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Abstract. This paper introduces a novel method to price arithmetic Asian options in Levy-driven
models, with discrete and continuous averaging, by expanding on the approach of se-
quential characteristic function recovery. By utilizing frame duality and a FFT-based
implementation of density projection, we obtain rapidly converging value approximations
to high precision, consistently resulting in a 10- to 100-fold time reduction compared to
state-of-the-art procedures. Theoretical convergence rates are confirmed by an in-depth
analysis of error propagation. Formulas for Greeks are provided, in addition to generalized
averaging and in-progress option pricing.
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1. Introduction. Since their introduction in 1987, Asian options (known also as
average rate or average price options) have provided a popular means of risk manage-
ment in a variety of markets. For example, Eydeland and Wolyniec (2003) document
their importance in mitigating the delivery risks present in gas markets. Since Asian
options have payoffs that are contingent on the average price of an underlying asset
(index, interest rate, exchange rate, commodity, etc.) over a given time horizon, their
prices are less sensitive to price manipulations, and they become easier to hedge to-
wards the option’s expiry. By taking an average of the underlying, these options are
typically much cheaper than standard European contracts. Moreover, their relative
stability has led to the hybridization of exotic options that contain an Asian type
specification towards the end of the contract, known as an “Asian tail”.

As is generally the case with path-dependent contracts, robust pricing of Asian op-
tions is very challenging and computationally demanding. Even in the Black-Scholes-
Merton (BSM) framework, no analytical formulas exist for the pricing of arithmetic
Asian options. The computational approaches can be categorized as analytical ap-
proximations and bounds [1, 2, 31, 34], partial differential equation (PDE) methods
[3,4,17,40], lattices [14], Monte Carlo [27,35], and transform methods [6,11,12,16,41],
to which our approach belongs. Alternative methods include Taylor expansion [26],
perturbation [42], direct iterated integration [23], and maturity randomization [22].
In terms of both speed and accuracy, the transform based approaches are generally
superior for models with Levy (log) returns, including BSM.

We develop a fast and highly accurate method for pricing generalized Asian op-
tions in exponential Levy models, which we call APROJ1. This includes discretely
monitored contracts as well as the continuously monitored options that pervade for-
eign exchange markets. In-progress option prices and Greeks are also determined
efficiently. Compared to state-of-the-art-methods, the APROJ method provides a

∗Secton 7 devoted to implementing the APROJ method into program platform Premia was prepared
by Oleg Kudryavtsev

1APROJ is short for Asian PROJection, due to its use of a biorthogonal projection method.
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10- to 100-fold improvement in terms of cpu time to reach the same (or better) ac-
curacy. This is confirmed for the methods of [6, 11, 12, 32, 41], most notably the
improved convolution method of Cerny and Kyriakou [12], the ASCOS method of
Zhang and Oosterlee [41], and the inverse Fourier transform method of Levendorskii
and Xie [32], which are (to our knowledge) the fastest available pricing methods for
discretely monitored arithmetic Asian options under Levy dynamics.

The paper is organized as follows. Section 2 reviews exponential Levy models and
the method of density projection by frame duality. The problem of arithmetic Asian
option pricing is formulated in Section 3, along with a derivation of the APROJ
method. Section 4 develops extensions to in-progress option pricing and Greeks,
generalized averaging, and continuous averaging. An in-depth analysis of error prop-
agation and terminal valuation error is given in Section 5, after which Section 6
demonstrates the accuracy and efficiency of the method with a series of numerical
experiments. Comparisons are made to existing methods with parameter sets from
the literature. Finally, Section 7 is devoted to implementing the APROJ method into
program platform Premia.

2. Density Projection Method. The projection method described in this sec-
tion applies whenever the characteristic function of the underlying random variable
is known, which is the case for the family of Levy processes. Since the variance
gamma (VG) model was introduced in 1990 to price derivatives [33], the versatil-
ity and tractability of Levy processes as generalizations of the BSM framework have
generated a surge of research and modeling success. While application of the VG
model itself has waned, subsequent developments such as the KoBoL [7, 9] model
(with CGMY [10] as a special case) as well as the NIG [5] model have proven to be
excellent alternatives which calibrate well to market data [10, 24], and the exponen-
tial (semi-heavy) decay of their tails engenders a significant computational advantage
over the VG model.

2.1. Exponential Levy Models. Suppose L(t), t ≥ 0, is a Levy process, which
is a stochastically continuous process with stationary and independent increments.
We denote its Levy symbol by ψL(ξ), where by the Levy-Khintchine theorem the
characteristic function (ChF) satisfies

φL(t)(ξ) := E[eiL(t)ξ] = etψL(ξ), t ≥ 0.

Figure 6 in the appendix provides some of the more popular Levy symbols used in
financial modeling, along with any parameter restrictions2.

To model the underlying randomness on which Asian options are contracted, we
consider exponential Levy processes of the form

S(t) = S(0)eY (t) = S(0)e(r−q+ω)t+L(t), ω = −ψL(−i),

where r, q ≥ 0 are the interest rate and dividend yield. Here ω is a “convexity correc-
tion” that is used to ensure that discounted asset processes (with reinvested dividends)
behave as martingales. That is, E[S(t + ∆t)|S(t)] ≡ S(t)E[eR∆t ] = S(t)e(r−q)∆t ,
∆t, t ≥ 0, where

R∆t := log(S(t+ ∆t)/S(t))
d
= (r − q + ω)∆t + L(∆t), t,∆t > 0.

2If no restriction is given, the permissible parameter values are taken to be the real line.
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The ChF of R∆t is given by

φR∆t
(ξ) = eiξ(r−q+w)∆teψL(ξ)∆t , ∆t > 0.

Note that the underlying Levy processes satisfies an exponential moment condition
E[e−αL(t)] < ∞, ∀t ≥ 0, where IL = (λ−, λ+) denotes the set of all such α. Here
−∞ ≤ λ− ≤ 0 ≤ λ+ ≤ ∞ with possible inclusion of the endpoints. As a function of
z = ξ+iw, ψL(z) is analytic in the strip D(λ−,λ+) := {z ∈ C : =(z) ∈ (λ−, λ+)}. With
the exception of the pure jump VG (ie when σ = 0), the Levy processes of interest in
finance satisfy the following bound for some c, κ > 0 and ν ∈ (0, 2]

(1) |φR∆t
(ξ)| = |eψL(ξ)∆t | ≤ κe−∆tc|ξ|ν .

2.2. Density Recovery and Option Pricing by Frame Projection. In [28], a
method of European option pricing, called PROJ, is derived from the theory of frames
and Riesz bases. The insight is to project the risk-neutral log return density, given in
terms of its ChF, onto a tractable basis of compactly supported functions. The basis
is formed by scaling and shifting a fixed generator or scaling function. The resulting
method produces highly accurate localized approximations at low resolutions, where
the number of basis elements grows with the resolution. The reader is referred to [28]
for more details on the PROJ method, in particular the derivation of dual bases.
We refer the reader to [13, 25] for an introduction to frame theory (also see [30] for
applications to static hedging).

The B-spline bases of order p are of particular interest, and can be derived as
follows. Starting with the Haar scaling function defined by ϕ[0](y) := 1[− 1

2
, 1
2

](y), the

p-th order B-spline scaling functions are derived successively by the convolution

(2) ϕ[p](x) = ϕ[0] ? ϕ[p−1](x) =

∫ ∞
−∞

ϕ[p−1](y − x)1[− 1
2
, 1
2

](y)dy.

With p = 1, the linear B-spline basis is generated by

ϕ[1](x) := (1− |x|)+ = (1− |x|)1[−1,1](x),

while for p = 2 we obtain the quadratic scaling function

ϕ[2](y) =


y2/2 + 3y/2 + 9/8, y ∈ [−3/2,−1/2]

3/4− y2, y ∈ [−1/2, 1/2]

y2/2− 3y/2 + 9/8, y ∈ [1/2, 3/2] .

To ease notation, we will write ϕ = ϕ[p] when the context is clear.
Given a resolution a, and a grid xn = x1+(n−1)/a, the approximation space for a

fixed generator ϕ is given by the span of ϕa,n(x) = a1/2ϕ(a(x−xn)), which is centered
over xn. To derive finite dimensional approximations in terms of {ϕa,n}Nn=1 for N
fixed, we will truncate the corresponding projections onto the infinite dimensional
space Ma := span{ϕa,n}n∈Z, using the fact that ϕ satisfies the frame bounds

(3) A‖f‖2 ≤
∑
n∈Z
|〈f, ϕa,n〉|2 ≤ B‖f‖2, ∀f ∈ L2(R),

for some 0 < A ≤ B (independent of a).
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2.2.1. Density Projection by Duality. Given a random variableX, with unknown
density3 fX , we utilize the frame representation theorem [13, 25] which states that
the orthogonal projection PMafX of fX onto Ma is given by

PMafX =
∑
n∈Z
〈fX , ϕ̃a,n〉ϕa,n,

where {ϕ̃a,n}n∈Z is the dual basis, which is guaranteed to exist in some form. As shown
in [28], if the ChF φX(ξ) := E[eiXξ] is known, the projection coefficients satisfy for
1 ≤ n ≤ N

(4) 〈fX , ϕ̃a,n〉 = E[ϕ̃a,n(X)] =
a−1/2

π
<
[∫ ∞

0
exp(−ixnξ) · φX(ξ)̂̃ϕ( ξ

a

)
dξ

]
,

where ̂̃ϕ(ξ) = F ϕ̃(ξ) =

∫
R
eiξxϕ̃(x)dx.

When ̂̃ϕ(ξ) is known, as for the linear and quadratic generators [28]

(5) ̂̃ϕ[1]
(ξ) =

12 sin2(ξ/2)

ξ2(2 + cos(ξ))
, ̂̃ϕ[2]

(ξ) =
480 sin3(ξ/2)

ξ3(26 cos(ξ) + cos(2ξ) + 33)
,

the coefficients can thus be calculated efficiently using the fast Fourier transform
(FFT), as described next.

When φX(ξ) satisfies a growth estimate of the form of equation (1), the trunca-
tion error from numerically integrating (4) will decay exponentially, and polynomially

otherwise. Even so, multiplication of the chf by ̂̃ϕ(ξ) in equation (4) has a damping
effect which reduces aliasing caused by an otherwise insufficient choice of a (the dis-
crete Fourier transform implies a truncation interval of 2πa in the frequency domain).
This is one factor which contributes to accurate approximations at low resolutions.

2.2.2. Coefficient Approximation. To recover the orthogonal projection of the
density of a random variable X, the first step is to set a resolution, for example
a = 2P for P ∈ N. By further specifying P̄ ∈ N, which determines the support width
of the projected density, and x1, which determines its location in log return space, a
conceptual grid xn = x1 + (n− 1)/a, n = 1, . . . , N , is designated where

N = 2P+P̄ = a2P̄ := aā,

where the choice of parameters is discussed in Section 3.6. For example, if E[X] := µX ,
then to center the grid over µX , set x1 = µX −

(
N
2 − 1

)
∆ (where ∆ := 1/a), so that

µX = xN
2

. The density is then recovered on

[x1, x1 + ā−∆] ≈ [µX − ā/2, µX + ā/2].

To discretize the integral in equation (4), by the Nyquist frequency requirement
∆∆ξ = 2π/N the grid in frequency space is set to ξj = (j−1)∆ξ, j = 1, . . . , N , where

3Levy models, with the exception of the compound Poisson process (ie no diffusion component
and finite jump activity), possess a continuous density [36].
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∆ξ = 2πa/N = 2π/ā. It is shown in [28] that the truncated true projection f̃X(x) is

well represented by the numerical approximation f̆X(x), defined respectively by4

f̃X(x) :=
N∑
n=1

〈fX , ϕ̃a,n〉ϕa,n(x), f̆X(x) :=
N∑
n=1

(
a1/2Ca,N β̆

X
a,n

)
ϕa,n(x),

where the coefficients 〈fX , ϕ̃a,n〉 ≈ a1/2Ca,N β̆
X
a,n are calculated by the discrete Fourier

transform, in the absence of ChF error5:

(6) a1/2Ca,N · β̆Xa,n =
a−1/2

π
<

{
N∑
j=1

exp(−ixnξj) · φX(ξj)̂̃ϕ(ξj
a

)
vj∆ξ

}
,

where νj := 1− (δj,1 + δj,N )/2 and Ca,N is a constant which depends on the selected

generator ϕ. The full set of {β̆Xa,n}Nn=1 are computed with complexity O(N log2(N))
by the FFT.

As long as the numerical error is controlled, the overall convergence of the APROJ
algorithm will be at least of the order of projection convergence. Define H(Dd) to be
the set of analytic functions in the strip Dd = {z ∈ C : =(z) ∈ (−d, d)} which satisfy∫ d

−d
|h(x+ iy)|dy → 0, as |x| → ∞.

For h ∈ H(Dd), we define the norm

‖h‖Hd := lim
ε→0+

[∫
R
|h(x+ i(d− ε))|dx+

∫
R
|h(x− i(d− ε))|dx

]
.

We have the following result for pth order B-spline generators.

Proposition 2.1. Suppose that φX(ξ) ∈ H(Dd) for some d > 0, and let µ̄ = µ̄X
be an approximation to E[X]. Fix a = 2P and N = a · ā, where ā = 2P̄ for P̄ >
1 + log2 |µ̄|. Fix x1 = µ̄+

(
1− N

2

)
1
a . Then for some 0 < γ ≤ d

sup
1≤n≤N

∣∣∣a1/2Ca,N · β̆Xa,n − 〈fX , ϕ̃a,n〉
∣∣∣ ≤ a−1/2

π

(
C [p]
γ (φX)

e−(ā−2|µ̄|)γ/2

1− e−āγ
+ τa(X)

)
,

where C
[p]
γ (φX) is a constant. If for some c, κ > 0 and ν ∈ (0, 2], the tail of φX

satisfies

(7) |φX(ξ)| ≤ κ exp(−tc|ξ|ν), ξ ∈ R,

where t > 0 is some fixed time, then

(8) τa(X) = O(a exp(−tc · (2πa)ν).

In this case, the largest trapezoidal error converges exponentially in ā, while the trun-
cation error is exponential in a. Moreover, when a > 2d, γ = d.

Proof. See appendix.

Note that for the linear basis we have the bound C
[1]
γ (φX) ≤ 24‖φX‖H and τa(X) ≤

6κ
π · a exp(−tc · (2πa)ν), although the specific constants will not be required for our

implementation.

4The term a1/2 will be absorbed by an intermediate calculation.
5Error in the characteristic functions will be introduced.
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2.2.3. Quadratic Basis Implementation. To implement the APROJ algorithm,
we fix the quadratic basis, although the method applies more generally to pth order
B-splines and other generators as well. In particular,

(9) fX(x) ≈ a1/2Ca,N

N∑
n=1

β̆Xa,nϕ
[2]
a,n(x), Ca,N :=

960a3

N
.

The coefficients a1/2Ca,N β̆
X
a,n are found using the discretization in equation (6). From

the dual generator transform ̂̃ϕ[2]
(ξ) in equation (5), we define

(10) H1 = 1/(960a3), Hj = φX(ξj)ζj exp(−ix1ξj), 2 ≤ j ≤ N,

where

(11) ζj :=
(sin(ξj/2a)/ξj)

3

26 cos(ξj/a) + cos(2ξj/a) + 33
, 2 ≤ j ≤ N.

The coefficients β̆X = {β̆Xn }Nn=1 are recovered by the discrete Fourier transform (DFT)

(12) β̆X := <[D{Hj}Nj=1], Dn{Hj} :=

N∑
j=1

e−i
2π
N

(j−1)(n−1)Hj , n = 1, . . . , N,

For φX analytic in a strip containing D(−d,d) with d > 0, trapezoidal approximations
to the DFT converge exponentially with respect to a, ā, by Proposition 2.1.

2.3. Arithmetic Asian Options. Our main goal is to price discretely monitored
arithmetic Asian options, which are contracts on the average over an observed set
of prices of an underlying, with observations taken at a discrete set of M + 1 mon-
itoring dates, {0 = t0, t1, . . . , tM = T}, with S0 = S(t0) observed upon entering the
contract. We assume a uniform spacing between observations6, tm = m∆t = m T

M ,

m = 0, . . . ,M . If the density of AM := 1
M+1

∑M
m=0 Sm is known, say fAM , then the

initial value of an option paying g(AM ) at time T must initially satisfy V ◦ g(S0) =
e−rT

∫
R g(u)fAM (u;S0)du.

