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Abstract. We describe “The frame projection method” (PROJ-method) for pricing
discretely monitored barrier options for a wide class of Lévy processes, which is imple-
mented into Premia 21. The method uses a backward induction approach and the Fast
Fourier Transform algorithm for the efficient computation of the convolution with the
probability density. The key idea behind the approach involves approximating the log-
return density by its orthogonal projection onto a space of compactly supported basis
elements. Discrete convolution of the projected density with a set of value coefficients
at each time step is represented as a Toeplitz matrix-vector multiplication, which can
be efficiently implemented by means of the fast Fourier transform (FFT). The method
is implemented into Premia 21 for knock-out barrier options based on Kirkby (Applied
Mathematical Finance, 24(4), 337–386, 2017), for Bermudan options based on Kirkby
(Journal of Computational Finance, 22(3), 89–148, 2018), and for European options
based on Kirkby (SIAM J. Financial Math., 6(1), 713-747, 2015).

Premia 22

1. Introduction

In recent years more and more attention has been given to stochastic models of finan-
cial markets which depart from the traditional Black-Scholes model. At this moment a
wide range of models is available. One of the tractable empirical models are jump dif-
fusions or, more generally, Lévy processes. We concentrate on the one-dimensional case.
For an introduction on these models applied to finance, we refer to Cont and Tankov
(2004).

By now, there exist several large groups of relatively universal numerical methods for
pricing of American and barrier options under exponential Lévy processes. The number
of publications is huge, and, therefore, an exhaustive list is virtually impossible. We
concentrate on the one-dimensional case.

Existing numerical methods in literature can be categorized into three groups: Monte
Carlo simulation, partial-(integro) differential equation (PIDE) methods, and backward
induction methods. We will consider the last group.

The backward induction methods are based on the fact that the risk-neutral valuation
formula for the European option can be seen as a convolution of the payoff function
with the transition density. The key idea is to set up a time lattice and view the
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option as of European type between two adjacent dates. Hence, the backward induction
method requires the transition density to be known in closed-form, which is the case in
e.g. the Black-Scholes model and Merton’s jump-diffusion model. The approximation
proposed by Geske and Johnson (1984) uses the discretization of the time parameter
and the backward induction for pricing American options in the GBM model. The
method was extended in Boyarchenko and Levendorskǐi (2002) for some Lévy models,
and its applications can be founded e.g. in Kudryavtsev and Levendorskǐi (2006) and
Levendorskǐi et al. (2006). If there is no an explicit formula for the probability density,
it can be recovered by inverting the characteristic function, so the method can be used
for a wide range of Lévy models.

Since convolutions can be handled very efficiently by means of the Fast Fourier Trans-
form (FFT), an overall complexity of the method is O(mn lnn), where m and n are the
numbers of points on the grid in time and space, respectively. The FFT-based backward
induction method was applied in Jackson et al. (2008), see also Lord et al. (2008).
In terms of the theory of pseudodifferential operators (PDOs), at each time step, the
FFT-based backward induction method implements action of the PDO which symbol is
the characteristic function.

The method suggested in Itkin (2014,2016) solves backward jump-diffusion PIDEs for
option prices by splitting the related operator into differential and jump parts. The
key idea behind the approach involves representing a jump operator as a PDO with
subsequent transforming into operator exponential.

In series of papers Kirkby (2015, 2017a, 2017b), a backward induction method based on
the frame projection approach (PROJ) was developed. In particular, in Kirkby (2017a)
the approach was applied for robust pricing discretely monitored barrier derivatives
under exponential Lévy models. Coefficient functionals of the orthogonally projected
transition density are given by its convolution with a dual B-spline scaling function of
the first order, using the characteristic function of the underlying asset.

The method’s efficiency is derived in part from the use of frame projected transition
densities, which transform the problem into the Fourier domain, and accelerate the con-
vergence of intermediate expectations. These expectations are approximated by Toeplitz
matrix-vector multiplications, resulting in a fast implementation by means of the Fast
Fourier Transform. Additionally, the method includes proper truncating support of the
transition density. In Kirkby (2017b), the frame projection approach is generalized for
a case of B-spline scaling functions of an arbitrary order.

