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1 Preliminaries and notation

Most of what is presented here is taken from [HIXP]. Let P(¢,T) denote the value at
time t of a zero-coupon bond which matures and pays unity at time 7. We denote
by F; the information available at time ¢ from observing the values of these assets,
ie. Fy:=o(P(t,T);t € Ry). Let (IV,N) be a numeraire pair, i.e. a numeraire (NN;)

and a measure N equivalent to the original measure such that the ]5(25, T):= %’?
are {JF; }-martingales.
Given payment dates S = (51,...,Sy) and daycount fractions 7 = (7, ..., 7ar), we
define
M
AT = > 7 P(t,S;) principal value of basis point (PVBP) .

Il
—

j
Given, in addition, a (swap starting) date 7', we define

P(t,T)— P(t,S
RITT = t.7) ST( ) swap rate .
Ay
The corresponding (payer) swaption with maturity 7" and strike K is defined by the
following payoff (at T') :

AYT (R — Ky (payoff of swaption) .

The corresponding digital (payer) swaption with maturity 7" and strike K is defined
by the following payoff (at T) :

A%T 1 RETTS K (payoff of digital swaption) .

Note that, in the particular case M = 1, the quantity Rf TS nothing but the
(simply compounded) forward rate as seen at time ¢ for the period [T, S].
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2 The general model

For i = 0,...,m — 1, we fix payment dates S = (S{,..., S}, ), daycount fractions
7" = (1{,...,7i;) and a swap starting date T;. Now we denote

Al = Ati’Ti and Rl = Rfi’Ti’Ti.
We make the following hypotheses:

(i) (x;) is a one-dimensional Markov process under N with a known law.

(ii) For all i = 0,...,m — 2, we have R}, = R;(xr,) for some strictly increasing (but
apriori unknown !) function R;. [Here we use the fact that (z;) is one-dimensional.|
(iii) We have Np,, , = Ny—1(27, ) for some (known) function N,,_;.

(iv) Forall i = 0,...,m —2and j = 1,..., M;, we have: if S & {T;11,..., Tpn1},
then St > T,y and P(T,,—1,S}) = P; j(vr,,_,) for some (known) function P; ;.

In order to price e.g. Bermudan swaptions with our model by using a tree for
the process (1), it is crucial to find the functional forms Ny, = N;(zr,) for i =
0,...,m —2; see Section 6 for details. A first step towards these functional forms is
the following lemma. We employ the usual evolution family of operators (U; s)i>s>0
associated to the process (z;):

Unsf(y) = BY(flz) |z =y).

Recall that we have the following property:

EN(f(‘rt) |~Fs) - Ut,sf(xs) :

Lemma 2.1. Leti € {0,...,m —2}. Suppose that, for allk =i+ 1,...,m—1, we
have Np, = Ni(x1,) for some (known) function Nj.
(a) For all j =1,..., M;, we have

~ ) _ ~ UTk,TiNLk S}’:Tsztth{Z—i—l,,m—l}
P(T;, S}) = Pijlar), where Pyj = - . '
Ur,_.1, 774 otherwise

(b) We have
Ay = Ai(xr,), where A = > 1/ Pij .
j=1
Proof. (a) In the first case, the assertion follows from our hypothesis on the N, :
P(t,S) = EN(P(Ti,To) | Fy) = B¥ (5t | F) = (Unest) ().
In the second case, the assertion is seen as follows:
By Qi > i Pij(*1,, 1) Pij
P(t,8}) = EN(P(Tn-1,5) | F) = EN( 20225 1 F) = (Unuve i) (@),

Nmfl (me7
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where we used the hypotheses (iii) and (iv) in the second step.
(b) follows directly from (a) and the definition of Aﬁn

M; N
Z 7 P(T;,8) = Y 7iPij(er) . O
j=1
By now, we know how to compute ./L if we have the Ni1,...,N,,_1. But how to

compute N; in order to pass to the next iteration step ? At first, we compute R;
by calibrating our model to the digital Rﬁ;pi-swaption. Obviously, its value at time 0
given by our model is

VY (K) = EN(ziqu?I Al 1RiTi>K> = NUEN(AiTi 1R%i>K)‘

In order to represent its market value at time 0, we consider strictly decreasing
functions Vo™ : R, — R,.

