-

stead of
(
Xm0,m1
tj ,tk

−Xm0
tk

)
∈ Rd1 , involves the inversion of the diagonal matrix

Λ̃m0

tj ,tk,M
′
1

which replaces the whole regression matrix (2.8). Since Λ̃ is bounded

below away from zero, its inverse is bounded and the same for the regression
procedure. This stabilizes the computation of the regression estimator whose
expression is detailed in Section 2.3. Besides, since we have a large number
of regression matrices, we can batch compute these inversions like explained
in [2].

For t0 ≤ sj < sk < T and conditionally to Xm0
sj

, we want to keep only
first/low order regression terms around Xm0

sk
. We also want to reduce the

bias induced by successive regressions as explained in Section 2.3. A natural
way to do this is to make sure that the time distance sk − sj is sufficiently
small to neglect the higher order terms as well as to reduce bias propagation
between sk and sj. For this purpose, we appropriately initialize the value L′

(> L/2) as well as the couple (sj, sj) then at each iteration i we actualize

the value taken by this couple according to (2.25) and (2.26).

When i = 0, for each j = 0, ..., 2L, we define sS
0

j (s0
j) as

sS
0

j (s0
j)=max

{
u ∈ S0∩]T− s0

j , δ(T− s0
j)]; (Bias Control) satisfied at

T − s0
j and (2.11) fulfilled for all s ∈ S0∩]T − s0

j , u]

}
(2.10)

with δ defined in (2.14), to simplify the understanding we can start assuming

δ(T− s0
j) = T . The inteval]T− s0

j , δ(T− s0
j)] will be better specified at each

definition 2.1, 3.1 and 3.2.

8

Then J0
j = S0∩

]
sj, sS

0

j (s0
j)
]

is a set of strictly decreasing time increments

with the control (Bias Control), specified in definitions 2.1, 3.1 and 3.2, that
also satisfy

1

M0

M0∑
m0=1

 d1∑
l=1

1

M ′
1

M1+M ′1∑
m1=M1+1

(
Xm0,m1,l
sj ,s

−Xm0,l
s

)2

 < ε1,sj (2.11)

for some tuning positive parameter ε1,sj . We consequently initialize

sS
0

j (s0
j) = max(J0

j), sS
0

j (s0
j) = min(J0

j) and J0
j = S0 ∩

]
sj, sS

0

j (s0
j)
]

(2.12)

In what follows, if iteration index i is set and there is no confusion on the

chosen set S i, we simplify notations and use sj and sj instead of sS
i

j (sij) and

sS
i

j (sij).

By definition, J0
j contains different elements and we use |J0

j | to denote
its cardinal. For any j such that sj < T , we choose the right values for L′

to ensure that 2L−L
′
< |J0

j | ≤ 2L
′
. Consequently, at the initialization step,

one increases progressively L′ till the latter condition is fulfilled. When i > 0
and j = 0, ..., 2L, we define

J ij = S i∩]sj, sS
i

j (sij)]. (2.13)

Given that (sj)j∈{0,...,2L} is a decreasing, and not strictly decreasing, se-

quence of coarse increments, we need to define on S i a new operator δS
i

that associates to each s ∈ S i the next increment in S i. For a fixed index
j ∈ {1, ..., 2L}, we define δS

i

sj
(·) on (sk)k≤j, taken its values in S i ∩ [sj, sj]

(= {sj} ∪ J ij), by

δS
i

sj
(sk) = min

(
sj,min{s ∈ S i; sk < s ≤ sj}

)
(2.14)

with min(∅) =∞.
When there is no confusion on the chosen set S i, we use δsj notation

instead of δS
i

sj
. When sk < sj, we use δS

i
notation instead of δS

i

sj
. When there

is no confusion on the chosen set S i and sk < sj, we simplify both indices

and use δ instead of δS
i

sj
.

This time operator will be largely used and for a given set S i it has the
following properties

Pr1. (2.26) makes sj = δsj(sj) = δ(sj).

Pr2. As long as max(sj1 , sj2) ≤ sk < min(sj1 , sj2), δsj1(sk) = δsj2(sk) = δ(sk).

Pr3. For fixed iteration step i, the nth composition of δsj denoted δnsj(·) is

equal to sj when n ≥ |J ij |.

9

2.2 Fine and coarse approximations

Based on what was presented in Section 2.1, we detail here the simulation of
approximations of U defined by (f). Considering the discretization sequence
(sj)j=0,...,2L that takes its values in the set S ⊂ {t0, ..., t2L}, we use a learning
procedure to associate to each scenario m0 and each discretization set S a

couple of function families (h̃m0,S , h
m0,S

).
Now, for given indices k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj, for

x ∈ Rd1 and s ∈ {sk, sk + ∆t, ..., δ(sk) − ∆t}, we define two approximation
levels: A coarse approximation around Xm0

sk
conditionally on Xm0

sj
defined by

h
m0,S
sj ,sk

(x) = `
[
h
m0,S
sj ,sk

]
+ tT m0

sj ,sk,M
′
1
(x)Hm0,S

sj ,sk
, (2.15)

and a fine approximation at Xm0
s defined by

h̃m0,S
s,sk

=
1

M1

M1∑
m1=1

hm0,S
sk,δ(sk)(X

m0,m1

s,δ(sk)) +

δ(sk)∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)

 . (2.16)

To complete this inductive interconnected backward definition of h and h̃,
we set the final coarse approximation to

h
m0,S
sj ,sj

(x) =

 f(T, x) if sj = T,

h
m0,S
sj ,sj

(x) = h
m0,S
δ(sj),sj

(x) if sj < T,
(2.17)

where sj > sj > sj are specified during the initialization phase (cf. (2.12))

then actualized at each step (cf. (2.25) and (2.26)). sj and sj are really
needed when T is sufficiently big or the variance produced by X is large

enough. Otherwise, (2.17) can be replaced by h
m0,S
sj ,T

(x) = f(t2L , x) = f(T, x).
T involved in (2.15) was already defined in (2.6). The value of the re-

gression constant `
[
h
m0,S
sj ,sk

]
depends on the variance adjustment procedure

presented in section 2.3. However, the straight implementation can simply

set `
[
h
m0,S
sj ,sk

]
= h̃m0,S

sk,sk
for any couple (sj, sk) satisfying sj < sk ≤ sj. Regard-

ing the regression vector Hm0,S
sj ,sk

, its value is obtained from an estimation of

the vector a ∈ Rd′1 that minimizes the quadratic error given by

E
[
H
m0,S,δsj(sk)
sj ,sk (Xm0,m1

sj ,sk:δsj(sk))−
taT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)
]2

(2.18)

with Xm0,m1

sj ,sk:δsj(sk) =
(
Xm0,m1
sj ,sk

, Xm0,m1

sj ,sk+∆t
, ..., Xm0,m1

sj ,δsj(sk)−∆t
, Xm0,m1

sj ,δsj(sk)

)
and

H
m0,S,δsj(sk)
sj ,sk (x) = h

m0,S
sj ,δsj(sk)

(
x δsj(sk)−sk

∆t

)
− h̃m0,S

sk,sk
+

δsj(sk)−sk
∆t

−1∑
l=1

f(tksk+l, xl, xl+1) (2.19)

10

where ksk = sk/∆t − 1, x = (x1, ..., x(δsj(sk)−sk)/∆t) with each coordinate of x

belonging to Rd1 .

When sk = δsj(sj) and `
[
h
m0,S
sj ,sk

]
= h̃m0,S

sk,sk
, one can check the coherence

of the previous definitions aimed to approximate U defined in (f). Indeed,
(2.16) would provide for any s ∈ {sj, sj + ∆t, ..., δ(sj) − ∆t} = {sj, sj +
∆t, ..., sk −∆t}

h̃m0,S
s,sj

=
1

M1

M1∑
m1=1

hm0,S
sj ,sk

(Xm0,m1
s,sk

) +

sk∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)

 (2.20)

where the term h
m0,S
sj ,sk

, defined in (2.15), is obtained through the projection

of

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) + h
m0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk)), involved in (2.30), on

T m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
). In addition, if we had δ2(sj) = δ(sk) = sj = t2L = T then

(2.17) would make h
m0,S
sj ,δ(sk)(·) = f(t2L , ·) and as s ∈ {sj, sj+∆t, ..., sk−∆t} the

definition of h̃m0,S
s,sj

would involve

sk∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

) plus the projection

of

t
2L∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) + f(T,Xm0,m1

sj ,T
) as shown on Figure 2. h̃m0,S

sk,sk
is

equal to

1

M1

M1∑
m1=1

 t
2L∑

tl+1>sk

f(tl, X
m0,m1
sk,tl

, Xm0,m1
sk,tl+1

) + f(T,Xm0,m1

sk,T
)

 because δ(sk) = T .

32 0

_

t28 t29 t30 t31 t32

32

centred around

projected on

32

32

=

t24 t25 t26 t27

Outer trajectory

t0

lll

l

l

l ll

S

Figure 2: An example for (2.20) when δ2(sj) = δ(sk) = sj = t2L = T , L = 5
and L′ = 3.

According to equations (2.15), (2.16), (2.18) and (2.19), the functions h

and h̃ are defined backwardly. When h̃ is a straight Monte Carlo involving h,

11

the latter is defined using a regression around a point at which we expressed
h̃. Consequently, h can be seen as a conditional first order Taylor expansion
around the first layer of trajectories (Xm0

tk
)m0=1,...,M0

k=1,...,2L
. The term of order zero

in this expansion is played by `[·], where the term tT m0

sj ,sk,M
′
1
(x)Hm0,S

sj ,sk
, deduced

from the minimization of (2.18), plays the order one.

Remark 2.2. 1. Since we do not want to increase further the algorithm
complexity by considering higher order terms, the definition of h in-
volves only linear regression around Xm0

sk
.

2. When the dimension d1 is not too high, it is possible to regress the
residual of the first regression on higher order terms. These successive
regressions do not increase drastically the complexity when compared
to the standard procedure. Nevertheless, as it separates regression with
respect to first order terms and regression with respect to higher order
terms, it loses orthogonality between first and higher order terms.

3. In case X is a martingale, the linearity simplifies further computations
since, for instance, (2.16) can be replaced by

h̃m0,S
s,sk

= h
m0,S
sk,δ(sk)(X

m0
s) +

1

M1

M1∑
m1=1

δ(sk)∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

).

Definition 2.1. For i∗ = min(min{i = 1, ..., L− L′, j∗i = 2L}, L− L′)

• For k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj < t2L = T , the
simulation Um0,m1

sj ,sk
of U around Xm0

sk
conditionally on Xm0

sj
is set to be

equal to h
m0,Si

∗

sj ,sk
(Xm0,m1

sj ,sk
) where h is given in (2.15) and (2.17).

• For k ∈ {1, ..., 2L} and s ∈ {sk, sk + ∆t, ..., δ(sk) − ∆t} − {0}, the

simulation Um0
s of U at Xm0

s is set to be equal to h̃m0,Si
∗

s,sk
with h̃ expressed

in (2.16).

• The average U lear
0 of learned values on U0 is equal to

U lear
0 =

1

M0

M0∑
m0=1̃

hm0,Si
∗

0,0
(2.21)

and the simulated value U sim
0 of U0 is equal to

U sim
0 =

1

M0

M0∑
m0=1

h̃m0,Si
∗

δ(0),δ(0)
+

δ(0)∑
tl+1>0

f(tl, X
m0
tl
, Xm0

tl+1
)

 (2.22)

12

with h̃ expressed in (2.16).

• Introduced in (2.10), (Bias Control) associated to (f) is defined at s ∈
S0 for u ∈ S0∩]s, δ(s)] by∣∣∣∣∣∣ 1

M0

M0∑
m0=1

h̃m0,S0

s,u − h̃m0,S0

δ(s),δ(s)
−

δ(s)∑
tl+1>s

f(tl, X
m0
tl
, Xm0

tl+1
)

∣∣∣∣∣∣ < εS
0

2,s

where for each set S, {εS2,s}s∈S is a family of positive bias tuning pa-
rameters.

• For k ∈ {j∗i + 1, ..., 2L}, setting sk = T − sik and noticing that δS
i
(sk) =

δŜ
i
(δŜ

i
(sk)), eS

i

sk
and εS

i

sk
are given by

eS
i

sk
=

1

M0M1

M0∑
m0=1

M1∑
m1=1

[
h
m0,Ŝi

δŜi(sk),δSi(sk)
(Xm0,m1

δŜi(sk),δSi(sk)
)−hm0,Si

sk,δS
i(sk)(X

m0,m1

δŜi(sk),δSi(sk)
)

]
,

εS
i

sk
=

∑
s∈Si,s>sk

εS
i

2,s.

Remark 2.3. 1. Um0,m1 can be seen as the inner or second layer approx-
imation of U and Um0 can be seen as the outer or first layer approxi-
mation of U .

2. When Um0,m1 is only defined on S i∗, it is remarkable to see that Um0

is defined on the whole fine discretization set {t0, ..., t2L}.

3. For any S, it is natural to have εS2,s proportional to the value of the

estimation 1
M0

∑M0

m0=1 h̃
m0,S
s,s . Used to control the bias, the choice of εS2,s

has also to take into account the confidence interval of the estimator of
the left side of inequality (Bias Control).

4. Although (Bias Control) is quite sufficient to have almost unbiased es-
timates, Section 2.3 introduces a more stringent local bias control.

5. eS
i

is defined as the average difference between the estimation h
m0,Si

that involves the discretization set S i and the estimation h
m0,Ŝi

that
involves a finer discretization set Ŝ i defined below (2.4). With actual-
ization (2.5), we are basically saying that the discretization set should
be finer only when the difference between approximations is superior to
the sum of possible accumulation of bias εS

i
.