2. Lévy processes: basic facts

A Lévy process is a stochastically continuous process with stationary independent
increments (for general definitions, see e.g. Sato [27]). A Lévy process may have a
Gaussian component and/or pure jump component. The latter is characterized by the
density of jumps, which is called the Lévy density. A Lévy process Xt can be completely
specified by its characteristic exponent, ψ, definable from the equality E[eiξX(t)] = e−tψ(ξ)
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(we confine ourselves to the one-dimensional case). If Xt has probability density pt, then
we have

(2.1) e−tψ(ξ) =
∫ +∞

−∞
eiξypt(y)dy

The characteristic exponent is given by the Lévy-Khintchine formula:

(2.2) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1|y|≤1)ν(dy),

where σ2 ≥ 0 is the variance of the Gaussian component, and the Lévy measure ν(dy)
satisfies

(2.3)
∫

R\{0}
min{1, y2}ν(dy) < +∞.

If the jump component is a process of finite variation, equivalently, if

(2.4)
∫

R\{0}
min{1, |y|}F (dy) < +∞,

then the last term in the integrand in (2.2) can be integrated out and added to the drift
term. Then we obtain

(2.5) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy)F (dy),

with a different µ, and the new µ is the drift of the Gaussian component.
Assume that under a risk-neutral measure chosen by the market, the price process

has the dynamics St = eXt , where Xt is a certain Lévy process. Then we must have
E[eXt ] < +∞, and, therefore, ψ must admit the analytic continuation into a strip
Im ξ ∈ (−1, 0) and continuous continuation into the closed strip Im ξ ∈ [−1, 0].

Further, if the riskless rate, r, is constant, and the stock pays dividends q, then the
discounted price process must be a martingale. Equivalently, the following condition
must hold

(2.6) r − q + ψ(−i) = 0,

which can be used to express µ via the other parameters of the Lévy process:

(2.7) µ = r − q −
σ2

2
+

∫ +∞

−∞
(1 − ey + y1|y|≤1)F (dy).

Example 1. [Tempered stable Lévy processes] The characteristic exponent of a
pure jump KoBoL process of order ν ∈ (0, 2), ν 6= 1 is given by

(2.8) ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+. Formula (2.8) is derived in Boyarchenko
and Levendorskǐi (2000, 2002) from the Lévy-Khintchine formula with the Lévy densities
of negative and positive jumps, F∓(dy), given by

(2.9) F∓(dy) = ceλ±y|y|−ν−1dy;
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in the first two papers, the name extended Koponen family was used. Later, the same
class of processes was used in Carr et al. (2002) under the name CGMY-model. The
following relations between parameters of KoBoL model and C,G,M, Y parameters of
CGMY-model is valid:

C = c, Y = ν, G = λ+, M = −λ−.

More general version with c± instead of c, and the different exponents ν± is known as a
Tempered Stable Lévy model. In this case, we have for ν+, ν− ∈ (0, 2), ν+, ν− 6= 1

(2.10) ψ(ξ) = −iµξ+c+Γ(−ν+)[λ
ν+

+ −(λ+ +iξ)ν+ ]+c−Γ(−ν−)[(−λ−)ν− −(−λ− −iξ)ν− ],

where c+, c− > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 2. [Normal Inverse Gaussian processes] A normal inverse Gaussian
process (NIG) can be described by the characteristic exponent of the form (see Barndorff-
Nielsen (1998))

(2.11) ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2],

where α > |β| > 0, δ > 0 and µ ∈ R.

Example 3. [Variance Gamma processes] The Lévy density of a Variance Gamma
process is of the form (2.9) with ν = 0, and the characteristic exponent is given by (see
Madan et al. (1998))

(2.12) ψ(ξ) = −iµξ + c[ln(λ+ + iξ) − lnλ+ + ln(−λ− − iξ) − ln(−λ−)],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 4. [Kou model] If F∓(dy) are given by exponential functions on negative
and positive axis, respectively:

F∓(dy) = c±(±λ±)eλ±y,

where c± ≥ 0 and λ− < 0 < λ+, then we obtain Kou model. The characteristic exponent
of the process is of the form

(2.13) ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
.

The version with one-sided jumps is due to Das and Foresi (1996), the two-sided version
was introduced in Duffie, Pan and Singleton (2000), see also S.G. Kou (2002).

3. The frame projection method

We briefly describe the numerical framework of Kirkby (2017a) to value exotic options
in exponential Lévy models. Throughout, the riskless rate r and the dividend rate q are
assumed to be constant. We consider here the special case of frame projection onto a
linear spline basis, and more theoretical details and general B-spline basis results can be
found in [13, 16]. After reviewing the implementation for European options in Section
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3.1, we consider the case of knock-out barrier options in Section 3.2, and Bermudan
options in Section 3.3.

