
Deep Optimal Stopping

Ludovic Goudenège

March 3, 2020

Premia 22

1 Models of options

We consider the following models for the stock price St and the variance V of the volatility:

• Black-Scholes
{

dSt = (r − δ)St + σStdW
S
t ,

• Heston
{

dSt = (r − δ)St +
√
VtStdW

S
t ,

dVt = αv(βv − Vt)dt+ ω
√
VtdW

V
t ,

where r is the risk-free rate, δ is the dividend, σ is the volatility of the asset, ω is the volatility
of the volatility, (αv, βv) are respectively the reverting speed and the long-run variance. The two
Brownian motions WS and WV are correlated such that 〈WS ,WV 〉 = γ.

We will consider the pricing of an American option (or precisely a Bermudan option) which
could be a call or a put (the payoff will be denoted h) with given maturity T and strike K. The
initial values of S and V are given by S0 and V0. It consists in computing the value of

u(t, x) = sup
τ∈Tt,T

E[e−r(τ−t)h(Sτ)|St = x]

at time t = 0, given u(T, x) = h(x), and where Tt,T are stopping times.
Regarding the payoff function h, we will consider multiple types of multi-dimensional options

i.e. defined for asset Si with i ∈ {1, ..., d} with possibly a negative weight/coefficient w (usually 1
d

for the arithmetical basket option) or negative strike K to take into account put and call options.

• The arithmetical basket option such that ((w
∑d

i=1 Si) −K)+.

• The best of basket option such that ((maxd
i=1 wSi) −K)+.

• The geometrical basket put option such that (K − (
∏d

i=1 Si)
1
d)+.

• The geometrical basket call option such that ((
∏d

i=1 Si)
1
d −K)+.

In all cases, we have to develop a method that can efficiently learn an optimal policy for stopping
problems of the form

sup
τ∈T

E[g(τ, Sτ)]

1

2 Deep Optimal Stopping

In the article [4], they have considered a deep learning method to reproduce an optimal policy,
using the fact that it could be modeled by a sequence of stopping decision (fn)1≤n≤N : Rd → {0, 1}

Consider the auxiliary stopping problems

Vn := sup
τ∈Tn

E[g(τ, Sτ)]

for n = 0, 1, . . . , N , where Tn is the set of all S-stopping times satisfying n ≤ τ ≤ N with an
obvious time discretization of the pricing problems described in section 1.

Since TN consists of the unique element τN = N , one can write τN = NfN (SN) for the constant
function fN = 1. Moreover, for given n ∈ {0, 1, . . . , N} and a sequence of measurable function
fn, fn+1, . . . , fN : Rd → {0, 1} (with fN = 1) we can define

τn =

N
∑

m=n

fm(Sm)

m−1
∏

j=n

(1 − fj(Sj))

which is a stopping time in Tn (and this form is sufficient to find an approximate solution of the
problem, see [4]).

The neural network approximation consists on finding parameters θ ∈ R
q to implement func-

tions fθ : Rd → {0, 1}. More precisely, let n ∈ {0, 1, . . . , N − 1}, and assume parameter values
θn+1, θn+2, . . . , θN ∈ R

q have been found (such that fθN = 1) and the stopping time

τn =

N
∑

m=n

fθm
m (Sm)

m−1
∏

j=n

(1 − f
θj

j (Sj))

produces an expected value E[g(τn+1, Sτn+1
)] close to the optimum Vn+1.

The aim is to determine θn ∈ R
q such that

E[g(n, Sn)F θn(Sn) + g(τn+1, Sτn+1
)(1 − F θn(Sn))]

is close to the supremum supθ∈Rq E[g(n, Sn)F θ(Sn)+g(τn+1, Sτn+1
)(1−F θ(Sn))] for a feed forward

network
F θ := ψ ◦ aθ

I ◦ φI−1 ◦ aθ
I−1 ◦ φI−2 ◦ · · · ◦ φ1 ◦ aθ

1

with ψ is the standard logistic function, (φi)1≤i≤I are standard ReLU activation function and
(ai)1≤i≤I are affine function. Once this has been done, we set

fn := 1[0,∞[◦ aθn

I ◦ φI−1 ◦ aθ
I−1 ◦ φI−2 ◦ · · · ◦ φ1 ◦ aθn

1 .

