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Premia 22

1 Hull and White

Hull and White method aim here at pricing zero-coupon bond, european and
american options on bond, cap and floor, coupon bearing, payer and receiver
swaptions and also ¢ for hedging, with tree or EDP technics.

Hull and white models are defined by an EDS which describes the evolution
of the spot rate r(t):

dr(t) = —ax(t)dt + cdW(t), x(0)=0
r(t) = x(t) + o(t).
Where the function ¢ is a deterministic function totally given by the market

values of the zero coupon bonds.
Let us denote by By (0,7") the market zero coupon bond value maturing at



time 7" and fy(t) = — 909(BOY) the market present instantaneous forward

ot
rate, then with
2

O(t) = fu(t) + 55 (1 =)’

the model exactly fits the market bonds curve and we have several analytical
formulas:
Zero coupon bond at time t :

B(t,T) = Ay (t, T)e A1),
Explicite formulations for A; and A can be found in [?]. Option at time t :

E, [e— S r@ds(B(T,8) — K).| = B(t, S)®(h + 8h) — KB(t, T)®(h).

Where & is the cumulative function of the normal law, h = ﬁlog ( B?EtT”?}() —
%h and 0h =0 %Z@AQ(T ,S). This closed formula for european option
on bond also leads to closed formula for cap and floor and for coupon bearing

and sawption.

2 CIR ++

CIR4++ methods aim here at pricing zero-coupon bond, european and amer-
ican options on bond, cap and floor, coupon bearing, payer and receiver
swaptions and also ¢ for hedging, with tree or EDP technics.

CIR++ models are defined by an EDS which describes the evolution of the
spot rate r(t):

{ dz(t) = a(b — x(t)) dt + o \/z(t) dW (t), 2(0) = xg
r(t) = x(t) + ¢(t).
Where the function ¢ is a deterministic function totally given by the market

values of the zero coupon bonds.
Let us denote by Bys(0,T) the market zero coupon bond value maturing at

time T and fy(t) = —% the market present instantaneous forward
rate, with k = Va2 + 202 and
2ab (ert — 1 A2 oMt
o(t) = fu(t) ( )

Tt (@t k) (1) 2+ (atk) (1)



the model exactly fits the market bonds curve and we have several analytical
formulas:
Zero coupon bond at time t :

B(t,T) = A (t,T)e 10

Explicite formulations for A; and A can be found in [?]. Option at time t :
E, e I T0 (BT, §) — K| = B(t, 8)x(h + 6h) — KB(t, T)x(h).

Where y = is the cumulative function of the chi2 law with A;%) degree of
freedom and certain non central parameter (see [1] for the details of these
analytical formulas). This closed formula for european option on bond also
leads to closed formula for cap and floor and for coupon bearing and sawption.

3 Trinomial Tree method

It is possible to simulate de spot rate diffusion r through a trinomial tree for
a general positive shift model of the form :

{dx() pa ()t + o () AW (t),  2(0) = o
() = x(t) + o(t).

It is important that the volatility o is independant of x so that the trinomial
tree converges. The Hull and White model satifies this form, but not the
CIR++ model since

dr = a(b — w(t)) dt + o \/x(t) AW (1)

Hoverver setting y = \/x then the equation on y is

vooay o
dy=|———=|dt+ =dW(t
v=|2- 2|+ Gaw

wiht v = (3 — 8—2) Then y can be computed in a trinomial tree. For a very

usual log normal diffusion of a random variable z, the variable y simulated
in the tree will be y = log(x).

To summarise let us consider generally the diffusion y:

dy(t) = py(t)dt + o (t),dW (1)



and the relation r(t) = F(y(t)) + ¢(t) where ' : D C R, —C R, is a
bijective function. The first node is yo (yo > 0 in general) then each node
can evolves in three nodes with a given transition probability computed as
follow:

Let 0 =ty < t; < .. <t, =T be a time scale for our tree in [0, 7] and y; ;
the y node value at time ¢; for the j space step of the tree (starting from
the down). We need then :

Eij =L (y(ti)\y(ti—1)=yi—1,j>

V;}j =V, = \/VCLT (y<ti)|y(tifl):yi71,j)
dy; = V3V space step at time ¢;.

Starting from node (top = 0,00 = vo), at time t; we set y1 9 = Eyo then
dy, = V/3V; and j7" = —1 and j"%® = +1 and then y;; = y10 + dy; and
Y1,-1 = Y10 — dy1. Then by a forward induction we compute all the nodes
till time 7.

