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Abstract

In this paper, we derive a forward analytical formula for computing the expected expo-
sure of financial derivatives. Under general assumptions about the underlying diffusion pro-
cess, our solution consists of two terms: The first term is an intrinsic value part which is
directly deduced from the term structure of the forward mark-to-market. The second term
expresses the variability of the future mark-to-market and represents the time value part.

In the spirit of Dupire’s equation for local volatility, our formula establishes a differen-
tial equation of the evolution of the expected exposure with respect to the observation date.
Our results are twofold: First, we derive analytically an integral representation of the ex-
posure’s expectation and we show that our result is assimilated to a generalized occupation
time formula. A straightforward link with local times is highlighted in dimension 1, while the
multidimensional extension is based on the co-area formula. Second, we show that from a
numerical perspective, our solution can be significantly efficient when compared with stan-
dard numerical methods. The accuracy and time-efficiency of the forward representation
are of special interest in computing xVA valuation adjustments in a benchmarking setting.
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1 Pricing framework

We consider a standard pricing setup using a risk neutral measure denoted Q or any equivalent
measure.

We consider a financial contract where cash-flow are paid at discrete times (7;) ;- n € [0, T]
between pricing time 0 and the maturity of the contract T > 0. We define s € [0, T] and ¢ € [0, T]
as respectively future valuation and marking-to-market dates. D (s, t) denotes the (determinis-
tic) discount factor, i.e. the value at s of one monetary unit received at ¢. Let I1(z, T) to be the
discounted cash-flows of the underlying contract exchanged between ¢ and T. It is well known
that the arbitrage-free value of the contract at time s is given by

m(s;t) 2 D (s, t)Eg[T1(¢, T)] (1.1)

where E (Eg = E) denotes the Q—expectation based on market information up to time s. Then,
the value of the expected exposure to a default occurring at time ¢ reads

EE()£D(0,0E[(m(r,0)"] (1.2)

where only cash-flows exchanged after ¢ are accounted.

This quantity expresses the loss on favorable mark-to-market scenarios in case of default of
the counterparty. Here, we don’t consider the recovery rate neither the collateral held. In addi-
tion, the exposure is calculated on the basis of risk-free closeout, i.e. risk-free mark-to-market
at default. In presence of continuous collateralization triggered at H > 0, the above exposure
expression becomes

EE(t)=D(,DE[(m(t, )" —(m(t,0) - H)"] (1.3)

Additional deterministic collateral specifications such as Independent Amounts and Initial Mar-
gins can be easily accounted for in 1.3.

In a Markov setup, we admit that I1 (¢, T) depends on the realization at time ¢ of a stochastic
process (Xs) se(o,7 SO that:

m(s;t)=m(s, X t) =D (s, )Eg[I1(8, T) | X¢] (1.4)

X refers to a multidimensional risk factor.

Without loss of generality, we assume that discounting rates are nil, so that D (s,#) = 1. As a
consequence, (m (s, X; 1)) se(o,1 is @ local martingale.

We suppose that X € R? evolves under Q according to the stochastic differential equation

u u
‘v’ue[O,T],Xu:(X,-,u)l.zlmd:XO+/ ,u(v,XV)dv+/ o v, X,)dw, (1.5)
0 0

where W = (W!,..., Wr)T is a R"—valued standard Brownian motion, Xp = (Xi,0,.. .,Xd,O)T eRY,
w:[0,T] x R4 — RY and o : [0, T] x R% — R4*" satisfying the assumption (/) as in Bally and
Talay [1]:
Assumption 1.1 (/). The derivatives 1 and o w.r.t. the space variable X exist at any order and
are bounded. In addition, oo™ fulfills the uniform ellipticity condition; i.e. there exits 0o, > 0
such that

o x)0wx)"| >0 (1.6)

forall (u,x), uel0,T] and x € R4,
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(#6)) implies the existence of a smooth transition density g (s, x) = g (s, x: 0, Xp) and the ex-
istence of exponential bounds for g and its derivatives w.r.t. s >0, x and Xj.
To perform our analysis, we introduce smoothness requirements on the payoff function IT:

Assumption 1.2 (/). We assume that the value function (s, x) — m(s, x; ) is€12 ([0, f[xR4 — IR) .
In addition, the first and second partial derivative of m w.r.t. x are bounded.