Fixed strike vanilla Asian options (calls and puts) are priced according to the
terminal payoffs with strike W > 0

(13) g(AM ) :=


(

1
M+1

∑M
m=0 Sm −W

)+
, for a call,(

W − 1
M+1

∑M
m=0 Sm

)+
, for a put.

By considering a change of numeraire, floating strike arithmetic options can be priced
using an analogous formula, but only at inception [18]. On the other hand, frame
projection can be used to efficiently obtain bounds on the prices of floating strike
arithmetic options in terms of their geometrically averaged counterparts.

6This assumption is easily relaxed at a modest increase in cpu time.
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3. Mean Adjusted APROJ Method. This section details the APROJ method,
which combines elements of several different methods to produce a highly efficient
pricing algorithm. The first step is to reduce the problem dimension by employing a
technique known as the Carverhill-Clewlow-Hodges factorization [11], which has been
utilized as well by [12, 22, 23, 41]. The factorization results in a recursive scheme to
recover a single state variable, YM , defined by a sequence of intermediate variables
{Ym}Mm=1. As in [41], we focus on the ChF of this process, which we extend to
generalized averaging and in-progress contracts. Analyticity of the chf of Ym at each
stage is proved. To reduce the computational cost and improve accuracy, we explicitly
account for the shifting mean of Ym, by employing an alternative to the lower bound
grid shift algorithm proposed in [6]. In particular, we derive upper and lower bounds
on the mean of Ym, and devise an efficient grid shift scheme.

To derive the ChF, we extend the PROJ method of [28]. By utilizing the orthog-
onally projected density, PROJ obtains highly accurate approximations even at low
resolutions. This phenomenon is explained in [38], where for modest resolutions the
least squares projection behaves like an interpolation with twice the order of accu-
racy. Consequently, the use of projected densities results in a substantial reduction in
overall cost. Transitioning between time states m requires the calculation of a series
of complex valued integrals, for which we derive accurate closed form approximations,
taking advantage of the compactly supported basis elements of the PROJ method.
In contrast, the globally supported basis elements of a cosine series expansion, for ex-
ample, require a much more expensive procedure to evaluate the analogous integrals.
The resulting algorithm achieves high accuracy at a low computational cost compared
with existing methods. Moreover, Greeks are obtained at a negligible added cost.

As illustrated in [8,15], the choice of truncation width for density expansion meth-
ods requires special care. In particular, the cumulant based approach of [19, 41] can
produce inaccurate prices for heavy-tailed models. Hence, we propose an alternative
method which automatically corrects the grid-width until a supplied truncation toler-
ance is met. Our two algorithm parameters are determined by an iterative procedure
which uses the transform method of [20,21] to estimate truncation error, as well as a
proxy for the integration error incurred at each step. While the cumulant rule of [23]
can be used to initialize the grid-width parameter, our method is shown to reliably
detect insufficient choices, expanding the grid as needed.

3.1. Change of Variables. The Carverhill-Clewlow-Hodges factorization expresses
the average in terms of a random variable YM , defined below, so that

(14) AM =
1

M + 1

M∑
m=0

Sm =
S0

M + 1
(1 + exp(YM )) .

Given an approximation of the density fYM , the value of a payoff g(YM ;S0) satisfies

V ◦ g(S0) = e−rT
∫
R
g(y;S0)fYM (y)dy,

where for vanilla options

(15) g(y) :=


(
S0(1 + exp(y))

M + 1
−W

)+

, for a call,(
W − S0(1 + exp(y))

M + 1

)+

, for a put.

7



In this way, pricing of a path-dependent Asian option is reduced to the valuation of
a European option on the variable YM . As will be demonstrated, such a variable
can also be found for generalized Asian options with fixed strikes, and for geometric
Asian options with fixed and floating strikes (see [28] for the PROJ implementation
for geometric Asian options).

The insight of [11] is that the arithmetic average can be expressed as

AM =
S0

M + 1

(
1 +

S1

S0

(
1 +

S2

S1

(
· · ·SM−1

SM−2

(
1 +

SM
SM−1

))))
=

S0

M + 1

(
1 + eR1

(
1 + eR2

(
· · ·eRM−1

(
1 + eRM

))))
=

S0

M + 1
(1 + exp(R1 + log (1 + exp(R2 + log (· · ·RM−1 + log (1 + exp(RM )))))

where the log return increments are defined by7

Rm := log(Sm/Sm−1), m = 1, . . . ,M,

where we have suppressed the dependence of Rm on the time step ∆t = T/M . By
introducing the sequence {Ym}Mm=1, defined recursively by

(16) Y1 := RM , Ym := RM+1−m + log(1 + exp(Ym−1)), m = 2, . . . ,M,

we have

(17) Ym = log

(
1

S(M−m)

m∑
j=1

S(M−m)+j

)
,

from which it follows that exp(YM ) = 1
S0

∑M
m=1 Sm, and so equation (14) holds. As

in [41], we recover the ChF of φYM by computing the ChFs of the sequence {Ym}Mm=1.

3.2. The Basic Recursion. With Zm := log(1 + exp(Ym)), the characteristic
function of YM is found recursively from Y1 = RM by the equation

(18) Ym = RM+1−m + Zm−1, m = 2, . . . ,M.

Assuming exponential Levy dynamics, the log return increments Rm are independent,
from which independence of RM+1−m and log(1 + exp(Ym−1)) follow. Moreover,
stationarity (and uniform monitoring) implies that RM+1−m = R in law for all m,
where R has known ChF for many Levy processes. Hence, starting with φY1(ξ) =
φR(ξ), the ChF of Ym is derived from that of Ym−1 using equation (18):

φY1(ξ) = φR(ξ), φYm(ξ) = φR(ξ)φZm−1(ξ), m = 2, . . . ,M.

Specifically,

(19) φZm−1(ξ) := E
[
eiξ log(1+exp(Ym−1))

]
=

∫
R

(ey + 1)iξfYm−1(y)dy,

where fYm−1 is approximated using φYm−1 .
The next result will ensure that the DFT errors, which are incurred at each density

projection step, converge exponentially with respect to a, ā.

7We reserve the notation R to denote the return distribution over a time increment of size ∆t,
while Rm denotes the return random variable itself. To make the dependence on ∆t explicit, we will
at times use R∆t to denote a generic return increment.
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Proposition 3.1. Suppose that φR(z) is analytic in the strip Dd := {z ∈ C : =(z) ∈
(−d, d)}, for some d > 0, and satisfies equation (1) for some κ, c > 0 and ν ∈ (0, 2].
If {Ym}Mm=1 are defined by equation (16), then the ChFs satisfy

(i) φYm is analytic in Dd, 1 ≤ m ≤M , and
(ii) |φYm(ξ)| ≤ κe−∆tc|ξ|ν , ξ ∈ R, 1 ≤ m ≤M .

Hence, the domain of analyticity and the decay of φYm are independent of m.

Proof. See appendix.

It should also be noted that fYm(y) ∼ e−d|y| as |y| → ∞, ie the densities have
exponentially decaying tails8, determined by the tail behavior of fR. This follows
since analyticity of φYm in Dd implies that E[eηYm ] <∞ for η ∈ (−d, d). In particular,
we are dealing with densities of rapid decrease.

3.3. APOJ Algorithm Overview. Before developing the APROJ algorithm in
detail, we present the main blocks with references to their derivation in the text:

1. To account for the shifting mean of Ym, a grid shift algorithm is derived in
Section 3.4

2. The initial ChF φZ1 is obtained in terms of the closed form ChF φR in Section
3.5.1, where we introduce the integral matrix Ψ

3. The ChFs φZm−1 are obtained recursively in Section 3.5.2
4. Given φZm−1 , we obtain φYm in Section 3.5.3
5. An automated method of parameter selection is detailed in Section 3.6, which

is summarized by initialization Subroutine 1
6. An approximation of the integral matrix Ψ is given in Section 3.7, which is

summarized by Subroutine 2
7. The final valuation step (which applies to general payoffs) is presented in

Section 3.8, after recovering φYM
8. Formulas for vanilla option Greeks are provided in Section 3.10

After developing the main algorithm blocks, in Section 3.9 we summarize the routine
in Algorithm 3, which calls initialization Subroutine 1 to determine parameters, and
Subroutine 2 to populate the integral matrix Ψ.

3.4. Mean-adjusted Grid. We employ a grid shift to ensure that we capture to
within a set tolerance the mass of fYm−1 , while the grid specific to each Ym will
belong to a single enlarged grid, for m = 1, . . . ,M − 1. The final grid corresponding
to YM will vary slightly according to the payoff to be priced. Since the distribution
of Y1 = R∆t is roughly centered about its mean, a natural starting grid in log return
space is fixed by centering about

E[R∆t ] = (r − q + ω + E[L(1)])∆t = c1∆t,

where c1 = E[log(St+1/St)] is the first cumulant of log return over a unit interval, and
is provided in Table 6 for common processes. For example, the Black-Scholes-Merton
(BSM) model satisfies E[R∆t ] = (r − q − σ2/2)∆t, where σ is the rate of volatility.

The approach of Benhamou [6] is to approximate the mean E[Ym] = E[R∆t ] +
E[log(1 + eYm−1)] by

(20) µB1 := E[R∆t ], µBm = µB1 + log
(

1 + eµ
B
m−1

)
, m = 2, . . . ,M.

8The rate of decay could be faster than d, but this gives a conservative estimate.
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Figure 1: Plot of µ̃m, the approximated mean of Ym, as a function of m with r = .05, q = 0 in
the BSM σ = 0.3 model (Left) and the CGMY = (0.27, 17.5, 54.8, 0.8) model (Right). The bounds
µ̄m ± ā/2 are given by dashed lines, where ā = 2.

By convexity of log(1 + ey), Jensen’s inequality implies log(1 + exp(E[Ym−1])) ≤
E[log(1 + exp(Ym−1))], so the mean shift underestimates the true mean. We employ
an alternative grid-shift scheme, described next.

3.4.1. Grid Shift and Bounds. As an alternative to the grid adjustment of [6],
and to bound the growth of the grid shift, we derive an upper bound on E[Ym] by
applying Jensen’s inequality(for concave functions) to equation (17):

(21) E[Ym] ≤ log

 m∑
j=1

E
[
S(M−m)+j

S(M−m)

] = (r−q)∆t+log

(
exp ((r − q)∆tm)− 1

exp ((r − q)∆t)− 1

)
,

since e(r−q)j∆t = E
[
S(M−m)+j

S(M−m)

∣∣FM−m] = E
[
S(M−m)+j

S(M−m)

]
, where the first equality follows

from the martingale property and the second from the fact that Levy increments are
independent of the current filtration, FM−m. Similarly,

Ym ≥ log(m) +
1

m

m∑
j=1

log

(
S(M−m)+j

S(M−m)

)
,

from which we derive E[Ym] ≥ log(m) +E[R∆t ]
m+1

2 . In particular, we obtain a set of
upper and lower bounds on the growth of E[Ym].

Proposition 3.2. With µBm defined by equation (20), and θ := (r − q)∆t we have

E[R∆t ]
m+ 1

2
+ log(m) ≤ E[R∆t ] + log

(
1 + eµ

B
m−1

)(22)

≤ E[Ym]

≤ θ + log

(
exp (θm)− 1

exp (θ)− 1

)
≤ log(m) + θ(m1r≥q + 1r<q).(23)

With µB0 := 0, these bounds hold for all 1 ≤ m ≤M .

Proof. Both inequalities in equation (23) follow from equation (21). To prove
equation (22), define θm = log(m) + ρm+1

2 , where ρ := E[R∆t ]. We show that

10



µBm ≥ θm by proving exp(µBm − θm) ≥ 1 inductively, where the case of m = 1 holds
trivially. For m ≥ 2,

exp(µBm − θm) = eρ
(

1 + eµ
B
m−1

)
e−ρ(m+1)/2 1

m

≥ eρ
(

1 + eρm/2+log(m−1)
)
e−ρ(m+1)/2 1

m

= eρ/2
(
e−ρm/2 1

m + m−1
m

)
(24)

where the inequality follows by the inductive hypothesis. For m = 2, equation (24)
becomes

exp(µB2 − θ2) ≥ eρ/2
(
e−ρ 1

2 + 1
2

)
= cosh(ρ) ≥ 1.

It is thus sufficient to show that the lower bound in (24) is nondecreasing in m. In
particular,

d

dm
eρ/2

(
e−ρm/2 1

m + m−1
m

)
=
eρ(1−m)/2

2m2

(
2
(
eρm/2 − 1

)
− ρm

)
.

Since eρ(1−m)/2/2m2 > 0, the result follows from the fact that the second term
2
(
eρm/2 − 1

)
− ρm := 2(eλ/2 − 1) − λ has a global minimum at λ = 0. That is,

for any ρ 6= 0 fixed (the case of ρ = 0 follows immediately), the derivative is a
nondecreasing function of m, and equation (22) is proved.

An immediate consequence of Proposition 3.2 is that we obtain a priori a corridor in
which E[Ym] lies for all 1 ≤ m ≤M , in terms of the mean return and (r − q):

(25) E[R∆t ]
m+ 1

2
≤ E[Ym]− log(m) ≤ |r − q|T m

M
, ∀m ≤M.

Hence, E[Ym] = log(m) + O(m|r − q|∆t) and the growth in E[Ym] is no faster than
log(m), independently of M (the second term is always bounded by |r−q|T ). We also
note that the upper bounds in equation (23) can be applied when E[R∆t ] is unknown.

3.4.2. Grid Shift Algorithm. The APROJ grid shift is implemented by combining
the innermost upper and lower bounds of Proposition 3.2. In particular, with µB1 =
E[R∆t ] = c1∆t (see Table 6), and for m = 2, . . . ,M

µBm := µB1 + log
(

1 + eµ
B
m−1

)
, µUm := (r − q)∆t + log

(
exp ((r − q)∆tm)− 1

exp ((r − q)∆t)− 1

)
,

we define our grid as the lower-upper bound average

(26) µ̃1 := c1∆t, µ̃m := (µBm + µUm)/2, m = 2, . . . ,M,

with maximum grid shift error |E[Ym]− µ̃m| ≤ (µUm − µBm)/2.
In order to reduce the computations required below (namely in computing a

matrix Ψ), we perturb each µ̃m slightly to obtain µ̄m, which belongs to an extension
of the initial grid defined by µ̃1:

(27) µ̄m := µ̃1 +Nm∆, Nm := ba(µ̃m − µ̃1)c , m = 2, . . . ,M,

and µ̄1 ≡ µ̃1, N1 := 0. Hence, we define the mean-adjusted grids

(28) xmn = xm1 + (n− 1)∆, xm1 := µ̄m + (1−N/2) ∆, m = 1, . . . ,M − 1,
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each corresponding to a subset of the linear basis {ϕa,n}
N+NM−1

n=1 , with ϕa,1 centered
over x1

1. In particular, the density of Ym is recovered over [µ̄m − ā/2, µ̄m + ā/2],
m = 1, . . . ,M, which is illustrated in Figure 1. The choice of xM1 will be detailed in
Section 3.8. To implement the algorithm, only {xm1 }Mm=1 and {Nm}Mm=1 are needed
(there is no need to actually generate the grids at each stage).

3.5. Characteristic Function Recovery. We now derive the ChF recovery by suc-
cessive PROJ expansions on the mean-adjusted grid. The algorithm is summarized
in Section 3.9, along with a discussion of its complexity. In the algorithm descrip-
tion, we will denote by β̄X the DFT approximation in the presence of ChF error, to
distinguish it in the error analysis from β̆X (which is absent ChF error).

3.5.1. Initialization. To initialize the characteristic function recursion we need

φZ1(ξ) := E
[
eiξ log(1+exp(R))

]
=

∫
R

(ey + 1)iξfR(y)dy.

