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1 Calibrated local and stochastic volatility model

We consider the following class of models for the stock price S:

dSt = rStdt+ f(Yt)σ(t, St)StdW
X
t ,

dYt = bY (Yt)dt+ σY (Yt)dW
Y
t . (1)

Here, r is the interest rate, assumed to be constant, f : R → R, σ : R
2 → R, bY : R → R, σY : R → R are

deterministic functions, and WX ,WY are unidimensional Brownian motions that have correlation ρ ∈ [−1, 1]. We
also assume that the market prices of all puts P (T,K) with maturity T > 0 and strike K > 0 are encoded in a
Dupire local volatility function σDup : R2 → R, i.e.:

∀T,K > 0,E

[

e−rT
(

K − S
Dup
T

)

+

]

= P (T,K),

where
dS

Dup
t = rS

Dup
t dt+ σDup

(

t, S
Dup
t

)

S
Dup
t dWX

t .

As presented in [?], with the choice σ(t, x) =
σDup(t,x)√

E[f2(Yt)|St=x]
we have that under existence of the process S, for

T ≥ 0 and K > 0,
E
[

e−rT (K − ST )+

]

= P (T,K).

The goal is to simulate a solution to the SDE nonlinear in the sense of McKean satisfied by the logspot X = log(S):

dXt =

(

r − 1

2

f2(Yt)

E [f2(Yt)|Xt]
σ2

Dup(t, eXt)

)

dt+
f(Yt)

√

E [f2(Yt)|Xt]
σDup(t, eXt)dWX

t ,

dYt = bY (Yt)dt+ σY (Yt)dW
Y
t . (2)

2 Half step scheme

Given a finite time horizon T > 0, the explicit Euler scheme associated with (X,Y ) using n ∈ N
∗ steps with constant

time step ∆ = T
n

is given by

dXn
t =

(

r − 1

2

f2(Y n
τt

)

E
[

f2(Y n
τt

)|Xn
τt

]σ2
Dup(t, eXn

τt )

)

dt+
f(Y n

τt
)

√

E
[

f2(Y n
τt

)|Xn
τt

]

σDup(t, eXn
τt )dW 1

t ,

dY n
t = bY

(

Y n
τt

)

dt+ σY

(

Y n
τt

)

dW 2
t ,

(Xn
0 , Y

n
0 ) ∼ µ0, (3)
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where for t ∈ [0, T ], τt := ⌊ nt
T

⌋ T
n

is the last discretization time before t. The presence of the conditional expectation
in the diffusion X prevents the simple use of explicit Euler scheme discretizing in time the diffusion. One way of
overcoming that difficulty is to use kernel approximations of the conditional expectation and introduce a particle
system, as proposed in [?]. In our framework, we assume the ellipticity of the diffusion coefficient, that is the
existence of a constant σ such that

∀t, x, y ∈ R+ × R × R,
f(y)

√

E [f2(Yt)|Xt = x]
σDup(t, ex) ≥ σ > 0.

This enables us to introduce a half-step algorithm. Let
(

Z1
k , Z

1
k+ 1

2

)

k≥0
,
(

Z2
k

)

k≥0
be two families of i.i.d. standard

centered normal variables. The half-step algorithm is initialized with
(

X̂0, Ŷ0

)

deterministic and evolves inductively

according to

X̂n
t

k+ 1
2

= X̂n
tk

+ b̂n
X,tk

∆ +
(

ân
X,tk

− σ2Id1

)
1
2

√
∆Z1

k ,

X̂n
tk+1

= X̂n
t

k+ 1
2

+ σ
√

∆Z1
k+ 1

2

,

Ŷ n
tk+1

= Ŷ n
tk

+ bY

(

Y n
tk

)

∆ + σY

(

Ŷ n
tk

)√
∆Z2

k , (4)

where we define for n ≥ 1 and 0 ≤ k ≤ n−1, b̂n
X,tk

= r− 1
2

f2(Ŷ n
tk

)

E

[

f2(Ŷ n
tk

)|X̂n
tk

]σ2
Dup(t, eX̂n

tk ) and ân
X,k =

f2(Ŷ n
tk

)

E

[

f2(Ŷ n
tk

)|X̂n
tk

]σ2
Dup(t, eX̂n

tk ).