2 The forward exposure representation for X € R

Theorem 2.1. Given (#) , (/) and 73 (1), the expected exposure at time t satisfies the following
equation

tn(s,t)
EE(t)=(m(0,1)" + 5/0 > 0% (8,1 (5, 0)|0xm (8, 0) Le=gy5,0| G (5, 1i (5, 1)) ds 2.1)
i=1
Theorem 2.1 presents a convenient decomposition of the expected exposure EE(f). The
first term (m (0, 1))* = (E[I1(¢, T)])* corresponds the positive part of the forward mark-to-market
which can be assimilated to the intrinsic value of the exposure. The second term depends on
the volatility function o and represents consequently the time value part of the exposure.
Noticing that (m (0, ))* remains constant between two successive coupon payment dates.
An incremental reformulation of the expected exposure is then possible. It is given in the fol-
lowing corollary.

Corollary 2.2 (Incremental exposure). Given Theorem 2.1, one has¥Vi € [[1...N]],

EE(Ti-) = (m(0, T;-1)"

1 [ Ti-inGs,Tion) 5
+—/ Yo% (s (s, Tim)
0

2 q(s, l; (s, Ti-1))ds (2.2)
j=1

a)C’/n (S) X, Ti—l) |x:lj(s,T,-_1)

andVte|[T;_1, T;l

t n(st)
EE(t)=EE(Ti-1)+ Y o (s, 1; (s, 0)|0xm (s, % 8) Lx=1;(5,0)| 9 (5, Li (5, 1)) s (2.3)
Ti-y i=1
Remark 2.3. Different choices of the state variable X, and implicitly g, are possible for pricing
a contingent claim. In the purpose of using our formula (2.1), an optimal choice of X should
satisfy (#3 (1)) as well as an explicit calculation of /; (¢) roots.

2.1 Valuation examples in dimension 1 - Equity forward contract:

We consider an Equity forward contract for which the expected exposure in given by the prices
of European call options. We refer by S the price of an Equity asset and by X its logarithm. We
assume that X has the following dynamics

{dXS —30 (5, X)?ds+0 (s, X;) AW, (2.4)
Xo =X
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where o the local volatility function. The price of the forward contract is given at time s by
m(s,x;t)=E [eX;'x —K] =e*-K
and the expected exposure by the call option price

+

EE(0)=E[m(t,t,0*] =E [(e¥ - K)

EE (1) is given explicitly in case of the classical Black model or some special cases of local
volatility models such as the Constant Elasticity of Variance (CEV). For any local volatility func-
tion o, EE (1) is given explicitly using our forward representation with:

° n(ty S) =1
° ll (S; t) :ln(K) i.e. (117,(5, ll (S, t),t) :0)
* 0,m(s,%;8) |lx=1,(5,) = PUIY By

* ¢ (s, x) is the density function X, either given explicitly or constructed numerically.

3 The forward exposure representation for X € R?, d = 2

We propose a generalization of Theorem 2.1 to the case where X is an R?—valued process. We
use the co-area formula ([2, 3]).

Our main result expresses the expected exposure in terms of the Lebesgue measure on the
surface {x eERYm(s,x;1) = 0}. This surface is explicitly characterized in case of d = 2 in view of
numerical applications.

3.1 General case

we need to introduce the following conditions, which is a stronger analog to (/5 (1)):
Assumption 3.1 (A3 (d)). We assume that|Vm(s,x;t)|#0 onY (z) where z € [—¢, €].

We now give the multidimensional extension of our main result. We follow a straightforward
derivation that is only based on the co-area formula a

Theorem 3.2. Assuming (), (/62) and (65 (d)), the expected exposure satisfies the following
equation

EE(f) = (m(0,0)* + - / ds/ _8BHD o duye () 3.1)
yo) | Vam(s,x;1) |

where

d r
g, Xst)= ) Y Vum(s,Xs1) 0k (8, Xs) Va,m(s, X5 1) 0 i (5, X5) (3.2)
i,j=1k=1



B. LAPEYRE, M. IBEN TAARIT 5

3.2 Case X € R?

Given the times(s, 1), Y (0) corresponds to the set of points (xo, yo) where m (s, (xo, yo);t) = 0
and |V, ,ym (s,(x0,¥0); ) I# 0. The case d = 2 can be made more explicit by the means of the
implicit function theorem.

