
Fourier transform algorithms for pricing discretely
monitored variance products and volatility
derivatives under Lévy processes processes

Oleg Kudryavtsev

Premia 22

1. Lévy processes: basic facts

In recent years more and more attention has been given to stochastic models of
financial markets which depart from the traditional Black-Scholes model. At this
moment a wide range of models is available. One of the tractable empirical models
are jump diffusions or, more generally, Lévy processes. We concentrate on the one-
dimensional case. For an introduction on these models applied to finance, we refer
to Cont and Tankov (2004).

A Lévy process is a stochastically continuous process with stationary independent
increments (for general definitions, see e.g. Sato (1999)). A Lévy process may have
a Gaussian component and/or pure jump component. The latter is characterized by
the density of jumps, which is called the Lévy density. A Lévy process Xt can be
completely specified by its characteristic exponent, ψ, definable from the equality
E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to the one-dimensional case).

The characteristic exponent is given by the Lévy-Khintchine formula:

ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1|y|≤1)ν(dy), (1)

where σ2 ≥ 0 is the variance of the Gaussian component, and the Lévy measure
ν(dy) satisfies

∫

R\{0}
min{1, y2}ν(dy) < +∞. (2)

Assume that under a risk-neutral measure chosen by the market, the price process
has the dynamics St = S0e

Xt , where Xt is a certain Lévy process. Then we must
have E[eXt ] < +∞, and, therefore, ψ must admit the analytic continuation into a
strip ℑξ ∈ (−1, 0) and continuous continuation into the closed strip ℑξ ∈ [−1, 0].

Example 1. If Lévy measure of a jump diffusion process is given by normal distri-
bution:

ν(dx) =
λ

δ
√

2π
exp

(

−(x− γ)2

2δ2

)

dx,

then we obtain Merton model. The parameter λ characterizes the intensity of jumps.
The characteristic exponent of the process is of the form

ψ(ξ) =
σ2

2
ξ2 − iµξ + λ

(

1 − exp
(

−δ2ξ2

2
+ iγξ

)

)

, (3)
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where σ, δ, λ ≥ 0, µ, γ ∈ R.

Example 2. The characteristic exponent of a pure jump KoBoL process (a.k.a.
CGMY model) of order ν ∈ (0, 2), ν 6= 1 is given by

ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ], (4)

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.
Note that Boyarchenko and Levendorskǐi (2000, 2002) consider a more general

version with c± instead of c, as well as the case ν = 1 and cases of different exponents
ν±. If ν ≥ 1 or µ = 0, then the order of the KoBoL process equals to the order of
the infinitesimal generator as PDO, but if ν < 1 and µ 6= 0, then the order of the
process is ν, and the order of the PDO −L = ψ(D) is 1.

Example 3. If Lévy density is given by exponential functions on negative and positive
axis:

F (dy) = 1(−∞;0)(y)c+λ+e
λ+ydy + 1(0;+∞)(y)c−(−λ−)eλ−

y,

where c± ≥ 0 and λ− < −1 < 0 < λ+, then we obtain Kou model (see Kou (2002)).
The characteristic exponent of the process is of the form

ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
. (5)

2. Variance products

Let St denote the value of a stock or a stock index at time t, and r ≥ 0 be the
riskless rate. We assume that the variance product starts at time zero and ends at
time T . Let 0 = t0 < t1 < . . . < tM = T be the monitoring dates for the discretely
sampled variance and T be the maturity date. Assume that St = exp(Xt) is modeled
by some Lévy process Xt, then the annualized realised variance of returns over the
time interval [0;T ] is determined by

V (T,M) =
1

T

M
∑

n=0

[

ln
Stn
Stn−1

]2

. (6)

Typically, one sets T = M
252

. If it is needed to express the realized variance in annual
volatility points one should multiply the right hand side of (6) by 10000.

Now consider derivatives written on variance V (T,M).
A variance swap is an instrument which allows investors to trade future realized

(or historical) volatility against current implied volatility.
A variance swap with maturity T and strike K2 pays the holder

V arS(K,T ) = V (T,M) −K2.

The quantity

mT = E[V (T,M)]
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is called "fair strike of a variance swap". For the variance swap with strike price K2

and maturity T in the future its fair price at the time 0 is

mT −K2.

