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1 Models of options

We consider the following models for the stock price Sy and the variance V' of the volatility:

e Black-Scholes
{ dSt = (7" — (5)St + aStthS,

e Heston
dSt = (T’ — 5)St + \/VtstthS,
d‘/t = Oy (ﬁv - V;f)dt + W\/ththa

where r is the risk-free rate, J is the dividend, o is the volatility of the asset, w is the volatility
of the volatility, (o, 3,) are respectively the reverting speed and the long-run variance. The two
Brownian motions W% and WV are correlated such that (W< WV) = ~.

We will consider the pricing of an American option (or precisely a Bermudan option) which
could be a call or a put (the payoff will be denoted h) with given maturity 7" and strike K. The
initial values of S and V are given by Sy and Vj. It consists in computing the value of

u(t,z) = sup Ele """ In(S,)|S, = 2]
TETe, T

at time ¢ = 0, given u(T, x) = h(x), and where 7; ;- are stopping times.

Regarding the payoff function h, we will consider multiple types of multi-dimensional options
i.e. defined for asset S; with ¢ € {1, ...,d} with possibly a negative weight/coefficient w (usually é
for the arithmetical basket option) or negative strike K to take into account put and call options.

e The arithmetical basket option such that ((w Ele Si) — K)T.
d

e The best of basket option such that ((max?

1=

1 wSi) - K)+~

The geometrical basket put option such that (K — (H;—i:1 S)a)t.

e The geometrical basket call option such that ([, S;)@ — K)*.
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In all cases, we have to develop a method that can efficiently learn an optimal policy for stopping
problems of the form

sup E[g(7, S-)]
TET



2 Deep Optimal Stopping

In the article [4], they have considered a deep learning method to reproduce an optimal policy,
using the fact that it could be modeled by a sequence of stopping decision (f,,)1<n<n : RY — {0,1}
Consider the auxiliary stopping problems

Vo = sup E[Q(T, ST)]
TETn

for n = 0,1,..., N, where 7, is the set of all S-stopping times satisfying n < 7 < N with an
obvious time discretization of the pricing problems described in section 1.

Since Ty consists of the unique element 7y = N, one can write 7y = N fn (S ) for the constant
function fy = 1. Moreover, for given n € {0,1,..., N} and a sequence of measurable function
frs faxts-- s fn i R — {0,1} (with fy = 1) we can define

—1

N
Tn = Z fm(Sm) (1 - fJ(S]))

J

3

n

which is a stopping time in 7, (and this form is sufficient to find an approximate solution of the
problem, see [1]).

The neural network approximation consists on finding parameters § € R? to implement func-
tions f? : RY — {0,1}. More precisely, let n € {0,1,...,N — 1}, and assume parameter values
Opi1,0n42,...,0n € R? have been found (such that fv = 1) and the stopping time

N m—1
= > o (Sm) [T 0= £7(S5)
m=n j=n

produces an expected value E[g(7,41, S7,.,)] close to the optimum V}, 4.
The aim is to determine 6,, € R? such that

Elg(1, S2)F? (Sn) + 9(Tu41, Sr,pe0) (1 = FP(S0)))]

is close to the supremum supycgs E[g(n, S,)F?(S,) 4+ 9(Tnt1, S, .0 ) (1= F?(S,))] for a feed forward
network

Fl:=4oafogr10af_jodrs0---0¢oaf
with ¢ is the standard logistic function, (¢;)1<i<s are standard ReLU activation function and
(ai)1<i<r are affine function. Once this has been done, we set

0

0
Jn=1pec[0a;" 010 a?_l Opr_g0---0¢y0ay".

3 Implementation

3.1 How to call the program ?

This program has been implemented in a common framework with other methods using neural
network to solve pricing problems described in section 1. These methods are using the Longstaff-
Schwartz algorithm with classical polynomial regression, neural network regression, and pre-trained
neural network regression (see [1, 2, 3]). These methods can be called by the same commands using
specific options.

Precisely, you call the program with the command python montecarlo.py followed by

x At least one of the two following options

1. -infile Specify the file describing the payoff, the dynamic of asset and numerical
parameters (see 3.2)

2. —-indir Run all the problems in the directory.



x Optional arguments could be added

-outfile Path to the output file.

-verbose Be a verbose program.

-seed Specify the seed of the random generator.

-loops Specify the number of launches of the algorithm.

—-processes Specify the number of processes to run in parallel when using -loops.

—-euro Compute the European price.
x At least one of the two following options

-pol Use the classical polynomial regressions.
-dnn Use the deep neural networks for regression.
-1snn_train Use the deep neural networks for regression and record it on the disk.

-1snn_read Use the deep neural networks written on the disk for regression.

oLk W

-dos Use the deep optimal stopping algorithm.

3.2 How to write a file of parameters ?

On the file of parameters (the name of file should be entered after —infile option (see 3.1), you
have to write the following values.

For a Black-Scholes model with arithmetical basket of options, with obvious signification of all
parameters, here is an example of the file.

#This is a comment

model type <string> bs

model size <int> 5
strike <float> -100
spot <vector> 100
maturity <float> 3
volatility <vector> 0.2

<float> 0.05
<float> 0.2
<vector> 0.0

interest rate
correlation
dividend rate

option type
payoff coefficients

<string> basket
<vector> -0.2

dates <int> 10

#Sub grid for path generation

sub ticks <int> 1

MC iterations <int> 100000

degree for polynomial regression <int> 6

neural network file <string> ./models/nn_file
number of hidden layers <int> O

number of neurons per layer <int> 128

epochs <int> 10

For a Heston model with arithmetical basket of options, with obvious signification of all pa-
rameters, here is an example of the file.

#This is a comment

model type
model size

strike

<string> heston
<int> 1
<float> -100



spot

maturity

initial volatility
volatility of volatility
long run variance
reverting rate

interest rate
correlation

asset vol correlation
dividend rate

option type
payoff coefficients

dates

#Sub grid for path generation
sub ticks

MC iterations

degree for polynomial regression
neural network file

number of hidden layers

number of neurons per layer
epochs
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<vector>

<float> 1

<vector>
<vector>
<vector>
<vector>
<float>
<float>
<float>
<vector>

<string>
<vector>

<int> 10

<int> 3

100

.01
.2
.01

.0953
.5
-0.3
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basket
-1.

<int> 100000
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<string>
<int> 0

<int> 128

<int> 5

./models/nn_file
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