Proposition 2.2. Leti € {0,...,m—2}. Suppose that, for allk =i+1,...,m—1,
we have Ny, = Nyi(xq,) for some (known) function Nj. Suppose furthermore that
we calibrate our model to the digital RiTi—swaptz'on, i.e.

ViKY = VEN(K)  for all strikes K.
(a) We have
. 1 -
R = (VO”mkt> o J;, where Ji(y) = NoUrpo(Ailye0))(0) -

(b) We have Nr, = Ni(xr,), where the function N; is given by
L
N;

Proof. (a) is obvious in view of

= 75“\/[1. + /L R .

VoK) = VN(K) = NoBV(AL g i)
= NOEN(in(fTi)lni(zTi»K) = NOEN("Z”L'(:UTi)1(R;1(K),oo)(xTz‘>)
= NoUro (A L1 (x0)00) (@0) = Ji(R7H(K))

where we used hypothesis (ii) in the (third and) fourth step. (b) follows directly

f
rom 1

Nr,

which is just a reformulation of the definition of Rf, . O

= P(T,,Sy,) + Ay Ry,



Remark 2.3. Recall that if the swap rate (R}) is of the type
dR! = & R dW/"
then the value at time 0 of the digital RiTi—swaption is given by Black’s formula:

R} ~
K0> —(0")?T;
ST )

Vit = A B (L ) = Ap0

where ® denotes the cumulative normal distribution function. If we suppose Voi’mkt
to be of this type, then one easily checks that

(i) @) = Ry exp(~(@7T - ' T (5))

3 A LIBOR model

Here we consider the particular case of our general model where M; = 1 and S} =
Tiiq fore=0,...,m—1and T, is some final payment date. In particular, hypothesis
(iv) is empty. We denote

Pi = Pia and 7 =1 = 7(T;, Tiy1) -
We have Al = 7;P(t,T;11) and R: = R(t, T}, T;11), the forward rate, hence
752- = Urm ﬁ and /L =T 75l
in the notation of Lemma 2.1. Suppose
AR = o 'R AW, where 0] = e (1)
for some o > 0 and some mean reversion parameter a. We choose
Ny = P(t,T,,) and x; := /Ot 02”_1 dWSN )

Then the functional form of R%;ll is evident:

m— m— Ton— m—
RTm_ll = RO ! eXp(_% fO ' (JS 1>2 dS + mefl) = Rm*l(‘rT"Lfl) )
where the function R,,_; is obviously given by

Rm-a(r) = R({“lexp(—% (]Tm’l(a?‘l)st—l—x)
T (M - 1) eXp(_%E%mfl,o*”‘”) ) Z?,s = U2M .

m—1\"P(0,Tm) 2a
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Hence, since Nr,,_, = P(Tyn_1,Tm) = (1 4+ 71 R7 ) 7!, the functional form of
Nr,

m—1

required in hypothesis (iii) is easy to deduce: Ny . = N,,,_1(z7, _,), where
Nor(2) = (L T R (2)) 7 = (14 Coe®) (2)

where the constant C5 is given by

Cpim (BTt — 1)exp(—152, ). 3)

Obviously, z; given x, is normally distributed with mean z, and variance Zﬁs. In
other words:

Ul ) = s [ (@) exp(~Y520) o

For the iteration step (to deduce N; from N;y1), it suffices to represent NL in terms
of 751 since
P = Unmwy - (4)

This representation is obtained from Proposition 2.2:

/\I/i = 75Z (1 + T (‘/g’mkt)_l o J,) , (5)
where the function J; is given by

Jz(y) = P(OaTm) Ti UTi,O (751 1(y,oo))(0) . (6)

We can summarize the algorithm for the computation of the functional forms N, _1, ..