13

2.3 Regression computations: Bias control and vari-
ance adjustment

As a continuation to Section 2.1, we explain the (Bias Control) expression
and how the value of (sj, sj) should be actualized. Then, as a continuation

to Section 2.2, for each couple (scenario/discretization set) = (m0,S) we

provide possible values of the couple
(
`
[
h
m0,S

]
, Hm0,S

)
including a variance

adjustment procedure. We remind that both procedures, explained in this
section, are only feasible because of the nested nature of our simulation and
they would not be possible otherwise.

In Section 2.1 equation (2.12), we defined (s, s) on the discretization
set S0. In order to reduce the backward bias propagation, this definition
used the double layer Monte Carlo to control the average bias. Indeed, as

1
M0

∑M0

m0=1 h̃
m0,S0

sj ,u
and 1

M0

∑M0

m0=1

(
h̃m0,S0

δ(sj),δ(sj)
+
∑δ(sj)

tl+1>sj
f(tl, X

m0
tl
, Xm0

tl+1
)
)

are

both approximations of E(Usj) = E
(
Uδ(sj) +

∑δ(sj)
tl+1>sj

f(tl, X
m0
tl
, Xm0

tl+1
)
)

, it

is natural to have them almost equal. For large values of M0, the difference
between these approximations is due to bias. As explained at the end of
Section 4.1 and the beginning of Section 4.2, a judicious method to reduce this
bias propagation is to adjust the number of successive regressions through
the appropriate choice of u.

The choice of u in (Bias Control) ought to decrease the global average
value of the bias. More local approach can be developed using equality

E
(
Usj1{Usj∈[a,b]}

)
= E

1{Usj∈[a,b]}

Uδ(sj) +

δ(sj)∑
tl+1>sj

f(tl, X
m0
tl
, Xm0

tl+1
)

 (2.23)

which is true for any localizing interval [a, b]. When M0 is sufficiently large,

one can sort {h̃m0,S0

sj ,sj
}m0≤M0 and define a subdivision of localizing intervals

{[aq, aq+1]}q≥1 then choose sj that does not induce a large difference between

1
M0

∑M0

m0=1

(
1{

h̃
m0,S0

sj ,sj
∈[aq ,aq+1]

}[h̃m0,S0

δ(sj),δ(sj)
+
∑δ(sj)

tl+1>sj
f(tl, X

m0
tl
, Xm0

tl+1
)
])

and

1
M0

∑M0

m0=1

(
h̃m0,S0

sj ,sj
1{

h̃
m0,S0

sj ,sj
∈[aq ,aq+1]

}
)

for any q. This local increase of bias

can be even tracked for any s ∈ S0 ∩ [δ(sj), sj[using the difference

1

M0

M0∑
m0=1

1{
h̃
m0,S0

sj ,sj
∈[aq ,aq+1]

}
̃hm0,S0

sj ,sj
− h̃m0,S0

s,s −
s∑

tl+1>sj

f(tl, X
m0
tl
, Xm0

tl+1
)

 . (2.24)

14

Although the local tracking of bias was not necessary in our simulations, it is
quite remarkable to point out the strength of bias control induced by 1NMC.

For j = 0, ..., 2L and sj = T −sij ∈ S i, the actualization of (sj, sj) is given
by

sS
i

j (sij) = sS
i−1

j (si−1
j)1Ii,j + max

(
S i∩]sj, sS

i−1

j (si−1
j)[

)
1Ii,j

c , (2.25)

sS
i

j (sij) = sS
i−1

j (si−1
j)1Ii,j + min

(
S i∩]sj, sS

i−1

j (si−1
j)[

)
1Ii,jc (2.26)

where the sets of indices Ii,j = {j ≤ j∗i } ∪ {sij 6= si−1
j } and Ii,j = Ii,j ∪

{sSi−1

j (si−1
j) = T}. In Figure 3, we illustrate what happens when j > j∗1

with either s1
j 6= s0

j (j = 25, 26) or s1
j = s0

j (j = 27, 28). Except when

{sSi−1

j (si−1
j) = T}, the actualization strategy given by equations (2.25) and

(2.26) aims at ensuring sS
i

j1
(sij1) 6= sS

i

j2
(sij2) and sS

i

j1
(sij1) 6= sS

i

j2
(sij2) as long

as sij1 6= sij2 . As mentioned before, if iteration index i is set and there is
no confusion on the chosen set S i, we simplify notations and use sj and sj

instead of sS
i

j (sij) and sS
i

j (sij).

Figure 3: An example for (2.12), (2.25) and (2.26) based on the example of
Figure 1.

Given two indices k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj, the

expression of (`
[
h
m0,S
sj ,sk

]
, Hm0,S

sj ,sk
) involves the use of an intermediary variable

γm0,S
sj ,sk

and an intermediary vector Ĥm0,S
sj ,sk

. Given the value of the couple

(γm0,S
sj ,sk

, Ĥm0,S
sj ,sk

) specified in (2.29) and (2.32), we define

Hm0,S
sj ,sk

= γm0,S
sj ,sk

Ĥm0,S
sj ,sk

(2.27)

and

`
[
h
m0,S
sj ,sk

]
= h̃m0,S

sk,sk
+

(1− γm0,S
sj ,sk

)

M1

M1∑
m1=1

tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)Ĥm0,S

sj ,sk
. (2.28)

15

Then, γm0,S
sj ,sk

is used to adjust the variance of h
m0,S
sj ,sk

defined in (2.15) without

changing its average value. Indeed, the expression of `
[
h
m0,S
sj ,sk

]
makes∑M1

m1=1 h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)/M1 invariable with respect to γm0,S
sj ,sk

.

The value of Ĥm0,S
sj ,sk

is given by

Ĥm0,S
sj ,sk

= (Λ̃m0

sj ,sk,M
′
1
)−1 1

M1

M1∑
m1=1

H
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1

sj ,sk:δsj(sk)) (2.29)

where Xm0,m1

sj ,sk:δsj(sk) =
(
Xm0,m1
sj ,sk

, Xm0,m1

sj ,sk+∆t
, ..., Xm0,m1

sj ,δsj(sk)−∆t
, Xm0,m1

sj ,δsj(sk)

)
and the

function H
m0,S,δsj(sk)

sj ,sk,M
′
1

: Ω × Rd1(δsj(sk)−sk)/∆t 3 (ω, x1, ..., x(δsj(sk)−sk)/∆t) →
Ω× Rd′1 is Fδsj(sk) ⊗ B(Rd1(δsj(sk)−sk)/∆t)-measurable and defined by

H
m0,S,δsj(sk)

sj ,sk,M
′
1

(x) = T m0

sj ,sk,M
′
1
(x1)


h
m0,S
sj ,δsj(sk)

(
x δsj(sk)−sk

∆t

)
− h̃m0,S

sk,δsk(sk)

+

δsj(sk)−sk
∆t

−1∑
l=1

f(tksk+l, xl, xl+1)


︸ ︷︷ ︸

H
m0,S,δsj(sk)
sj ,sk (x)

(2.30)

where ksk = sk/∆t − 1 and x = (x1, ..., x(δsj(sk)−sk)/∆t).

Regarding γm0,S
sj ,sk

, various values can be considered. The straight choice

is to take γm0,S
sj ,sk

= 1 which reduces the procedure to a standard regression.
However, this is not the suitable choice for problems that heavily depend
on tail distribution. Indeed, given two arbitrary square integrable random
variables χ1 and χ2, consider χ3 to be the regression of χ1 with respect to
χ2. Because generally regression preserves the mean value, it is reasonable to
assume E(χ3) = E(χ1). However, regressions decreases the second moment
i.e. E(χ2

3) < E(χ2
1) and thus V ar(χ3) < V ar(χ1). The latter fact becomes

a real problem for tail distribution when V ar(χ3) << V ar(E(χ1|χ2)). Some
contributions tackle rare event simulation using a change of probability trick
[8, 14] and more recent contribution [3] implements reversible shaking trans-
formations.

In (Bias Control), we established strong constraints to make h̃m0,S an
almost unbiased estimator of U . It is then possible to use their values to
propose an appropriate adjustment of the variance. For sj < s with s =
sk, δ(sk), the whole idea is based on the following equality

E
(
Varsj(Us)

)
= E

(
Esj
([
Us − Esj(Us)

]2))
= E

([
Us − Esj(Us)

]2)
.

16

Defining (σS0,sj ,s)
2 = 1

M0

∑M0

m0=1

[
h̃m0,S
s,s − 1

M1

∑M1

m1=1 h
m0,S
sj ,s

(Xm0,m1
sj ,s

)
]2

and

(σm0,S
sj ,s

)2 = 1
M1

∑M1

m1=1

[
h
m0,S
sj ,s

(Xm0,m1
sj ,s

)− 1
M1

∑M1

m1=1 h
m0,S
sj ,s

(Xm0,m1
sj ,s

)
]2

as the es-

timators of Esj
([
Us − Esj(Us)

]2)
and E

([
Us − Esj(Us)

]2)
respectively, it is

then natural to have for s = sk, δ(sk) as M1 and M0 →∞

(σS0,sj ,s)
2 =

1

M0

M0∑
m0=1

(σm0,S
sj ,s

)2. (2.31)

Because of (Bias Control), the estimators 1
M1

∑M1

m1=1 h
m0,S
sj ,s

(Xm0,m1
sj ,s

) and h̃m0,S
s,s

have negligible bias. Starting from δ(sk) = sk, we can reasonably assume in-
ductively that (2.31) is true for s = δ(sk). Afterwards, we choose the appro-

priate value of γm0,S
sj ,sk

, subsequently the value of h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

), that makes

σm0,S
sj ,sk

satisfy (2.31) for s = sk. For this task, we introduce an intermediary

non-adjusted conditional variance (σ̂m0,S
sj ,s

)2 defined by

(σ̂m0,S
sj ,sk

)2=
1

M1

M1∑
m1=1

̃hm0,S
sk,sk

+tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)Ĥm0,S

sj ,sk
−

M1∑
m1=1

h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)

M1

2

.

∑M1

m1=1

h
m0,S
sj ,sk

(X
m0,m1
sj ,sk

)

M1
can be replaced by

∑M1

m1=1

h̃
m0,S
sk,sk

+tT m0
sj ,sk,M

′
1
(X

m0,m1
sj ,sk

)Ĥ
m0,S
sj ,sk

M1
with-

out changing the value of (σ̂m0,S
sj ,s

)2. For positive tuning value ε3 < 1/3, we
set then

γm0,S
sj ,sk

=
σm0,S
sj ,δ(sk)

σ̂m0,S
sj ,sk

(√
sk − sj
δ(sk)− sj

1δ(sk)−sj<ε3 +
σS0,sj ,sk
σS0,sj ,δ(sk)

1δ(sk)−sj≥ε3

)
. (2.32)

According to (2.32), when δ(sk) − sj is small and a fortiori sk − sj is small
then the conditional variance (σm0,S

sj ,sk
)2 is linear with respect to time increment

sk − sj. This fact can be justified for diffusions using first order Taylor ex-
pansion of E(φ(t,Wt)) around φ(t, 0), where W is a Brownian motion. Also
according to (2.32), when δ(sk)− sj becomes sufficiently big, the conditional

variance (σm0,S
sj ,sk

)2 has the same unconditional decreasing ratio

(
σS0,sj ,sk
σS

0,sj ,δ(sk)

)2

with respect to (σm0,S
sj ,δ(sk))

2. Although this adjustment works well in our sim-

ulations, it can be turn into a more local approach. In fact, similar to what
was proposed for the bias control in (2.23), for sj < s with s = sk, δ(sk), the
equality

E
(

Varsj(Us)1{Varsj (Uδ(sk))∈[a,b]}

)
= E

(
1{Varsj (Uδ(sk))∈[a,b]}

[
Us − Esj(Us)

]2)
17

is true for any localizing interval [a, b]. When M0 is sufficiently large, one
can sort {(σm0,S

sj ,δ(sk))
2}m0≤M0 and define a subdivision of localizing intervals

{[aq, aq+1]}q≥1 and define

(σS,q0,sj ,s
)2 =

1

M0

M0∑
m0=1

1{(σm0,S
sj ,δ(sk)

)2∈[aq ,aq+1]}

[
h̃m0,S
s,s − 1

M1

M1∑
m1=1

h
m0,S
sj ,s

(Xm0,m1
sj ,s

)

]2

.

Condition (2.31) can be then replaced by its localized version

(σS,q0,sj ,s
)2 =

1

M0

M0∑
m0=1

1{(σm0,S
sj ,δ(sk)

)2∈[aq ,aq+1]}(σ
m0,S
sj ,s

)2. (2.33)

If σm0,S
sj ,δ(sk) ∈ [aq0 , aq0+1] then it makes sense to replace (2.32) by

γm0,S
sj ,sk

=
σm0,S
sj ,δ(sk)

σ̂m0,S
sj ,sk

(√
sk − sj
δ(sk)− sj

1δ(sk)−sj<ε3 +
σS,q00,sj ,sk

σS,q00,sj ,δ(sk)

1δ(sk)−sj≥ε3

)
. (2.34)

Although the local variance adjustment (2.34) was not necessary in our simu-
lations, it is quite remarkable to point out the high flexibility of the multilayer
setting induced by 1NMC. Thus when M0 and M1 are sufficiently large, one
sees that this double layer Monte Carlo makes possible a very fine tracking of
the bias of the first layer fine estimator Um0 and the variance of the second
layer coarse estimator Um0,m1 .

3 Some applications: Risk measures, BSDEs

and RBSDEs

The simulation procedure presented in the previous section is supposed to be
used for any functional approximated by or solution of (f). In this section,
we show the use of this procedure on standard problems that inspired this
work. We first clarify the method on the approximation of a conditional
expectation of some FT -measurable random variable and how to compute a
risk measure. We also illustrate the adaptation to BSDEs then to RBSDEs.

