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Abstract

We propose a hybrid approximation of functionals of the Bates jump model with stochastic interest
rate that uses a tree method in the direction of the volatility and the interest rate, and a finite
difference approach in order to handle the underlying asset price process. We also propose a hybrid
Monte Carlo method to approximate the model, which uses a binomial tree in the direction of
the volatility and the interest rate, and a space-continuous approximation for the underlying asset
price process coming from a Euler-Maruyama type scheme. We show that our methods allow to
obtain efficient and accurate European and American option prices. Numerical results are provided,
showing the reliability and the efficiency of the algorithms.
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Premia 22

1 Introduction

The Black-Scholes [5] model assumes that the option underlying asset follows a geometric Brownian
motion with drift and diffusion parameters with constant volatility. In practice, all option markets
exhibit a volatility smile behaviour. In order to take into account this phenomenon in the foreign
exchange option market Bates [3] introduces a stochastic-volatility with price jumps model where the
dynamics of the underlying are driven by both stochastic volatility following the square root process
of Heston [18], and by a Poisson jump process of the type originally introduced by Merton [24]. In the
case of plain vanilla European options Fourier inversion methods [11] leads to closed-form formulas
for option pricing under jump-diffusions with stochastic volatility. Nevertheless, in the American case
the numerical literature is very poor. The finite difference methods for solving the parabolic integro
partial differential equation associated to the option pricing problems can be based on implicit, explicit
or alternating direction implicit schemes. The implicit scheme requires to solve a dense sparse system
at each time step. Tovainen [30] propose a componentwise splitting method for pricing American
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options in the Bates model. The linear complementarity problem associated to the American option
problem is decomposed into a sequence of five one-dimensional LCP’s problems at each time step.
The advantage is that LCP’s need the use of tridiagonal matrices. More recently Chiarella at al [12]
develop a method of lines algorithm for pricing and hedging American option prices under stochastic
volatility and jump-diffusion dynamics.
In this paper we propose the approach based both on tree and finite difference methods introduced in
Briani, Caramellino and Zanette [6].

The paper is organized as follows. In Section 2, we introduce the Bates model with stochastic
interest rate. In Section 3 we describe the tree procedure for the volatility and the interest rate pair
(V, X). Then, in Section 4 we switch to the numerical approximation of the log-price process Y = log S
and we describe both the Monte Carlo approach (Section 4.1) and the partial differential one (Section
4.2). To outline the latter procedure, we show in section 5 how to use our hybrid tree/finite difference
scheme for the pricing of American options. Moreover, in Section 6 we give a schematic sketch of the
major computational steps in order to use the two proposed approximations. Numerical results and
comparisons are in Section 7.

2 The Bates model with stochastic interest rate

In this section we consider the case of Bates model associated with the Vasicek model for the stochastic
interest rate. In the Bates model, as introduced in [3], the volatility is assumed to follow the Cox-
Ingersoll-Ross (hereafter CIR) process and the underlying asset price process contains a noise from a
jump process of the type originally introduced by Merton [24]. Moreover, we allow here the interest
rate to follow a stochastic model and we assume to be described by a generalized Ornstein-Uhlenbeck
(hereafter OU) process. More precisely, the dynamics under the risk neutral measure of the share price
S, the volatility process V and the interest rate r, are given by the following jump-diffusion model:

dSt

St−

= (rt − η)dt +
√

Vt dZS
t + dHt,

dVt = κV (θV − Vt)dt + σV

√

Vt dZV
t ,

drt = κr(θr(t) − rt)dt + σrdZr
t ,

with S0 > 0, V0 > 0 and r0 > 0, ZS , ZV and Zr are suitable and possibly correlated Brownian motions
and Ht is a compound Poisson process with intensity λ and i.i.d. jumps {Jk}k, that is

Ht =
Kt
∑

k=1

Jk,

where K denotes a Poisson process with intensity λ. We assume that the Poisson process K, the
jump amplitudes {Jk}k and the Brownian motions ZS , ZV and Zr are independent. As suggested by
Grzelak and Oosterlee in [17], the significant correlations are between the pairs (S, V ) and (S, r). So,
as done in [7], we assume that the couple (ZV , Zr) is a standard Brownian motion in R

2 and ZS is a
Brownian motion in R which is correlated both with ZV and Zr:

d〈ZS , ZV 〉t = ρ1dt and d〈ZS , Zr〉t = ρ2dt.

We recall that the volatility process V follows a CIR dynamics with mean reversion rate κV , long run
variance θV and σV denotes the vol-vol (volatility of the volatility). We stress that we never require in
this paper that the CIR process satisfies the Feller condition 2κV θV ≥ σ2

V , ensuring that the process V
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never hits 0. So, we allow the volatility V to reach 0. The interest rate rt is described by a generalized
OU process, in particular θr is deterministic and fits the zero-coupon bond market values, for details
see [10]. As already done in [19], we write the process r as follows:

rt = σrXt + ϕt (2.1)

where

Xt = −κr

∫ t

0
Xs ds + Zr

t and ϕt = r0e−κrt + κr

∫ t

0
θr(s)e−κr(t−s)ds. (2.2)

We recall that the process S can be written as follows. Let τk, k ≥ 1, denote the jump times of
the compound Poisson process H, and let us add τ0 = 0. Then for k ≥ 0 and t ∈ [τk, τk+1) one has

St = Sτk
exp

(

∫ t

τk

(

rs − η − 1

2
Vs

)

ds +

∫ t

τk

√

VsdZs

)

and at the jump time τk+1,

Sτk+1
= Sτ−

k+1
+ Sτ−

k+1
Jk+1 = (1 + Jk+1)Sτk

exp
(

∫ τk+1

τk

(

rs − η − 1

2
Vs

)

ds +

∫ τk+1

τk

√

VsdZs

)

.

