
ADI Methods for PIDEs

Ludovic Goudenège

Premia 22

1 Jump model and ADI schemes

We consider the following model for the stock price:
{

St = S0 exp(Lt)
dVt = α(β − Vt)dt + ω

√
VtdZt,

(1)

with α, β and ω ∈ R+, and where Zt is a Gaussian process and Lt is a Lévy
process such that

Lt = γt + σWt + Yt

with Lévy triplet (γ, σ, ν). Under the pricing measure, we have to fix

γ = r − q − σ2

2
−

∫

R

(exp(x) − 1 − x − χ|x|<1ν(dx)

where r is the interest rate, q is a continuous dividend, and under the condition
∫

|x|>1

exp(x)ν(dx) < +∞.

Moreover we have
〈dWt, dZt〉 = ρdt

as correlation between the two implied Gaussian processes.
Using a martingale approach for an european or an american option (call or

put), we can prove that the price is given by the solution of the following partial
integro-differential equation in the variable x = log(S/S0).

∂C(x, v, t)

∂t
=

1

2
v

∂2C(x, v, t)

∂x2
+

1

2
ω2v

∂2C(x, v, t)

∂v2
+ ρσω

√
v

∂2C(x, v, t)

∂x∂v

+
(

r − q − v

2

) ∂C(x, v, t)

∂x
+ α(β − v)

∂C(x, v, t)

∂v
− rC(x, v, t)

+

∫

R

[

C(x + y, v, t) − C(x, v, t) − (exp(y) − 1)
∂C(x, v, t)

∂x

]

ν(dy)

1

with the following boundary conditions for the call option

∂C

∂x
(x, v, t) = 0 whenever x = Xmin,

∂C

∂x
(x, v, t) = exp(−q t) whenever x = Xmax,

∂C

∂v
(x, v, t) = 0 whenever v = Vmax,

and the following boundary conditions for the put option

∂C

∂x
(x, v, t) = K exp(−rt) whenever x = Xmin,

∂C

∂x
(x, v, t) = 0 whenever x = Xmax,

∂C

∂v
(x, v, t) = 0 whenever v = Vmax.

By default, the initial values are S = S0 = 100 and V = V0 = 0.01,
the maturity is one year and the strike value is 100, such that C(x, v, 0) =
(b(S0 exp(x) − K))+ where b = 1 for the call and b = −1 for the put. In the
case of the american options, we should add the possibility to exercice the op-
tion before the maturity which is easily implemented in the partial differential
equation by taking the maximum compared to the pay-off at any time.

2 ADI finite difference scheme

We refer to [1] where a similar method is described to solve the partial differential
equation without the jumps. We have used the same grids 1 whose sizes are given
respectively for time, S-space, V-space by Nt, Ns and Nv. The default values
are 40, 100 and 20. This choice ensures very good estimations for the prices of
call or put options in a large variety of parameters in less than 1 second.

The Douglas scheme described in [1] has been implemented, but the methods
for all the others schemes are potentially already in the code, since all the
necessary functions are already implemented. See also the documentation for
the Heston model.

3 Splitting method for the PIDE

The method developed in [2] is based on a splitting between the classical PDE
part (with linear differential operator D) and the integral part (with linear
integral operator J). It consist in applying the following scheme between time
t and time t + ∆t.

C(x, v, t + ∆t) ≃ exp

(

∆t

2
D

)

exp (∆tJ) exp

(

∆t

2
D

)

C(x, v, t)

1up to a logarithm transformation for the space variable

2

In the Merton model, the operator J is given by

J = λ

(

exp

(

λµJ +
1

2
σ2

J∇2

)

− κ∇ − 1

)

, κ = exp

(

µJ +
σ2

J

2

)

− 1,

where ∇ is the derivative in the space variable x. Thus we want to solve

Cn+ 1

4 (x, v) = exp

(

∆t

2
D

)

Cn(x, v), with ADI solver

Cn+ 3

4 (x, v) = exp

(

λ∆t

(

exp

(

λµJ +
1

2
σ2

J∇2

)

− κ∇ − 1

))

Cn+ 1

4 (x, v)

Cn+1(x, v) = exp

(

∆t

2
D

)

Cn+ 3

4 (x, v), with ADI solver.

With a Páde approximation, taking out the −λκ∇ part in the ADI solver,
it is sufficient to solve

∂z(x, s)

∂s
=

(

µJ∇ +
1

2
σJ∇2

)

z(x, s)

for 0 ≤ s ≤ 1 and z(x, 0) = C(x, v), then denote

J∗ : C 7→ λC + z(x, 1)

and to solve a Cranck-Nicolson scheme

Cn+ 3

4 (x, v, t) − Cn+ 1

4 (x, v, t) =
1

2
∆t

[

Cn+ 3

4 (x, v, t) + Cn+ 1

4 (x, v, t)
]

4 Implementation

The main program fixes the variables and compute the grid in space and variance
variables. It calls the function compute_price_and_delta which first makes
allocation of all the necessary arrays and builds all the matrix involved in ADI
solver. Next this function makes a loop over time making all the splitting scheme
by calling time_evolution. This function makes a half ADI time step in order
to compute Cn+ 1

4 . Then it calls the function compute_jumps_inline which
computes the integral part by solving equations described above. At this step,
we have compute Cn+ 3

4 and finally it makes another half ADI time steps in
order to compute Cn+1.

References

[1] Tinne Haentjens and Karel J. in’t Hout. ADI finite difference schemes for
the Heston-Hull-White PDE. J. Comp. Finan. 16, 83-110 (2012). 2

[2] Andrey Itkin High-Order Splitting Methods for Forward PDEs and PIDEs.
International Journal of Theoretical and Applied Finance. 2

[3] Andrey Itkin Efficient Solution of Backward Jump-Diffusion PIDEs with
Splitting and Matrix Exponentials. arXiv:1304.3159v3 (2013).

3

	Jump model and ADI schemes
	ADI finite difference scheme
	Splitting method for the PIDE
	Implementation

