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1 Model specification

The method proposed by Lian, Chiarella and Kalev in [3] gives an optimal solution to compute the prices of
variance and volatility swaps analytical solution based on the Fourier cosine series expansion method. We
implement this method for the Heston model and compute prices relative to specifiable strikes for swaps (as
opposed to a fair strike assumption).

The assumption of the Heston model is that the underlying follows a stochastic process with drift and
diffusion characteristics. Under the risk neutral measure, the asset S, is given by the following diffusion
process where V; denotes the instantaneous variance.

dS, = (r—08)Sudu+ \/V,S,dW?
AV, = KO- Vy)du+ o/ VdW,,
<ths,thV> = pdt, with p € [-1,1].
Here, 6 is the long term average variance, k is the mean reverting parameter of variance, o is the volatility

applicable on the diffusion process of volatility. The characteristic function for continuous realised variance
under the Heston model has been solved by Broadie and Jain in [1] as

fr(9,00) = E(¢pRV (o0)) = exp(A(T, ¢) + B(T, $)Vp), where
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2 Implementation and Numerical results

When characteristic functions of payoffs are available, multiple methods have been proposed in literature to
price derivatives, often using numerical techniques. For volatility derivatives, to compute the expectation of
the payoff as shown above, Lian,Chiarella and Kalev propose in [3] to use the Fourier cosine series expansion
method which was initially suggested by Fang and Osterlee in [2]. In this method, the probability density
function of realised variance p(RV) is reconstructed by a Fourier cosine series expansion with the coefficients
expressed in terms of the characteristic function f(¢). The density is given by

p(RV) = ; 00A; cos <]7r(II){V—a)> , where
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Here f(¢) would be the characteristic function that was derived in the previous section. We choose a = 0
and b = 100 x E[RV] as the two limits of the integral, since realised variance is positive and typically very
small. Thus, the price, denoted by P in general, of a volatility derivative with a payoff h(z) can be computed
approximately as (before performing interest rate discounting)
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The formula highlighted above is the central equation used to compute the results in this paper. Since no
numerical intergration is required, the computation is extremely easy and quick. The expressions for the
integral within it, are given below: let us denote

I:= /ab Re [h(x) exp (jm’iij) dx}

then in the case of

Variance Swaps h(z) =z, we have
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I = , when j >0, and I = when j = 0.
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In the case of

Volatility Swaps h(z) = /z
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Finally, theses two prices are computed by the Premia code source vol_Swaps.

and

I (632 — a3/%), when j = 0.
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