A variance call and a variance put with strike K2 and time to expiry T pays the
holder at time T

V arCall(K,T ) =
(

V (T,M) −K2
)+

and

V arPut(K,T ) =
(

K2 − V (T,M)
)+
,

respectively. Typically, the input parameter K is given in volatility points.
In the most well-known model-free approaches such as the CBOE method, the

price of variance derivative may be approximated by some portfolio (the so called
replicating portfolio) of some amount of underlying and derivatives on it. One may
find the construction of replicating portfolio e.g. in Bossu et al. (2005) and Buehler
(2009). The alternative approach developed in Fukasawa et. al. (2011) is based on
the implied volatility integration. Both methods begin with the assumption that St
follows some diffusion process of the type:

dSt
St

= µ(t, St, ...)dt+ σ(t, St, ...)dWt

where Wt is a Wiener process, and the drift µ and the volatility σ are unknown
coefficients (either deterministic or stochastic).

There are many empirical studies on American and European financial markets
(see e.g. Cont and Tankov (2004) and the bibliograpy therein) supporting the fact
that pure non-Gaussian Lévy models are more adequate than diffusion models. In
the case of time changed Lévy models, a formula for the variance swap price can be
found in Carr et al. (2012).

W. Zheng and Y.K. Kwok, (2014) developed fast Fourier transform algorithms
for pricing and hedging discretely sampled variance products and volatility deriva-
tives under additive processes including Lévy models. The algorithms uses Fourier
time stepping procedure combined with updating rules suggested in Windcliff et al.
(2006) to solve a correspondent partial integro-differential equation.

3. Fourier time stepping algorithm for pricing variance products

We shortly describe a numerical framework of W. Zheng and Y.K. Kwok, (2014)
to value variance contracts. To value a general variance product, one introduces
two additional state variables. Let P and Z denote the logarithm of asset price
on the previous monitoring date and the running average of the squared returns
accumulated up to the current time, respectively. These variables stay constant
between two consecutive monitoring dates and change only at the discrete volatility
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sampling times, tm, with updating according to the following rules.

Pt+m = Xtm , Zt+m = Zt−m +
R2
m − Zt−m
m

, (7)

where Rm = ln(Stm/Stm−1
), t−m and t+m represent the instants immediately before and

after the mth monitoring date tm, m = 1, 2, . . . ,M . We set P0 = X0 and Z0 = 0.
The time-t value of the variance product can be regarded as a function of the

logarithm of the underlying asset price Xt and time t. Between two consecutive
monitoring dates, the price function U = U(X; t;P ;Z) is a function of X and t
while the state variables P and Z are treated as parameters.

According to the martingale pricing theory, the time stepping calculations between
consecutive monitoring dates look as follows

U(Xtm−1
; t+m−1;P ;Z) = e−r(tm−tm−1)Et+

m−1

[U(Xtm ; t−m;P ;Z)] (8)

The efficient implementation of (8) can be reached by means of the Fast Fourier
transform algorithm.

The time stepping calculations are initiated at the instant right before maturity
T− by the following formula

U(XT ;T−;PT− ;ZT−) = G
(

1

T

[

(M − 1)ZT− + (XT − PT−)2
]

)

, (9)

where G is some specified terminal payoff function. We implemented into Premia put
and call options cases with G(V ) = (K2 −V )+ and G(V ) = (V −K2)+, respectively.

Since there is no cash flow to the holder of the option on variance across a moni-
toring date, the option price should remain the same at time right before and after
any volatility sampling time tm. The jump condition is defined by

U(X; t−m;Pt−m ;Zt−m) = U(X; t+m;Pt+m ;Zt+m). (10)

4. Fast Fourier Transform algorithm in time stepping procedure

For m = M − 1,M − 2, . . . , 1 the price f(x, tm) = U(x; t+m;P ;Z) in (8) can be
found as the price of the European option with the terminal payoff f(Xtm+1

, tm+1) =
U(Xtm+1

; t−m+1;P ;Z) and the expiry date tm+1:

f(x, tm) = E[e−r∆τmf(Xtm+1
) | Xtm = x], ∆τm = (tm − tm−1). (11)

If an explicit formula for the probability density p∆τm
of X∆τm

under EMM is known
(e.g. GBM or NIG model), we can use it to write (11) in the form

f(x, tm) = e−r∆τm

∫ +∞

−∞
p∆τm

(y)f(x+ y, tm+1)dy, x > 0. (12)

In the general case, p∆τm
can be expressed in terms of the characteristic exponent

ψ(ξ), by using the Fourier transform

p∆τm
(x) = (2π)−1

∫ +∞

−∞
e−ixξ−∆τmψ(ξ)dξ. (13)
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Now, we can rewrite (12) by using (13), and we obtain

f(x, tm) = e−r∆τm(2π)−1
∫ +∞

−∞

∫ +∞

−∞
f(x+ y, tm+1) exp[−iyξ − ∆τmψ(ξ)]dξdy.