Proposition 3.3 (Implicit function theorem). Let(xo, yo) € Y (0). Weadmit thatd,m s, (xo, o) ; t) #
0. There exists a function ¥ defined on an open interval W containing xy, and an open set 'V in
W xR, such that

V(x,y)eV, (x,y) €Y (0) &y (x)=

The condition d,m (s, (xo, yo); ) # 0 is not restrictive thanks to (#3 (d)). In fact, one has to
consider an explicit function x = ¢ (y) if ,m (s, (xo, yo); £) = 0 and hence 8. m s, (xo, o) ; ) # 0.

The implicit function theorem allows to derive an explicit representation of the surface inte-
gral Y in the co-area formula. A simple situation consists in having V = Y (0) and unicity of the
implicit function y. It follows then that the Lebesgue surface measure dvy ) (x) is induced by
the Lebesgue real measure dx. Equation (3.1) becomes

g(s (x v @);1)
EE 0, (%, d
(1) =m©O,0)" += / /IVx v )e )lq(s (x, 9 (x))dx

The existence of y is guaranteed by the implicit function theorem for any (xo, yo) € Y (0). We de-
note the set of implicit functions characterizing Y (0) by . In the case where ¥ is a denumerable
and is explicit, one has

s, (v (0);1)
EE(t)=m(0,1)" += / / s, (x,w(x)))dx (3.3)
w;y |Vx Glow e )|q( (v, v (0))

As illustrated in the sequel, this expression can be used in numerical computations.

It is worth mentioning that, thanks to the implicit function theorem, the expected exposure
formula (3.1) can be run at the cost of numerical integration in R. The same argument can be
adapted to d = 3, and shows that a numerical integration in R4 is required (instead of RY).

3.3 Avaluation examples in dimension 2 - FX Swap

We consider an FX swap under the joint Garman-Kolhagen/Hull-White model. The swap corre-
sponds to receiving a float rate in the domestic currency and paying a fixed rate in the foreign
currency. We denote by P and P the zero-coupon bond price functions in respectively the do-
mestic and foreign currencies, and (X{ /d) the price of 1 monetary unit of the foreign currency
expressed in the domestic currency.
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The mark-to-market function m reads
N

m(s,0)= ) E[P(s,T)7;(L(Ti-1, T1) — X1,K)]
i|T;=t
N N fld
= Y EIPGT)-P( T - Y TKE|P(s,T) XS,
i|Ti=t i|Ti=t
N

d ~
=P (s, Ts1)-P(s, Tn) - X" Y 1,KP(s,T)
iIT; >t

where ((¢) =inf{i € [1..N]|T; = t}.
As for the IR swap, we consider the 1-factor Hull&White short rate model that states that

re =¢w+o [ e Vawy

ry =ry+su)
where a and o are respectively the mean-reversion and the volatility parameters and s is a de-
terministic spread function specified initially. As a consequence, the prices P and P are explicit
functions of r

A — —[Tridu) _
P(s,T) 2 P(s,rs, T) =Eg|e”)s udt| = A(s, T)exp (B (5, ) )

- s . . - (3.4)
B(s,T) £P(sF,T)=E [e—ff d] =A(s, Dexp (=B (s, T)rs)

Finally, the exchange rate is driven by a log-normal dynamics such that

axi

W = (ru—fu)du+0Xde(
Xu

The Brownian motions W" and W* are correlation, i.e. d(W", W*) = pds.
In order to compute the expected exposure EE (t), we specify quantities that are involved in
the forward representation (2.1). For s < t,

/d /d 5 5
o 0,m(s,ro XU 1) = =B (5, Tpey1) P (5 T ) +B (s, Tn) P (s, TN+ X! SNy 70K B (s, T) P (s, Ty)

Id 5
. axm(s, ro X! ;t) = —Zﬁ-\(TithiKP(S, Ti)

* 0 (s,rs) =0 and q is the transition density function of the Gaussian distribution.
In particular | V(. xym |# 0 since 0x m (s, rs,Xf/d; t|#0.

Finally, the set Y (0) is entirely specified using the implicit function theorem. In fact, one can
easily find that m (s, Ts, Xsf/d, t) =0 imposes that

P (S, Tﬁ(t)—l) —P (s, Tn)
YN TiKP(s,T)

i|Ti=t

xI' = =y (ry)

and the implicit theorem function v, is given explicitly in terms of A, A, B and B.
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