Since φR(ξ) is known, φZ1(ξ) is approximated by a (quadratic) PROJ expansion of
fR(y), with coefficients β̆n = β̆a,n to yield9

φZ1(ξ) ≈
∫
R

(ey + 1)iξ

(
a1/2Ca,N

N∑
n=1

β̆nϕa,n(y)

)
dy

= Ca,N

N∑
n=1

β̆n · a1/2

∫
In

(ey + 1)iξϕa,n(y)dy

≈ Ca,N
N∑
n=1

β̄1
n · Ψ̄(ξ, n) := φ̄Z1(ξ),(29)

where for the quadratic basis In := [x1
n − 3∆/2, x1

n + 3∆/2] and Ca,N = 960a3/N .
With the initial grid implied by the choice of x1

1 = E[R] + (1 − N/2)∆, so that
φZ1 is approximated by a projected expansion of fR about E[R], the column vector
β̄1 is determined by

(30) β̄1 := <[D{H1
j }Nj=1], H1

j := φR(ξj) · ζj exp(−ix1
1ξj), j = 2, . . . , N,

where H1
1 = 1/(960a3) and ζj is defined in equation (11). Further,

(31) Ψ(ξ, n) := a1/2

∫
In

(ey + 1)iξϕa,n(y)dy, n = 1, . . . , N +NM−1,

and Ψ̄(ξ, n) denotes a Newton-Cotes approximation to Ψ(ξ, n) (discussed in Section
3.7). From here we obtain φ̄Y2(ξ) = φR(ξ)φ̄Z1(ξ), which concludes the initialization.

Remark 1. As demonstrated in Figure 2, for increasing xn the columns in Ψ(ξ, n)
become progressively closer to the values of a1/2F [ϕa,n] on [0, 2πa). This is illustrated
with the linear basis in terms of the scaled modulus

θ(ξ) :=

(
sin(ξ/2a)

ξ/(2a)

)2

= a1/2

∣∣∣∣∣a−1/2eixnξ
(

sin(ξ/2a)

ξ/(2a)

)2
∣∣∣∣∣ = a1/2|F [ϕa,n]|,

9We use the notation β̄1 here to be consistent with β̄m, m ≥ 2, although it should be noted that
β̄1 = β̆1 in this case since φR is known.
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Figure 2: Convergence in xn of Ψ(ξ, n) to a1/2F [ϕa,n](ξ), a plot of the modulus.

and reflects the fact that∣∣∣∣∫
In

(ey + 1)iξϕa,n(y)dy −
∫
In

eiξyϕa,n(y)dy

∣∣∣∣→ 0, as xn → +∞.

For a pth order B-spline basis, we have the following characterization for large xn.

Lemma 3.1. With a > 0 fixed, the elements of Ψ̄ behave as

Ψ(ξ, n) ∼ eixnξ
(

sin(ξ/2a)

ξ/(2a)

)(p+1)

+O(a · exp(−xn−1)),

when xn is large, with respect to the B-spline basis of order p.

Proof. See appendix.

Especially when M is large (in which case a significant portion of Ψ̄ will be well
approximated by Lemma 3.1), the algorithm can be improved to use this result.

3.5.2. Recovery of φZm−1. From the definition of Zm−1, the characteristic func-
tion is approximated in terms of the PROJ expansion of fYm−1 , recovered over
[µ̄m−1 − ā

2 , µ̄m−1 + ā
2 ], and corresponding to the subset of basis elements ϕa,n, n =

Nm−1 + 1, . . . , Nm−1 +N :

φZm−1(ξ) =

∫
R

(ey + 1)iξfYm−1(y)dy

≈
∫
R

(ey + 1)iξ

(
a1/2Ca,N

N∑
n=1

β̄m−1
n ϕa,Nm−1+n(y)

)
dy

≈ Ca,N
N∑
n=1

β̄m−1
n · Ψ̄(ξ,Nm−1 + n) := φ̄Zm−1(ξ).(32)

As before, the grid is fixed by xm−1
1 , and the column vector β̄m−1 := <[D{Hm−1

j }Nj=1]
is determined via

(33) Hm−1
1 = 1/(960a3), Hm−1

j := φ̄Ym−1(ξj) · ζj exp(−ixm−1
1 ξj), j = 2, . . . , N.
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Figure 3: Modulus of φYm with ∆t = 1/50 for (C,G,M, Y ) = (.0244, .0765, 7.5515, 1.2945), and
r = .0367. The x-axis: ξ ∈ [−2πa, 2πa], ∆ξ = 2π/ā, where a = 26, ā = 23.

In fact, we only need the values of φ̄Ym(ξ) for the discrete set of points ξj =
(j − 1)∆ξ, j = 1, . . . , N . Accordingly, if we define the N × (NM−1 +N) matrix Ψ̄ by

Ψ̄(j, n) := Ψ̄(ξj , n), j, n = 1, . . . , NM−1 +N,

the computation at each stage can be represented as

(34) Φ̄Zm−1 = Ca,N Ψ̄m−1β̄
m−1

where Φ̄Zm−1 = (φ̄Zm−1(ξ1), . . . , φ̄Zm−1(ξN ))>, and for m = 2, . . . ,M ,

Ψ̄m−1(j, n) = Ψ̄(j,Nm−1 + n), j, n = 1, . . . , N.

Here, Ψ̄m−1 is defined for notational compactness and to indicate that only a subset
of Ψ̄ takes part in the matrix-vector product.

3.5.3. Recovery of φYm. To determine Φ̄Ym , equation (32) yields

φ̄Ym(ξ) = φ̄Zm−1(ξ)φR(ξ) = Ca,N

N∑
n=1

Ψ̄(ξ,Nm−1 + n) · β̄m−1
n · φR(ξ).(35)

In matrix form the algorithm reads

(36) ΦC
R := Ca,NΦR, Φ̄Ym =

(
Ψ̄m−1β̄

m−1
)
◦ ΦC

R, m = 2, . . . ,M,

where ◦ denotes the Hadamard product and ΦR = (φR(ξ1), . . . , φR(ξN ))>.
An example of the modulus of recovered ChFs for the CGMY model with M = 50

is given in Figure 3, where the line corresponding to m = 1 is just |φR(ξ)|. Notice
how the ChFs collapse about the origin as m approaches M . The reflects the fact
that, as m increases, the density of fYm becomes less peaked (ie smoother), which
translates into a more rapid decay of φYm .
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3.6. Parameter Selection. The two parameters required to apply the APROJ
method are ā and N (or equivalently ∆). For several experiments in the numerical
section, we fix a value of ā = 2P̄ (often excessively large to isolate the resolution error)
and increase the parameter a = 2P , which allows us to illustrate the convergence
behavior as a function of resolution.10 For example, Figure 7 in appendix illustrates
the convergence in a for several levels of ā fixed.

This section provides an automated approach to parameter selection, requiring
no user input, which should facilitate implementation in practical pricing scenarios.
We first fix an initial value for N and truncation multiplier L1. For ∆t ≥ 1/60 we
find that N = 26 and L1 = 12 provide good starting values. Similarly we initialize
N = 27 and L1 = 16 for ∆t < 1/60. We then initialize ā given according to the
cumulants of R∆t , as proposed in [19] (without the lower bound):

(37) ā← 2 ·max
{

1, L1

√
c2∆t +

√
c4∆t

}
,

and set ∆ ← ā/N (see Table 6 for cn). Since the cumulant based approach of [19]
has been shown to produce unsatisfactory estimates for certain heavy-tailed models
(see for example [8, 15]), the value of ā in (37) serves only as an initial guess in
our algorithm, and alternative initial choices for ā are also feasible. To determine if
the intial choice of ā and N are sufficient, we estimate the truncation error, with a
tolerance ε1, and a proxy for the valuation error, with a tolerance ε2, increasing the
values for N and ā according to a set of rules. The routine is fully automated, and
produces a final estimate for ā and N to satisfy the user tolerance levels ε1, ε2.

First we estimate the truncation error. As shown in [20] (see also [21]), the
probability mass of a random variable, here R∆t , over an interval [l, u] is given by

P[l < R∆t < u] =

∫ ∞
−∞

e−iξ(u+l)/2 sin(ξ(u− l)/2)

πξ
φR∆t

(ξ)dξ.

Fixing N > 0 and ∆ξ > 0, we have P[l < R∆t < u] ≈ F∆ξ,N (l, u), where

F∆ξ,N (l, u) :=
∆ξ

π

[
γ1 +

∑
1≤|n|≤N−1

e−iγ2(n∆ξ)
sin(γ1(n∆ξ))

n∆ξ
φR∆t

(n∆ξ)

]

where γ1 = (u− l)/2 and γ2 = (u+ l)/2. From Section 3.4.2, we know the grid shift
error is bounded by |E[Ym]− µ̃m| ≤ (µUm − µBm)/2 := τm, and in practice we find that
τM is the largest such error. Hence, given a grid estimate (l, u), we estimate the mass
of fR on (l̃, ũ) = (l + τM , u − τM ). If |1 − F∆ξ,N (l̃, ũ)| > ε1, we double the grid size

N , set ā←
√

2ā, and reestimate.
As a second verification, by the martingale property of e−(r−q)tSt, we can utilize

the following estimate to obtain a proxy for integration error incurred at each step:

10One could use the value of ā = 2P̄ prescribed in Corollary 5.1 which ensures ā − 2|µ̄M | > 0,
and hence the exponential convergence in ā; it is usually around P̄ = 3 for M ≤ 50, or P̄ = 4 when
M = 250. Since this controls the largest coefficient error, it tends to be conservative although robust
for heavy tailed returns (for BSM, P̄ = 2 is more than sufficient for M ≤ 250 and σ ≤ .5, and
practical accuracy of greater than e-04 is achieved with P̄ = 0 ∼ 1). In practice, a conservative rule
of thumb is to choose P̄ = 4 for heavy tailed distributions, and P̄ = 1 for diffusion models.
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EN := Ca,N · ϑ[2]
∗ ·

N∑
n=1

β̄1
n exp(x1

1 + (n− 1)∆) =

∫
f̆R∆t

(x)exdx(38)

where ϑ
[2]
∗ is defined in Table 1. EN approximates E[exp(R∆t)] = exp((r − q)∆t)

using the projected density. Hence, once the truncation criterion is satisfied, we will
further double the grid size as long as |EN − exp((r− q)∆t)| ·M > ε2. The multiplier
M is to account for the number of such approximations made during the algorithm.
The resulting initialization routine is summarized in Subroutine 1. After the main
algorithm, a final check will be made (see Remark 3).

Note that the parameter ε1 = 5e-04, along with ε2 = 5e-04 are set in Subroutine
1 to satisfy an overall valuation error tolerance of TOL:= 5e-04 or better, uniformly
across models, and tends to be conservative. This is illustrated in Table 9 of the
numerical section. The contract maturity is incorporated in our algorithm by the
ChF φR∆t

used to estimate the truncation and integral errors, which is a function of
∆t = T/M . Table 10 illustrates the performance for maturities of two and four years.

Subroutine 1 Initialization by automated parameter selection

For ∆t ≥ 1/80, Set: L1 = 12, N = 26; For ∆t < 1/80, Set: L1 = 16, N = 27

Set error tolerances ε1 = 5e-04; ε2 = 5e-04
Calculate cumulants c1, c2, c4 of R1 (see Table 6)
µ̃1 ← c1∆t; θ ← (r − q)∆t; µB1 ← c1∆t

Initialize ā← 2 ·max
{

1, L1

√
c2∆t +

√
c4∆t

}
Set(∆, a,∆ξ): ∆← ā/N ; a← 1/∆; ∆ξ ← 2π/2ā
for m = 2 . . .M do

µBm ← µB1 + log
(

1 + eµ
B
m−1

)
; µ̃m ← 1

2

(
µBm + θ + log

(
exp(θm)−1
exp(θ)−1

))
end for
Max grid shift error: τM := 1

2

(
θ + log

(
exp(θM)−1
exp(θ)−1

)
− µBM

)
x1

1 ← µ̃1 + (1−N/2)∆
l← x1

1 + τM ; u← (x1
1 + ā)− τM ; γ1 ← u−l

2 ; γ2 ← u+l
2

while |1− F∆ξ,N (l, u)| > ε1 do

N ← 2N ; ā←
√

2ā; Set(∆, a,∆ξ)
x1

1 ← µ̃1 + (1−N/2)∆; Update: l, u, γ1, γ2

end while
{ξj}Nj=1 = (j − 1)∆ξ, Φ← {φR(ξj)}Nj=1; Calculate {ζj}Nj=2 from (11)

Calculate {Hj}Nj=1 from (30); {β̄n}Nn=1 ← <{FFT{Hj}Nj=1}
Calculate EN from (38)
while |EN − exp(θ)| ·M > ε2 do

N ← 2N ; ā←
√

2ā; Set(∆, a,∆ξ)
Recalculate: {ξj}Nj=1, Φ, {ζj}Nj=2, {Hj}Nj=1, {β̄n}Nn=1 and EN

end while
Nm ← ba(µ̃m − µ̃1)c; xm1 ← (µ̃1 +Nm∆) + (1−N/2)∆, m = 1, . . . ,M
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3.7. Approximation of Ψ. We now discuss the numerical integration of the ma-
trix Ψ. From equation (31), for j = 1, . . . , N , From equation (31), for j = 1, . . . , N ,

Ψ(j, n) := a1/2

∫
In

(ey + 1)iξjϕa,n(y)dy, n = 1, . . . , N +NM−1,

which we approximate by Ψ̄ using Newton-Cotes quadrature. By fixing the grids
with {xm1 }

M−1
m=1 defined by equation (28), each can be considered as a subset of x1

1 +
(n− 1)∆, n = 1, . . . , N +NM−1, so quadrature points (and function evaluations) can
be reused in subsequent approximations. Moreover, the induced grid overlap reduces
the computation11 of Ψ̄ from N × ((M − 1)N) elements to N × (N + NM−1) ≤
N × (log(M − 1)N) (see Section 3.9).

To obtain the matrix Ψ̄ we evaluate the integrals by applying a seven point
Newton-Cotes rule to each subinterval I ln, l = 1, 2, 3, where

In := [xn−3∆/2, xn−∆/2]∪[xn−∆/2, xn+∆/2]∪[xn+∆/2, xn+3∆/2] := I1
n∪I2

n∪I3
n.

Combined with the known values of ϕ[2](y) at each quadrature point, this results in
the (composite) seven-point rule on In

Q(ν) =
1

840

{
3
[
ν1 + ν17 + 25(ν5 + ν13) + 46(ν7 + ν11)

]
+

27

18

[
ν2 + ν16 + 4(ν4 + ν14) + 13(ν8 + ν10)

]
+ 34 [ν3 + ν15 + 6ν9] + 41 [ν6 + ν12]

}
,

where ν is defined in Subroutine 2, and represents generic values of the integrand for
some (j, n) fixed.12.

Subroutine 2 Calculation of Ψ̄
Nη = 17 + 6(N +NM−1 − 1)
ηk ← x1

1 + (k − 9)∆/6, k = 1, . . . , Nη

θk ← exp (i∆ξ log (1 + exp(ηk))) , k = 1, . . . , Nη

η ← θ
Ψ̄(1, n)← 1, n = 1, . . . , N +NM−1

for j = 2 . . . N do
for n = 1, . . . , N +NM−1 do

νk ← ηk+6(n−1), k = 1, . . . , 17
Ψ̄(j, n)← Q(ν)

end for
η ← η ◦ θ

end for

To calculate all integrals in Ψ(j, ·) for j fixed thus requires a full grid {ηk}
Nη
k=1 of

size Nη = 17 + 6(N +NM−1 − 1), where13

{ηk}
Nη
k=1 = x1

1 − 8∆/6, . . . , x1
1 + (N +NM−1 − 1)∆ + 8∆/6, ηk − ηk−1 = ∆/6.

11For example, when N = 211 and M = 250, the size of Ψ̄ is reduced from 1.04× 108 to 7.08× 105

elements.
12Note that Q(ν) requires only 17 points to evaluate to populate Ψ(j, n), since xn − ∆/2 and

xn + ∆/2 are each shared by two subintervals, and on the boundaries ϕ[2](y) = 0
13This grid is used to initialize the algorithm, after which the value of η is updated.
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Figure 4: Plotted densities fYM , M = 12, recovered by PROJ for the models: BSM(.17801),
NIG(6.1882, -3.8941, .1622), CGMY(.6509, 5.853, 18.27, .8) in section 6.

Using the fact that

(ey + 1)iξj = exp (iξj log (1 + ey)) = exp (i(ξj−1 + ∆ξ) log (1 + ey))

= exp (i∆ξ log (1 + ey)) · exp (iξj−1 log (1 + ey)) ,

we obtain Subroutine 2 for Ψ̄, where η◦θ denotes the Hadamard product14. Since the
quadrature rule is fixed (e.g. seven-point in our case, although alternative quadra-
tures can be used as well), no user-supplied inputs are required. This simplifies the
implementation as compared to a procedure such as ASCOS [41], which requires a
specification of nq (quadrature points for the Clenshaw-Curtis integration rule), which
can vary substantially from one application to the next.