We change a variable z = x+y. If f(x, tm+1) is absolutely integrable, we can change
the order of the integration:

f(x, tm) = e−r∆τm(2π)−1
∫ +∞

−∞

∫ +∞

−∞
f(z, tm + ∆τm)e−i(z−x)ξ exp[−∆τmψ(ξ)]dξdz

= (2π)−1
∫ +∞

−∞
f̂(ξ, tm+1) exp[ixξ − ∆τm(r + ψ(ξ))]dξ, (14)

where f̂(ξ, tm+1) is the Fourier transform of a function f(z, tm+1) in the first variable.
The integral operator in the RHS of the formula (14) can be represented as a pseudo-
differential operator (PDO) with the symbol

Ψ∆τ (ξ) = exp[−∆τ(r + ψ(ξ))]. (15)

Recall that a PDO A = a(D) with the symbol a(ξ) acts as follows:

Au(x) = (2π)−1
∫ +∞

−∞
eixξa(ξ)û(ξ)dξ, (16)

where û is the Fourier transform of a function u:

û(ξ) =
∫ +∞

−∞
e−ixξu(x)dx.

Thus, in terms of PDO, we can rewrite the algorithm in the following form.

f(x, tm) = Ψ∆τm
(D)f(x, tm+1). (17)

To improve the convergence, one can introduce new function:

fω(x, tm) = eωxf(x, tm),m = 0, 1, . . . ,M, (18)

where ω ∈ R is chosen in a such way that fω(x, tm) is absolutely integrable. Then
taking into account that eωxΨ∆τ (D)e−ωx = Ψ∆τ (D + iω), we obtain the following
backward recursion for fω(x, tm).

fω(x, tm) = Ψ∆τ (D + iω)fω(x, tm+1). (19)

Formally, the action of a PDO A with the constant symbol a(ξ) can be described as
the composition

Au(x) = F−1
ξ→xa(ξ)Fx→ξu(x) (20)

If the functions u and a are represented as arrays suitable for application of the Fast
Fourier Transform and inverse Fast Fourier Transfrom algorithms (FFT and iFFT),
then (20) can be programmed as Au = iFFT (a. ∗ (FFT (u))).

Let d be the step in x-space, dξ–the step in ξ-space, and N = 2n the number
of the points on the grid; decreasing d and increasing (even faster) N , we obtain
a sequence of approximations to the option price. An approximation for the Ψ(D)
operator action can be efficiently computed by using the Fast Fourier Transform
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(FFT) implemented into the PNL used in Premia. The discrete Fourier transform
(DFT) in the PNL is defined by

Gl = DFT [g](l) =
N
∑

k=1

gke
2πi(k−1)(l−1)/N , l = 1, ..., N. (21)

The DFT maps N complex numbers (the gk’s) into N complex numbers (the Gl’s).
The formula for the inverse DFT which recovers the set of gk’s exactly from Gl’s is:

gk = iDFT [G](k) =
1

N

N
∑

l=1

Gle
−2πi(k−1)(l−1)/N , k = 1, ..., N. (22)

5. The algoritm implemented into Premia

The algorithm implemented into the program platform Premia for Tempered Sta-
ble Lévy models consist of the following steps.

• Define the Tempered Stable Lévy model parameters
• Define the option parameters: Call/Put, Strike in volatility points, Time to

Expiry, Spot
• Define the method parameters:
n – the power of 2 to define the number of space points N = 2n

L – the scale parameter to define the maximal size of increments in the log-
domain [−L;L]
Kz – the scale parameter to define the size of Z-grid;

• Set xmin = −L, d = 2 · L/N , xk = xmin + (k − 1) · dx, pk = xk, k = 1, . . . N ,
x = {xk};

• Set ξmin = 2π/d, dξ = 2π/(N · d), ξk = ξmin + (k − 1) · dξ, k = 1, . . . N ,
ξ = {ξk};

• Set the number of time steps M = 252 · T , ∆t = T
M

, tm = m∆t, m =
0, 1, . . .M ;

• Define a uniform Z-grid with a separate last Z point at 1. Set the number
of Z-points Nz = 80, zmin = 0, dz = Kz · K2/(252 · Nz), zk = zmin + (k −
1) · dz, k = 1, . . . Nz, zNz−1 = max(1., Kz ·K2/252), z = {ξk};

• For m = M to 1
– For each (pj; zk), determine U(x; tm; pj; zk) using the updating rule (7).

∗ If m = M
Apply the terminal payoff function in (9) directly

∗ Else
Use an interpolation method

– Compute U(x; t+m; pj; zk) in (8) via FFT using (19) and (20)
– If m = 1

Output U(x; t0;P0;Z0); return
– Else

Store U(pj; tm; pj; zk)



7

– Next j; k
• Next m.
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