3.1 Conditional expectation and risk measures

We consider here the following process

Ut = E
(
f(XT)

∣∣∣Xt

)
,

18

with a deterministic function f . Thus, we assume that there is no path
dependence through the sum on the realizations of X as done in (f). In
this path-independent situation for the fixed time set (2.3), it is clear that
one can simulate {UT−s0j}j=0,...,2L using 1NMC without any need of regression

and thus without using our method. However, we choose to illustrate our
method on this simple case and we will see at the end of this section what
are the benefits. To simplify further the presentation, we set the variance
adjustment parameter γ, introduced in Section 2.3, to 1.

For known values sj′ < sj ∈ {∆t, ..., T} and for a fixed outer trajectory
(Xm0

tk
)k=0,...,2L , let us assume that we want to simulate Usj′ and Usj . A straight

way to do it is to draw inner trajectories of X, as in Figure 4, then average
on the realizations of f(XT). If sj and sj′ are close to each other in some
sense1, we are able to simulate Utk for any tk ∈ [sj′ , sj) using

Um0
tk

= h̃m0,Si
∗

tk,T
=

1

M1

M1∑
m1=1

h
m0,Si

∗

sj′ ,sj
(Xm0,m1

tk,sj
).

We point out that h
m0,Si

∗

sj′ ,sj
(x) andXm0,m1

tk,sj
replace respectively f(x) andXm0,m1

tk,T

involved in standard Nested simulation. Below, we establish how hsj′ ,sj
should be computed.

First of all, since sj′ and sj are assumed to be “close enough”, the initial-
ization phase presented in the end of Section 2 and the actualization of sj′ ,
sj′ , sj and sj are not necessary. Thus, in the light of (2.11), one has to take
sj = sj′ = t2L = T and consequently

(hsj′T) & (hsjT) h
m0,Si

∗

sj′ ,T
(x) = h

m0,Si
∗

sj ,T
(x) = f(x)

that sets

(h̃sj) Um0
sj

= h̃m0,Si
∗

sj ,T
=

1

M1

M1∑
m1=1

h
m0,Si

∗

sj ,T
(Xm0,m1

sj ,T
).

As in (2.15), we define

(hsj′sj) h
m0,Si

∗

sj′ ,sj
(x) = h̃m0,Si

∗

sj ,T
+tT m0

sj′ ,sj ,M
′
1
(x)Am0,Si

∗

sj′ ,sj
,

where the adaptation of (2.27) and (2.30) makes

(ATsj′sj) A
m0,Si

∗

sj′ ,sj
=

(
Λ̃m0

sj′ ,sj ,M
′
1

)−1

M1

M1∑
m1=1

T m0

sj′ ,sj ,M
′
1
(Xm0,m1

sj′ ,sj
)

hm0,Si
∗

sj′ ,T

(
Xm0,m1

sj′ ,T

)
−h̃m0,Si

∗

sj ,T

 .
1Not necessary an Euclidean distance.

19

sj' Tsjsj''sj'''0 sj''''

Figure 4: Given the realization of one outer trajectory (bold), we simulate
inner trajectories to approximate Usj , Usj′ , Usj′′ , Usj′′′ and Usj′′′′ .

If we add a third increment sj′′ (cf. Figure 4) such that sj′′ , sj′ and sj

are close enough, for any tk ∈ [sj′′ , sj′) one can set Um0
tk

= h̃m0,Si
∗

tk,T
. The

latter equality requires the definition of h
m0,Si

∗

sj′′ ,sj′
which can be obtained from

(hsj′′sj′) involving h̃m0,Si
∗

sj′ ,T
and Am0,Si

∗

sj′′ ,sj′
that can be computed using (A

sj
sj′′sj′).

The calculations in (A
sj
sj′′sj′) use h̃m0,Si

∗

sj′ ,T
and h

m0,Si
∗

sj′′ ,sj
whose expression de-

pends on h̃m0,Si
∗

sj ,T
and Am0,Si

∗

sj′′ ,sj
. Finally, Am0,Si

∗

sj′′ ,sj
is the regression vector of

h
m0,Si

∗

sj′′ ,T
around h̃m0,Si

∗

sj ,T
. Subsequently, the computations of h̃m0,Si

∗

sj′′ ,T
, h̃m0,Si

∗

sj′ ,T

and h̃m0,Si
∗

sj ,T
involve the dependence structure given in (3.1).

h̃m0,Si
∗

sj′′ ,T
→ h

m0,Si
∗

sj′′ ,sj′
→ h̃m0,Si

∗

sj′ ,T
→ h

m0,Si
∗

sj′ ,sj
→ h̃m0,Si

∗

sj ,T
→ h

m0,Si
∗

sj ,T
= f

↘ ↑ ↘ ↑
Am0,Si

∗

sj′′ ,sj′
Am0,Si

∗

sj′ ,sj
→ h

m0,Si
∗

sj′ ,T
= f

↘
h
m0,Si

∗

sj′′ ,sj
→ h̃m0,Si

∗

sj ,T
→ h

m0,Si
∗

sj ,T
= f

↘ ↑
Am0,Si

∗

sj′′ ,sj
→ h

m0,Si
∗

sj′′ ,T
= f

(3.1)

By adding other increments sj′′′ and sj′′′′ (cf. Figure 4), it can happen
that sj can no longer be considered close enough. In this situation, a linear re-
gression around Xm0

sj
would not be considered sufficient for inner trajectories

20

that start at Xm0
sj′′′

or Xm0
sj′′′′

. To deal with this situation, one should intro-

duce (sj′′′ , sj′′′) and (sj′′′′ , sj′′′′) defined in the end of Section 2. For instance
if sj′′′ = sj and sj′′′ = sj′′ , one starts the backward induction associated to

the increment sj′′′ by the final condition h
m0,Si

∗

sj′′′ ,sj
(x) = h

m0,Si
∗

sj′′ ,sj
(x) instead of

h
m0,Si

∗

sj′′′ ,T
(x) = f(x) and (3.1) becomes

h̃m0,Si
∗

sj′′′ ,sj
→ h

m0,Si
∗

sj′′′ ,sj′′
→ h̃m0,Si

∗

sj′′ ,T
→h

m0,Si
∗

sj′′ ,sj′
→ h̃m0,Si

∗

sj′ ,T
→ h

m0,Si
∗

sj′ ,sj
→ h̃m0,Si

∗

sj ,T
...f

↘ ↑ ↘ ↑ ↘ ↑
Am0,Si

∗

sj′′′ ,sj′′
Am0,Si

∗

sj′′ ,sj′
Am0,Si

∗

sj′ ,sj
...f

↘ ↘
h
m0,Si

∗

sj′′′ ,sj′
→ h̃m0,Si

∗

sj′′ ,T
→ h

m0,Si
∗

sj′′ ,sj
→ h̃m0,Si

∗

sj ,T
...f

↘ ↑ ↘ ↑
Am0,Si

∗

sj′′′ ,sj′
Am0,Si

∗

sj′′ ,sj
...f

↘
h
m0,Si

∗

sj′′′ ,sj
= h

m0,Si
∗

sj′′ ,sj

(3.2)

In Figure 4, we also set sj′′′′ = sj′ as well as sj′′′′ = sj′′′ and the tree (3.2)
can be further changed to include the dependency structure induced by sj′′′′ .
Indeed, we urge the reader to check that (3.2) can be as easily completed as
done for (3.1) to include the dependency structure induced by sj′′′′ .

Even with the simple example presented in this subsection, one can show
the benefit of this method. Indeed, in addition to a fine simulation of U using
h̃, this method defines a set of functions h that can be considered as coarse
conditional approximation of U . These conditional approximations can be
used as forward components of another functional. For instance, given the
example presented above and illustrated in Figure 4, the simulation of an m0

realization of Vsj′′ = E
(

(Usj − Usj′)+

∣∣∣Xsj′′

)
can be done with

Ṽ m0
sj′′

=
1

M1

M1∑
m1=1

([
h
m0,Si

∗

sj′′ ,sj
(Xm0,m1

sj′′ ,sj
)− hm0,Si

∗

sj′′ ,sj′
(Xm0,m1

sj′′ ,sj′
)

]
+

)
.

These functions h can be also used for risk measures. For example, the con-

ditional value at risk VaRα%
[
Usj − Usj′

∣∣∣Xsj′′

]
of level α% can be computed

after sorting

(
h
m0,Si

∗

sj′′ ,sj
(Xm0,m1

sj′′ ,sj
)− hm0,Si

∗

sj′′ ,sj′
(Xm0,m1

sj′′ ,sj′
)

)
1≤m1≤M1

.

Remark 3.1. Referring to Figure 4, for any g, when E
(
g(Usj′′′)

∣∣∣Xsj′′′′

)
,

21

E
(
g(Usj′′)

∣∣∣Xsj′′′′

)
and E

(
g(Usj′)

∣∣∣Xsj′′′′

)
are well defined their simulation

can be directly performed using h
m0,Si

∗

sj′′′′ ,sj′′′
, h

m0,Si
∗

sj′′′′ ,sj′′
or h

m0,Si
∗

sj′′′′ ,sj′
. This is not

the case for E
(
g(Usj)

∣∣∣Xsj′′′′

)
since h

m0,Si
∗

sj′′′′ ,sj
were not computed because sj′′′′ =

sj′ < sj. If

E
(
g(Usj)

∣∣∣Xsj′′′′

)
is needed, one should be either less conservative for the

choice of ε1,sj′′′′ and ε2,sj′′′′ (cf. (2.11) and (Bias Control)) that makes, or use
higher order terms for the regression as presented in Remark 2.2.

The other benefit of our method is the possibility to have a parareal alike
implementation [24] and thus make the algorithm parallel in time in addition
to have it parallel in paths. Indeed, refering to Figure 4, if we associate the

final conditions h
m0,Si

∗

sj′′ ,sj′
and h

m0,Si
∗

sj′ ,sj
respectively to each subinterval [sj′′ , sj′)

and [sj′ , sj), we can perform concurrent calculations on these intervals.

3.2 BSDEs with a Markov forward process

In the previous subsection 3.1, we saw the implementation of our method
on a simple problem and we showed its benefits when one has to simulate
functionals of functionals of a Markov process. BSDEs and RBSDEs are
specific functionals of functionals of a forward process assumed Markov in
various situations. After [29], BSDEs became very widely studied, especially
in the quantitative finance community starting with [13]. Here we consider
the One step forward Dynamic Programming (ODP) scheme for discrete
BSDEs

(ODP) YT = ζ and for k < 2L
{
Ytk = Etk [Ytk+1

+ ∆tf(tk, Ytk+1
, Ztk)],

Ztk = Etk [Ytk+1
(Wtk+1

−Wtk)/∆t].

(ODP) was studied for instance in [15, 23]. Here we consider ζ = f(t2L , XT)
to be some square integrable random variable that depends on XT . Given a
discretization sequence (sj)j=0,...,2L ∈ S and referring to (2.1) and (2.2), the
simulation of X involves the increments of an Rd2-Brownian motion W with
ξm0
tk

= Wm0
tk
−Wm0

tk−1
and ξm0,m1

sj ,tk
= Wm0,m1

sj ,tk
−Wm0,m1

sj ,tk−1
where W 1, ...,WM0 are

independent realizations of W with

Wm0,m1
sj ,tk

= Wm0,m1
sj ,tk−1

+ ∆Wm0,m1
sj ,tk

and Wm0,m1
sj ,sj

∣∣∣
m1=1,...,M1+M ′1

= Wm0
sj
,

(∆Wm0,m1
sj ,tk

)
(m0,m1)∈{1,...,M0}×{1,...,M1+M ′1}
k∈{j,...,2L},j∈{1,...,2L} are independent Brownian motion in-

crements independent from W 1, ...,WM0 with E([∆Wm0,m1
sj ,tk

]2) = ∆t. As

22

pointed out below Remark 2.1, if an inner trajectory {Xm0,m1} is needed
several times in the backward induction, we simulate independent copies of
it and thus independent copies of ξm0,m1 and use each copy once.

For given indices k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj and using
δsj(sk) defined in (2.14), we also set ∆Wm0,m1

sj ,sk,δsj(sk) = Wm0,m1

sj ,δsj(sk)−Wm0,m1
sj ,sk

. For

each k, the Borel B(R) ⊗ B(Rd2)-measurable driver f(tk, ·, ·) is assumed to
satisfy Lipschitz condition of Section 4.

Given the discretization set S, one can define two coarse approximations
around Xm0

sk
conditionally on Xm0

sj
given by

ym0,S
sj ,sk

(x) = `
[
ym0,S
sj ,sk

]
+ tT m0

sj ,sk,M
′
1
(x)Cm0,S

sj ,sk
, (3.3)

tzm0,S
sj ,sk

(x) = tz̃m0,S
sk,sk

+ tT m0

sj ,sk,M
′
1
(x)Dm0,S

sj ,sk
, (3.4)

as well as two fine approximations at Xm0
s , for s ∈ {sk, sk+∆t, ..., δsj(sk)−∆t}

with ∆s = δsj(sk)− s and ∆sk = δsj(sk)− sk, given by

ỹm0,S
s,sk

=
1

M1

M1∑
m1=1

 ∆sf(sk, y
m0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk)), z̃
m0,S
s,sk

)

+ ym0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))

 , (3.5)

z̃m0,S
s,sk

=
1

M1∆s

M1∑
m1=1

ym0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))
(
Wm0,m1

s,δsj(sk) −W
m0
s

)
(3.6)

and we set the final coarse approximation to

ym0,S
sj ,sj

=

 f(t2L , X
m0,m1
sj ,t2L

) if sj = t2L ,

ym0,S
sj ,sj

(Xm0,m1

sj ,sj
) = ym0,S

δsj(sj),sj
(Xm0,m1

sj ,sj
) if sj < t2L ,

(3.7)

sj > sj > sj are specified during the initialization phase (cf. (2.12)) then

actualized at each step (cf. (2.25) and (2.26)) where (Bias Control), ε and e
are expressed in Definition 3.1.