3.8. The Valuation Step. Given the approximation Φ̄YM , the final step is anal-
ogous to the valuation problem for a European option. Rather than specify xM1 as
before, the valuation accuracy can be further improved by perturbing the terminal
grid so that the vanilla option “kink”, defined by

(39) y∗ := log
(
(M + 1)W/S0 − 1

)
,

is a member. In this case, equation (15) can be expressed as

(40) g(y) :=


(
S0(1 + exp(y))

M + 1
−W

)
1[y ≥ y∗], for a call,(

W − S0(1 + exp(y))

M + 1

)
1[y ≤ y∗], for a put.

Initially defining x̃M1 = µ̃1 +NM∆ + (1−N/2)∆ and n∗ = b(y∗ − x̃M1 )a+ 1c, we set

(41) xM1 := y∗ − (n∗ − 1)∆, xMn = xM1 + (n− 1)∆, n = 1, .., N.

14To evaluate the complexity, η requires on the order of O(Nη) operations to initialize (as θ),
followed by N −1 Hadamard products for a total cost of O((N −1)Nη) operations. Each quadrature
application across a row Ψ̄(j, ·) of Ψ̄, of which there are N − 1, requires O(N + NM−1) operations.
Hence, Ψ̄ is populated at a cost of O((N − 1)(N +NM−1)) operations.
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from which y∗ = xMn∗ . If we then define the terminal basis {ϕMa,n(y)}Nn=1 where ϕMa,n(y)

is centered over xMn , the density is approximated by

fYM (y) ≈ 1

2π

N∑
n=1

〈φ̄YM , ̂̃ϕMa,n〉 · ϕMa,n(y) ≈ a1/2Ca,N

N∑
n=1

β̄Mn ϕ
M
a,n(y)

where ϕMa,N/2(y) is roughly centered over the mean of YM , and β̄M := <[D{HM
j }Nj=1]

is determined using

(42) HM
1 = 1/(960a3), HM

j := φ̄YM (ξj)ζj exp(−ixM1 ξj), j = 2, . . . , N.

The final step is to approximate the initial value by integrating the terminal payoff
against the PROJ expansion of fYM (see Figure 4):

V ◦ g(S0) = e−rT
∫
R
g(y;S0)fYM (y)dy ≈ e−rtMCa,N

n∗+1∑
n=1

β̄Mn gn,(43)

where the terminal payoff coefficients are defined for n = 1, . . . , N by

gn := a1/2

∫ xMn +3∆/2

xMn −3∆/2
ϕMa,n(y)g(y)dy =

∫ 3/2

−3/2
ϕ(y)g

(
xMn +

y

a

)
dy.(44)

Remark 2. For a general payoff g(y), equation (44) can be numerically integrated,
by taking into account the piecewise definition of ϕ and any payoff discontinuities. In
general, even when analytical formulas for gn are known, closed form quadrature rules
(such as those in Table 1 for put options) provide more numerically stable coefficients
as the resolution is refined (see [29] for more discussion).

As for European options, put-call parity can be used to price Asian call op-
tions (see equation (46)). This approach is preferred numerically since the put has
a bounded payoff. For vanilla options defined in equation(40), define C := S0

M+1 and
D := W − C, and

En := exp(xMn ) = exp(xM1 + (n− 1)∆), n = 1, . . . , n∗ + 1.

The payoff coefficients of a put option are given by gputn = 0 for n = n∗ + 2, . . . , N ,
and

(45) gputn :=



D · ϑ̄[2]
∗ − C · ϑ[2]

∗ · En n = 1, . . . , n∗ − 2

D · ϑ̄[2]
−1 − C · ϑ

[2]
−1 · En n = n∗ − 1

D · ϑ̄[2]
0 − C · ϑ

[2]
0 · En n = n∗

D · ϑ̄[2]
1 − C · ϑ

[2]
1 · En n = n∗ + 1

where ϑ
[2]
j and ϑ̄

[2]
j , derived in [29], are provided in Table 1 for reference. The value is

then approximated by substituting gputn for gn in equation (43). Once the put value
Vput is determined, the call value Vcall satisfies (see Section 4.3)

(46) Vcall = Vput +
S0e
−rT

M + 1

(
e(r−q)∆t(M+1) − 1

e(r−q)∆t − 1

)
− e−rTW.
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Quadratic ϑ̄
[2]
j ϑ

[2]
j

j = ∗ 1 1
5

[
1
2 + 1

9 (cosh(5∆/4) + 7 cosh(∆/2) + 22 cosh(∆/4)) + cosh(3∆/4) + 1
6 cosh(∆)

]
j = −1 47

48
1
10

[
1 + 1

9

(
e−5∆/4 + 7e−∆/2 + 44 cosh(∆/4)

)
+ e−3∆/4 + 1

6e
−∆

+ 7
12e

∆/2 + 49
72e

5∆/8 + 25
72e

7∆/8 + 3
16e

3∆/4 + 7
144e

∆
]

j = 0 1
2

1
10

[
7
24 + 1

9e
−5∆/4 + 1

6e
−∆ + e−3∆/4 + 7

12e
−∆/2 + 13

12e
−3∆/8 + 11

24e
−∆/4 + 47

36e
−∆/8

]
j = 1 1

48
1
80

[
e−9∆/8 + 1

6e
−5∆/4 + 1

9e
−11∆/8 + 7

18e
−∆
]

Table 1: Stable closed form coefficient approximations using Boole’s rule for use with terminal payoffs.

Remark 3. While the two checks in Section 3.6 are designed to prevent an insuf-
ficient choice of ∆ and ā at initialization, we can use the following quantity

E[eYM ] =
M + 1

S0
E[AM ]− 1 =

e(r−q)∆t(M+1) − 1

e(r−q)∆t − 1
− 1

to estimate the final valuation error. In particular, the error in estimating E[eYM ],

(47) EM := E[eYM ]− Ca,N · ϑ[2]
∗ ·

N∑
n=1

β̄Mn exp(xMn )

serves as a proxy for the error in V ◦ g(S0). Given an value error tolerance TOL =
5e-04, we set a mean error tolerance for EM of ε3 := TOL/10 = 5e-03. If EM < ε3,
the algorithm terminates. Otherwise, if this threshold is exceeded, we reenter the main
loop in Algorithm 3. We will then have the new value estimate, VN , and the previous
estimate VN/2. Hence, the new stopping criteria becomes |VN − VN/2| <TOL.

3.9. The Algorithm and its Complexity. We now summarize the proceeding
steps which define the quadratic APROJ algorithm, while alternative bases can be
accommodated similarly. The algorithm calls initialization Subroutine 1, although
one can instead select N and ∆ directly. After Subroutine 2 is called to compute Ψ̄,
the main loop begins. Note that we have designed the routine for memory efficiency
by reusing the arrays H and β̄.

3.9.1. Complexity. We begin with cost of initializing the matrix Ψ̄. From Section
3.7, for a given quadrature rule the complexity associated with calculating Ψ̄ isO((N−
1)(N +NM−1)). From equation (25), we can bound the growth of NM−1, and hence
the dimensions of Ψ̄. With µ̃m defined in equation (26), it follows that

µ̃M−1 − µ̃1 ≤ log(M − 1) +
T

M
((M − 2)(r − q)− (w + E[L(1)]))

≤ 2 log(M − 1),

for sufficiently large M , by Proposition 3.2. For ā ≥ 2,

(48) NM−1 = ba(µ̃M−1 − µ̃1)c ≤ b2N log(M − 1)/āc ≤ N log(M − 1).
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Algorithm 3 Main Algorithm

Value error tolerance TOL:=5e-04
Call Subroutine 1 to obtain:

Input 1: Final parameters N,∆, ā,∆ξ

Input 2: Grids {ξj}Nj=1, {Nm}Mm=1, {xm1 }Mm=1

Input 3: Coefficient input Φ, {ζj}Nj=2, {β̄n}Nn=1

Call Subroutine 2 to compute Ψ̄
Φ← Ca,NΦ; C1 ← 1/(960a3)

Hj ← Φj ·
∑N

n=1 Ψ̄j,nβ̄n, j = 1, . . . , N
β̄ ← H
for m = 3, . . . ,M : do

H1 ← C1; Hj ← ζj · β̄j · exp(−iξj · xm−1
1 ), j = 2, . . . , N

β̄ ← <[FFT(H)]
Hj ← Φj ·

∑N
n=1 Ψ̄j,Nm−1+nβ̄n, j = 1, . . . , N

β̄ ← H
end for
Redefine xM1 by equation (41)
H1 ← C1; Hj ← ζj · β̄j · exp(−iξj · xM1 ), j = 2, . . . , N
β̄ ← <[FFT(H)]
Find put value Vput using equation (43) with gputn defined in (45)
For a call, use put-call parity equation (46)
Compute final error proxy EM in eq. (47), and proceed as directed in Remark 3

Thus, N + NM−1 ≤ (N + 1) log(M − 1) = O(N log(M)), so the complexity of Ψ̄
is O(N2 log(M)). Given that the computational cost of determining xm1 and Hm,
m = 1, . . . ,M , is on the orderO(MN), and the final value cost isO(N), the remaining
contribution to the algorithm’s complexity resides in the cost of β̄m, m = 1, . . . ,M ,
which is on the order O(MN log2(N) when the fast Fourier transform is utilized, the
matrix vector multiplications Ψ̄m−1β̄

m−1, m = 2, . . . ,M , at a cost of O((M − 1)N2),
and the Hadamard products

(
Ψ̄m−1β̄

m−1
)
◦ΦC

R, m = 2, . . . ,M , at a cost of O((M −
1)N). Hence, the total cost is O(MN log2(N) +N2 log(M) +MN2) = O(MN2).

3.10. Greeks. We now demonstrate how price sensitivities are calculated at al-
most no additional cost from the valuation algorithm. Consider first the put option

payoff g(y;S0) defined in equation (40), where y∗ = y∗(S0) = log
(

(M + 1)WS0
− 1
)

.

First we observe that YM is independent of S0. Indeed,

exp(YM ) =
1

S0

M∑
m=1

Sm =
1

S0

M∑
m=1

S0 exp

(
m∑
k=1

Rk

)
=

M∑
m=1

exp

(
m∑
k=1

Rk

)
.

From equation (43), Leibniz rule is used to determine the put option Delta, noting
that g(y∗(S0), S0) = 0:

∆ :=
∂V ◦ g
∂S0

= e−rT
∫ y∗(S0)

−∞

∂g(y;S0)

∂S0
fYM (y)dy =

−e−rT

M + 1

∫ y∗(S0)

−∞
(1 + ey)fYM (y)dy.

Using quantities that were already computed during the valuation stage, we find that

(49) ∆put ≈ Ca,N
−e−rT

M + 1

n∗+1∑
n=1

β̄Mn gn(∆put).
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The coefficients gn(∆put) are defined similarly to equation (45), but instead of D ·
ϑ̄

[2]
j −C ·ϑ

[2]
j ·En for j ∈ {∗,−1, 0, 1}, we use gn(∆put) = ϑ̄

[2]
j +ϑ

[2]
j ·En. To determine

the call Delta, equation (46) leads to the put-call parity formula

∆call = ∆put +
e−rT

M + 1

(
e(r−q)∆t(M+1) − 1

e(r−q)∆t − 1

)
Likewise, the put (and call) option Gamma is given by

Γ :=
∂2V ◦ g
∂S2

0

=
−e−rT

M + 1

∂

∂S0

∫ y∗(S0)

−∞
(1 + ey)fYM (y)dy

=
−e−rT

M + 1

(
1 + ey

∗
)
fYM (y∗)

∂y∗(S0)

∂S0
=

(
W

S0

)2 (M + 1) · e−rT fYM (y∗)

W (M + 1)− S0
.(50)

For the quadratic basis we use the approximation15

fYM (y∗) ≈ a · Ca,N ·
(
ϕ[2](0)β̄Mn∗ + ϕ[2](1)

(
β̄Mn∗−1 + β̄Mn∗+1

))
,

where ϕ[2](0) = 3/4, ϕ[2](1) = 1/8 and n∗ is given in the previous subsection. Thus
∆ and Γ are computed as byproducts of the pricing algorithm.

4. Extensions. In this section we illustrate in-progress option pricing, generalized
arithmetic averaging and continuously monitored option pricing.

4.1. In-Progress Options: Pricing and Greeks. Only a slight modification is
required to price Asian options at arbitrary times after averaging has begun. With
the arithmetic average AM defined in equation (14), then for τ ∈ [Ms∆t, (Ms+1)∆t),
for some Ms < M − 1, we find a variable YM−Ms such that

AM =
1

M + 1

[
Ms∑
m=0

Sm + S(τ) · exp(YM−Ms)

]
.

That is, Ms indexes the most recent monitoring date, and UMs :=
∑Ms

m=0 Sm as well
as S(τ) are known at the time of pricing. Noting that for h := (Ms + 1)∆t − τ ,

SMs+1 = S(τ)eR(h) where R(h)
d
= log(St+h/St), it follows from stationarity and

independence of increments that YM−Ms can be found recursively by

φY1 = φR, φ̄Ym = φR · φ̄Zm−1 , m = 2, . . . ,M −Ms − 1,

φ̄YM−Ms = φR(h) · φ̄ZM−Ms−1
.

When τ = Ms∆t, φR ≡ φR(h). As before, the final grid defined by xM−Ms
1 is shifted

so that the kink point

(51) y∗ := log ((M + 1)W − UMs)− log(S(τ))

is a member. For in-progress vanilla options, the payoff is expressed as

(52) g(y) :=


(

1
M+1 (UMs + S(τ)ey)−W

)
1[y ≥ y∗], for a call,(

W − 1
M+1 (UMs + S(τ)ey)

)
1[y ≤ y∗], for a put,

15For the linear basis, fYM (y∗) ≈ a · Ca,N · β̄Mn∗
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and payoff coefficients are derived analogously. Perhaps of even more interest than
the price for an in-progress option are the Greeks. For the fixed strike Asian put,

∆ :=
∂Vτ ◦ g
∂S(τ)

=
−e−r(T−τ)

M + 1

∫ y∗

−∞
eyfYM−Ms (y)dy,

where Vτ ◦ g(UMs , S(τ)) = e−r(T−τ)E[g(AM )|UMs , S(τ)]. Similarly, the put (and call)
option Gamma is given by

Γ :=
∂2Vτ ◦ g
∂S2(τ)

=
e−r(T−τ)

(S(τ))2
fYM−Ms (y

∗)

(
W − UMs

M + 1

)
,

where fYM−Ms (y
∗) is calculated as before.

4.2. Generalized Arithmetic Asian Pricing. By a slight modification of the orig-
inal algorithm, the ARPOJ method is capable of pricing payoffs on generalized aver-
ages of the underlying16

(53) AλM :=
1

M + 1

M∑
m=0

λmSm,

where λm > 0, m = 0, . . . ,M . We have the following extension, which is proved in a
similar fashion to the Carverhill-Clewlow result, noting that

AλM =
S0

M + 1

(
λ0 + eR1

(
λ1 + eR2

(
· · ·eRM−1

(
λM−1 + λMe

RM
))))

.

In alternative representation is provided in Corollary 4.1, which prevents the matrix
Ψ̄ from becoming stage dependent, and results in an efficient algorithm.

Corollary 4.1. Fix a set of positive weights λ = {λm}Mm=0, and define Xm :=
λm
λm−1

exp(Rm), m = 1, . . . ,M , where Rm = log(Sm/Sm−1). Set Y1 = log(XM ) =

log(λM/λM−1) +RM , and define recursively

Ym = log

(
λM+1−m

λM+1−(m−1)

)
+RM+1−m + Zm−1, m = 2, . . . ,M,

where Zm := log(1 + exp(Ym)). Then

(54) AλM ≡
λ0S0

M + 1
(1 + exp(YM )) .

Proof. The proof relies on an equivalent factorization of AλM ,

AλM =
λ0S0

M + 1

(
1 +

λ1S1

λ0S0

(
1 +

λ2S2

λ1S1

(
· · ·λM−1SM−1

λM−2SM−2

(
1 +

λMSM
λM−1SM−1

))))
,

which can be verified by multiplying each of the terms. The remainder of the proof
is similar to standard construction, and follows algebraically.

This form of the recursion requires that λm > 0 for each m, in which case the
structure of the APROJ algorithm is unaffected. Namely, the matrix Ψ̄ is the
same for each m, and the only real change is the grid shift, where we add λ̃m :=
log(λM+1−m/λM+1−(m−1)) to each µ̃m. The perturbed grid shifts µ̄m are defined still
by equation (27).

