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Abstract

It is well known that the reality of stock prices movement can be captured by the Heston model introduced
in [4]. A exact solution for the model is also presented in [4]. However, the solution is an integrals in the
complex plane, posing significant difficulties in numerical evaluation. Hence, in [2], Zhang et al. present a
closed form solutions for option prices and implied volatilities which is accurate when compared with the
exact solutions. In this summary, we present the main results of [2] and also provide an approximation for
the Delta.
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1 Introduction

The Heston model [3] has the following dynamics:

dSt = rStdt +
√

vtStdW s
t ,

dvt = κ (θ − vt) dt + ξ
√

vtdW v
t , (1)

where r is the rate of return of the stock, θ is the long run average price volatility, κ is the rate of vt reversion
to θ and ξ is the volatility of the volatility. W s

t and W v
t are 2 Brownian motions satisfying 〈W s, W v〉t = ρt.

We set the interest rate r and dividend rate q to 0 in this paper as one can always introduce a discounted
financial instruments and a discount factor e−qt in the stock price process to eliminate the effect or r and q
respectively. We introduce a parameter ǫ which is the speed of fast mean reversion and replace κ with κ

ǫ and

ξ with ξ√
ǫ

to obtain a fast mean-reverting process when 0 < ǫ << 1 (see [1]). It can be show that the option

price f (t, s, v) satisfy the following PDE:

ft +

(

κ

ǫ
(θ − v) − ξ√

ǫ
λv

)

fv +
1

2
vs2fss +

ξ√
ǫ
sρvfsv +

1

2

ξ2

ǫ
vfvv = 0 (2)

where λ (t, s, v) = λv
1

2 is the price of volatility risk. We also have the payoff function to be f (T, s, v) =
(s − K)+ for a call and f (T, s, v) = (K − s)+ for a put where K is the strike price. We will set λ = 0 as we
can always introduce a change of variables κ̃ = κ +

√
ǫξλ and θ̃ = κθ

κ̃ for λ 6= 0. Thus, Equation (2) becomes

ft +
κ

ǫ
(θ − v) fv +

1

2
vs2fss +

ξ√
ǫ
sρvfsv +

1

2

ξ2

ǫ
vfvv = 0. (3)

∗nprivault@ntu.edu.sg
†SHEQ0002@e.ntu.edu.sg

1



We have in [3] the exact solution of Equation (3) expressed as 2 integrals of a complex function. However, in
[5] and [6], we see that there are significant difficulties in the numerical evaluation of these integrals. Therefore,
in [1], Fouque et al. developed a method with the following price expansion for a European call:

C = C0 +
√

ǫC1 + . . . , (4)

where C0 = sN (d1) − KN (d2) and C1 = −1
2ρ ξ

κd2Kφ (d2) with d1 = ln(s/K)+θ(T −t)/2√
θ(T −t)

and d2 = d1 −
√

θ (T − t)

with the following implied volatility expansion

σ̃i = σ̃0 +
√

ǫσ̃1 + . . . , (5)

where σ̃0 =
√

θ and σ̃1 = −ρξ d2

2κ

√
T − t. Here, we see that the approximate solution does not depend on the

stochastic volatility, so in this summary, we present the method in [2] by Zhang et al. which provide a more
accurate analytical approximate solution that do depends on the stochastic volatility.

2 Main results

The approximate solutions derived in [2] for the option prices, implied volatility and delta are provided in this
section.

Theorem 1 (Theorem 1, [2]). Let τ = T − t and z = θτ + ǫ
κ

(

1 − e− κτ

ǫ

)

(v − θ). We have the following series

expansion for the option price f:

f = f0 +
√

ǫf1 + ǫf2 + . . . , (6)

where

f0 (s, z) =

{

sN
(

d+
)

− KN (d−) , for call

KN (−d−) − sN
(

−d+
)

, for put
(7)

f1 (τ, s, z) = g1 (τ, z) G1 (s, z) , for call and put (8)

f2 (τ, s, z) = g2 (τ, z) G2 (s, z) + h2 (τ, z) H2 (s, z) + m2 (τ, z) M2 (s, z) , for call and put. (9)