As
(

Z1
k , Z

1
k+ 1

2

, Z2
k

)

and
(

X̂n
tk
, Ŷ n

tk

)

are independent, the conditional law of the term

(

ân
X,tk

− σ2Id1

)
1
2

√
∆Z1

k + σ
√

∆Z1
k+ 1

2

,

w.r.t.
(

X̂n
tk
, Ŷ n

tk

)

is the normal centered distribution with variance matrix ∆ân
X,tk

, so the half step scheme (4) and

the explicit Euler scheme (3) are equivalent in the sense that the vectors
(

Xn
tk
, Y n

tk

)

0≤k≤n
and

(

X̂n
tk
, Ŷ n

tk

)

0≤k≤n
have

the same law.

3 Associated particles system

The advantage of the half step scheme is that in the elliptic case, it is possible to obtain a representation of the
conditional expectation as a ratio of convolution against gaussian kernels. That is expressed in the following result
[?, Proposition 3.3.1], where Gv is the one dimensional centered gaussian density with variance v > 0.

Proposition. Let (ξ, Z, γ) be a random variable with values in R×R×R. Let us assume that Z ∼ N (0, 1) and is
independent of (ξ, γ). Let α > 0 and let us define χ := ξ + αZ. The following assertions hold:

(i) for any measurable and bounded function ψ : R × R → R, we have that

E [ψ (χ, γ)] =

∫

R

E [ψ (x, γ)Gα2 (x− ξ)] dx.

(ii) Let
(

ξ̃, γ̃
)

be a copy of (ξ, γ) independent of χ. For ψ : R × R → R a measurable function such that ψ (χ, γ)
is integrable, we have almost surely that

E [ψ (χ, γ)|χ] =
E
[

ψ (χ, γ̃) Gα2

(

χ− ξ̃
)∣

∣χ
]

E
[

Gα2

(

χ− ξ̃
)∣

∣χ
] .

One natural implementation would be to introduce a particle system associated with the half-step scheme (4).
Let N ∈ N

∗ be the number of particles and let the function FN be defined for z, x1, ..., xN ∈ R and y1, ..., yN ∈ R

by

FN (z, x1, ..., xN , y1, ..., yN ) =
1
N

∑N

j=1 f
2 (yj)Gσ2∆ (z − xj)

1
N

∑N

j=1 Gσ2∆ (z − xj)
. (5)
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Let
(

X
i,N
0 ,Y

i,N
0

)

1≤i≤N
be i.i.d. random variables with law µ0 (dirac) and which are independent of

(

Z
1,i
k , Z

1,i

k+ 1
2

, Z
2,i
k

)

k≥0,1≤i≤N
.

The dynamics is given by

X
n,i,N
t

k+ 1
2

= X
n,i,N
tk

+ b
n,i,N
X,k ∆ +

(

a
n,i,N
X,tk

− σ2Id1

)
1
2

√
∆Z1,i

k ,

X
n,i,N
tk+1

= X
n,i,N
t

k+ 1
2

+ σ2
√

∆Z1,i

k+ 1
2

,

Y
n,i,N
tk+1

= Y
n,i,N
tk

+ bY

(

Y
n,i,N
tk

)

∆ + σY

(

tk,Y
n,i,N
tk

)√
∆Z2,i

k . (6)

Here, for n ≥ 1, 0 ≤ k ≤ n − 1, N ≥ 1, 1 ≤ i ≤ N , b
n,i,N
X,k = r − 1

2

f2(Y
n,i,N

tk
)

E
N
k

(

X
n,i,N

tk

)σ2
Dup(tk, e

X
n,i,N

tk ), a
n,i,N
X,k =

f2(Y
n,i,N

tk
)

E
N
k

(

X
n,i,N

tk

)σ2
Dup(tk, e

X
n,i,N

tk ) and

EN
k

(

X
n,i,N
tk

)

= FN

(

X
n,i,N
tk

,X
n,1,N
t

k−

1
2

, ...,X
n,N,N
t

k−

1
2

,Y
n,1,N
tk

, ...,Y
n,N,N
tk

)

.
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