'aNO

as follows:
1. Initialization (at time 7, 1): Choose N,, 1 as in (2).

2. Fori=m—2,...,0: Define P; as in (4) and then J as in (6). Now obtain N
via (5).

Observe that the calibration instruments corresponding to the Voi’mkt are the digital
(T}, T;11)-caplets defined by the following payoff at T; :

7 P(T5, Tis) LR, 1100 )> K-

For i = m — 1, it can be evaluated explicitly due to the dynamics in (1). This could
be used for the choice of the parameter o in (1).

Proposition 3.1. The current value of the digital (T,,—1,T,,)-caplet in our LIBOR
model is

0.2

Q

VN R) s s POT) @ o log( M0Zatid) — %21,
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where the parameter og is given by

62aTm71 -1

og =0 5

Moreover, we have for all x € (0,7,,—1 P(0,T,,)) that Vom_l’N(K) = x if and only if

L_ _£ m—1
q _ - R
o = —slaTm—l_21 . wherep = 2® 1(7%71]3(0,%‘)), q = —2log <0K ) )

e
2a

The proof is straightforward and therefore omitted.

4 A (cancellable) swap model

Here we consider briefly the particular case of our general model where M; = m — i
and S; =Tiyjfori=0,....m—1,5=1,...,M; and T,, is some final payment
date.

Since S* = (Tj41, ..., T),), we only have to give the functional form of P(T,,_1,T;,)
in order to check hypothesis (iv). But if we take the numeraire N, = P(t,T},) as in
the LIBOR model in Section 3, then P(7,,,—1,T,,) = N, , = Ny-1(21,,_,), hence
hypothesis (iv) is implied by hypothesis (iii). Moreover, we have

4 = Y TP Ty) 7)
j=1
As in the LIBOR model, we suppose

AR = o P RMYAW]Y . where 07! = ge™

for some o > 0 and some mean reversion parameter a and choose as before
K 1 1N
Ty = / ol dWT .
0

Now we can again compute the desired functional forms but, due to (7), they are
more complicated than in the LIBOR model in Section 3 where we had A, =
TiP(t, Tiys1).

Observe that here the natural calibration instruments are the digital (European)
(T, ..., Tm_1)-swaptions.



5 Numerical results: Bermudan swaption pricing
in the LIBOR model

In this section, we will apply the (standard) tree method from Section 6 in order to
price Bermudan swaptions in the LIBOR model of Section 3. Recall that, in this
case, the calibrating instruments used in Proposition 2.2 are the digital (7}, T;11)-
caplets with the following payoff at 7; :

7i P(1;, Tiy1) V(1,1 100) > K -

Since we do not have real data for their market prices Voi’mkt(K ), we assume them
to be given by a standard Hull-White model for the short rate (r;):

d?”t = [ét — ELTt]dt + 5’th . (8)

The proof of the following result on the current price of digital caplets in the Hull-
White model is straight-forward and therefore omitted.

Proposition 5.1. Consider the digital (T, S)-caplet defined by the payoff at T of
TP(T7 S) ]-R(T,T,S)>K )

where T denotes the year fraction from T to S. Its current value in the Hull-White
model (8) is
ViW(E) = TP(O,S)(I)(UP_)I[IOg(R(OIﬁHTl) _ UQZ])

K+7-1

where the parameter op is given by

Moreover, we have for all x € (0,7P(0,5)) :

o2 - T —
(V™)) = 7 55 (= F - or @ (gt ) - T
In the following, we denote
VoK) = VYW(K) for T=T,,S=Tu,7=1.

We proceed as follows. We fix the Hull-White parameters a and ¢ and assume that
i,mkt

the market prices Vy"™" (K') are given by the corresponding Hull-White prices:

VM) = Vg"™(K)  fori=0,...,m—2and all K .