16We include the term 1/(M + 1) so that the standard average is obtained when all λm = 1.
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4.3. Put-Call Parity. Just as for vanilla European options, put-call parity can be
used to price Asian call options in terms of puts and conversely (this will be used for
all numerical experiments). In the generalized setting, we have

e−rTE
[
(AλM )+ − (−AλM )+

]
=

e−rT

M + 1
E

[
M∑
m=0

λmSm

]
=
S0e
−rT

M + 1

M∑
m=0

λme
(r−q)∆tm,

where q is the continuous dividend yield, and ∆t = T/M in the uniform case. Con-
sidering the fixed and floating strikes17 together, with α = ±1,

(α(AM −K1ST −K2))+ = (αAλM )+,

where

λ0 = 1− K2

S0
(M + 1), λM = 1− (M + 1)K1, λm = 1, m = 1, . . . ,M − 1.

In this setting, with CM (S0, T ) and PM (S0, T ) denoting the call and put prices,

CM (S0, T )− PM (S0, T ) =
S0e
−rT

M + 1

(
e(r−q)T (M+1)

M − 1

e(r−q) T
M − 1

)
− S0K1e

−qT − e−rTK2,

from which the fixed and floating strike parities are derived. Moreover, the forward
contract, g({Sm}) = AM −K2, is priced immediately by setting K1 = 0.

It should be noted that put-call parity is a useful tool for maintaining robustness
when pricing call options. Since the density of YM is recovered approximately over
[µ̄M − ā

2 , µ̄M + ā
2 ], this implies a lower bound on the truncation error for pricing call

options:

εtrunc ≥ e−rT
(
S0(1 + exp(µ̄M + ā/2))

M + 1
−W

)∫ ∞
µ̄M+ā/2

fYM (y)dy.

For a heavy-tailed density, the implied truncation error can be unacceptable, in which
case put-call parity can be used to price call options in terms of the bounded put prices.

4.4. Continuous Monitoring. As a final extension, we consider the case of con-
tinuously monitored contracts, with terminal payoffs

g(S) =


(

1
T

∫ T
0 S(t)dt−W

)+
for a call,(

W − 1
T

∫ T
0 S(t)dt

)+
for a put.

Let VN (M) denote the discretely monitored value approximation with M monitoring
dates, and with N fixed. By fixing a positive integer d, the continuously monitored
option value can be approximated by a four-point Richardson extrapolation:

V∞N (d) :=
1

21

(
64VN (2d+3)− 56VN (2d+2) + 14VN (2d+1)− VN (2d)

)
,

as demonstrated in [41]. We compare the extrapolation procedure18, when applied
with APROJ, to the values obtained by [41] in Table 2. For both strikes, agreement
in prices is to at least three decimals.

17For example, a floating strike call has payoff (AM −K1ST )+.
18For greatest efficiency, a common Ψ̄ can be used for all four settings of M in the extrapolation

procedure, by perturbing the means slightly so they align.
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W = 90 W = 100

d ASCOS APROJ ASCOS APROJ

1 – 12.67415 – 5.11827
2 – 12.67441 – 5.11855
3 – 12.67443 – 5.11859
4 12.6748 12.67443 5.1191 5.11859
5 12.6744 12.67443 5.1186 5.11859
6 12.6743 12.67443 5.1185 5.11859

Table 2: Continuously monitored Asian option values by Richardson Extrapolation. NIG model with
parameters from [23]. Values obtained by quadratic APROJ with P = 7, P̄ = 4, and seven point
rule. ASCOS values given in [41].

5. Error Analysis. In this section, we provide a stability analysis of the error
propagation of ChFs for 1 ≤ m ≤ M , after which we conclude with the terminal
valuation error for pricing options on the arithmetic average.

Recall that the characteristic functions for Levy processes of interest satisfy

(55) |φR∆t
(ξ)| ≤ κ exp(−∆tc|ξ|ν), ξ ∈ R.

For the BSM, KOU (double exponential), and MJD (Merton’s Jump Diffusion) models

from Table 6, the ChF of log return satisfies |φR∆t
(ξ)| ≤ exp

(
−∆t

σ2

2 |ξ|
2
)

, so equation

(1) holds with ν = 2 and c = σ2

2 . For the CGMY model, ν = Y and c can be taken
as c = 2C|Γ(−Y ) cos(πY/2)| · ε, for any ε ∈ (0, 1). With the Normal Inverse Gaussian
(NIG) model, ν = 1 and c = δ. For the pure jump VG, |φR∆t

(ξ)| ≤ κ|ξ|−2∆t/ν ,
so that φR∆t

fails to be integrable for ∆t ≤ ν/2. However, by adding a Brownian

motion component, −σ2

2 ξ
2, equation (1) is satisfied with ν = 2. We have the following

Corollary of Proposition 2.1.

Corollary 5.1. Suppose that φR∆t
(ξ) ∈ H(Dd) for some d > 0. Fix a = 2P and

N = a · ā, where ā = 2P̄ for P̄ > 1 + log2 |µ̄M |. Assume for some c, κ > 0 and
ν ∈ (0, 2], φR∆t

(ξ) satisfies equation(55). Then for some 0 < γ ≤ d, and a constant

CM = O(maxm=1,...,M‖φYm‖Hd),

sup
1≤n≤N

∣∣∣a1/2Ca,N · β̆ma,n − 〈fYm , ϕ̃a,n〉
∣∣∣ ≤ a−1/2

π

(
CM

e−(ā−2|µ̄M |)γ/2

1− e−āγ
+ τa(R∆t)

)
(56)

independently of 1 ≤ m ≤ M where τa(R∆t) = O(a exp(−∆tc · (2πa)ν)) is as in
equation (8). For large enough a > 0, and d <∞, γ will approach d.

5.1. Error Propagation. We can now state the core result concerning the prop-
agation of ChF error for a given number of monitoring dates M .

Proposition 5.1. Suppose that φR∆t
(ξ) ∈ H(Dd) for some d > 0, and consider a

pth order B-spline basis generated by ϕ. Fix a = 2P and N = a · ā, where ā = 2P̄

for P̄ > 1 + log2 |µ̄M |. Assume for some c, κ > 0 and ν ∈ (0, 2], the tail of φR∆t
(ξ)

satisfies equation (55). The terminal ChF error satisfies ε(φ̄YM (ξ1)) = 0 and

(57) |ε(φ̄YM (ξj))| = O
(

∆(p+1) · e−c̃∆t

(
(j−1)
ā

)ν
ā1/2‖ξ(p+1)φR∆t

(ξ)‖2
)
, 2 ≤ j ≤ N,

where c̃ := (2π)νc. The dependence on M is governed by the behavior of φR∆t
.
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Proof. Fix any ξ ≥ 0, and let G := ∪m=1,..,MGm the full truncated integration
range implied by P̄ , where Gm = [µ̄m − ā

2 , µ̄m + ā
2 ]. To manage notation, we will

suppress the dependence of certain objects on m. For example, we assume by the
indexing on β̄mn that the corresponding elements ϕa,n have been shifted appropriately.
We start by fixing m ≥ 3, for which

ε(φ̄Zm−1(ξ)) := φZm−1(ξ)− φ̄Zm−1(ξ)

=

∫
R

(ey + 1)iξfYm−1(y)dy − Ca,N
N∑
n=1

β̄m−1
n Ψ̄(ξ, n)

=

∫
R/Gm−1

(ey + 1)iξfYm−1(y)dy

+

(∫
Gm−1

(ey + 1)iξfYm−1(y)dy − Ca,N
N∑
n=1

βm−1
n Ψ(ξ, n)

)

+ Ca,N

N∑
n=1

βm−1
n (Ψ(ξ, n)− Ψ̄(ξ, n)) + Ca,N

N∑
n=1

Ψ̄(ξ, n)(βm−1
n − β̄m−1

n )

:=
(
τ(Gm−1) + Jm−1

1 (ξ) + Jm−1
2 (ξ)

)
+ Jm−1(ξ),

where the error term Jm−1(ξ) will be further split into two components. Here we
have defined βm−1

n so that a1/2Ca,Nβ
m−1
n = 〈fYm−1 , ϕ̃a,n〉, from which

f̃Ym−1(y) := a1/2Ca,N

N∑
n=1

βm−1
n ϕa,n(y)

is the true projection truncated to the set {ϕa,n}Nn=1.
Since |(ey + 1)iξ| = | exp(iξ log(1 + ey))| = 1, the truncation error satisfies

τ(Gm−1) =

∫
R/Gm−1

(ey + 1)iξfYm−1(y)dy ≤
∫
R/Gm−1

fYm−1(y)dy ≤ τM (G),

for m = 1, . . . ,M , where τM (G) bounds the largest such truncation error (typically,
τM (G) ≈ τ(G1), since fR has the heaviest tails). The next result characterizes the
convergence of Jm−1

1 , which is governed by the projection error.

Lemma 5.2. For ξ ∈ R, 1 ≤ m ≤M , and C1(R∆t) := C1(ϕ) · ‖ξ2φR∆t
(ξ)‖2/(2π),

Jm−1
1 satisfies

|Jm−1
1 (ξ)| ≤

√
ā · C1(R∆t)∆

(p+1),

with the constant C1(ϕ) from (59), independent of φR∆t
.

Proof. In particular, by Cauchy-Schwartz

Jm−1
1 (ξ) =

∫
Gm−1

(ey + 1)iξfYm−1(y)dy − Ca,N
N∑
n=1

βm−1
n Ψ(ξ, n)

=

∫
Gm−1

(ey + 1)iξ

(
fYm−1(y)− a1/2Ca,N

N∑
n=1

βm−1
n ϕa,n(y)

)
dy

≤ ‖(ey + 1)iξ‖Gm−1

2 · ‖fYm−1 − f̃Ym−1‖
Gm−1

2

≤ ‖(ey + 1)iξ‖Gm−1

2 · ‖fYm−1 − PMafYm−1‖R2 .
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To characterize the convergence rate of density projections onto B-spline bases, we
note that ϕ is Riesz generator which satisfies

(58) ϕ̂(0) = 1, and for m ∈ {0, 1}, ϕ̂(m)(2πk) = 0, k ∈ Z/{0},

where ϕ̂(m) denotes the mth derivative of ϕ. In particular, the pth order B-spline
generator ϕ is a (p + 1)th order Riesz generator. It then follows that for any fX ∈
L2(R), the projection error satisfies

(59) inf
fa∈Ma

‖fX − fa‖2 ≤ ‖fX − PMafX‖2 ≤ C1(ϕ)a−(p+1)‖f (p+1)
X ‖2,

where C1(ϕ) is a constant independent of fX (see [39]). It follows that
(60)

‖f (p+1)
Ym

‖2 =
1

2π
‖F [f

(p+1)
Ym

]‖2 =
1

2π
‖(−iξ)(p+1)φYm(ξ)‖2 ≤

1

2π
‖ξ(p+1)φR∆t

(ξ)‖2 <∞,

since for ξ ∈ R, |φYm(ξ)| ≤ |φR∆t
(ξ)|, and the (p+1)th moment is finite by exponential

decay of φR∆t
(ξ). Thus if we define C1(R∆t) as in the statement of the Lemma,

‖fYm−1 − PMafYm−1‖R2 ≤ C1(R∆t)∆
(p+1), ∀m ≥ 2.

Hence, for m ≥ 2 and ξ ∈ R

|Jm−1
1 (ξ)| ≤ ‖(ey + 1)iξ‖Gm−1

2 C1(R∆t)∆
(p+1) ≤

√
ā · C1(R∆t)∆

(p+1),

since |(ey + 1)i2ξ| = 1 and |Gm−1| ≤ ā.

Remark 4. We should note that, while the bound in (60) is chosen to be indepen-
dent of m, the behavior of this term is truly a decreasing function of m, although
is difficult to quantify. This can be seen by examining the behavior of φYm from the
approximations given in Figure 3 for a CGMY model.

The next source of error materializes from the approximation of Ψ by Ψ̄.

Lemma 5.3. For ξ ∈ R 1 ≤ m ≤M , and C2(R∆t) := C2(ϕ)‖φR∆t
‖2/2π,

(61) |Jm−1
2 (ξ)| ≤

√
ā · ε(Ψ̄)C2(R∆t),

where the constant C2(ϕ) is the lower frame bound defined in equation (3) for the
piecewise linear basis, and

ε(Ψ̄) := sup{|Ψ(ξj , n)− Ψ̄(ξj , n)| : 1 ≤ j ≤ N, 1 ≤ n ≤ N +NM−1}.

Proof. By the discrete version of Cauchy-Schwartz,

Jm−1
2 (ξ) = Ca,N

N∑
n=1

βm−1
n (Ψ(ξ, n)− Ψ̄(ξ, n))

≤ a−1/2

(
N∑
n=1

(
Ψ(ξ, n)− Ψ̄(ξ, n)

)2)1/2( N∑
n=1

(
a1/2Ca,Nβ

m−1
n

)2
)1/2

≤
√
ā · ε(Ψ̄) ·

(∑
n∈Z
|〈fYm−1 , ϕ̃a,n〉|2

)1/2
≤
√
ā · ε(Ψ̄) · C2(ϕ)‖fYm−1‖2.
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The term C2(ϕ)‖fYm−1‖2 follows from Bessel’s inequality, which is the upper frame
bound corresponding to the piecewise linear basis. Noting that

‖fYm−1‖2 = ‖φYm−1‖2/2π ≤ ‖φR∆t
‖2/2π,

we have
|Jm−1

2 (ξ)| ≤
√
ā · ε(Ψ̄) · C2(ϕ)‖φR∆t

‖2/2π.

Remark 5. While the definition of ε(Ψ̄) is made so that we obtain an overall con-
vergence rate in ∆ when ā has been fixed and a sufficiently accurate quadrature rule
has been selected, the the error in Ψ̄ tends to be much smaller for ξj ∈ [0, 2πa] near
zero than for ξj near 2πa. If we define

εj(Ψ̄m−1) := sup
1≤n≤N

|Ψ(ξj , Nm−1 + n)− Ψ̄(ξj , Nm−1 + n)|

then Jm−1
2 (ξj) ≤ εj(Ψ̄m−1)

√
ā · C2(R∆t). This is more than offset, however, when

multiplied by φR∆t
(ξj) to obtain the error in φ̄Ym, since φR∆t

(ξj) is close to one for
ξj near zero, and decays exponentially for larger ξj. In practice, the contribution of
ε(Ψ̄) is dominated by the projection error when using a seven-point Newton-Cote’s
rule. Although Boole’s rule is often sufficient (and cheaper) for M ≤ 52, we opt for
the more conservative seven-point rule in general.

For the final term, which reflects the discrete Fourier transform error inherent in β̄m,
we have

Jm−1(ξ) := Ca,N

N∑
n=1

Ψ̄(ξ, n)(βm−1
n − β̄m−1

n ) = a−1/2
N∑
n=1

Ψ̄(ξ, n) · ε(β̄m−1
n ),

where ε(β̄m−1
n ) := a1/2Ca,N (βm−1

n − β̄m−1
n ).

Lemma 5.4. The error source Jm−1(ξ) can be bounded by

(62) |Jm−1(ξ)| ≤ ā

π
εM (a, ā) + C(J4) · ε(φ̄Zm−2)a−1/2|φ̄Z1(ξ)|

where C(J4) is a constant, and

(63) εM (a, ā) := CM
e−(ā−2|µ̄M |)γ/2

1− e−āγ
+ τa(R∆t).

Proof. Splitting ε(β̄m−1
n ) in terms of the discrete Fourier transform and ChF er-

rors, where a1/2Ca,N β̆
m−1
n is the discrete Fourier transform approximation using the

true φYm−1 (see equation (6)), it follows that

ε(β̄m−1
n ) =

(
〈fYm−1 , ϕ̃a,n〉 − a1/2Ca,N β̆

m−1
n

)
+ a1/2Ca,N

(
β̆m−1
n − β̄m−1

n

)
:= ε1(β̄m−1

n ) + ε2(β̄m−1
n ).

Hence,

ε(φ̄Zm−1(ξ)) =
(
τ(Gm−1) + Jm−1

1 (ξ) + Jm−1
2 (ξ) + Jm−1

3 (ξ)
)

+ Jm−1
4 (ξ),
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where we have defined

Jm−1
3 (ξ) := a−1/2

N∑
n=1

Ψ̄(ξ, n) · ε1(β̄m−1
n ), Jm−1

4 (ξ) := a−1/2
N∑
n=1

Ψ̄(ξ, n) · ε2(β̄m−1
n ).