3 Implementation

3.1 How to call the program ?

This program has been implemented in a common framework with other methods using neural
network to solve pricing problems described in section 1. These methods are using the Longstaff-
Schwartz algorithm with classical polynomial regression, neural network regression, and pre-trained
neural network regression (see [1, 2, 3]). These methods can be called by the same commands using
specific options.

Precisely, you call the program with the command python montecarlo.py followed by

∗ At least one of the two following options

1. –infile Specify the file describing the payoff, the dynamic of asset and numerical
parameters (see 3.2)

2. –indir Run all the problems in the directory.

2

∗ Optional arguments could be added

–outfile Path to the output file.

–verbose Be a verbose program.

–seed Specify the seed of the random generator.

–loops Specify the number of launches of the algorithm.

–processes Specify the number of processes to run in parallel when using –loops.

–euro Compute the European price.

∗ At least one of the two following options

1. –pol Use the classical polynomial regressions.

2. –dnn Use the deep neural networks for regression.

3. –lsnn_train Use the deep neural networks for regression and record it on the disk.

4. –lsnn_read Use the deep neural networks written on the disk for regression.

5. –dos Use the deep optimal stopping algorithm.

3.2 How to write a file of parameters ?

On the file of parameters (the name of file should be entered after –infile option (see 3.1), you
have to write the following values.

For a Black-Scholes model with arithmetical basket of options, with obvious signification of all
parameters, here is an example of the file.

#This is a comment

model type <string> bs

model size <int> 5

strike <float> -100

spot <vector> 100

maturity <float> 3

volatility <vector> 0.2

interest rate <float> 0.05

correlation <float> 0.2

dividend rate <vector> 0.0

option type <string> basket

payoff coefficients <vector> -0.2

dates <int> 10

#Sub grid for path generation

sub ticks <int> 1

MC iterations <int> 100000

degree for polynomial regression <int> 6

neural network file <string> ./models/nn_file

number of hidden layers <int> 0

number of neurons per layer <int> 128

epochs <int> 10

For a Heston model with arithmetical basket of options, with obvious signification of all pa-
rameters, here is an example of the file.

#This is a comment

model type <string> heston

model size <int> 1

strike <float> -100

3

spot <vector> 100

maturity <float> 1

initial volatility <vector> 0.01

volatility of volatility <vector> 0.2

long run variance <vector> 0.01

reverting rate <vector> 2

interest rate <float> 0.0953

correlation <float> 0.5

asset vol correlation <float> -0.3

dividend rate <vector> 0.0

option type <string> basket

payoff coefficients <vector> -1.

dates <int> 10

#Sub grid for path generation

sub ticks <int> 3

MC iterations <int> 100000

degree for polynomial regression <int> 6

neural network file <string> ./models/nn_file

number of hidden layers <int> 0

number of neurons per layer <int> 128

epochs <int> 5

References

[1] Goudenège, L. and Sainrat, T. (2020). Longstaff-Schwartz algorithm with Neural Network for
Bermudan Option Pricing. 2

[2] Lapeyre, B. and Lelong, J. (2019). Neural Network Regression for Bermudan Option Pricing.
arXiv preprint arXiv:1907.06474. 2

[3] Kohler, M., Krzyzak, A. and Todorovic, N. (2010). Pricing Of High-Dimensional American
Options By Neural Networks. Mathematical Finance, Vol. 20. 2

[4] Becker, S., Cheridito, P. and Jentzen, A. Deep optimal stopping Arxiv:1804.05394 2

4

	Models of options
	Deep Optimal Stopping
	Implementation
	How to call the program ?
	How to write a file of parameters ?