3.1. European Options. Let T,K be the contract maturity and strike, and the stock
price St = S0e

Xt is an exponential Lévy process under a chosen risk-neutral measure
(see (2.6)). We seek to value a on option with European style payoff of G(x) at time T .
Recall that for call option G(x) = (S0e

x −K)+, and for put option G(x) = (K−S0e
x)+.

Then the no-arbitrage price of the European option at time t0 = 0 is given by

(3.1) f(x, t0) = Ex
[
e−rTG(XT )

]

For consistency in notation with exotic options below, let ∆τ denote the increment of
time between monitoring dates of the contract. For a European option, ∆τ = T − t0.

To calculate the price in (3.1), note that in the general case, p∆τ can be expressed in
terms of the characteristic exponent ψ(ξ), by using the Fourier transform

(3.2) p∆τ (ν) = (2π)−1
∫ +∞

−∞
e−ixξ−∆τψ(ξ)dξ.

For a fixed resolution a > 0, and a generator φ(ν) = (1 − |ν|)1[−1,1], we obtain the
following analytical representation of the orthogonally projected density

(3.3) p∆τ (ν) ≈
N∑

k=1

(∫ +∞

−∞
p∆τ (y)φ̃a,k(y)dy

)
φa,k(ν)

onto a space of compactly supported basis elements φa,k(ν) := a1/2φ(a(ν − νk)), where
νk are the points on a uniformly spaced grid of width ∆ν = 1/a. Using the Fourier
transform technique and (3.2), one may rewrite (3.3) as follows

p∆τ (ν) ≈
N−1∑

k=0

a−1/2

π
Re

(∫ +∞

0
exp[iνkξ − ∆τψ(ξ)]ha(ξ)dξ

)
φa,k(ν)

≈
a5/2

N

N−1∑

k=0

βa,kφa,k(ν),(3.4)

where νk = ν1 + k∆ν, k = 0, . . . , N − 1,

ha(ξ) =
sin2(ξ/2a)

ξ2(2 + cos(ξ/2a))
.

We choose ν1 in order to cover the support of the transition density (see [15] for several
viable approaches).

To evaluate European options, we have the valuation formula

f(x, t0) ≈ e−rT a
5/2

N

N−1∑

k=0

βa,k

∫ νk+1

νk−1

G(ν)φa,k(ν)dν,

where the coefficients
∫ νk+1

νk−1
G(ν)φa,k(ν) are easy to evaluate numerically for arbitrary

payoffs (see [15]), and are available in closed form for many standard payoffs (see [13]).
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3.1.1. Projection Coefficients by FFT. Approximation for the coefficients βa,k can be
efficiently computed by using the Fast Fourier Transform (FFT). Consider the algorithm
(the discrete Fourier transform (DFT)) defined by

(3.5) Gk = DFT [g](k) =
N−1∑

j=0

gje
−2πikj/N , k = 0, ..., N − 1.

The DFT maps N complex numbers (the gj’s) into N complex numbers (the Gk’s) (see
Press, W. et al (1992) for technical details). The formula for the inverse DFT which
recovers the set of gj’s exactly from Gk’s is:

(3.6) gj = iDFT [G](j) =
1

N

N−1∑

k=0

Gke
2πikj/N , j = 0, ..., N − 1.

In our case, the input data consist of the following complex-valued array {gj}
M
j=0:

(3.7) g0 = 1/24a2, gj = exp(−iν1ξj) exp[−∆τψ(ξj)]ha(ξj), j > 0.

Then we obtain

(3.8) βa,k = Re(DFT [g](k)), k = 0, . . . , N − 1.

3.2. Barrier Options. As a basic example to illustrate the method we consider pricing
discretely monitored down-and-out call and put options under the CGMY (KoBoL)
model. Let T,K,H be the maturity, strike and barrier, and the stock price St = S0e

Xt

is an exponential Lévy process under a chosen risk-neutral measure (see (2.6)). Denote
by M the number of equally spaced monitoring dates tk, k = 0, 1, . . . ,m, where t0 = 0
and tM = T .