Moreover, for the Newton-Cotes quadrature rules, |Ψ̄(ξj , n)| ≤ 1 for any 1 ≤ j, n ≤ N ,
and by Corollary 5.1

|ε1(β̄m−1
n )| ≤ a−1/2

π
εM (a, ā),

where εM (a, ā) is defined in equation (63).
Hence,

|Jm−1
3 (ξj)| ≤

a−1/2

π
εM (a, ā) · a−1/2

N∑
n=1

|Ψ̄(ξj , n)| ≤ ā

π
εM (a, ā)

Note that Jm−1
4 (ξ) alone depends on ε(φ̄Zm−2(ξj)), since

ε2(β̄m−1
n ) =

a−1/2

π
<

∆ξ

N∑
j=1

′
ha,n(ξj)

(
φYm−1(ξj)− φ̄Ym−1(ξj)

)
=
a−1/2

π
<

∆ξ

N∑
j=1

′
ha,n(ξj)φR∆t

(ξj)ε(φ̄Zm−2(ξj))

 ,(64)

where ha,n(ξ) and ha(ξ) are defined in equation (69) for the linear basis (and in

general is determined by ̂̃ϕ(ξ)), and
∑ ′

indicates that the first and last terms in the
sum are halved. If we define ε(φ̄Zm−2) := max1≤j≤N |ε(φ̄Zm−2(ξj))|, it follows that∣∣∣∣∣<

(
∆ξ

N∑
j=1

′
ha,n(ξj)φR∆t

(ξj)ε(φ̄Zm−2(ξj))

)∣∣∣∣∣ ≤ ε(φ̄Zm−2)∆ξ

N∑
j=1

′
ha(ξj)<(φR∆t

(ξj)),

which is bounded above for all N and a, since <(φR∆t
) admits an upper frame bound.

To derive an upper bound on Jm−1
4 (ξ), we recall the dependence of Ψ̄ and ha,n on

m− 1 (through the shift xm−1
1 , denoted by hm−1

a,n ), from which equation (64) yields

Jm−1
4 (ξ) = a−1/2

N∑
n=1

Ψ̄m−1(ξ, n) · ε2(β̄m−1
n )

= a−1/2
N∑
n=1

Ψ̄m−1(ξ, n)
a−1/2

π
<

(
∆ξ

N∑
j=1

′
hm−1
a,n (ξj)φR∆t

(ξj)ε(φ̄Zm−2(ξj))

)

= O

(
ε(φ̄Zm−2)

a1/2

∣∣∣∣∣
N∑
n=1

Ψ̄m−1(ξ, n)
a−1/2

π
<

∆ξ

N∑
j=1

′
hm−1
a,n (ξj)φR∆t

(ξj))

∣∣∣∣∣
)

= O

(
ε(φ̄Zm−2)

a1/2

∣∣∣∣∣
N∑
n=1

Ψ̄m−1(ξ, n) · a1/2Ca,N β̄
1
Nm−1+n

∣∣∣∣∣
)
.
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As a final simplification, we note that

Jm−1
4 (ξ) = O

(
ε(φ̄Zm−2)a−1/2

∣∣∣∣∣
N∑
n=1

Ψ̄(ξ, n)a1/2Ca,N β̄
1
n

∣∣∣∣∣
)
≤ C(J4)

a1/2
· ε(φ̄Zm−2)|φ̄Z1(ξ)|,

for some C(J4). To see that C(J4) can be chosen independently of Nm−1, from the
decay of φR∆t

(ξ), it follows that fR∆t
∈ C∞(R) has exponential decay at infinity,

along with all of its derivatives [7] (see also [36]).

Summarizing the obtained bounds, it follows that

|ε(φ̄Zm−1(ξ))| =
∣∣(τ(Gm−1) + Jm−1

1 (ξ) + Jm−1
2 (ξ) + Jm−1

3 (ξ)
)

+ Jm−1
4 (ξ)

∣∣
≤ CM (a, ā) +B(a, ξ)ε(φ̄Zm−2).

where

(65) CM (a, ā) := τM (G) +
√
ā · C1(R∆t)∆

(p+1) +
√
ā · C2(R∆t)ε(Ψ̄) +

ā

π
εM (a, ā),

and B(a, ξ) := C(J4)|φ̄Z1(ξ)|a−1/2. Iterating from M − 1 we obtain

|ε(φ̄ZM−1
(ξ))| ≤ CM (a, ā)

M−3∑
j=0

B(a, ξ)j +B(a, ξ)M−2ε(φ̄Z1)

= CM (a, ā)
1−B(a, ξ)M−2

1−B(a, ξ)
+B(a, ξ)M−2ε(φ̄Z1).

Moreover, the error in φ̄Z1 satisfies

ε(φ̄Z1(ξ)) := φZ1(ξ)− φ̄Z1(ξ)

=

∫
R

(ey + 1)iξfR∆t
(y)dy − Ca,N

N∑
n=1

β̄1
nΨ̄(ξ, n)

=

∫
R/G1

(ey + 1)iξfR∆t
(y)dy

+

(∫
G1

(ey + 1)iξfR∆t
(y)dy − Ca,N

N∑
n=1

β1
nΨ(ξ, n)

)

+ Ca,N

N∑
n=1

β1
n(Ψ(ξ, n)− Ψ̄(ξ, n)) + Ca,N

N∑
n=1

Ψ̄(ξ, n)(β1
n − β̄1

n)

:=
(
τ(G1) + J1

1 (ξ) + J1
2 (ξ)

)
+ J1

3 (ξ),

where we note that β̄1
n = β̆1

n, since φR∆t
(ξ) is known exactly. Hence ε(φ̄Z1) ≤

CM (a, ā), from which we derive

|ε(φ̄ZM−1
(ξ))| ≤ CM (a, ā)

1−B(a, ξ)

(
1−B(a, ξ)M−2 + (1−B(a, ξ))B(a, ξ)M−2

)
≤ CM (a, ā)

1−B(a, ξ)M−1

1−B(a, ξ)
≤ 2CM (a, ā),(66)
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for a sufficiently large.
The behavior of CM (a, ā) can be characterized by noting that with ā chosen

sufficiently large, the truncation error τM (G) is dominated by the other sources.
Further, as ε(Ψ̄) can be made negligible by a sufficient choice of quadrature, and
εM (a, ā) converges exponentially in ā, a, the error behaves like O(∆(p+1)), which is
the projection convergence with respect to the B-spline basis of order p. In particular,
from equation (65) we have

CM (a, ā) = O(
√
ā · C2(R∆t)∆

(p+1)).

Recalling that φ̄YM = φ̄ZM−1
φR∆t

,

|ε(φ̄YM (ξj))| ≤ 2CM (a, ā) · |φR∆t
(ξj)| = O(

√
ā ·∆(p+1)|φR∆t

(ξj)|), 2 ≤ j ≤ N,

where we note that ε(φ̄YM (ξ1)) = 0, since φ̄YM (ξ1) = 1 is enforced by the algorithm.
Equation (57) then follows from the assumed decay of φR∆t

.

5.2. Valuation Error. The terminal valuation error for a contract on the arith-
metic average is now characterized. We show that for bounded payoffs19 (as for a put,
with put-call parity to price a call), the error converges on the order of projection
error, O(∆(p+1)). If we define E(VN ) := erT (V ◦ g(S0)− VN ◦ g(S0)), we obtain

E(VN ) =

∫
R
g(y)fYM (y)dy − Ca,N

N∑
n=1

β̄Mn gn

=

∫
R/GM

g(y)fYM (y)dy +

(∫
GM

g(y)fYM (y)dy − Ca,N
N∑
n=1

βMn gn

)

+ Ca,N

N∑
n=1

(
βMn − β̆Mn + β̆Mn − β̄Mn

)
gn := τ̃M (G) + E1 + E2.

Assuming g is bounded, we have

τ̃M (G) =

∫
R/GM

g(y)fYM (y)dy ≤ ‖g‖∞ · P[YM ∈ GcM ] = ‖g‖∞ · τM (G),

which is controlled by the choice of ā sufficiently large.20 In particular, once ā is
fixed, the attainable accuracy of the algorithm is limited by the truncation error.

19This assumption is not essential, although it simplifies the analysis.
20For unbounded g, as long as the price is finite, the integral

∫
R g(y)fYM (y)dy < ∞, hence∫

R/GM
g(y)fYM (y)dy → 0 as GM ↑ R. That is, τM (G)→ 0 as the truncation error decreases.
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Since the coefficients gn are exact21, the second source of error satisfies

E1 =

∫
GM

g(y)fYM (y)dy − Ca,N
N∑
n=1

βMn gn

=

∫
GM

g(y)fYM (y)dy −
N∑
n=1

〈fYM , ϕ̃a,n〉
∫
GM

g(y)ϕa,n(y)dy

=

∫
GM

g(y)

(
fYM (y)−

N∑
n=1

〈fYM , ϕ̃a,n〉ϕa,n(y)

)
dy

≤ ‖g‖GM2 · ‖fYM − PMafYM ‖
R
2 = O(∆(p+1)).(67)

The third source of error, which accounts for the trapezoidal approximation to
the projection coefficients as well as the terminal ChF error, satisfies

E2 = Ca,N

N∑
n=1

(
βMn − β̆Mn + β̆Mn − β̄Mn

)
gn

=
N∑
n=1

a1/2Ca,N

(
βMn − β̆Mn + β̆Mn − β̄Mn

)
·
∫
GM

g(y)ϕa,n(y)dy.

We will need the following result.

Lemma 5.5. For any NM ∈ Z, it holds that

N∑
n=1

Ca,N β̆
1
NM+n = O(1),

where β̆1
NM+n are the DFT coefficients of fR∆t

corresponding to xMn , which are absent
of ChF error since φR∆t

is known (these are not calculated explicitly). For ā suffi-
ciently large, ã > 0 can be chosen so that the sum is strictly less than one ∀a ≥ ã.

Proof. We have the following bound

N∑
n=1

Ca,N β̆
1
NM+n ≤

∫
GM

(∑
n∈Z

a1/2Ca,N |β̆1
n| · ϕa,n(y)

)
dy

=

∫
GM

|f̆R(y)|dy ≤
∫
GM

|fR(y)|dy +

∫
GM

|f̆R(y)− fR(y)|dy,

and the result follows from Corollary 5.1 after applying Cauchy-Swartz inequality to
the second integral, and a similar argument as the proof of Lemma 5.2.

We can now provide the convergence rate for the third error source.

Lemma 5.6. The term E2 is characterized by

(68) E2 = O
(
CM (a, ā)

)
,

where CM (a, ā) is defined in equation (65).

21For numerical reasons we have elected instead to use a more stable approximation than the exact
coefficients.
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Proof. We consider each error ε1(β̄Mn ) := a1/2Ca,N (βMn − β̆Mn ) and ε2(β̄Mn ) :=

a1/2Ca,N (β̆Mn − β̄Mn ) in turn. Noting that, by Corollary 5.1

sup
1≤n≤N

|ε1(β̄Mn )| = a1/2Ca,N sup
1≤n≤N

∣∣∣βMn − β̆Mn ∣∣∣ ≤ a−1/2

π
εM (a, ā),

where εM (a, ā) is defined in equation (63), we have

N∑
n=1

a1/2Ca,N

(
βMn − β̆Mn

)∫
GM

g(y)ϕa,n(y)dy

≤

 N∑
n=1

(
a−1/2

π
εM (a, ā)

)2
1/2(

N∑
n=1

(∫
GM

g(y)ϕa,n(y)dy

)2
)1/2

=
ā1/2

π
εM (a, ā) ·

(
N∑
n=1

|〈g1GM , ϕa,n〉|
2

)1/2

≤ ā1/2

π
εM (a, ā) · C3(ϕ) · ‖g‖GM2 ,

where C3(ϕ) is the upper frame bound of the dual basis, {ϕ̃a,n}n∈Z, and is the inverse

of the lower from bound of the “primal” basis22. Since ‖g‖GM2 ≤ ‖g‖∞ā1/2 (for
bounded payoffs), the final inequality is on the order O(āεM (a, ā)).
Considering ε2(β̄Mn ), we have (noting the dependence of hMa,n(ξj) on the grid {xMn })

ε2(β̄Mn ) =
a−1/2

π
<

{
∆ξ

N∑
j=1

′
hMa,n(ξj)φR∆t

(ξj)ε(φ̄ZM−1
(ξj))

}

= O
(ε(φ̄ZM−1

)

a1/2π
<
{

∆ξ

N∑
j=1

′
hMa,n(ξj)φR∆t

(ξj)
})

= O
(
ε(φ̄ZM−1

)
√
aCa,N β̆NM+n

)
,

where ε(φ̄ZM−1
) := sup1≤j≤N |ε(φ̄ZM−1

(ξj))|. Hence,

N∑
n=1

gn
ε2(β̄Mn )

a1/2
= O

(
ε(φ̄ZM−1

)

N∑
n=1

∣∣∣∣∫
GM

g(y)ϕa,n(y)dy

∣∣∣∣ a1/2Ca,N β̆NM+n

)

= ‖g‖GM∞ ε(φ̄ZM−1
)O

(
N∑
n=1

a1/2Ca,N β̆NM+n

)
= O

(
‖g‖GM∞ ε(φ̄ZM−1

)
)

by Lemma 5.5, and
∣∣∣∫GM g(y)ϕa,n(y)dy

∣∣∣ ≤ ‖g‖GM∞ ∫
GM

ϕa,n(y)dy = a−1/2‖g‖GM∞ .

For bounded payoffs, ‖g‖GM∞ ≤ ‖g‖∞ < ∞, and ε(φ̄ZM−1
) = O(CM (a, ā)) by

equation (66). Hence, by the definition of CM (a, ā),

E2 = O
(
CM (a, ā) + āεM (a, ā)

)
= O

(
CM (a, ā)

)
.

22Duality is used here to obtain a tighter bound, by a factor of ā1/2, than if the standard techniques
were applied, which in turn allows us to dominate this source of error by the one derived from ε2(β̄Mn )
next.
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Figure 5: Convergence of linear vs. quadratic APROJ. Parameters as in [22]. Errors are max over
strikes {90, 100, 110}. For MJD and BSM, P̄ := log2(ā) = 3; for KOU P̄ = 4. Reference values by
linear APROJ with P = 10 given in Table 8.

Remark 6. Combining equations (67) and (68), and assuming that ā is chosen to
make τM (G) (and hence τ̃M (G)) negligible, we conclude

V ◦ g(S0)− VN ◦ g(S0) = O
(
e−rT · CM (a, ā)

)
= O(∆(p+1)).

This of course requires that the error contributed by Ψ̄ has been controlled by the choice
of quadrature, a choice which may vary by basis. Figure 5 illustrates the difference in
convergence rates for the APROJ method with linear and quadratic B-splines.

6. Numerical Experiments. A major improvement over the breakthrough pricing
methods of Clewlow (1990), Benhamou (2002), and later Fusai and Meucci (2008),
referred to as FM, was the improved convolution method of Cerny and Kyriakou
(2009), referred to as CK. The method of CK represented a major improvement in
speed23, but also demonstrated that references prices reported by the other three are
less precise than the four to five decimal places claimed, often correct to only two or
three decimals. The ASCOS method of [41] is capable of obtaining precise estimates
of prices, but it does not seem to compete with CK in terms of cpu time24. The
primary drawbacks of ASCOS are its global basis functions, which require several

23The results for CK were obtained in MATLAB 7.2 on Dell Latitude 620 Intel(R) Dual Core
T7200, 2GHz, 2Gb RAM.

24The results for ASCOS were obtained in MATLAB 7.7 with Intel(R) Core(TM)2 Duo CPU
E6550, 2.33GHz and 4MB cache size.
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Model vol Calibrated Strike

(Param.) Parameters 90 100 110

0.1 (0.1) 11.581134 3.338617 0.273759
BSM 0.3 (0.3) 13.669816 7.698599 3.896399
(σ) 0.5 (0.5) 17.192393 12.091536 8.314413

0.1 (0.1222, 0.0879, -0.1364) 11.640247 3.323853 0.158354
NIG 0.3 (0.1222, 0.2637, -0.4091) 13.700850 7.342655 3.278604

(ν, σ, θ) 0.5 (0.1222, 0.4395, -0.6819) 16.763062 11.235866 7.168361

0.1 (0.2703, 17.56, 54.82, 0.8) 11.639881 3.324584 0.157877
CGMY 0.3 (0.6509, 5.853, 18.27, 0.8) 13.701604 7.347424 3.283082

(C,G,M, Y ) 0.5 (0.9795, 3.512, 10.96, 0.8) 16.768352 11.244236 7.176236

Table 3: Calibrated parameters from [12]; values reported here to an additional decimal, obtained by
quadratic APROJ with P = 9, P̄ = log2(ā) = 3. Other parameters: M = 50, r = .04, q = 0, T = 1.

hundred quadrature points per element of a matrix analogous to Ψ̄, and the fixed
truncation support (no mean-adjustment)25. We also compare to the recent method
of Levendorskii and Xie [32], denoted LX, which takes two forms: LX(f) for the flat
iFT method, and LX(p) for the parabolic iFT method.26 Given the difference in com-
puting power for experiments conducted with each of these methods, all comparisons
must be understood within context.