Since T was already expressed in (2.6), to complete this inductive inter-

connected definition of (y, ỹ, z, z̃), we set the vector Cm0,S
sj ,sk

= γm0,S
sj ,sk

Ĉm0,S
sj ,sk

and the matrix Dm0,S
sj ,sk

to be equal to

Ĉm0,S
sj ,sk

=
(Λ̃m0

sj ,sk,M
′
1
)−1

M1

M1∑
m1=1

Y
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1
sj ,sk

, Xm0,m1

sj ,δsj(sk)), (3.8)

23

Dm0,S
sj ,sk

=
(Λ̃m0

sj ,sk,M
′
1
)−1

M1

M1∑
m1=1

Z
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1
sj ,sk

,∆Wm0,m1

sj ,sk,δsj(sk), X
m0,m1

sj ,δsj(sk)),(3.9)

with Y
m0,S,δsj(sk)

sj ,sk,M
′
1

(x′, x) =T m0

sj ,sk,M
′
1
(x′)Y

m0,S,δsj(sk)
sj ,sk (x′, x) is Fδsj(sk) ⊗ B(R2d1)−

measurable and Z
m0,S,δsj(sk)

sj ,sk,M
′
1

(x′, w, x) = T m0

sj ,sk,M
′
1
(x′)tZ

m0,S,δsj(sk)
sj ,sk (w, x) is a

vector function measurable with respect to Fδsj(sk) ⊗ B(R2d1+d2), where

Y
m0,S,δsj(sk)
sj ,sk (x′, x) =

∆skf(sk, y
m0,S
sj ,δsj(sk)(x), zm0,S

sj ,sk
(x′))

+ ym0,S
sj ,δsj(sk)(x)− ỹm0,S

sk,sk

 , (3.10)

and

Z
m0,S,δsj(sk)
sj ,sk (w, x) = ym0,S

sj ,δsj(sk)(x)
w

∆sk

− z̃m0,S
sk,sk

. (3.11)

Finally, applying similar variance adjustment procedure as the one pre-
sented in Section 2.3, we set the value of γm0,S

sj ,sk
and we define

`
[
ym0,S
sj ,sk

]
= ỹm0,S

sk,sk
+

(1− γm0,S
sj ,sk

)

M1

M1∑
m1=1

tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)Ĉm0,S

sj ,sk
.(3.12)

From equations above, one can associate quadratic minimization prob-
lems to Cm0,i

sj ,sk
and to Dm0,i

sj ,sk
, as done for Hm0,i

sj ,sk
in (2.18). In the same fashion

as in Definition 2.1, we define the double layer approximations (Y m0 , Zm0)
and (Y m0,m1 , Zm0,m1) of functionals Y and Z.

Definition 3.1. For i∗ = min(min{i = 1, ..., L− L′, j∗i = 2L}, L− L′)

• For k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj < t2L = T , the simula-
tion Y m0,m1

sj ,sk
and Zm0,m1

sj ,sk
of Y and Z respectively around Xm0

sk
condition-

ally on Xm0
sj

are set to be equal to ym0,Si∗
sj ,sk

(Xm0,m1
sj ,sk

) and zm0,Si∗
sj ,sk

(Xm0,m1
sj ,sk

)
where y and z are given in (3.3), (3.4) and (3.7).

• For k ∈ {1, ..., 2L} and s ∈ {sk, sk + ∆t, ..., δsk(sk) − ∆t} − {0}, the
simulation Y m0

s and Zm0
s of Y and Z respectively at Xm0

s are set to

be equal to ỹm0,Si
∗

s,sk
and to z̃m0,Si

∗

s,δsk(sk) with ỹ and z̃ expressed in (3.5) and

(3.6).

• The average Y lear
0 and Z lear

0 of learned values on Y0 and Z0 are respec-
tively equal to

Y lear
0 =

1

M0

M0∑
m0=1

ỹm0,Si
∗

0,0
, Z lear

0 =
1

M0

M0∑
m0=1

z̃m0,Si
∗

0,0
(3.13)

24

and the simulated values Y sim
0 and Zsim

0 of Y0 and Z0 are respectively
equal to

Y sim
0 =

1

M0

M0∑
m0=1

[
δ(0)f

(
δ(0), ỹm0,Si

∗

δ(0),δ(0)
, Zsim

0

)
+ ỹm0,Si

∗

δ(0),δ(0)

]
,

Zsim
0 =

M0∑
m0=1

ỹm0,Si
∗

δ(0),δ(0)

Wm0

δ(0)

δ(0)M0

.

(3.14)

• Introduced in (2.10), (Bias Control) associated to (ODP) is defined at
s ∈ S0 for u ∈ S0∩]s, δ(s)] by∣∣∣∣∣ 1

M0

M0∑
m0=1

(
ỹm0,S0

s,u − ỹm0,S0

δ(s),δ(s)
− (δ(s)− s)f(s, ỹm0,S0

δ(s),δ(s)
, z̃m0,S0

s,s)
)∣∣∣∣∣ < εS

0

2,s

where for each set S, {εS2,s}s∈S is a family of positive bias tuning pa-
rameters.

• For k ∈ {j∗i + 1, ..., 2L}, setting sk = T − sik and noticing that δS
i
(sk) =

δŜ
i
(δŜ

i
(sk)), eS

i

sk
and εS

i

sk
are given by

eS
i

sk
=

1

M0M1

M0∑
m0=1

M1∑
m1=1

[
ym0,Ŝi

δŜi(sk),δSi(sk)
(Xm0,m1

δŜi(sk),δSi(sk)
)−ym0,Si

sk,δS
i(sk)

(Xm0,m1

δŜi(sk),δSi(sk)
)
]
,

εS
i

sk
=

∑
s∈Si,s>sk

εS
i

2,s.

Remark 3.2. 0. The different points of Remark 2.3 can be highlighted
here.

1. Given a discretization set S and sk ∈ S, the choice of sk and on sk
is completely known in Definition 3.1 through the value of e, ε and
inequality (Bias Control).

2. The value of e, ε and inequality (Bias Control) involve mainly the ap-
proximation of Y since using criteria on the approximation of Z would
involve very large number of trajectories, making it impracticable.

3. Although possible, we did not judge necessary to implement a variance
adjustment method on the Z component.

25

4. As a future work, we would like to apply variance reduction methods
with 1NMC and provide very accurate double layer estimations of the
Z term.

5. With BSDEs, it is possible to use other (Bias Control) inequalities.
Indeed, using rather an MDP scheme (cf. [17]), (Bias Control) of
Definition 3.1 can be replaced by∣∣∣∣∣∣ 1

M0

M0∑
m0=1

ỹm0,S0

s,u − ỹ
m0,S0

δ(r),δ(r)
−

r∑
θ∈S0,θ=s

(δ(θ)− θ)f(s, ỹm0,S0

δ(θ),δ(θ)
, z̃m0,S0

θ,θ
)

∣∣∣∣∣∣ < εS
0

2,s,

for any r ∈ S0 ∩ [s, u[.

3.3 RBSDEs with a Markov forward process

The generally studied RBSDEs are functionals of a Markov process. Here, we
consider an application to RBSDEs as the one presented in [6] with X simu-

lated like in Section 3.3 and functions g(·) and driver {f(tk, ·)}2L−1
k=0 assumed

to satisfy Lipschitz condition of Section 4. We want to propose a double
layer approximation V m0 and V m0,m1 of the Snell envelope V , solution to

(Snl) VT = g(XT) and for k < 2L : Vtk = g(Xtk)∨Etk [Vtk+1
+∆tf(tk, Vtk+1

)],

that can be done using straightforwardly the recipe of Section 2 combined
with a maximization by g. In fact, given a discretization set S and indices
k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj and using δsj(sk) defined in
(2.14), we set the coarse approximation vsj ,sk around Xm0

sk
conditionally on

Xm0
sj

to

vm0,S
sj ,sk

(x) = wm0,S
sj ,sk

(x) ∨ g(x), (3.15)

and the fine approximation ṽs,sk at Xm0
s , s ∈ {sk, sk + ∆t, ..., δsj(sk)−∆t}, to

ṽm0,S
s,sk

= w̃m0,S
s,sk
∨ g(Xm0

s). (3.16)

Denoting ∆s = δsj(sk)− s and ∆sk = δsj(sk)− sk, we define

w̃m0,S
s,sk

=
1

M1

M1∑
m1=1

(
∆sf(sk, v

m0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))) + vm0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))
)
, (3.17)

wm0,S
sj ,sk

(x) = `
[
wm0,S
sj ,sk

]
+ tT m0

sj ,sk,M
′
1
(x)Bm0,S

sj ,sk
, (3.18)

26

where

`
[
wm0,S
sj ,sk

]
= w̃m0,S

sk,sk
+

(1− γm0,S
sj ,sk

)

M1

M1∑
m1=1

tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)B̂m0,S

sj ,sk
, (3.19)

Bm0,S
sj ,sk

= γm0,S
sj ,sk

B̂m0,S
sj ,sk

with

B̂m0,S
sj ,sk

=
(Λ̃m0

sj ,sk,M
′
1
)−1

M1

M1∑
m1=1

B
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1
sj ,sk

, Xm0,m1

sj ,δsj(sk))

and B
m0,S,δsj(sk)

sj ,sk,M
′
1

(x′, x) = T m0

sj ,sk,M
′
1
(x′)B

m0,S,δsj(sk)
sj ,sk (x) with

B
m0,S,δsj(sk)
sj ,sk (x) =

 ∆skf(sk, v
m0,S
sj ,δsj(sk)(x))

+ vm0,S
sj ,δsj(sk)(x)− w̃m0,S

sk,sk

 , (3.20)

with a final coarse approximation given by

vm0,S
sj ,sj

(x) =

{
g(x) if sj = t2L ,

vm0,S
sj ,sj

(x) = vm0,S
δsj(sj),sj

(x) if sj < t2L ,
(3.21)

where sj > sj > sj are specified during the initialization phase (cf. (2.12))

then actualized at each step (cf. (2.25) and (2.26)).

Definition 3.2. For i∗ = min(min{i = 1, ..., L− L′, j∗i = 2L}, L− L′)

• For k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj < t2L = T , the
simulation V m0,m1

sj ,sk
of V around Xm0

sk
conditionally on Xm0

sj
is set to be

equal to vm0,Si
∗

sj ,sk
(Xm0,m1

sj ,sk
) where v is given in (3.15), (3.18) and (3.21).

• For k ∈ {1, ..., 2L} and s ∈ {sk, sk + ∆t, ..., δsk(sk) − ∆t} − {0}, the

simulation V m0
s of V at Xm0

s is set to be equal to ṽm0,Si
∗

s,sk
with ṽ expressed

in (3.16) and (3.17).

• The average V lear
0 of the learned values on V0 is equal to

V lear
0 =

1

M0

M0∑
m0=1

ṽm0,Si
∗

0,0
, (3.22)

and the simulated values V sim
0 of V0 is equal to

V sim
0 = g(x0) ∨ 1

M0

M0∑
m0=1

[
δ(0)f

(
δ(0), ṽm0,Si

∗

δ(0),δ(0)

)
+ ṽm0,Si

∗

δ(0),δ(0)

]
.(3.23)

27

• Introduced in (2.10), (Bias Control) associated to (Snl) is defined at
s ∈ S0 for u ∈ S0∩]s, δ(s)] by∣∣∣∣∣ 1

M0

M0∑
m0=1

(
w̃m0,S0

s,u − ṽm0,S0

δ(s),δ(s)
− (δ(s)− s)f(s, ṽm0,S0

δ(s),δ(s)
)
)∣∣∣∣∣ < εS

0

2,s

where for each set S, {εS2,s}s∈S is a family of positive bias tuning pa-
rameters.

• For k ∈ {j∗i + 1, ..., 2L}, setting sk = T − sik and noticing that δS
i
(sk) =

δŜ
i
(δŜ

i
(sk)), eS

i

sk
and εS

i

sk
are given by

eS
i

sk
=

1

M0M1

M0∑
m0=1

M1∑
m1=1

[
wm0,Ŝi

δŜi(sk),δSi(sk)
(Xm0,m1

δŜi(sk),δSi(sk)
)−wm0,Si

sk,δS
i(sk)

(Xm0,m1

δŜi(sk),δSi(sk)
)
]
,

εS
i

sk
=

∑
s∈Si,s>sk

εS
i

2,s.

Remark 3.3. 0. The different points of Remark 2.3 can be highlighted
here.

1. Given a discretization set S and sk ∈ S, the choice of sk and on sk
is completely known in Definition 3.2 through the value of e, ε and
inequality (Bias Control).

2. Unlike BSDEs, it is not possible to use an MDP scheme for (Bias
Control) as explained in Remark 3.2.5.

3. Although using an optimal stopping formulation [11] of the dynamic
programming is known to provide better numerical results [25], we pre-
fared here to use NMC on the top of the original algorithm [32] since
its error estimates remains similar to the one presented in Section 4
for BSDEs.

4. As a future work, we would like to apply variance reduction methods
with 1NMC and provide very accurate double layer estimations of the
optimal stopping strategy.

28

4 Error estimates and cutting bias propaga-

tion

After expressing error estimates for both coarse and fine approximations in
Section 4.1, we show how to cut bias propagation using our new judicious
trick presented in Section 4.2.

4.1 Regression-based NMC and increasing the learn-
ing depth

Before presenting the main elements, we point out that we have intentionally
considered only discrete functionals of a Markov process. The approximation
due to discretization of the continuous version of BSDEs is not studied and we
refer to [15, 23] among others that quantify well the resulting error. Moreover,
we also consider the discretized version of the Markov process introduced in
(2.1) and (2.2) where

Etk(x, ξ) = x+ ∆tb(tk, x) + σ(tk, x)ξ (4.1)

with the usual (cf. [27]) Lipschitz continuity condition on the coefficients
b(t, x) and σ(t, x) uniformly with respect to t ∈ [0, T]. Similar to what was
considered in Section 3.2, the noise ξ is given by increments of a vector
of independent Brownian motions i.e. ξm0

tk
= Wm0

tk
− Wm0

tk−1
and ξm0,m1

sj ,tk
=

Wm0,m1
sj ,tk

− Wm0,m1
sj ,tk−1

. (4.1) can be read as an Euler scheme of a stochastic
differential equation that admits a strong solution. In this paper, when the
discretization is needed, we assume that L is sufficiently large to neglect the
discretization error of the forward process X.