Now we choose our LIBOR model parameters a and o in (1). Then iterative cali-
bration to the digital (7}, 7;,1)-caplets for i = m —2,...,0 is used as in Proposition
2.2 [see (5) and (6)] to obtain the functional forms N, s, ..., Ny. In other words,
we suppose that

ViN(K) = VP"™W(K) fori=0,...,m—2andall K .

Note that the iterations i = m — 2,...,0 involve (iterated) numerical integration.
Finally, will price the Bermudan (payer) swaption explained in Section 6.3: with
strike Kg, with n exercise times Ty, ..., T,_1 and m swap payment dates 77, ...,7T},.
The Bermudan swaption is priced on the one hand in our LIBOR model via a tree for
the process (z;) with IV, time steps as explained in Section 6, on the other hand in
our Hull-White model via a tree for the short rate (r;) with N, time steps. We denote
by Nyis. the number of discretizations steps for the functional forms N,,_s, ..., Nj.
Our parameter values are:
a=0.1,0=0.01

a=a,o=0.09
ITM: Ky = 0.0589092 , ATM: K, = 0.0687274 , OTM: K, = 0.0785456
n=1,35,m=5,T,=2++%

Moreover, we use the standard (non-flat) PREMIA data for the intial yield curve.
One obtains the following prices (given in BP); the third column of prices can be
seen as Hull-White benchmarks.

| n | Strike Ky | N, =50, Nyise = 5000 | N, = 150 || N, = 1500
1] 1™ 231.33 [ 231.77 231.75
1| ATM 97.73 97.70 97.76
1| OTM 28.59 27.96 27.92
3] ITM 249.38 | 249.85 249.93
3| ATM 122,60 | 123.16 122,98
3| OTM 48.83 47.89 A7.87
51 ITM 252.15 | 253.35 253.36
5| ATM 127.68 | 129.01 128.94
5| OTM 54.51 54.41 54.30

With only one fixed value for the LIBOR model parameters a and o it might be
hopeless to reobtain all the Hull-White prices of the rather different swaptions we
consider: European (n = 1) and Bermudan (n = m) swaptions which ITM, ATM
or OTM.



6 Pricing of Markov-functional Bermudan options
via trees and Monte Carlo (Appendix)

Consider the Bermudan option given by the payoffs hy, ..., h,_1 at the exercise times
0<Th<...<T,_q. Its discounted value Vr, at time 7} is given by

Vi, = sup  E(h,|Fr,) ,where h; = L

7—67—{0 ..... n—1} T
(Ny) is the numeraire and T(0,....n—1} denotes the set of stopping times with values in
{0,...,n — 1}. The discounted value Vj at time 0 can be computed as follows via

dynamic programmation:

VTn_l - hn—l
VTz‘ = E(VTHA'FTi)\/Ei fori:n—Z,...,O
‘70 - E(‘N/To)

Now suppose that the h; have the following Markov-functional form:

hi = fi(zr,) for i=0,...,n—1. (9)

Here () is a Markov process with values in R”. Then simulating (z;) by trinomial
trees or Monte Carlo yields standard methods to approximate Vj.

6.1 Trinomial trees

Suppose (D = 1 and) that, for our Markov process (z;), we are given a trinomial
tree built for the time instants

O=to<ti<...<tn=T,_1.

Fori = 0,...,n — 1, let t45) = T;, in particular d(n — 1) = N. Suppose that, at
time t;, the tree has S; nodes and that, from the j-th node at time ¢;, one can move
to the (k;; + 1)-th, the k;;-th and the (k;; — 1)-th node at time ¢;41. In order
to approximate the discounted present value Vi of the Bermudan option using our
given trinomial tree, we only need (apart from the payoff functions fo,..., f,—1) its
following quantities:

e for[=0,...,.N—1land j =0,...,5 — 1, let p}';, p/"; and pf{j be the up-,
middle- and down-probability to move from the j-th node at time ¢; to the
(ki; + 1)-th, the k; ;-th and the (k;; — 1)-th node at time ¢4,



e Fori=0,...,n—1and j =0,...,S45) — 1, let z44); be the value of = at the
J-th node at time ¢4;) = 7; (in other words, the x4 ; are the values of 7, in
the tree).