Here, we have d± = ln(s/K)±z/2√
z

, N (x) is the cumulative distribution function of the standard normal distri-

bution and

g1 (τ, z) = A (τ) z + θB (τ) , g2 (τ, z) =
1

2
(A (τ) z + θB (τ))2 ,

h2 (τ, z) = C (τ) z + θD (τ) , m2 (τ, z) = E (τ) z + θF (τ) ,

G1 (s, z) = −1

2
ρ

ξ

κ
d−z−1Kφ

(

d−) , G2 (s, z) =
1

4
ρ2 ξ2

κ2
z− 5

2 Kφ
(

d−)
(

3 − 3
(

d−)2 − 3d+d− + d+ (d−)3
)

,

H2 (s, z) = −1

2
ρ2 ξ2

κ2
z− 3

2 Kφ
(

d−)
(

1 −
(

d−)2
)

, M2 (s, z) =
1

8

ξ2

κ2
z− 3

2 Kφ
(

d−)
(

d+d− − 1
)

,

where φ (x) is the probability density function of the standard normal distribution and

A (τ) = 1 − κ

ǫ

τe− κτ

ǫ

1 − e− κτ

ǫ

, B (τ) =
κ

ǫ

τ2e− κτ

ǫ

1 − e− κτ

ǫ

− ǫ

κ

(

1 − e− κτ

ǫ

)

, C (τ) = 1 − e− κτ

ǫ

1 − e− κτ

ǫ

(

κτ

ǫ
+

1

2

(

κτ

ǫ

)2
)

,

2



D (τ) = τe− κτ

ǫ − 2
ǫ

κ

(

1 − e− κτ

ǫ

)

+
τe− κτ

ǫ

1 − e− κτ

ǫ

(

κτ

ǫ
+

1

2

(

κτ

ǫ

)2
)

, E (τ) = 1 − e− κτ

ǫ

1 − e− κτ

ǫ

(

2
κτ

ǫ
−
(

1 − e− κτ

ǫ

)

)

,

F (τ) =
1

2

ǫ

κ

(

1 − e−2 κτ

ǫ

)

− 2
ǫ

κ

(

1 − e− κτ

ǫ

)

+
τe− κτ

ǫ

1 − e− κτ

ǫ

(

2
κτ

ǫ
−
(

1 − e− κτ

ǫ

)

)

.

Theorem 2 (Theorem 2, [2]). The implied volatility can be approximated by

σi = σ0 +
√

ǫσ1 + ǫσ2 + . . . , (10)

where

σ0 =

√

z

T − t
, σ1 = −1

2
ρ

ξ

κ
(Az + θB)

d−z−1

√
T − t

, σ2 = f2 ×
(

Kφ
(

d−)√
T − t

)−1
− 1

2
σ2

1

d+d−

σ0
.

Theorem 3. The Delta, ∆, has the following expression:

∆ =
∂f0

∂s
+

√
ǫ
∂f1

∂s
+ ǫ

∂f2

∂s
. (11)

Here,

∂f0

∂s
=











N
(

d+
)

+
φ(d+)√

z
− K

φ(d−)
s
√

z
, for call

−N
(

−d+
)

+
φ(−d+)√

z
− K

φ(−d−)
s
√

z
, for put

∂f1

∂s
= g1

∂G1

∂s
, for call and put

∂f2

∂s
= g2

∂G2

∂s
+ h2

∂H2

∂s
+ m2

∂M2

∂s
, for call and put

where

∂G1

∂s
=

1

2
ρ

ξ

κ
z−1K

φ (d−)

s
√

z

(

(

d−)2 − 1
)

,

∂G2

∂s
=

1

4
ρ2 ξ2

κ2
z− 5

2 K
φ (d−)

s
√

z

(

(

d+
)3

− 3d+ + 6d+ (d−)2 − d+ (d−)4 + 3
(

d−)3 − 12d−
)

,

∂H2

∂s
=

1

2
ρ2 ξ2

κ2
z− 3

2 K
φ (d−)

s
√

z

(

3d− −
(

d−)3
)

,

∂M2

∂s
=

1

8

ξ2

κ2
z− 3

2 K
φ (d−)

s
√

z

(

d+ + 2d− − d+ (d−)2 − 1
)

.
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