Set h = lnH/S0 and ∆τ := T/M . Then the no-arbitrage price of the barrier option
at time t0 = 0 and Xt = x > h is given by

(3.9) f(x, t0) = Ex
[
e−rT1m1>h1m2>h . . .1mM>hG(XT )

]
,

where mn = mink=0,1,...,nXtk is the processes of the minimum up to the nth monitoring
date, G(x) is the payoff at maturity. Recall that for call option G(x) = (S0e

x − K)+,
and for put option G(x) = (K − S0e

x)+.
We have

(3.10) f(x, tM) = G(x), x > h,

and for all m,

(3.11) f(x, tm) = 0, x ≤ h.

For m = M − 1,M − 2, . . . , 0, and x > 0, the price f(x, tm) can be found as the price of
the European option with the terminal payoff f(Xtm+1

, tm+1) and the expiry date tm+1:

(3.12) f(x, tm) = E[e−r∆τf(Xtm+1
, tm+1) | Xtm = x], x > h.
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If an explicit formula for the probability density p∆τ of X∆τ under EMM is known (e.g.
GBM or NIG model), we can use it to write (3.12) in the form

(3.13) f(x, tm) = e−r∆τ
∫ +∞

−∞
p∆τ (y − x)f(y, tm+1)dy, x > h.

We will evaluate f(x, tm) along a grid of points in log asset space, xn = lnH/S0 + n∆x,
n = 0, . . . , N/2 − 1, where ∆x = ∆ν, using the frame projection approximation of p∆τ

defined in (3.4).
If the payoff G decays at +∞ (see Section 3.2.1 for a treatment for unbounded payoffs),

then truncating the integration domain in (3.13) from above by u = xN/2−1 (see details
in Kirkby (2017a)), we can rewrite (3.13) by using (3.4), and we obtain for xn, n =
0, . . . , N/2 − 1:

f(xn, tm) ≈
24a2e−r∆t

N

N/2−1∑

k=0

βa,N/2+k−na
1/2

∫ u

h
f(y, tm+1)a

1/2φ(a(y − yk))dy

= C
N/2−1∑

k=0

βa,N/2+k−nθm,k(3.14)

where

(3.15) θm,k = a1/2
∫ u

h
f(y, tm+1)a

1/2φ(a(y − yk))dy, C =
24a2e−r∆t

N
.

The convolution (3.14) can be computed fast by using Fast Fourier Transform and the
Toeplitz matrix theory. Set

aj = βa,N+l−1, j = −N/2 + 1 . . . ,−1; aj = βa,N/2−j−1, j = 0, . . . N/2 − 1; a−N/2 = 0.

The sequence {aj}
N/2−1
j=−N/2+1 generates the truncated Toeplitz matrix T (a):

(3.16) TN/2(a) =




a0 a−1 a−2 ... a−N/2+1

a1 a0 a−1 ... a−N/2+2

a2 a1 a0 ... a−N/2+3

... ... ... ... ...
aN/2−1 aN/2−2 aN/2−3 ... a0



.

Then
N/2−1∑

k=0

βa,N/2+k−nθm,k = TN/2(a)θ̃m,

where θ̃m = {θm,0, θm,1, ...θm,N/2−1, 0, 0, ..., 0, 0︸ ︷︷ ︸
N/2 times

}.
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The symbol a(η) =
∑j=N/2−1
j=−N/2+1 aje

iηj of the Toeplitz matrix T (a) can be computed in

the points ηk = −2πk/N, k = 0, ..., N − 1 via the discrete Fourier transform (3.5):

(3.17) a(ηk) = DFT [ã](k) =
N/2∑

j=0

aje
−2πikj/N +

N/2−1∑

j=N/2+1

aj−Ne
−2πikj/N , k = 0, ..., N − 1.

where ã = {a0, a1, ...aN/2, a−N/2+1, a−N/2+2, ..., a−2, a−1}.
It is easy to show that

TN/2(a)θ̃m = iDFT [DFT [ã] ∗DFT [θ̃m]],

where u ∗ v is the element-wise product of vectors u with v.
Notice that θM,k could be computed explicitly, while the other coefficients θm,k, m <

M , are computed using polynomial interpolation (see details in Kirkby (2017a)).

3.2.1. Treatment for Unbounded Payoffs. If the payoff function G(x) is unbounded at
+∞ (e.g. in the case of call option), then as in Kudryavtsev (2016) we choose real ω in
a such way that eωxG(x) is absolutely integrable. In the case of the down-and-out call
option and typical parameters of the Lévy model ω = −2 is a good choice.