Then the following tree algorithm yields the approximation 17&0 of Vp. The Uy
represent the discounted value of the Bermudan option at time ¢;.

1. Initialization (at time 7,y = tyn-1) = tn):
OUn,; = foo1(zny) for j=0,...,5v—1.

2. Fori=n—-1,...,1:

(a) For 1 =d(i) —1,...,d(i — 1), we set

Uj = POk 41 T DL ULk, t pffj Vigrh,—1 for j=0,...,5—1.

(b) Early exercise at T;_y = tq(—1):

Vd(i-1),; = Vd@-1),; V fic1(®qi-1),;) for j=0,...,8;¢u-1)—1.

3. For [ =d(0) —1,...,0, we set

~ L u o~ m o~ d ~ .
Uy = PljUtk 41+ POk, T POk, —1 for g =0,...,5—1.

6.2 Monte Carlo (Longstaff-Schwartz algorithm)

Suppose that, for our Markov process (z;), we are given M Monte Carlo sam-
ples (a7;,..., 2 ), where m = 0,...,M — 1. Suppose furthermore that, for
t = 0,...,n — 2, we have suitably chosen functions g, ..., Ja@)—1 representing a
basis of a d(i)-dimensional subspace of Ly(RP, p;), where u; denotes the law of z7, .
For a € R™) and x € R”, we denote (a.g')(z) = Z?ﬁ%_l a; gi(x).

Then, the following Longstaff-Schwartz algorithm approximates the current dis-
counted value Vj of our Bermudan option. Here, at the i-th iteration step, ¥ repre-
sents f/Ti, the discounted value of the Bermudan option at 7;.

1. Initialization (at time 7, _1):
Uy = fpa(op ) for m=0,...,M—1.
2. Fori=n—-2,...,0:

(a) Let o € R be the unique solution of the least square problem

min) J\;z_:; <(ag’)(x§%) - T)m>2 :

acRd(i

(b) Form =0,...,M — 1: if fi(z) > (a.¢") (%) then Ty, := fi(z]).

k3
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3. Return the estimate ﬁ %;01 Um Of the current discounted value ‘70.

6.2.1 Modification for large dimensions (explanatory process)

If the dimension D of our driving process (z) is too large (D > 10), a reasonable
basis g° of functions on R” would need too many functions. Hence the parameter
d(7) would be too large for a sufficiently fast solution of the least square problem.
This difficulty arises for example in LIBOR Market models where (z;) represents a
vector of D different LIBOR rates.

In this situation, one modifies the approach from above by considering - besides the
driving process (z;) - an “explanatory process” (y;) with values in R? and d << D.
It should be chosen such that simulating (z;) in order to obtain our Monte Carlo
samples (27 ,..., 27 ) yields also Monte Carlo samples (y7;,...,y7 ) without
additional computational costs. Natural choices of (y;) could be y, = W, [if (z¢) is
a diffusion with Brownian motion (W;)] or y; = F(¢,x;). The latter choice is made
e.g. in [PPR] where, in the LIBOR Market model situation we just mentioned, the
authors consider the case y = swap-rate.

Suppose that, for i = 0,...,n — 2, we have suitably chosen functions g, ... 7g(ii(i)71
representing a basis of a d(i)-dimensional subspace of Ly(R%,1;), where v; denotes
the law of yr,.

Now, in the modified Longstaff-Schwartz algorithm, one only has to replace all
occurences of (a.g')(zf) by (a.g")(yf!).

6.3 Example: Bermudan swaptions in the Markov-functional
LIBOR model

Consider an interest rate swap first resetting in 7y and paying at 11, ..., 7T, , with
fixed rate K, and year fractions 7y, ..., 7,,_1. Assume that one has the right to enter
the swap at the times Ty, ..., T,_1, where n < m.