Through numerical experiments27 we demonstrate that APROJ is not only highly
accurate (on the level of CK and LX), but is also faster than the state-of-the-art
methods to obtain the same or superior accuracy, typically on the order of a 10- to
100-fold improvement. This is true for both linear and quadratic implementations.
Given that the initial peak of fR is quickly softened to obtain fYm , we find that
quadratic APROJ is remarkably accurate for Asian option pricing, and is presented
next. Numerical results for linear APROJ (not presented), are also impressive.

In the first few sets of experiments, to isolate the rate of convergence of APROJ,
we conservatively fix P̄ := log2(ā) = 3 for pure diffusion models, and P̄ = 3 ∼ 4 for
heavy-tailed models, such as CGMY and NIG. For most cases, a smaller value of P̄
would have sufficed (especially with BSM experiments), and reduced the computation
time.28 Sensitivity of APROJ with respect to the choice of P̄ is illustrated in Figure
7. While these experiments are chosen to illustrate the error decay as a function
of resolution, once the truncation parameter P̄ is fixed, the attainable accuracy is
always limited by the truncation error. The final set of experiments investigates
the automated approach to parameter selection which is often much more efficient,
improving cpu times even further.

Our first set of experiments compares the convergence and cpu time of APROJ
against the method of CK for M = 50 and strikes {90, 100, 110}. The specifications

25The author’s indicate that a grid adjustment is possible, but to do so would require re-
computation of the matrix analogous to Ψ̄ at each step (or every several steps), and would incur
a substantial cost.

26The results of LX were obtained in MATLAB 7.11.0, with an Intel(R) Celeron(R) Processor
T1600, 1.66GHz, 667MHz FSB and 1MB cache.

27The results for APROJ were obtained in MATLAB 8.0 with Intel(R) Core(TM) i5-3470T CPU,
2.90GHz with 3MB cache size.

28Moreover, Boole’s rule, which is faster than the seven point rule, obtains nearly identical results
in many of the cases. However, it is safer in practice to use the more accurate method, so this is how
we present the results.
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Quadratic APROJ, P = log2(a) APROJ CK

vol 1 2 3 4 5 6 7 cpu(sec) cpu(sec)

.1 4.8e+00 1.1e+00 1.6e-01 7.3e-03 3.1e-05 2.4e-07 3.1e-09 .008/.202 1.0
BSM .3 3.8e+00 9.2e-02 8.8e-04 5.6e-06 6.2e-08 8.8e-10 1.3e-11 .003/.009 .3

.5 1.7e+00 4.8e-03 3.0e-05 2.9e-07 3.9e-09 5.8e-11 9.5e-13 .001/.008 .3

.1 4.3e+00 1.1e+00 1.5e-01 1.7e-02 2.2e-04 1.3e-06 1.1e-08 .026/.203 3.7
NIG .3 2.9e+00 1.8e-01 6.4e-03 4.4e-05 1.4e-07 2.6e-09 3.9e-11 .003/.028 1.8

.5 2.6e+00 2.1e-02 2.2e-04 1.6e-06 5.9e-09 6.8e-09 4.8e-09 .003/.009 1.8

.1 3.3e+00 1.1e+00 1.5e-01 1.6e-02 2.2e-04 1.3e-06 9.9e-09 .027/.201 8.5
CGMY .3 2.9e+00 1.7e-01 6.2e-03 4.2e-05 1.1e-07 2.4e-09 3.6e-11 .004/.027 4.1

.5 3.0e+00 2.1e-02 2.1e-04 1.5e-06 3.9e-08 1.4e-08 7.7e-09 .004/.009 2.1

Table 4: Parameters from CN [12]. For ARPOJ with P̄ = 3 and the seven point rule, each cpu pair
·/· reports the time to achieve an error of TOL1/TOL2, where TOL1 is on the order of e-03∼e-04
and TOL2 is on the order of e-06∼e-07. The error is taken as the maximum abs. error over the strike
set {90, 100, 110}. CK prices are on the order of e-05∼e-06. Ref prices are provided in Table 3.

considered are the log-normal, ie Black-Scholes-Merton (BSM), the Normal Inverse
Gaussian (NIG), and the Carr-Geman-Madan-Yor (CGMY) model. Three test cases
are considered for each model, with parameters calibrated by [12] to a fixed volatility
(vol) in the set {0.1, 0.3, 0.5}. Recovered values, as well as calibrated parameters
are provided for each strike in Table 3. For the NIG model, we use the alternative
ChF form with parameters (ν, σ, θ) to maintain consistency with [12], which has Levy
symbol

ψL(ξ) =
1

ν

(
1−

√
1− 2θνiξ + νσ2ξ2

)
.

In Table 4, we see rapid convergence of the quadratic APROJ method, which is
implemented with the seven point rule and P̄ = 3. By P = 5, accuracy on the order
e-07∼e-09 is achieved for vol ∈ {0.3, 0.5} and for all models. With P = 7, accuracy
on the order e-08 is achieved for all models and levels of vol. In the far right column
of Table 4 we provide the cpu times reported by [12] to achieve within four to five
correct decimals, which are at least a factor of 10 more than the time required for
APROJ to reach e-06∼e-07 accuracy (with only one exception), and are often more
than 100 times that of APROJ. This is consistent across all models and specifications
as well as strikes tested. Similar results hold for the linear implementation of APROJ.

For the set of experiments in Table 4 involving the CMGY (KoBoL) model, we
can also compare our results to those of LX [32], using the parabolic method LX(p).
When vol = 0.1, they report a max error of 6.7e-05 over strikes in {90, 100, 110} at a
cost of 1.581 seconds (compared to an APROJ accuracy of 1.3e-06 in 0.201 seconds).
When vol =0.3, they achieve 3.9e-06 in 1.037 seconds (compared to 1.2e-07 in 0.027
seconds), and when vol =0.5 they achieve 4.6e-06 in 0.684 seconds (compared to 1.5e-
06 in 0.009 seconds). In each of these cases, APROJ obtains greater accuracy and at
the same time provides a 7.8, 38, and 76-fold time reduction respectively.

The second set of experiments compares the convergence and cpu time of APROJ
against the ASCOS method for M ∈ {12, 50, 250} and strikes {90, 100, 110}. For this
case, we specify the NIG model with parameter set in [23],

(α, β, δ) = (6.1882,−3.8941, 0.1622), r = 0.0367, q = 0, T = 1, S0 = 100,

and ChF given in Table 6 of the appendix. Table 5 reports the convergence of
quadratic APROJ, along with the reference prices. Reference prices as well as re-
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Quadratic APROJ, P = log2(a) NIG

M strike 1 2 3 4 5 6 7 reference

90 5.3e-01 2.0e-01 6.4e-03 1.7e-04 3.4e-08 2.2e-09 3.8e-11 12.62243
12 100 1.9e+00 4.0e-01 1.9e-03 8.4e-04 8.4e-06 7.2e-08 1.1e-09 5.06060

110 1.5e+00 3.0e-01 9.2e-03 9.1e-04 1.6e-05 6.3e-08 1.3e-09 1.01355

90 6.6e-01 4.2e-01 4.3e-02 2.5e-03 1.9e-07 1.1e-09 6.6e-11 12.66126
50 100 2.3e+00 5.0e-01 1.4e-02 8.3e-03 2.7e-05 1.0e-07 1.9e-09 5.10370

110 2.1e+00 6.1e-01 9.8e-02 2.3e-03 2.0e-04 7.6e-07 4.4e-09 1.03770

90 3.3e-01 4.4e-01 5.6e-02 6.4e-03 6.6e-05 6.0e-07 2.3e-08 12.67176
250 100 1.9e+00 3.9e-01 3.6e-02 1.8e-02 3.6e-05 2.9e-06 1.7e-07 5.11556

110 1.8e+00 6.2e-01 1.3e-01 1.1e-02 2.5e-04 3.7e-06 3.0e-07 1.04448

Table 5: NIG parameters from FM [23], (α, β, δ) = (6.1882,−3.8941, 0.1622), and r = 0.0367, q =
0, T = 1, S0 = 100. Convergence for quadratic APROJ with P̄ = 4 and seven-point rule. Reference
values obtained by quadratic APROJ with P = 9, P̄ = 4, and seven point rule.

ASCOS Quadratic APROJ

N = 128 N = 256 N = 384 P̄ = 4

M nq = 200 nq = 400 nq = 600 Seven-Point

12 |err.| 2.0e-03 1.74e-04 5.16e-06 9.1e-04 1.6e-05 6.3e-08
(sec) (2.41) (15.13) (46.09) (.017) (.085) (.314)

50 |err.| 2.26e-04 6.94e-05 2.17e-06 2.0e-04 7.6e-07 4.4e-09
(sec) (2.43) (15.16) (46.22) (.190) (.731) (2.94)

250 |err.| 7.8e-03 9.33e-05 8.49e-06 2.5e-04 3.7e-06 2.8e-07
(sec) (2.42) (15.23) (46.68) (.717) (2.94) (11.42)

Table 6: NIG parameters from FM [23], (α, β, δ) = (6.1882,−3.8941, 0.1622), and r = 0.0367, q =
0, T = 1, S0 = 100. APROJ with P̄ = 4, seven point rule. Corresponding values of P for each
accuracy are given in Table 5. Absolute errors for strike W = 110.

ported cpu times are provided for P̄ = 4 and the seven point rule29. In Table 6 the
performance of APROJ is compared to ASCOS, with similar findings as in the first
set of experiments. For example, when M = 12, ASCOS requires 15.13 seconds to
achieve 1.74e-04 accuracy, while APROJ reaches 1.6e-05 accuracy in 0.085 seconds,
an almost 200-fold improvement. To reach 6.3e-08 accuracy takes APROJ 0.314 sec-
onds compared to 46.09 seconds for ASCOS to reach 5.15e-06. For other cases of
comparable accuracy, the improvement is by at least a factor of 10 or more.

We next consider a KoboL (CGMY) model from Levendorskii and Xie [32], with
parameters CGMY = (1.1136, 3, 10, 0.2), or in terms of the KoBoL [7,9] parameteri-
zation (c, λ−, λ+, ν) = (1.1136,−10, 3, 0.2). As demonstrated in Table 7, the APROJ
method converges rapidly to high accuracy. Two methods from [32] are provided for
comparison, the LX(f) method and LX(p), neither of which seems to dominate the
other in terms of speed or accuracy from the experiments provided in [32]. In this
case, LX(f) is slower to converge (in terms of cpu), but for strikes {90, 100, 100}, both
methods of [32] reach an accuracy of about (2.1e-07, 7.8e-07, 1.7e-06) respectively.
The APROJ method with P = 5 achieves accuracy of (9.3e-09, 7.5e-08, 5.0e-06), with
a cpu time reduction factor of 9.65 for the LX(p) method and a 338-fold reduction
for LX(f). To fully understand the difference in efficiency between these two methods
however, experiments will need to be conducted on the machine.

29The necessarily larger value of P̄ is detected by recovering the value of β̄1
1 prior to the algorithm’s

initialization.
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Quadratic APROJ, P = log2(a) LX(f) LX(p)

strike Ref. 2 3 4 5

90 14.795530855 6.349e-02 1.161e-04 1.136e-05 9.312e-09 2.1e-07 2.1e-07
100 8.281218252 2.973e-02 2.641e-04 3.467e-05 7.533e-08 7.8e-07 7.8e-07
110 3.718094231 1.523e-01 1.040e-03 1.951e-04 5.002e-06 1.7e-06 1.8e-06

cpu (sec) 0.003 0.007 0.016 0.082 27.77 0.792

Table 7: CGMY (KoBoL) Parameters from Levendorskii and Xie [32]: S0 = 100, M = 12, T = 1,
r = 0.04, q = 0, CGMY = (1.1136, 3, 10, 0.2); in terms of KoBoL parameterization, (c, λ−, λ+, ν) =
(1.1136,−10, 3, 0.2). Convergence for quadratic APROJ with P̄ = 4 and seven-point rule. Reference
values obtained by quadratic APROJ with P = 11, P̄ = 5, and seven point rule, and verified to seven
decimals with prices of [32]. The LX(f) and LX(p) methods are respectively the flat and parabolic
Fourier transform methods of [32].

Reference Values

Model Parameters Strike M = 12 M = 250

90 11.9049157 11.9405632
BSM σ = 0.17801 100 4.8819616 4.9521569

110 1.3630380 1.4133670

σ = 0.120381 90 12.713070 12.753177
KOU λ = 0.330966, p = 0.2071 100 5.017859 5.070220

η1 = 9.65997, η2 = 3.13868 110 1.041531 1.076568

σ = 0.126349 90 12.710669 12.749182
MJD λ = 0.174814 100 5.011290 5.063823

µJ = −0.390078, σJ = 0.338796 110 1.051633 1.087406

Table 8: Model parameters from [22, 23], and r = 0.0367, q = 0, T = 1, S0 = 100. Reference values
by Linear APROJ, P = 10. For MJD and BSM, P̄ = 3; for KOU P̄ = 4.

Now we consider the BSM model, Merton’s Jump Diffusion (MJD), and Kou’s
double exponential (KOU) model, which characteristic functions given in Figure 6.
Parameters are as in [23] (later used in [22]), which are provided in Table 8 along
with reference values. The parameter setting for BSM is also considered in [12].
Convergence is compared for the linear and quadratic implementation of APROJ in
Figure 5.

The first observation is that the prices obtained for BSM agree with those of
CK [12] to 7 decimals (the other two models are not reported in [12]), while the
method of FM [23] is accurate to only about 2-3 decimals in most cases with cpu
times in excess of 5 seconds (this is pointed out as well in [12]). Greater accuracy
is obtained by APROJ in just milliseconds. When M = 250, K = 100, the price to
seven decimals is given by 4.9521569, as computed by CK and APROJ. FM obtains
4.95233, while the maturity randomization methods of Fusai, Marazzina and Marena
(FMM) [22] report prices of 4.95212 and 4.95242, using density recursion and price
recursion respectively, with cpu times of 38.32 seconds and 95.80 seconds30. We find
similar results for the models of KOU and MJD, where the prices of FMM agree with
those computed by ARPOJ (given in Table 8) to 3 or 4 decimals with FMM cpu
times in the dozens of seconds, compared to milliseconds for APROJ.

The previous experiments illustrate the convergence of APROJ as a function of
the resolution when the grid width is fixed a priori. The final set of experiments

30The results for FMM were obtained in MATLAB 7.4 on a personal computer with Intel(R) Core
2 Quad Q6600, 2.4GHz, 4Gb RAM.
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Model W M Ref |Err| cpu(sec) NL1 NL2 log2(N)

CGMY 90 12 11.999099 2.33e-06 0.006 1 1 6
(0.2703, 17.56, 54.82, 0.8) 100 250 3.643684 7.01e-07 0.083 2 1 8

CGMY 90 12 15.061188 5.63e-04 0.005 1 1 6
(1.1136, 3, 10, 0.2) 100 250 8.644264 7.80e-06 0.471 2 2 9

MJD 90 12 13.134793 6.10e-04 0.005 1 1 6
(0.13, 0.17, -0.39, 0.34) 100 250 5.480458 1.02e-04 0.103 1 2 8

MJD 90 12 12.704098 1.02e-06 0.005 1 1 6
(0.1, 3, -0.05, 0.086) 100 250 5.620436 6.79e-06 0.030 1 1 7

BSM 90 12 11.949574 4.22e-07 0.006 1 1 6
σ = 0.1 100 250 3.639486 2.02e-06 0.029 1 1 7

BSM 90 12 13.854399 1.96e-06 0.006 1 1 6
σ = 0.3 100 250 7.939288 4.92e-06 0.028 1 1 7

NIG 90 12 12.290729 5.89e-05 0.005 1 1 6
(8, -1, 0.2) 100 250 4.610758 1.70e-07 0.423 3 1 9

Kou 90 12 13.564345 9.71e-04 0.005 1 1 6
(0.15, 0.4, 0.2, 9, 3) 100 250 6.297930 2.33e-05 0.473 2 2 9

Table 9: Call price errors for quadratic APROJ with automated parameter selection. Cpu times
represent full cost including parameter determination. Columns NL1 and NL2 are the number of
loops required in initialization (Subroutine 1) and the main algorithm (Algorithm 3) before tolerance
is met, where ε1 = 5e-04, ε2 = 5e-04, and ε3 = 5e-03 in Algorithm 3. N is the final grid size. In all
cases, S0 = 100, r = 0.05, q = 0, T = 1. MJD params: (σ, λ, µJ , σJ). Kou params: (σ, λ, p, η1, η2).
NIG params: (α, β, δ)

analyzes the ability of the APROJ algorithm to accurately select parameters without
user input, as described in Section 3.6 (and implemented in Subroutine 1) to achieve
a practical accuracy of about TOL = 5e-04 or better.31 While our choice of tolerance
reflects a level that is conservative for practical applications, given the presence of
truncation error, it will not typically yield an accuracy beyond e-06 with the chosen
tolerance.