Then we can rewrite the algorithm in terms of new functions:

(3.18) fω(x, tm) = eωxf(x, tm),m = 0, 1, . . . ,M.

In this case, one should apply the frame projection method to the weighted transition
density e−ωxp∆τ (x) instead of the function p∆τ (x).

Then taking into account that due (2.1)
∫ +∞

−∞
eiξye−ωxpt(y)dy = e−tψ(ξ+iω),

we may rewrite the formulas for (3.7) in (3.8) as follows:

g0 = 1/24a2 exp[−∆τψ(iω)], gj = exp(−ix1ξj) exp[−∆τψ(ξj + iω)]ha(ξj), j > 0.

If in the cross-barrier event the knock-out option provides the rebate R > 0 to holders,
one can represent f(x, tm) as v(x, tm) +R and adjust the algorithm accordingly.

3.3. American Options. The frame projection method is extended to Bermudan/American
options in [19] for Lévy processes, and [18] for stochastic volatility models. The approach
is based on a value recursion, in terms of the frame projected approximation of the tran-
sition density p∆τ as follows:

f(x, tM) = G(x)

C(x, tm) = e−r∆τ
∫
f(y, tm+1)p∆τ (y − x)dy, m = M − 1, ..., 0(3.19)

f(x, tm) =





max{C(x, tm), G(x)} m = M − 1, ..., 1

C(x, tm) m = 0
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where C(x, tm) is the continuation value at time tm. We will again use the frame projec-
tion method with a discrete log-asset grid {xk}

N
k=1 over [l, u], which is chosen to ensure

that xk̄ = ln(K/S0) for some fixed index k̄, so that the payoff kink is aligned with the
grid. The recursive valuation proceeds in a similar manner as for Barrier options de-
scribed previously, and exploits the Toeplitz structure of the convolution with respect to
the projected transition density.

To compute the recursive valuation, we use formula (3.14) where the value coefficients
θm,k are computed in a similar manner as in (3.15), using

θm,k = a1/2
∫ u

l
f(y, tm+1)a

1/2φ(a(y − yk))dy

= a
∫ u

l
max{C(y, tm+1), G(x)}φ(a(y − yk))dy.(3.20)

To avoid a loss in convergence order due to the non-smoothness introduced by the max{·}
operation (and to determine the explicit optimal exercise policy), we estimate the early-

exercise point directly before computing the integral. This point, xm∗ , should satisfy
G(xm∗ ) = C(xm∗ , tm). For a Bermudan put option, we first note that the left bracketing
index and grid point can be found easily (by binary search at a cost of O(log(N))) using

(3.21) k∗ = max{1 ≤ k ≤ k̄ : G(xk) − C(xk, tm) ≥ 0}, xk∗
= x1 + (k∗ − 1)∆,

so the early exercise point satisfies xk∗
≤ xm∗ < xk∗+1. Once k∗ is found, we approximate

xm∗ by

(3.22) xm∗ ≈ xk∗
+ ∆

G(xk∗
) − C(xk∗

, tm)

(G(xk∗
) − C(xk∗

, tm)) − (G(xk∗+1) − C(xk∗+1, tm))
.

We can then compute the integral in (3.20) with high accuracy by splitting the domain at
the point xm∗ , and preserve the natural rate of convergence (see [19] for more details and
closed-form algebraic expressions for θm,k). Note that this procedure extends naturally
to multi-early exercise contracts, as demonstrated in [17] for swing option pricing.

4. Implementation to the Premia 22

We implemented the PROJ-method for

• European options under the CGMY (KoBoL) model (see Example 1), NIG model
(see Example 3) and the Kou model (see Example 4).

• American options under the CGMY (KoBoL) model (see Example 1), NIG model
(see Example 3) and the Kou model (see Example 4).

• discretely monitored down-and-out and up-and-out call and put with a constant
rebate under the CGMY (KoBoL) model (see Example 1). One can use the
routine for other types of Lévy processes by replacing the corresponding part with
the computation of the characteristic exponents (see the formulas in Examples
1-4).
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Note that in the program implemented to Premia 22 for the barrier and American
options one can manage by two parameters of the algorithm: the scale of log-price range
L and the number of discrete monitoring points M . Parameter L controls the size of
the truncated region in x-space. The typical values of the parameter for Lévy models
are varying from L = 8 to L = 15. The number of the x-grid points is fixed at N = 214

inside the code. In the case of European options one can manage by the parameters L
only.
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