Given two arbitrary square integrable random variables χ1 and χ2, con-
sider {χ3

m1}M1
m1=1 to be the empirical regression of χ1 with respect to χ2, the

authors of [7] established an upper bound error of the regression-based NMC

estimator
1

M1

M1∑
m1=1

φ(χ3
m1) of E(φ(E(χ1|χ2))) once we know the representa-

tion error κ = E(χ1|χ2)− tRB(χ2) induced by the projection of E(χ1|χ2) on

the basis B(χ2). The fine approximations h̃, ỹ and w̃ presented earlier were
computed by averaging on the empirical regressions h, y and v. It is then
interesting to see how to control the error of the fine approximations through
the representation error like in [7].

First, for sj < sk < sj and Borel measurable Θ function of (Xm0,m1

sj ,sk:δ(sk))

with Θ(Xm0,m1

sj ,sk:δ(sk)) integrable, we denote Em0,x
sj ,sk

, Em0,x

sj ,sk
and Êm0,x

sj ,sk
the operators

29

defined by

Em0,x
sj ,sk

(Θ(Xm0,m1

sj ,sk:δ(sk))) = Em0
sj

(
Θ(Xm0,m1

sj ,sk:δ(sk))|X
m0,m1
sj ,sk

= x
)
,

Em0,x

sj ,sk
(Θ(Xm0,m1

sj ,sk:δ(sk)))

= tT m0
sj ,sk

(x−Xm0
sk

)

(
Λ
m0

sj ,sk

)−1

M1

M1∑
m1=1

[
T m0
sj ,sk

(
Xm0,m1
sj ,sk

−Xm0
sk

)
Θ(Xm0,m1

sj ,sk:δ(sk))
]

and

Êm0,x
sj ,sk

(Θ(Xm0,m1

sj ,sk:δ(sk))) = tT m0
sj ,sk

(x−Xm0
sk

)Rm0
sj ,sk

[
Θ(Xm0,m1

sj ,sk:δ(sk))
]

with

Rm0
sj ,sk

[
Θ(Xm0,m1

sj ,sk:δ(sk))
]
∈ argmin

r∈Rd1
Em0
sj

[Em0
sj

(
Θ(Xm0,m1

sj ,sk:δ(sk))|Xm0,m1
sj ,sk

)
−tT m0

sj ,sk
(Xm0,m1

sj ,sk
−Xm0

sk
)r

]2


When Esj is the conditional expectation knowing Xm0
sj

, Em0
sj

is the condi-
tional expectation knowing the trajectory of Xm0 starting from Xm0

sj
. Em0

sj
is

used as the regression basis depends on Xm0 . For a given sj ∈ S, in contrast
to expressions presented in sections 2.2, 3.2 and 3.3, we simplify the presen-
tation here and we omit to center the regressions around h̃m0,S

δ(sj),δ(sj)
, ỹm0,S

δ(sj),δ(sj)

or w̃m0,S
δ(sj),δ(sj)

. Consequently, the value of h̃m0,S
sj ,sj

, ỹm0,S
sj ,sj

and w̃m0,S
sj ,sj

are obtained

through respectively averaging on h
m0,S
sj ,δ(sj)

(x) = Em0,x

sj ,δ(sj)
(Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
)),

ym0,S
sj ,δ(sj)

(x) = Em0,x

sj ,δ(sj)
(Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)) and on

vm0,S
sj ,δ(sj)

(x) = g(x) ∨ Em0,x

sj ,δ(sj)
(Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)), where

Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
) = h

m0,S
sj ,δ2(sj)

(Xm0,m1

sj ,δ2(sj)
) +

δ2(sj)∑
tl≥δ(sj)

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

),

Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
) = ym0,S

sj ,δ2(sj)
(Xm0,m1

sj ,δ2(sj)
)

+∆δ(sj)f(δ(sj), y
m0,S
sj ,δ2(sj)

(Xm0,m1

sj ,δ2(sj)
), zm0,S

sj ,δ(sj)
(Xm0,m1

sj ,δ(sj)
)),

Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
) = vm0,S

sj ,δ2(sj)
(Xm0,m1

sj ,δ2(sj)
)

+∆δ(sj)f(δ(sj), v
m0,S
sj ,δ2(sj)

(Xm0,m1

sj ,δ2(sj)
)).

30

We assume Lipschitz condition uniformly in time of the driver f involved
in (ODP) and (Snl) with respect to its Y and Z coordinates or with respect
to its V coordinate. Although this conditions are not necessary to obtain
good numerical results in Section 5, they are required to apply Theorem 2 of
[7] (cf. Assumption F2 in [7]) that yeild the following asymptotical result.

Proposition 4.1. Given that assumptions A1, A2 and A3 of [7]) are fulfilled
and that both drivers involved in (ODP) and in (Snl) are [f]Lip-Lipschitz we
have the following asymptotical inequality

(ρ̃− ρ)2 ≤ [ρ]LipEm0
sj

(κ2(Xm0,m1

sj ,δ(sj)
)) +Op(1/M1) (4.2)

as M1 −→ ∞ where (ρ̃, ρ, [ρ]Lip, κ) is either equal to (ρ̃h, ρh, [ρ]hLip, κ
h) for

(f), (ρ̃y, ρy, [ρ]yLip, κ
y) for (ODP) or equal to (ρ̃v, ρv, [ρ]vLip, κ

v) for (Snl) with

ρ̃h = h̃m0,S
sj ,sj

, ρ̃y = ỹm0,S
sj ,sj

, ρ̃v = w̃m0,S
sj ,sj

,

ρh = Em0
sj

Em0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]

+

δ(sj)∑
tl≥sj

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)

 ,

ρy = Em0
sj

(
E
m0,X

m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]

+∆sjf

(
sj,E

m0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
, z̃m0,S
sj ,sj

))
,

ρv = Em0
sj

(
g(Xm0,m1

sj ,δ(sj)
) ∨ E

m0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]

+∆sjf

(
sj, g(Xm0,m1

sj ,δ(sj)
) ∨ E

m0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]))

,

[ρ]hLip = 1, [ρ]yLip = 1 + [f]Lip, [ρ]vLip = 1 + [f]Lip and

κh(x) = Em0,x
sj ,δ(sj)

[
Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
− Êm0,x

sj ,δ(sj)

[
Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
,

κy(x) = Em0,x
sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
− Êm0,x

sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
,

κv(x) = Em0,x
sj ,δ(sj)

[
Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
− Êm0,x

sj ,δ(sj)

[
Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
.

31

Proposition 4.1 results from Theorem 2 and Remark 2 of [7]; we expressed
[ρ]Lip associated to each problem and we replaced E by Em0

sj
as the regres-

sion basis depends on Xm0 . Assumptions A1, A2 and A3 of [7] are standard
assumptions for regressions (cf. [33]). Considering the regression basis pre-
sented in Section 2.1 with E(|Xt|2) <∞ for any t ∈ [0, T], these assumptions
are fulfilled if: i) the conditional variance of each regressed quantity is inte-
grable and bounded from below by v0 > 0, ii) the regression value is unbiased
and iii) each component of the regression basis as well as κ (denoted M in
[7]) admit a finite fourth moment. When the latter moment assumption iii
is needed to establish error control and can be modified using truncation (cf.
[16]), the further i&ii are sufficient to ensure the existence and uniqueness
of the regressed representation.

In Proposition 4.1, we provided a control on fine approximations h̃, ỹ and
ṽ. In Proposition 4.2, we rather focus on coarse approximations and decom-
pose the conditional mean square error Em0

sj

(
[h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)]2
)

into a bias term W , a variance term V and a regression error term R.

Proposition 4.2. Assuming i and iii introduced above, for sj < s < sk
taking their values in the discretization set S, we define

Wm0,S
sj ,sk

(x) = Em0
sj

(
h
m0,S
sj ,sk

(x)− Um0,S
sj ,sk

(x)
)
,

Rm0,S
sj ,sk

(x) = Em0
sj

(
Um0,S
sj ,sk

(x)− Usk(x)
)
,

Vm0,S
sj ,sk

(x) = Varm0
sj

(
h
m0,S
sj ,sk

(x)
)
,

with

Um0,S
sj ,sk

(x) = Em0,x

sj ,sk

Uδ(sk)(X
m0,m1

sj ,δ(sk)) +

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)


then

Em0
sj

(
[h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)]2
)

= Em0
sj (Vm0,S

sj ,sk
(Xm0,m1

sj ,sk
))

+Em0
sj

(
[Rm0,S

sj ,sk
(Xm0,m1

sj ,sk
) +Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)

and there exists a positive constant Km0
1,sj ,sk

depending on the regression basis
such that

Em0
sj

(
[Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)
≤ Km0

1,sj ,sk
Em0
sj

(
[h
m0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk))− Uδ(sk)(X
m0,m1

sj ,δ(sk))]
2
)
.

32

Proof. As we simulate several independent copies of Xm0,m1 (cf. the para-
graph under Remark 2.1), we make sure that the approximations h are in-
dependent from Xm0,m1 conditionally on Xm0 . Then, the expansion of the
conditional mean square error Em0

sj

(
[h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)]2
)

can be get

when we notice that

Usk(Xm0,m1
sj ,sk

) = E
m0,X

m0,m1
sj,sk

sj ,sk

Uδ(sk)(X
m0,m1

sj ,δ(sk)) +

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1

sj ,tl
, Xm0,m1

sj ,tl+1
)

 .

An expression for the constant Km0
1,sj ,sk

can be obtained after expanding

Em0
sj

(
[Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)

using

h
m0,S
sj ,sk

(x) = Em0,x

sj ,sk

hm0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk)) +

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)

 .

Finally, we should point out that one could establish a similar result for
(ODP) and (Snl). Indeed, for instance, using the following coarse discretiza-
tion to approximate (ODP)

Ŷsk = Esk
(
f̃sk(Ŷδ(sk), Ẑsk)

)
,

Ẑsk = 1
∆sk

Esk
(
Ŷδ(sk)(Wδ(sk) −Wsk)

)
,

(4.3)

with f̃sk(y, z) = y + ∆skfsk(y, z), the bias is then controlled as follows

Em0
sj

(
[W̃m0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)
≤K̃m0

1,sj ,sk
Em0
sj


 f̃sk(Ŷsj ,δ(sk)(X

m0,m1

sj ,δ(sk)), Ẑsj ,sk(Xm0,m1
sj ,sk

))

−f̃sk(ym0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk)), z
m0,S
sj ,sk

(Xm0,m1
sj ,sk

))

2
 ,

for some positive constant K̃m0
1,sj ,sk

depending on the regression basis. There-
fore, the bias upper bound depends heavily on the driver choice. In the case
of (Snl), g also plays an important role on the nonlinearity and subsequently
on bias.

4.2 Regression with different starting points

As shown in Proposition 4.2, the bias W at time step sk is controlled by
the mean square error at time step δ(sk) decomposed into a variance term

33

V , a regression error term R and a bias term at time step δ(sk). Thus,
increasing the number of time steps weaken the bias control as it involves
more and more terms. In some situations, this accumulation of errors is a
source of a significant bias back propagation. In this paper, we proposed a
new approximation trick to cut this bias back propagation.

In this section, we present a control on this new approximation that is
used twice in the generic presentation of our method in Section 2.2. This same
approximation was also adapted in Section 3.2 to BSDEs and in Section 3.3
to RBSDEs. In the generic situation, equations (2.16) defines h̃m0,S

s,sk
for any

s ∈ {sk, sk + ∆t, ..., δsj(sk) −∆t} using h
m0,S
sk,δsj(sk)(·) which is deduced from a

regression on Xm0,m1

sk,δsj(sk) instead of a regression on Xm0,m1

s,δsj(sk). Said differently,

provided that s is sufficiently close to sk we replaced a regressed function
obtained from inner trajectories starting at s by a regressed function obtained
from inner trajectories starting at sk on the same outer trajectory m0. We

did more or less the same thing in (2.17) when sj < T as we defined h
m0,S
sj ,sj

to

be equal to h
m0,S
δsj(sj),sj

i.e. we replaced a regression on Xm0,m1

sj ,sj
by a regression

on Xm0,m1

δsj(sj),sj
. The adaptations of (2.16) yield similar approximations in (3.5),

(3.6) and (3.17). In the same fashion, the adaptations of (2.17) yield similar
approximations in (3.7) and (3.21).

For sj < s < sk, we summarize both situations saying that the regressed

function h
m0,S
sj ,sk

(·) resulting form the projection of
T∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)

on Xm0,m1
sj ,sk

is approximated by the regressed function h
m0,S
sj ,s

(·) resulting form

the projection of
T∑

tl+1>sk

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

) on Xm0,m1
s,sk

and vice versa. This

approximation is not absurd since one can straightforwardly see, from the
Markov property, that

Usk(x) = E

(
T∑

tl≥sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)
∣∣∣Xm0,m1

sj ,sk
= x

)

= E

(
T∑

tl≥sk

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)
∣∣∣Xm0,m1

s,sk
= x

)
.