Table 9 considers several models and settings for M and W , with reference prices
obtained by APROJ with N = 213. Based on the prescription given in Section 3.6,
for M = 12 the algorithm is initialized with N = 26 and and grid width multiplier
L1 = 12, while for M = 250 we set N = 27 and L1 = 16. The column labeled log2(N)
reports the final value after satisfying all error tolerances. The column labeled NL1

is the number of iterations required in initialization Subroutine 1 before the error
tolerances ε1 and ε2 were satisfied (so NL1 = 1 implies that the initial estimate of N
and ā were sufficient). Column NL2 is the number of loops in the main Algorithm 3
before the terminal valuation criteria was satisfied.

Ideally, since the cost of Subroutine 1 is negligible, we would prefer it to identify
insufficient settings of N and ā prior to entering Algorithm 3. Either way we see that
these three consistency checks are more than sufficient to achieve desired accuracy.
Column cpu(sec) reports the time in seconds for the full procedure, which is generally
fractions of a second, including the cost of demeriting initial values for N and ā. From
the columns NL1 and NL2, we see that the method is reliable at detecting insufficient
initial choices of the parameters N and ā. In particular, the method is able to correct
for the often unreliable estimate provided by cumulants alone.

31We have selected to the parameters ε1, ε2, ε3 to attain an accuracy of TOL = 5e-04 or better.
However, these parameters, as well as the initial value of N and L1 can be increased if the desired
accuracy is beyond what is required in practice.
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Model T M Ref |Err| cpu(sec) NL1 NL2 log2(N)

2 50 5.969720 1.79e-06 0.008 1 1 6
CGMY 2 250 5.977913 2.60e-07 0.084 2 1 8

(0.2703, 17.56, 54.82, 0.8) 4 50 9.896446 1.09e-06 0.008 1 1 6
4 250 9.902125 7.24e-07 0.031 1 1 7

2 50 7.331371 3.56e-05 0.014 2 1 7
NIG 2 250 7.344673 9.35e-05 0.082 2 1 8

(8, -1, 0.2) 4 50 11.592820 5.46e-04 0.007 1 1 6
4 250 11.606504 6.31e-05 0.080 2 1 8

2 50 9.911194 9.80e-05 0.013 2 1 7
Kou 2 250 9.930953 1.39e-06 0.465 2 2 9

(0.15, 0.4, 0.2, 9, 3) 4 50 15.244009 1.94e-05 0.014 2 1 7
4 250 15.268818 3.93e-07 0.459 2 2 9

Table 10: Call price errors for quadratic APROJ with automated parameter selection. Columns NL1

and NL2 are the number of loops required in initialization (Subroutine 1) and the main algorithm
(Algorithm 3) before tolerance is met, where ε1 = 5e-04, ε2 = 5e-04, and ε3 = 5e-03 in Algorithm 3.
N is the final grid size. In all cases, S0 = W = 100, r = 0.05, q = 0.

The algorithm’s reliability extends to larger maturities T illustrated in Table 10,
for which we consider durations of two and four years with heavy-tailed models. This
is especially beneficial given that the standard cumulant-based approach often under-
estimates the required grid-width for longer maturities. We conclude that APROJ
is capable of obtaining accurate prices at a very small computational cost when the
algorithm, rather than the user, determines the required values of N and ā needed to
achieve the designated tolerance.

7. Implementation into Premia 22. We implemented the APROJ-method for
the fixed strike vanilla Asian options (calls and puts) in

• the Kou model (see Example 4);
• the NIG model (see Example 3);
• the CGMY (KoBoL) model (see Example 1).

Note that in the program implemented into Premia 22 for the Asian options one
can manage by three parameters of the algorithm: the scale of log-price range L,
the number of discrete monitoring points M , and the x-grid parameter n that fixes
the number of the x-grid points as N = 2n. Parameter L controls the size of the
truncated region in x-space. The typical values of the parameter for Lévy models are
varying from L = 8 to L = 15.

Appendix A. Proofs.

Proof of Proposition 3.1. We proceed by induction where m = 1 follows from
Y1 = RM . Fix m ≥ 2 and assume (i) and (ii) hold for m− 1. First we show finiteness
of φZm−1(z) for any fixed z = x+ iη ∈ Dd. Consider the case of η ∈ (−d, 0) (finiteness

for η ∈ [0, d) follows immediately). Since φYm−1(x+iη) =
∫
R e

i(x+iη)yfYm−1(y)dy <∞,

ie the integral exists and is finite, ei(x+iη)yfYm−1(y) must be absolutely integrable in
y, from which

∫
R e
−ηyfYm−1(y)dy <∞. Note that∫

R
|ei(x+iη) log(1+ey)fYm−1(y)|dy ≤ e−η log(2)

∫ 0

−∞
fYm−1(y)dy

+

∫ ∞
0

e−η log(1+ey)fYm−1(y)dy.

40



Model ψL(ξ), ω = −ψL(−i), Param. Restrictions Cumulants

ψL(ξ) = −σ2

2 ξ
2 c1 = γ

BSM
ω = −σ2

2 c2 = σ2

σ > 0, IL = R c4 = 0

ψL(ξ) = −σ2

2 ξ
2 + λ

(
exp(iξµJ −

σ2
J
2 ξ

2)− 1
)

c1 = γ + λµJ

MJD
ω = −σ2

2 − λ
(

exp(µJ +
σ2
J
2 )− 1

)
c2 = σ2 + λ(µ2

J + σ2
J)

λ, σJ , σ > 0, IL = R c4 = λ(µ4
J + 6σ2

Jµ
2
J + 3σ4

Jλ)

ψL(ξ) = CΓ(−Y )
(
(M − iξ)Y −MY + (G+ iξ)Y −GY

)
c1 = γ + CΓ(1− Y )(MY−1 −GY−1)

CGMY
ω = −CΓ(−Y )((M − 1)Y −MY + (G+ 1)Y −GY ) c2 = CΓ(2− Y )(MY−2 +GY−2)

C,G > 0,M > 1, Y ∈ (0, 1) ∪ (1, 2), IL = [−M,G] c4 = CΓ(4− Y )(MY−4 +GY−4)

ψL(ξ) = −δ
(√

α2 − (β + iξ)2 −
√
α2 − β2

)
c1 = γ + δβ/

√
α2 − β2

NIG
ω = δ

(√
α2 − (β + 1)2 −

√
α2 − β2

)
c2 = δα2(α2 − β2)−3/2

α, δ > 0, β ∈ (−α, α− 1), IL = [β ± α] c4 = 3δα2(α2 + 4β2)(α2 − β2)−7/2

ψL(ξ) = −σ2

2 ξ
2 + λ

(
pη1

η1−iξ + (1−p)η2

η2+iξ − 1
)

c1 = γ + λp
η1
− λ(1−p)

η2

KOU
ω = −σ2

2 − λ
(
pη1

η1−1 + (1−p)η2

η2+1 − 1
)

c2 = σ2 + 2λp
η2

1
+ 2λ(1−p)

η2
2

λ, σ > 0, p ∈ [0, 1], η1 > 1, η2 > 0, IL = (−η1, η2) c4 = 24λ( p
η4

1
+ 1−p

η4
2

)

ψL(ξ) = −σ2

2 ξ
2 − 1

ν log
(

1− iνθξ + ν
σ2
V
2 ξ

2
)

c1 = γ + θ

VG
ω = −σ2

2 + 1
ν log

(
1− νθ − ν σ

2
V
2

)
c2 = σ2 + σ2

V + νθ2

ν, σV > 0, σ ≥ 0, IL =
[
θ
σ2
V
±
√

θ2

σ4
V

+ 2
νσ2
V

]
c4 = 3(σ4

V ν + 2θ4ν3 + 4σ2
V θ

2ν2)

Figure 6: Symbols ψL(ξ), cumulants cn of log(St+1/St), parameter restrictions and strip of analyticity
IL for tractable Levy processes. γ := r − q − ψL(−i) = r − q + ω. Note that E[log(St+1/St)] = c1 =
r − q + w + E[L(1)], and E[R∆t ] = c1∆t.

To bound the second integral, note that ∃η̃ ∈ (−d, η), and τ > 0 s.th ∀y > τ ,
−η̃y > −η log(1 + ey). Hence,∫ ∞

τ
e−η log(1+ey)fYm−1(y)dy ≤

∫ ∞
τ

e−η̃yfYm−1(y)dy ≤
∫
R
e−ηyfYm−1(y)dy <∞,

so φZm−1(z) exists and is finite ∀z ∈ Dd. To prove continuity, fix any {zn} ∈ Dd with
zn → z ∈ Dd. Let G ⊂ Dd be a bounded open set containing the tail of {zn}, so
Ḡ ⊂ Dd. With η̄ := max{|η| : z = x+ iη ∈ Ḡ}, note that for any z ∈ Ḡ it holds

|eiz log(1+ey)fYm−1(y)| ≤ eη̄ log(1+ey)fYm−1(y) = |eiz̄ log(1+ey)fYm−1(y)|,

where z̄ = x− iη̄ for arbitrary x ∈ R, since log(1 + ey) ≥ 0 for all y ∈ R. Hence

sup
z∈Ḡ
|φZm−1(z)| ≤ |φZm−1(z̄)| <∞,

where finiteness of z̄ ∈ Ḡ ⊂ Dd was proved above, so by dominated convergence

lim
zn→z

φZm−1(zn) =

∫
R

lim
zn→z

exp (izn log(1 + ey)) fYm−1(y)dy = φZm−1(z).

Analyticity is now proved as follows. Fix any positively oriented triangle Γ ∈ Dd. By
Fubini’s theorem∫

Γ
φZm−1(z)dz =

∫
R
fYm−1(y)

∫
Γ

exp (iz log(1 + ey)) dzdy = 0,
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Figure 7: Convergence in P̄ of quadratic APROJ prices for BSM and NIG models (one legend for
each model). Parameters and reference values as in Table 8, strike W = 100.

where the final equality holds by Cauchy’s theorem. Hence, by Morera’s theorem,
we conclude that φZm−1(z) is analytic on Dd, and so too is φYm(z) = φR(z)φZm−1(z).
The growth estimate (ii) follows immediately from |φZm−1(ξ)| ≤ 1 for ξ ∈ R.

Proof of Lemma 3.1. Let [−λ, λ] be the support of ϕ. For a > 0, ξ ∈ [0, 2πa),∣∣∣a1/2F [ϕa,n](ξ)− Ψ̄(ξ, n)
∣∣∣ ≤ a1/2

∫
ϕa,n(y)

∣∣∣eiξy − eiξ log(1+exp(y))
∣∣∣ dy

=

∫ λ

−λ
ϕ(y)

∣∣∣eiξ(xn+ y
a

)
∣∣∣ ∣∣∣1− eiξ(log(1+exp(xn+ y

a
))−(xn+ y

a
))
∣∣∣

≤ |ξ|
∫ λ

−λ
ϕ(y)

∣∣∣log
(

1 + exp
(
xn +

y

a

))
−
(
xn +

y

a

)∣∣∣ dy
≤ 2πa (log(1 + exp(xn−1))− xn−1)

∫ λ

−λ
ϕ(y)dy

= 2πa (log(1 + exp(xn−1))− xn−1) ,

where the next to last line follows since log(1 + exp(x))− x is strictly decreasing. An
asymptotic expansion yields

log(1 + exp(xn−1))− xn−1 ∼ e−xn−1 − e−2xn−1/2 +O(e−3xn−1),

and the result follows from F [ϕa,n](ξ).

Proof of Proposition 2.1. We provide a proof here for linear case, with a bound

on the term C
[1]
γ (φX). The more general case of a pth order basis is discussed in [28].
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First define

(69) ha,n(ξ) := 12
sin2(ξ/2a)

(ξ/a)2(2 + cos(ξ/a))
exp(−ixnξ) := ha(ξ) exp(−ixnξ),

and ξj = (j − 1)∆ξ where ∆ξ = 2πa/N . We have that ε(β̆Xa,n) := a1/2Ca,N · β̄Xa,n −
〈fX , ϕ̃a,k〉 satisfies

ε(β̆Xa,n) =
a−1/2

π
<

∆ξ

N∑
j=1

νjφX(ξj)ha,n(ξj)−
∫ ∞

0
φX(ξ)ha,n(ξ)dξ


=
a−1/2

π
<

∆ξ

∞∑
j=1

ν̃jφX(ξj)ha,n(ξj)−
∫ ∞

0
φX(ξ)ha,n(ξ)dξ

+∆ξ

∞∑
j=N

ν̄jφX(ξj)ha,n(ξj)

 :=
a−1/2

π
(εtrap(a, ā) + τa(X)) ,

where νj := 1 − (δj,1 + δj,N )/2, ν̃j = 1 − δj,1/2, and ν̄j = 1 − δj,N/2. To apply
Theorem 3.2.1 in [37], we must show that the presence of ha(ξ) does not affect the
integrand’s analyticity or the finiteness of the Hardy norm, both of which will follow
if we can bound ha(ξ) in a strip contained within Dd (note that Proposition 3.1 of [28]

demonstrates the existence of a bound). Consider ̂̃ϕ(ξ) = 12 sin2(ξ/2)
ξ2(2+cos(ξ))

= ha(aξ), and

let z = x+ iy. Note first that

|2 + cos(x+ iy)| = 1
2

∣∣4 + e−y(cos(x) + i sin(x)) + ey(cos(x)− i sin(x))
∣∣

=
(
sinh2(y) sin2(x) + (cosh(y) cos(x) + 2)2

)1/2
.

For |y| ≤ 1/2, cosh(y) ≤ 3/2, from which (cosh(y) cos(x)+2)2 ≥ 1/4, and |2+cos(x+
iy)| ≥ 1/2, uniformly in x. Similarly, for |y| ≤ 1,∣∣∣∣∣sin

(x+iy
2

)
x+ iy

∣∣∣∣∣
2

=
sinh2

(y
2

)
cos2

(
x
2

)
+ cosh2

(y
2

)
sin2

(
x
2

)
y2 + x2

≤ 1,

uniformly in x. Hence, ∀|y| ≤ 1/2, |̂̃ϕ(x + iy)| ≤ 24, so for |y| ≤ a/2, |̂̃ϕ((x +
iy)/a)| ≤ 24, ∀x ∈ R. Thus, φX · ha,n ∈ H(Dγ) where γ = γ(a) = d ∧ a/2, and
Cγ(φX) := ‖φX · ha,n‖Hγ ≤ 24‖φX‖Hγ . For a sufficiently large, the integrand is
bounded within Dd (for any finite d > 0). Moreover, since P̄ > 1 + log2 |µ̄|, it holds
that ā/2 > |µ̄| and so |xn| ≤ |µ̄| + ā/2 < ā, ∀1 ≤ n ≤ N . Thus by Theorem 3.2.1
in [37], εtrap(a, ā) converges exponentially in ā, according to the bound given.

The truncation error depends on the tail behavior of φX . Since |ha,n(ξ)| ≤ 12a2

ξ2 ,

and |φX(ξ)| satisfies equation (7), the truncation error is bounded by

∆ξ

∞∑
j=N

ν̄jφX(ξj)ha,n(ξj) ≤ 12κa2

∫ ∞
2πa

e−tc|ξ|
ν

ξ2
dξ ≤ 12κa2e−tc|2πa|

ν

∫ ∞
2πa

1

ξ2
dξ,

and the result follows after simplifying.
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