Then the corresponding Bermudan (payer) swaption fits in our general setting from
above as the following particular case:

h; = (Value of the interest rate swap at TZ->
+
_ (1 CP(TLT,) — Ky 3 Tk_lP(Ti,Tk)) . (10)
k=i+1 +

In the notation of our Markov-functional LIBOR model in Section 3, we can rewrite
line (10) as follows:

b= (55 - PTn) — Ko 3 ot PTLT))

k=i+1
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Since N; = P(t,T,,), we have ﬁ(Ti,Tm) = 1. Moreover, for k=7+1,...,m —1,
P(T;,Ty) = BY(P(Ti Ty) | Fr,) = E™( 5oy | Fn) = Una 5;)(ar) -
Hence, we obtain the desired Markov-functional forms in (9) as follows:
Ei - fl(xTz) )

where the function f; is obviously given by
m—1

fie) = (kg = O Kt = Ko Y 7ia (Unn ) (@))
k=i+1 +

6.4 Example: (European) digital caplets in the Markov-
functional LIBOR model

In order to test the calibration of our Markov-functional LIBOR model to a Hull-
White model as in Section 5, one might wish to price the calibrating instruments
which are the digital (7}, T;41)-caplets. This does not involve the functional forms
N, ..., N;_1, hence by replacing m by m — i if necessary, we can assume 7 = 0.
The digital (Ty, T})-caplet fits into our general setting from above as the following
particlar case: n = 1 (European !) and

ho = 10P(To,Th) 1rrymm)>K -

Since ToR(Ty, Ty, T) = P(Ty,T1)™' — 1, we can rewrite this as follows, denoting
K =K+ 1:

ho = 1 P(Ty,Th) Lp(rym)-15kK: -
Notice that P(Ty, Ty) = (Ugz Nil)(x;po) =: L(x7,) as before and
P(T0>T1)_1 = P(T()aTm)_lﬁ(TOle)_l = ﬁ(xTo) = M(xTo)'

Hence, we obtain the desired Markov-functional form in (9) as follows:

?Lo = folzn,)

where the function fj is obviously given by

fg(.ﬁlﬁ) = Toﬁ(l’) 1M(z)>K1 .
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7 An explicit formula for V,,_; in the LIBOR model
(Appendix)

The following lemma is helpful for a (more or less) explicit formula for the func-
tional form N,,_ in the LIBOR model. It can be used to avoid the first numerical
integration in the iterations. On the other hand, one needs an approximation of the
cumulative normal distribution function ®.

Lemma 7.1. We have for all x,y € R:
Uss(eXp Liyo)) (@) = €277 B(5L 43, )
Us(Liyoo)) () = @(552)
The proof of Lemma 7.1 is elementary and therefore omitted.
Corollary 7.2. We have for all x,y € R:
Prna(t) = 1+4Cpe"

Im—2(y) = P(07Tm)7—m—2<(1)( )+ Go(=gt 0+2Tm2,0)>

st —
Here we denote, using the constant Cy from (3):

Co = Cy exp(%E%ﬂihTm%) and Ci:=Cy exp(%ZQTmi%o) )
Proof. We have N,,,_; = (1+ Cyexp)™!, hence Lemma 7.1 (for y = —o0) yields the
first assertion:

Pm-a(@) = U, 1o )@ = (Un, 1,1+ Crexp))(z)

152
=2 +x
= 1+ CQ e? Tm-1Tm—2 =1+ C() ev .

Now the second assertion can be deduced from the first and again Lemma 7.1:

No_l Jme(y) = UTm—Q,O(‘Am*Q 1(y,oo))<x0) - TmeUTm_Q,O((l + CO eXp>1(y,oo))(O)

= o B5) + Coet e b(og 5 L)) O

Tyy_5,0 2T, 2.0
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