(4.4)

To establish a control on Em0
sj

([
h
m0,S
sj ,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2
)

and

on

Em0
s

([
h
m0,S
s,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2
)

, we define for tl ≥ s two auxilary

34

+� +��

Regression on

or on ~

Outer trajectory

_

Figure 5: Comparing regression of
T∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) on Xm0,m1
sj ,sk

and

of
T∑

tl+1>sk

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

) on Xm0,m1
s,sk

with s ∈ {sj + ∆t, ..., sk −∆t}.

processes X and X̃ as
X
m0,m1

sj ,s,s
= Xm0

s , X̃m0,m1
sj ,s,s

= Xm0,m1
sj ,s

and for tl = s+ ∆t, ..., T

X
m0,m1

sj ,s,tl
= Etl−1

(Etl−2
(...Es(Xm0

s , ξm0,m1

sj ,s+∆t
), ...ξm0,m1

sj ,tl−1
), ξm0,m1

sj ,tl
)

X̃m0,m1
sj ,s,tl

= Etl−1
(Etl−2

(...Es(Xm0,m1
sj ,s

, ξm0,m1

s,s+∆t
), ...ξm0,m1

s,tl−1
), ξm0,m1

s,tl
).

(4.5)

where E is given in (4.1). We remind that Em0
sj

and Em0
s are the conditional

expectations knowing the trajectory of Xm0 starting respectively from Xm0
sj

and from Xm0
s .

As shown on Figure 5 for tl > sk, X
m0,m1

sj ,s,tl
is defined using Xm0,m1

s,s = Xm0
s

and increments from the process Xm0,m1
sj ,tl

, in contrast to X̃m0,m1
sj ,s,tl

defined using
Xm0,m1
sj ,s

and increments from the process Xm0,m1
s,tl

. Proposition 4.3 provides a
strong formulation of a possible compromise between two error terms on the
right of each inequality (4.6) and (4.7).

Proposition 4.3. For any t ∈ {0, T
2L
, ..., T}, we assume Ut is [Ut]Lip-Lipschitz.

For sj < s < sk taking their values in the discretization set S, we define

35

Km0
2,sj ,sk

= [Usk]
2
Lip + Em0

sj
(|Hm0,S

sj ,sk
|2d′1) and Km0

2,s,sk
= [Usk]

2
Lip + Em0

s (|Hm0,S
s,sk
|2d′1)

where | · |d′1 is the Euclidean norm on Rd′1, then

Em0
s

([
h
m0,S
s,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2)
≤Em0

s

([
h
m0,S
s,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2)

+Km0
2,s,sk

Em0
s

(∣∣∣X̃m0,m1
sj ,s,sk

−Xm0,m1
s,sk

∣∣∣2
d′1

) (4.6)

and

Em0
sj

([
h
m0,S
sj ,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2)
≤ Em0

sj

([
h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2)

+Km0
2,sj ,sk

Em0
sj

(∣∣∣Xm0,m1

sj ,s,sk
−Xm0,m1

sj ,sk

∣∣∣2
d′1

)
.

(4.7)

Proof. As we simulate several independent copies of Xm0,m1 (cf. the para-
graph under Remark 2.1), we make sure that the approximations h are inde-

pendent from Xm0,m1 , from X
m0,m1

and from X̃m0,m1 conditionally on Xm0 .
Moreover, from definition (4.5), (X

m0,m1

sj ,s,tl
)tl≥s has the same law as (Xm0,m1

s,tl
)tl≥s

and (X̃m0,m1
sj ,s,tl

)tl≥s has the same law as (Xm0,m1
sj ,tl

)tl≥s. Then one can write the
following

Em0
s

([
h
m0,S
s,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2)

= Em0
s

([
h
m0,S
s,sk

(X̃m0,m1
sj ,s,sk

)− Usk(X̃m0,m1
sj ,s,sk

)
]2)

≤Em0
s

([
h
m0,S
s,sk

(X̃m0,m1
sj ,s,sk

)− hm0,S
s,sk

(Xm0,m1
s,sk

)
]2)

+Em0
s

([
h
m0,S
s,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2)

+Em0
s

([
Usk(X

m0,m1
s,sk

)− Usk(X̃m0,m1
sj ,s,sk

)
]2)

(4.8)

as well as

Em0
sj

([
h
m0,S
sj ,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2)

= Em0
sj

([
h
m0,S
sj ,sk

(X
m0,m1

sj ,s,sk
)− Usk(X

m0,m1

sj ,s,sk
)
]2)

≤Em0
sj

([
h
m0,S
sj ,sk

(X
m0,m1

sj ,s,sk
)− hm0,S

sj ,sk
(Xm0,m1

sj ,sk
)
]2)

+Em0
sj

([
h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2)

+Em0
sj

([
Usk(X

m0,m1
sj ,sk

)− Usk(X
m0,m1

sj ,s,sk
)
]2)

(4.9)

which yield (4.6) and (4.7).

36

Proposition 4.3 requires Lipschitz property of U which is fulfilled if f
is Lipschitz. Using similar steps to the one presented in [28], we show in
Lemma 4.1 this Lipschitz property for (ODP). Using similar arguments, one
can also show this property for (Snl) if g is also Lipschitz. We point out that
another option is the one based on differentiability assumptions as in [26].

Consider the following extension of (4.3) with a driver f that depends
also on X

Ŷsk = Esk
(
Ŷδ(sk) + ∆skfsk(Xsk , Ŷδ(sk), Ẑsk)

)
Ẑsk = 1

∆sk
Esk

(
Ŷδ(sk)(Wδ(sk) −Wsk)

)
= 1√

∆sk

Esk
(
Ŷδ(sk)θδ(sk)

)
where θδ(sk) ∼ N (0, Id1). Replacing sk by k and using Markov property,

Ŷsk = yk(Xsk) and Ẑsk = zk(Xsk) (cf [17]) with{
yk(x) = E (yk+1(Ek(x, θk+1)) + ∆kfk(x, yk+1(Ek(x, θk+1)), zk(x)))

zk(x) = 1√
∆k

E (yk+1(Ek(x, θk+1))θk+1) .

Lemma 4.1. Assume that f(t, x, y, z) is [f]Lip-Lipschitz continuous with re-
spect to x, y and z uniformly in t ∈ [0, T], for the particular case f(T, x) we
denote by [fT]Lip the Lipschitz coefficient. The coefficients b(t, x) and σ(t, x)
of the Markov process 4.1 are also assumed Lipschitz continuous in x uni-
formly with respect to t ∈ [0, T] with Lipschitz coefficients denoted [b]Lip and
[σ]Lip. Assume that n > n0 (in order to provide sharper constants depending
on n0 > 1).

Then for every k ∈ {0,, n− 1}, yk is [yk]Lip-Lipschitz continuous with

[yk]Lip 6
(

[yk+1]Lip e
∆kC

′
+ ∆k [f]Lip

)
where C ′ = [b]Lip + 1

2

(
[σ]2Lip + T

n0
[b]2Lip

)
+ [f]Lip

(
1 +
√
d1

√
n0

T

)
.

Moreover the functions zk are [zk]Lip-Lipschitz continuous with

[zk]Lip 6
1√
∆k

[yk+1]Lip e
∆kCb,σ,T

√
d1.

If ∆k = h is homogeneous with respect to k, we have

[yk]Lip 6

(
[fT]Lip + [f]Lip

T

n0

C ′
)
eC
′(T−tk)

37

and

[zk]Lip 6
√
d1

√
n0

T

(
[fT]Lip − C

′ [f]Lip

)
eC
′(T−tk)e

T
n0
Cb,σ,T .

Proof. Assume by backward induction that yk+1 is [yk+1]Lip-Lipschitz con-
tinuous. For every x, x′ ∈ Rd1 , we have

yk(x)− yk(x′) = E [yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1))]

+∆kE [fk(x, yk+1(Ek(x, θk+1)), zk(x))− fk(x′, yk+1(Ek(x, θk+1)), zk(x))]

+∆kE [fk(x
′, yk+1(Ek(x, θk+1)), zk(x))− fk(x′, yk+1(Ek(x′, θk+1)), zk(x))]

+∆kE [fk(x
′, yk+1(Ek(x′, θk+1)), zk(x))− fk(x′, yk+1(Ek(x′, θk+1)), zk(x

′))] .

and

zk(x)− zk(x′) =
1√
∆k

E ((yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1)))θk+1) .

We denote

Ax,x′ =
[fk(x, yk+1(Ek(x, θk+1)), zk(x))− fk(x′, yk+1(Ek(x, θk+1), zk(x))] 1{Ax,x′ 6=0}

| x− x′ |d1

Bx,x′ =
[fk(x′, yk+1(Ek(x, θk+1), zk(x))− fk(x′, yk+1(Ek(x′, θk+1), zk(x))] 1{Bx,x′ 6=0}

yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1))

Cx,x′ =
[fk(x, yk+1(Ek(x, θk+1), zk(x))− fk(x′, yk+1(Ek(x, θk+1), zk(x))] 1{Cx,x′ 6=0}

| zk(x)− zk(x′) |d1

where | x |d1=
√
x2

1 ++ x2
d1

, Ax,x =| x−x′ |d1 , Bx,x = yk+1(Ek(x, θk+1))−
yk+1(Ek(x′, θk+1)) and Cx,x =| zk(x)− zk(x′) |d1 .

We have

yk(x)− yk(x′) = E [(yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1))) (1 +Bx,x′∆k)]

+∆kE
[

1√
∆k

Cx,x′E (| (yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1))).θk+1 |d1)

]
+∆kE [Ax,x′ | x− x′ |d1] .

Using the Lipschitz property of fk and yk+1 we have

| yk(x)− yk(x′) | 6 [yk+1]Lip(1 + [f]Lip∆k)E [| Ek(x, θk+1)− Ek(x′, θk+1) |]

+∆k[f]Lip
1√
∆k

[yk+1]Lip

√√√√ d1∑
i=1

E
[
(Ek(x, θk+1)− Ek(x, θk+1))θik+1

]2
+∆k [f]Lip | x− x

′ |d1 .

38

By applying Cauchy-Schwarz’s inequality and knowing that E((θik+1)2) = 1,
for i ∈ {1, ..., d1}, we have

| yk(x)− yk(x′) | 6 [yk+1]Lip

(
1 + ∆k[f]Lip + ∆k[f]Lip

1√
∆k

√
d1

)
×

√√√√E
[
(Ek(x, θk+1)− Ek(x′, θk+1))

2
]

︸ ︷︷ ︸
Dx,x′

+ ∆k [f]Lip | x− x′ |d1 .

As bk(.) and σk(.) are Lipschitz, by elementary computations already carried
out in [4, 28], we have

Dx,x′ = E
(
[Ek(x, θk+1)− Ek(x′, θk+1)]2

)
= E

([
x− x′ + ∆k [bk(x)− bk(x′)] +

√
∆kθk+1 [σk(x)− σk(x′)]

]2)
6

(
1 + ∆k(2 [b]Lip + [σ]2Lip + ∆k [b]2Lip)

)
| x− x′ |2d1

6 (1 + ∆kCb,σ,T)2 | x− x′ |2d1

6 e2∆kCb,σ,T | x− x′ |2d1

where Cb,σ,T can be taken equal to [b]Lip + 1
2

(
[σ]2Lip + T

n0
[b]2Lip

)
.

This brings us to,

| yk(x)− yk(x′) | 6

(
∆k [f]Lip + [yk+1]Lip

(
1 + ∆k[f]Lip

(
1 +

√
d1

∆k

))
e∆kCb,σ,T

)
| x− x′ |d1

6
(

∆k [f]Lip + [yk+1]Lipe
∆k(Cb,σ,T+Cf,d1,T)

)
| x− x′ |d1

where Cf,d1,T is taken equal to [f]Lip
(
1 +
√
d1

√
n0

T

)
.

We conclude that yk is Lipschitz continuous with coefficient [yk]Lip satisfying

[yk]Lip 6
(

∆k [f]Lip + [yk+1]Lip e
∆kC

′
)

where C ′ = Cb,σ,T + Cf,d1,T .
Moreover, using that θk+1 ∼ N (0, Id1), combined with Cauchy-Schwarz’s

39

inequality and Lipschitz property we get

| zk(x)− zk(x′) |d16
1√
∆k

[yk+1]Lip

√√√√ d1∑
i=1

E
[
(Ek(x, θk+1)− Ek(x, θk+1))θik+1

]2
6

1√
∆k

[yk+1]Lip

√√√√ d1∑
i=1

E [(Ek(x, θk+1)− Ek(x, θk+1))]2 E
[
θik+1

]2
6

1√
∆k

[yk+1]Lip
√
d1

√
Dx,x′

6
1√
∆k

[yk+1]Lip
√
d1e

∆kCb,σ,T | x− x′ |d1 .

Thus, zk is Lipschitz continuous with coefficient [zk]Lip satisfying

[zk]Lip 6
1√
∆k

[yk+1]Lip e
∆kCb,σ,T

√
d1.

Assuming homogeneous time increment ∆k = h, we have

eC
′kh [yk]Lip 6 [yk+1]Lip e

C′(k+1)h + eC
′kh [f]Lip h.

which yields

eC
′kh [yk]Lip 6 [fT]Lip e

C′nh + [f]Lip h
n−1∑
l=k

eC
′lh

6 [fT]Lip e
C′T + [f]Lip h

eC
′T − eC′kh

eC′T − 1

6 [fT]Lip e
C′T + [f]Lip h

eC
′T

eC′T − 1
6 [fT]Lip e

C′T + [f]Lip hC
′eC

′T .

Finally we have

[yk]Lip 6 [fT]Lip e
C′(T−sk) + [f]Lip hC

′eC
′(T−sk). (4.10)

and

[zk]Lip 6
1√
h

([fT]Lip − C
′ [f]Lip)e

C′(T−tk)ehCb,σ,T
√
d1.

40

5 Some numerical results

In this section we test the above conditional MC learning procedure on vari-
ous examples including BSDE, American option and risk measure. The fact
that the driver f depends also on X is not a burden to the use of our method.
All simulations are run on a laptop that has an Intel i7-7700HQ CPU and a
single GeForce GTX 1060 GPU programmed with the CUDA/C application
programming interface. We refer the reader to [34] for an introduction to
CUDA programming.