Knowing the nodes at time ¢,_;, we compute first y; 0 = E; ¢ then the V; and

all the EL]( ‘min malz) aIld .

j:.ji_l yeesdi—

dyi - \/g‘/z
gt such that ;e < By jnip = G < g juin iy
jimax such that y@jimaz_l < E%]ﬁalz + dgi < yiJ;ﬂaz

Yij = Yio +jdy; for g < j < grer

and then compute the transition probilities, pu, pm and pd (for all j4 <
J < ji§"), from node y;—1j t0 Yirt1, Yok and yip-1

PUi—1j = é + +2ZZ_2 + ﬁyi probability to go from (i — 1, ) to (i,k + 1)
pmi1; =3 — J;g probability to go from (i — 1, 7) to (i, k)
pdi_1; = % + 22; — #y_ probability to go from (i — 1,7) to (i,k — 1)

with n = F; ; — y;;, and k the integer such that y; ; is the closer to E; ; :
Eij —yi
k = round l’ﬂ Y ’0] .
dy;

Then we change all the y nodes of the tree in z nodes thanks to x = F(y)
then we can compute directly on the tree the translation ¢(t;) to get r;; =
x; j+¢(t;) for the nodes thanks to a forward iteration on ¢(¢;) and the Arrow-
Debreu node prices knowing all the By (0,¢;) (see [?] §3.3.3).



Important remarks :

It is important for computation without surprise that the function j — E; ;
is increasing so that there is no crossing pm probabilities and the number
of nodes is always increasing. Morever it more easy to define j™" since the
previous lowest expectation is £ jmin and 77" since the previous highest
expectation is E; jmas. For 1nstance 1n CIR ++ there is a low bound for y
to have this condition and we must forbid the tree to go under ; this is all
the more necessary in so far as y must stay positive and the equation on y
becomes totally unstable near 0 due to the term in 1.

There also can be tricky problems because of the condition domain of the
bijective function F', for CIR++ these domains are R, — R, and z (and
y) stay positive if 2ab > 0. We advise to chose a quite large zo (to have a
quite large yo) so the tree dlffusmn of y might not be too truncated by its
low bound even if it must induce negative ¢(t).

They is no particular problem dealing with Hull and White.

Now that we have a trinomial tree of the spot rate r; ; with their transition
probabilities we can compute any payoftf h(7, (7)) (european, american or
bermudean) thanks to a backward induction thanks to the approximation:

he = bt ) = E _ftt.m’"(s)dsh . ,
1] T (turz,]) - € ! (tz+17r(tz+1))|r(ti):m7j

hij = h(ti,ri;) =~ e rialtiva=t) [pui jhit g1 + P jhiga s + pdi jhi 1]

4 Implicite PDE method
Let us consider a general shifted model for the spot rate

{ d(t) = pa(t) dt + 0.(t) dW (1), 2(0) = o
r(t) = x(t) + o(t).

Then the option price

V(t) 7«) g [6 ftT T(S)dsh(T, T(T))|r(t)=r}

can be written with respect to z, V(t,r) = e~ I YA (t, 1 — ¢(t)), where
" a(s)d
Ult,a) = E e 080T a(T) = (7))t

and U is the solution of the following PDE:

ou ou 1 0*U
5 TH (t)%—l—*(f (t>ﬁ —2U(t,z) =0



This transport equation is computed over a domain [0, Xp;4x]. In 2 =0,
supposing oo(t) = 0, we have:

ou ou

o T Hot)5— =0.
This equation will give us our boundary condition in x = 0.
Let 0 =ty < t; < .. < t,, = T be a time scale for our PDE on [0, 7] and
x; = jdx be a space scale for j = 0 to nx (dx = round [%}) Let us
denote U™ the numerical space vector for the approximation of U(t,,z;) for
j =0to JMAX-
Then dicretizing the PDE and knowing U™, U"*! is solution of the linear
problem :

1

|
L - HMn> Ut — < Id+(1—0 Mn> U
<dt gla+t =10

with 6 chosen in (0,1) and where M,, is the tridiagonal nz.nx matrix of
discretized linear differential operator of the PDE : Vk =2, .. . nx — 1

M, K]k — 1] = §(0, (1) s — i (1) )
M, [K][K] = ~8(02,(t) s + )
My K]k + 1] = 80, (1) gtz + s (1) )

A Neuman limit condition is taken on the right boundary to have the last
line of the matrix and the previous x = 0 transport equation is used for the
left boundary condition to have the first line of the matrix.

Resolving this equation backwardly we can compute any payoffs.

remark: For tree and PDE methods to compute an option on a zero coupon
bond B(T,S) maturing at time 7" for instance, a tree or a PDE is contruct
over [0,5], a first backward resolution with a payoff 1 starting at time S
allows to built B(T,S) and then a second backward resolution starting at
time 7" allows to compute the option over the payoff B(T,S).
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