5.1 Allen-Cahn equation

We consider (ODP) simulation as presented in Section 3.2, we use the fol-
lowing functions

f(t, x, y, z) = y − y3,

f(T, x) =

[
2 +

2

5
|x|2d1

]
and

Etk(x,w) = x+
√

2w, Xt0 = 0.

We would like to approximate the solution u(t, x) of the Allen-Cahn PDE
defined as follows, u(T, x) = f(T, x),

∂u

∂t
(t, x) + u(t, x)− [u(t, x)]3 + (∆xu)(t, x) = 0. (5.1)

A benchmark approximation ub(0, x) for the solution u(0, x) of the PDE (5.1)
is given in [Section 4.2; [12]].

Table 1 shows the solution u(0, 0) of equation (5.1), calculated by learned
and simulated expression, with respect to the number of inner trajectories
M1. The benchmark solution ub(0, 0) is equal to 0.0528 for T = 0.3 and
d1 = 100. The standard deviation of each expression and the runtime in
seconds are also given. We reduce the bias by increasing the number of
inner trajectories. Table 1 shows that a relative small number of outer and
inner trajectories is sufficient to observe a small variance and bias for both
options. In fact, we show that the standard deviation is already acceptable
for M0 = 24 outer trajectories and the bias is acceptable for M1 = 26 inner
trajectories with an execution time of 56 millisecond.

Table 1: Numerical simulations for PDE (5.1): T = 0.3, M0 = 24, d1 = 100,
L = 4; [Benchmarck solution] ub(0, 0) = 0.0528.

41

M1 Learned Simulated Runtime in sec. (10−3)
Y learn

0 std Y sim
0 std

24 0.0454 (± 0.0093) 0.0455 (± 0.0073) 13
25 0.0513 (± 0.0011) 0.0517 (± 0.0008) 23
26 0.0523 (± 0.0004) 0.0518 (± 0.0006) 56
27 0.0526 (± 0.0003) 0.0515 (± 0.0001) 119
28 0.0525 (± 0.0002) 0.0517 (± 0.0002) 227
29 0.0527 (± 0.0002) 0.0515 (± 0.0002) 414

Table 2 shows the solution u(0, 0) of equation (5.1), calculated by
learned and simulated expression, with respect to the number of inner
trajectories M1, for a long time horizon (T = 1). The benchmark solution
is equal to 0.0338 for T = 1, d1 = 100. To achieve a similar level of
variance and bias we need more outer and inner trajectories than in
Table 1. In fact for M0 = 25 of outer trajectories and M1 = 26 of inner tra-
jectories we obtained an acceptable bias and standard deviation in 4 seconds.

Table 2: Numerical simulations for PDE (5.1): T = 1, d1 = 100, M0 = 25,
L = 6; [Benchmarck solution] ub(0, 0) = 0.0338.

M1 Learned Simulated Runtime in sec.
Y learn

0 std Y sim
0 std

25 0.0345 (± 0.0008) 0.0350 (± , 0.0021) 2
26 0.0333 (± 0.0003) 0.0326 (± 0.0004) 4
27 0.0334 (± 0.0002) 0.0330 (± 0.0003) 7
28 0.0336 (± 0.0002) 0.0332 (± 0.0002) 12
29 0.0336 (± 0.0001) 0.0331 (± 0.0001) 27

5.2 Multidimensional Burgers-type PDEs with ex-
plicit solution

We assume the (ODP) setting presented in Section 3.2, we use the following
functions

f(t, x, y, z) =

(
y − 2 + d1

2d1

)(d1∑
i=1

zi

)
,

f(T, x) =

exp

(
T + 1

d1

d1∑
i=1

xi

)

1 + exp

(
T + 1

d1

d1∑
i=1

xi

)

42

and

Etk(x,w) = x+
d1√

2
w, Xt0 = 0.

We simulate the solution u(t, x) of the multidimensional Burgers-type PDE
(cf [9], Example 4.6) defined as follows, u(T, x) = f(T, x),

∂u

∂t
(t, x) +

d1
2

2
(∆xu)(t, x) +

(
u(t, x)− 2 + d1

2d1

)(
d1

d1∑
i=1

∂u

∂xi
(t, x)

)
= 0.

(5.2)
PDE (5.2) admits an explicit solution, we refer the reader to [Lemma 4.3,
[12]] for more details. The value of the solution u(0, 0) is 0.5000 for T = 0.2
and d1 = 100.

Table 3 shows the solution u(0, 0) of the equation (5.2), calculated by
learned and simulated expression, with respect to the number of inner
trajectories M1. The approximation of the standard deviation of each
expression and the runtime in seconds are also given. We show that the
standard deviation of both results should be reduced by increasing the
number of outer trajectories.

Table 3: Numerical simulations for PDE (5.2): T = 0.2, d1 = 100, M0 = 26,
L = 5; [Explicit solution] u(0, 0) = 0.5000.

M1 Learned Simulated Runtime in sec.
Y learn

0 std Y sim
0 std

28 0.4785 (± 0.0428) 0.0517 (± 0.0431) 7
29 0.5113 (± 0.0450) 0.5108 (± 0.0450) 16
210 0.4966 (± 0.0448) 0.4912 (± 0.0447) 27
211 0.5022 (± 0.0421) 0.5012 (± 0.0435) 49

In Table 4 we show the computed solution of the equation (5.2), cal-
culated by learned and simulated expression with respect to the number of
outer trajectories M0. The standard deviation of each expression and the
runtime in seconds are also given. We reduce the standard deviation by
increasing the number of outer trajectories.

Table 4: Numerical simulations for PDE (5.2): T = 0.2, d1 = 100, M1 = 211,
L = 5; [Explicit solution] u(0, 0) = 0.5000.

43

M0 Learned Simulated Runtime in sec.
Y learn

0 std Y sim
0 std

25 0.4953 (± 0.0618) 0.4941 (± 0.0615) 24
26 0.5022 (± 0.0424) 0.501284 (± 0.0435) 49
27 0.5079 (± 0.0346) 0.5066 (± 0.0342) 103
28 0.5158 (± 0.0221) 0.5151 (± 0.0221) 194
29 0.5023 (± 0.0164) 0.5029 (± 0.0164) 408

5.3 Time-dependent reaction-diffusion-type example
PDEs with oscillating explicit solutions

Let κ = 0.6, λ = 1√
d1

, we use the following functions

f(t, x, y, z) = min

{
1,

[
y − κ− 1− sin

(
λ

d1∑
i=1

xi

)]}
,

f(T, x) = 1 + κ+ sin

(
λ

d1∑
i=1

xi

)
and

Etk(x,w) = x+ w, Xt0 = 0.

We simulate the solution u(t, x) of the time dependent reaction-diffusion-type
PDE (cf [18], Section 6.1) defined as follows, u(T, x) = f(T, x),

∂u

∂t
(t, x)+min

{
1,

[
y − κ− 1− sin

(
λ

d1∑
i=1

xi

)]}
+

1

2
(∆xu)(t, x) = 0. (5.3)

The explicit solution of the PDE (5.3) is given in [Lemma 4.4; [12]].
Table 5 shows the approximated solution of the equation (5.3), calculated
by learned and simulated expression, with respect to the number of inner
trajectories M1. The standard deviation of each expression, and the runtime
in seconds are also given. The benchmark solution is equal to 1.6000 for
T = 1, d1 = 100.

Table 5: Numerical simulations for PDE (5.3): T = 0.5, d1 = 100, M0 = 210,
L = 3; [Benchmark solution] ub(0, 0) = 1.6000.

44

M1 Learned Simulated Runtime in sec. (10−3)
Y learn

0 std Y sim
0 std

25 1.8197 (± 0.0386) 1.7587 (± 0.0287) 244
26 1.7125 (± 0.0104) 1.6799 (± 0.0116) 311
27 1.6605 (± 0.0037) 1.6376 (± 0.0091) 466
28 1.6458 (± 0.0023) 1.6290 (± 0.0089) 817
29 1.6439 (± 0.0019) 1.6283 (± 0.0061) 1526

5.4 A Hamilton-Jacobi-Bellman (HJB) equation

We assume here the driver to be equal to

f(t, x, y, z) = −|z|2d1
,

f(T, x) = ln
([

1 + |x|2d1

])
and

Etk(x,w) = x+
√

2w, Xt0 = 0.

We calculate the solution u(t, x) of the HJB equation (cf [10] Section 4.2)
defined by u(T, x) = f(T, x),

∂u

∂t
(t, x) + (∆xu)(t, x)− |(∇xu)(t, x)|2d1

= 0. (5.4)

PDE (5.4) admits a benchmark solution. We refer the reader to [Lemma
4.2; [12]] for more details.

In Figure 6 we show the difference between Ysk =
1

M0

M0∑
m0=1

ỹm0,Si
∗

sk,sk
and

1

M0

M0∑
m0=1

(
ỹm0,Si

∗

δ(sk),δ(sk)
+ (δ(sk)− sk)f(sk, ỹ

m0,Si
∗

δ(sk),δ(sk)
, z̃m0,Si

∗

sk,sk
)
)

with respect to

the discretization time steps. On the left, we perform the conditional MC
procedure taking sk = T . On the right, we perform the procedure with
the bias control presented in Section 2.3 , taking sk =

(
sk + 3

8

)
∧ T with

sk ∈ S i
∗

= {0, 1
8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 1}. We show that the control allows to re-

duce the bias propagation.
Figure 7 shows the convergence of the learned and simulated expression to
the benchmark value with respect to the number of inner trajectories. In
particular, we observe that the both expressions converge to the benchmark
solution with a small variance when M1 = 217.

45

Figure 6: Ysk vs.
1

M0

M0∑
m0=1

(
ỹm0,Si

∗

δ(sk),δ(sk)
+ (δ(sk)− sk)f(sk, ỹ

m0,Si
∗

δ(sk),δ(sk)
, z̃m0,Si

∗

sk,sk
)
)

[Left] sk = T without bias control, [Right] sk =
(
sk + 3

8

)
∧T with bias control:

T = 1, d1 = 100, M0 = 27, M1 = 215, L = 3.

Figure 7: Numerical solution of PDE (5.4) calculated by learned and simu-
lated expression: T = 1, d1 = 100, M0 = 27, L = 3.

46

5.5 Pricing of European financial derivatives with dif-
ferent interest rates for borrowing and lending

Assuming µ = 0.06, σ = 0.2, Rl = 0.04 and Rb = 0.06, we introduce the
following functions

f(t, x, y, z) = −Rly − (µ−Rl)

σ

d1∑
i=1

zi + (Rb −Rl) max {0, 1

σ

d1∑
i=1

zi − y},

f(T, x) = max { max
1≤i≤d1

xi − 120, 0} − 2 max { max
1≤i≤d1

xi − 150, 0}

and

Etk(x,w) = x exp

(
(µ− σ2

2
)∆t + σw

)
, Xt0 = 100.

Let u defined as the solution of the following PDE, u(T, x) = f(T, x),

∂u

∂t
(t, x) +

σ

2

d1∑
i=1

|xi|2
∂2u

∂x2
i

(t, x) (5.5)

+max {Rb
(

d1∑
i=1

xi

(
∂u

∂xi
(t, x)

)
− u(t, x)

)
, Rl

(
d1∑
i=1

xi

(
∂u

∂xi
(t, x)

)
− u(t, x)

)
} = 0.

PDE (5.5) has a benchmark solution given in [Section 4.4; [12]]. This
benchmark solution is equal to 21.299 for T = 0.5 and d1 = 100.

Figure 8 shows the approximation of the solution of PDE (5.5), calcu-
lated by learned and simulated expression, with respect to the number
of inner trajectories. We show that 27 outer trajectories and 211 inner
trajectories are sufficient to get an accurate approximation of the solution
as the obtained values are in the corridor of the standard deviation of the
benchmark solution. No bias cut is needed here. The runtime with 27 outer
trajectories and 211 inner trajectories is 53 seconds.

5.6 A PDE example with quadratically growing
derivatives and an explicit solution

Assuming the (ODP) setting presented in Section 3.2, let α = 0.4 and
ψ(t, x) = sin

([
T − t+ |x|2d1

]α)
, we introduce the following functions,

f(t, x, y, z) = |z|2d1
− |∇xψ(t, x)|2d1

− ∂ψ

∂t
(t, x)− 1

2
(∆xψ)(t, x),

f(T, x) = sin
(
|x|2αd1

)
47

Figure 8: Numerical solution of PDE (5.5) calculated by learned and simu-
lated expression: T = 0.5, d1 = 100, M0 = 27, L = 2.

and
Etk(x,w) = x+ w, Xt0 = 0.

Let u defined as the solution of the following PDE, u(T, x) = f(T, x),

∂u
∂t

(t, x) + |∇xu(t, x)|2d1
+ 1

2
(∆xu)(t, x) = ∂ψ

∂t
(t, x)

+ |∇xψ(t, x)|2d1
+ 1

2
(∆xψ)(t, x).

(5.6)

Straight use of Itô’s Lemma shows that PDE (5.6) has an explicit solution
u(t, x) = ψ(t, x), we refer the reader to [Section 6.1; [18]] for more details.

Figure 9 is related to Propostion 4.3 that controls the error of regressions
with different starting points. Here we prefered to show the distribu-
tions rather than the quadratic error which is small. On the left of

Figure 9 we have the “Trained” value Y m0
249
256

= ỹm0,Si
∗

249
256

,T
and the “Tested”

1

M1

M1∑
m1=1

(
ym0,Si

∗

248
256

, 250
256

(
Xm0,m1

249
256

, 250
256

)
+ ∆sf

(
249

256
, ym0,Si

∗

248
256

, 250
256

(
Xm0,m1

249
256

, 250
256

)
, z̃m0,Si

∗

249
256

, 250
256

))
with S i∗ ∈ {0, 1

256
, 2

256
, ..., 1}. On the right we

show the “Trained” Y m0
253
256

= ỹm0,Si
∗

253
256

,T
and the “Tested”

48

1

M1

M1∑
m1=1

(
ym0,Si

∗

252
256

, 254
256

(
Xm0,m1

253
256

, 254
256

)
+ ∆sf

(
253

256
, ym0,Si

∗

252
256

, 254
256

(
Xm0,m1

253
256

, 254
256

)
, z̃m0,Si

∗

253
256

, 254
256

))
at a different time step 254/256. Figure 9 shows very similar distributions
which strengthen the benefit of our trick.

Figure 9: [Left] Distribution of Y m0
249
256

called “Trained” vs. its different starting

point approximation called “Tested” [Right] Y m0
253
256

called “Trained” vs. its

different starting point approximation called “Tested”: T = 1, d = 100,
M0 = 27, M1 = 212, L = 8.

Figure 10 shows the numerical solution of PDE (5.6), calculated by learned
and simulated expression, with respect to different number of coarse time
step. We show that L = 8 is sufficient to discretize the problem when the
time horizon T is equal to 1. This convergence is achieved in 620 seconds of
runtime.

5.7 American geometric put option

Given the (Snl) setting of Section 3.3 with a driver f = 0, we consider an
American geometric put option with constant interest rate r and a payoff

g(x) =

[
K −

d1∏
i=1

(xi)
1/d1

]+

(5.7)

with an asset X given by X i
t = X i

s exp
(

(r − σ2

2
)(t− s) + σ(W i

t −W i
s)
)

,

t > s, 1 ≤ i ≤ d1, r = log(1.1), σ = 0.4, K = X i
0 = 100 and d1 = 20.

We approximate the price V0 associated to payoff (5.7). We choose

49

Figure 10: Numerical solution of PDE (5.6) calculated by learned and simu-
lated expression with a bias control: T = 1, d1 = 100, M0 = 27, M1 = 27.

the dimension d1 = 20 to make sure that the variance of the problem is
sufficiently large. We point out however that it works well for d1 = 100.

In Table 6 we show the price of an American geometric put option,
calculated by simulated expression V sim

0 , for different maturities. Indeed,
V learn

0 provides almost the same values. From top to bottom we have: a
variance adjustment [VA], a bias control [BC] and a combination of [BC] and
[VA]. We show that the simulated expression with a combination of [BC]
and [VA] gives a good approximation of the price even for long maturity
T = 2. However, one needs to use variance adjustment that is important for
events on the exercise frontier as well as bias control to cut the propagation
of bias.

Table 6: Numerical simulations for American option (5.7) simulated formula,
[BC] bias control [VA] variance adjustment: d1 = 20, M0 = 211, M1 = 212.

50

L = 2 L = 3 L = 4
(T = 0.5) (T = 1) (T = 2)

[VA] 2.561 4.236 6.363
(± 0.035) (± 0.042) (± 0.054)

[BC] 2.493 3.734 5.130
(± 0.041) (± 0.061) (± 0.089)

[VA] + [BC] 2.291 2.890 3.961
(± 0.035) (± 0.037) (± 0.055)

Real Price 2.153 2.871 3.754

Figure 11 shows the difference between
1

M0

M0∑
m0=1

e−r(δ(sk)−sk)V m0

δ(sk) =

1

M0

M0∑
m0=1

e−r(δ(sk)−sk)(ṽm0,Si
∗

δ(sk),δ(sk)
) and

1

M0

M0∑
m0=1

(w̃m0,Si
∗

sk,sk
) with respect to the

time discretization. On the left, we perform the conditional MC proce-
dure by taking sk = T . On the right, we perform the procedure with
the bias control presented in section 2.3 by taking sk =

(
sk + 3

8

)
∧ T with

sk ∈ S i
∗

= {0, 1
8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 1}. We show that the control allows to reduce

the bias propagation.

Figure 11:
1

M0

M0∑
m0=1

e−r(δ(sk)−sk)V m0

δ(sk) vs.
1

M0

M0∑
m0=1

(w̃m0,Si
∗

sk,sk
); [Left] sk = T

without bias control [Right] sk =
(
sk + 3

8

)
∧ T with bias control: d1 = 20,

M0 = 211, M1 = 212, T = 1 and L = 3.

Figure 12 shows the approximation of the American geometric put option,
calculated by learned and simulated expression, with respect to the number
of inner trajectories for different maturities. Both expressions converge to

51

the benchmark value for 29 outer trajectories and 212 inner trajectories in 3
seconds.

Figure 12: Numerical approximation of price V0: d1 = 20, M0 = 29, T = 1,
L = 3.

5.8 Initial Margin

Assume the setting presented in Section 3.2, we consider a portfolio of one
hundred put options, the price Vsk of the portfolio at time step sk is given by

Vsk =

d1∑
i=0

e−(T−sk)rEsk
([
K −X i

T

]+)
(5.8)

with an asset X given by X i
t = X i

s exp
(

(r − σ2

2
)(t− s) + σ(W i

t −W i
s)
)

,

t > s, 1 ≤ i ≤ d1, with r the interest rate, K the strike and T the maturity.

We are interested to calculate the initial margin (IM) of this portfo-
lio. IM is an amount posted by the counterparty (or the bank) to overcome
the loss of the portfolio during the liquidation period after a default.

IM is formalized here as follows

IMsk = ESask(Lsk,sk+δ) (5.9)

52

where the loss of the portfolio at time t over a period δ is denoted Lsk,sk+δ

and is defined here by
Lsk,sk+δ = Vsk+δ − Vsk ,

and the expected shortfall ES is defined by

ESask(X) =
1

(1− a)

∫ 1

a

VaRα
sk

(X)dα.

The value-at-risk of some random variable VaRα(X) conditionally to Fsk is
defined by

VaRα
sk

(X) = inf{x ∈ R : P(X ≤ x | Fsk) ≥ α}.

We considered the following parameters: T = 1, d1 = 100, K = X i
0 = 100,

r = 0.01, a = 99%, NI = 32 is the number of time step, δ = 1
32

. A
benchmark approximation of the IM is obtained using Black & Scholes
formula for put options.

Figue 13 shows some distributions of the loss process. From top to bottom
we show different time steps sk ∈ {29

32
, 19

32
, 9

32
}. On the left, we perform the

procedure without variance adjustment and on the right we perform the
variance adjustment introduced in section 2.3. We show that the variance
adjustment is necessary to fit the benchmark distribution of the loss process.
Figure 14 shows the initial margin distribution. From top to bottom we
show different time steps sk ∈ {29

32
, 19

32
, 9

32
}. Although we are interested in

distribution tails of the loss process we have a fairly good representation of
the distribution of IM. Figure 15 shows at the top the mean of IM with
respect to the time horizon of the portfolio and we show the L2 relative error
at the bottom. The relative error is sufficiently small as it is generally less
than 8% and does not exceed 11%.

References

[1] Abbas-Turki, L. A., Crépey, S. and Diallo, B. (2018). XVA prin-
ciples, nested Monte Carlo strategies, and GPU optimizations. Interna-
tional Journal of Theoretical and Applied Finance. 21(06).

[2] Abbas-Turki, L. A. and Graillat, S. (2017). Resolving small ran-
dom symmetric linear systems on graphics processing units. The Journal
of Supercomputing. 73(4), 1360–1386.

53

Figure 13: Numerical approximation of the loss distribution [Left] Without
variance adjustment, [Right] With variance adjustment; [top to bottom] sk ∈
{29

32
, 19

32
, 9

32
}; M0 = 28, M1 = 28 ∗ 5.

[3] Agarwal, A., De Marco, S., Gobet, E. and Liu, G. (2018). Study
of new rare event simulation schemes and their application to extreme
scenario generation. Mathematics and Computers in Simulation. 143
89–98.

[4] Bally, A. and Pagès, G. (2003). A quantization algorithm for solving
discrete time multidimensional optimal stopping problems. Bernoulli. 6
1003–1049.

54

Figure 14: Numerical approximation of the IM distribution: [top to bottom]
sk ∈ {29

32
, 19

32
, 9

32
}; M0 = 28, M1 = 28 ∗ 5.

55

Figure 15: Initial Margin: [Top] mean of IMsk ; [Bottom] L2 relative error.

56

[5] Bellman, R. (2010). Dynamic programming, Princeton Landmarks in
Mathematics. Princeton University Press, Princeton, NJ. Reprint of the
1957 edition, With a new introduction by Stuart Dreyfus.

[6] Bouchard, B. and Touzi, N. (2004). Discrete time approximation
and Monte Carlo simulation of backward stochastic differential equa-
tions. Stochastic Processes and their Applications. 111 175–206.

[7] Broadie, M., Du, Y. and Moallemi, C. C. (2015). Risk estimation
via regression. Operations Research. 63(5) 979–1244.

[8] Bucklew, J. (2004). Introduction to rare event simulation, Springer
Series in Statistics.

[9] Chassagneux, J.-F. (2014). Linear multistep schemes for BSDEs.
SIAM J. Numer. Anal. 52(6) 2815–2836.

[10] Chassagneux, J.-F., and Richou A. (2016). Numerical simulation
of quadratic BSDEs. Ann. Appl. Probab. 26(1) 262–304.

[11] Clément, E., Lamberton, D. and Protter, P. (2002). An analy-
sis of a least squares regression algorithm for American option pricing.
Finance and Stochastics. 17 448–471.

[12] E, W., Han, J. and Jentzen, A. (2018). Deep learning-based numer-
ical methods for high-dimensional parabolic partial differential equa-
tions and backward stochastic differential equations. Communications
in Mathematics and Statistics. 5(4) 349–380.

[13] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward
stochastic differential equations in Finance. Mathematical Finance. 7(1)
349–380.

[14] Glasserman, P. (2003). Monte Carlo methods in financial engineer-
ing, Stochastic Modelling and Applied Probability, Springer-Verlag New
York Inc.

[15] Gobet, E. and Labart, C. (2007). Error expansion for the discretiza-
tion of backward stochastic differential equations. Stochastic Processes
and their Applications. 117(7) 803–829.

[16] Gobet, E., Lemor, J. P. and Warin, X. (2005). A regression-based
Monte Carlo method to solve backward stochastic differential equations
The Annals of Applied Probability. 15(3) 2172–2202.

57

[17] Gobet, E. and Turkedjiev, P. (2016). Linear regression MDP
scheme for discrete backward stochastic differential equations under gen-
eral conditions. Mathematics of Computation. 85 1359–1391.

[18] Gobet, E. and Turkedjiev, P. (2017). Adaptive importance sam-
pling in least-squares Monte Carlo algorithms for backward stochastic
differential equations. Stochastic Process. Appl. 127(4) 1171–1203.

[19] Gordy, M. B. and Juneja, S. (2010). Nested Simulation in Portfolio
Risk Measurement. Management Science. 56(10) 1833–1848.

[20] Jourdain, B. and Lelong, J. (2009). Robust adaptive importance
sampling for normal random vectors. The Annals of Applied Probability.
19(5) 1687–1718.

[21] Lee, S.-H. (1998). Monte Carlo Computation of Conditional Expecta-
tion Quantiles, Ph.D. thesis, Stanford University.

[22] Lee, S.-H. and Glynn, P. W. (2003). Computing the distribution
function of a conditional expectation via Monte Carlo: Discrete condi-
tioning spaces. ACM Transactions on Modeling and Computer Simula-
tion. 13(3) 238–258.

[23] Lemor, J. P., Gobet, E. and Warin, X. (2006). Rate of conver-
gence of an empirical regression method for solving generalized backward
stochastic differential equations. Bernoulli. 12(5) 889–916.

[24] Lions, J.-L., Maday, Y. and Turinici, G. (2015). A “parareal” in
time discretization of PDE’s. Comptes Rendus de l’Académie des Sci-
ences. Série I. 332(7) 661–668.

[25] Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American
options by simulation: A simple least-squares approach. The Review of
Financial Studies. 14(1) 113–147.

[26] Newey, W. K. (1997). Convergence rates and asymptotic normality
for series estimators. Journal of Econometrics. 79 147–168.

[27] Pagès, G. (2002). Numerical probability: an introduction with applica-
tions to finance, Universitext, Springer.

[28] Pagès, G. and Sagna, A. (2018). Improved error bounds for quantiza-
tion based numerical schemes for BSDE and nonlinear filtering. Stochas-
tic Processes and their Applications. 128(3) 847–883.

58

[29] Pardoux, E. and Peng, S. (1990). Adapted solution of a backward
stochastic differential equation. Systems & Control Letters. 14 55–61.

[30] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flan-
nery, B. P. (2002). Numerical Recipes in C++: The Art of Scientific
Computing, Cambridge University Press.

[31] Shapiro, A., Dentcheva, D. and Ruszczynski, A. (2009). Lectures
on stochastic programming: modeling and theory, Society for Industrial
and Applied Mathematics.

[32] Tsitsiklis, J. N. and Van Roy, B. (2001). Regression methods for
pricing complex American-style options. IEEE Transactions on Neural
Networks. 12(4) 694–703.

[33] White, H. (2001). Asymptotic theory for econometricians. Academic
Press.

[34] NVIDIA (2017). Cuda C PROGRAMMING GUIDE.

59

	Introduction
	Conditional learning procedure: Notations and method
	Iterative procedure, regression initialization and stabilization
	Fine and coarse approximations
	Regression computations: Bias control and variance adjustment

	Some applications: Risk measures, BSDEs and RBSDEs
	Conditional expectation and risk measures
	BSDEs with a Markov forward process
	RBSDEs with a Markov forward process

	Error estimates and cutting bias propagation
	Regression-based NMC and increasing the learning depth
	Regression with different starting points

	Some numerical results
	Allen-Cahn equation
	Multidimensional Burgers-type PDEs with explicit solution
	Time-dependent reaction-diffusion-type example PDEs with oscillating explicit solutions
	A Hamilton-Jacobi-Bellman (HJB) equation
	Pricing of European financial derivatives with different interest rates for borrowing and lending
	A PDE example with quadratically growing derivatives and an explicit solution
	American geometric put option
	Initial Margin