From now on we set

ZV = W1, Zr = W2, ZS = ρ1W1 + ρ2W2 + ρ3W3,

where W = (W1, W2, W3) is a standard Brownian motion in R
3 and the correlation parameter ρ3 is

given by

ρ3 =
√

1 − ρ2
1 − ρ2

2, ρ2
1 + ρ2

2 ≤ 1.

By passing to the logarithm Y = ln S in the first component, taking into account the above mentioned
correlations and (2.1)-(2.2), we reduce to the triple (Y, V, X) given by

dYt = µY (Vt, Xt, t)dt +
√

Vt
(

ρ1dW 1
t + ρ2dW 2

t + ρ3dW 3
t

)

+ dNt, Y0 = ln S0 ∈ R,

dVt = µV (Vt)dt + σV

√
Vt dW 1

t , V0 > 0,

dXt = µX(Xt)dt + dW 2
t , X0 = 0,

(2.3)

where

µY (v, x, t) = σrx + ϕt − η − 1

2
v, (2.4)

µV (v) = κV (θV − v), (2.5)

µX(x) = −κrx, (2.6)

and Nt is the compound Poisson process written through the Poisson process K and the i.i.d. jumps
{log(1 + Jk)}k, that is

Nt =
Kt
∑

k=1

log(1 + Jk).

Recall that the Poisson process K has intensity λ and is such that K, the jump amplitudes {log(1 +
Jk)}k and the Brownian motions W1, W2 and W3 are all independent. We also recall that the Lévy
measure linked to the compound Poisson process N is given by

ν(dx) = λP(log(1 + J1) ∈ dx),
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and whenever log(1 + J1) is absolutely continuous then ν has a density as well:

ν(dx) = ν(x)dx = λplog(1+J1)(x)dx, (2.7)

plog(1+J1) denoting the probability density function of log(1 + J1). For example, in the Merton model
[24] it is assumed that log(1 + J1) has a normal distribution, that is

log(1 + J1) ∼ N(µ, δ2).

This is the choice we will do in our numerical experiments and, for practical purposes, we shall take
µ = γ − 1

2δ2 for a given suitable γ ∈ R, as done in Chiarella et al. [12]. But others jump-amplitude
measures can be selected. For example, in the Kou model [20] the law of log(1 + J1) is a mixture of
exponential laws: the probability density functions is

plog(1+J1)(x) = pλ+e−λ+x 1x>0 + (1 − p)λ−eλ−x 1x<0,

1 denoting the indicator function. Here, the parameters λ± > 0 control the decrease of the distribution
tails of negative and positive jumps respectively, and p is the probability of a positive jump.

3 The 2-dimensional tree for (V, X)

We consider an approximation for the pair (V, X) on the time-interval [0, T ] by means of a 2-
dimensional computationally simple tree. This means that we construct a Markov chain running
over a 2-dimensional recombining bivariate lattice and, at each time-step, both components of the
Markov chain can jump only upwards or downwards. We consider the “multiple-jumps” approach by
Nelson and Ramaswamy [25]. This technique has already been introduced and used in [7] for Heston-
Hull-White types model. A detailed description of this procedure and of the benefits of its use, can
be found in [7, 2, 6]. Here, we limit the argumentation to the essential ideas and to the main steps in
order to apply the whole algorithm.

We start by considering a discretization of the time-interval [0, T ] in N subintervals [nh, (n + 1)h],
n = 0, 1, . . . , N , with h = T/N .

For the CIR volatility process V , we consider the binomial tree procedure firstly introduced in [2].
For n = 0, 1, . . . , N , consider the lattice

Vh
n = {vn,k}k=0,1,...,n with vn,k =

(

√

V0 +
σ

2
(2k − n)

√
h

)2
1√

V0+ σ
2

(2k−n)
√

h>0. (3.1)

Notice that v0,0 = V0. For each fixed vn,k ∈ Vh
n , we define the “up” and “down” jump by means of

kh
u(n, k) = min{k∗ : k + 1 ≤ k∗ ≤ n + 1 and vn,k + µV (vn,k)h ≤ vn+1,k∗}, (3.2)

kh
d (n, k) = max{k∗ : 0 ≤ k∗ ≤ k and vn,k + µV (vn,k)h ≥ vn+1,k∗} (3.3)

where the drift µV of V is defined in (2.6) and with the understanding kh
u(n, k) = n + 1 if the set in

the r.h.s. of (3.2) is empty and kh
d (n, k) = 0 if the set in the r.h.s. of (3.3) is empty. The transition

probabilities are defined as follows: starting from the node (n, k) the probability that the process
jumps to kh

u(n, k) and kh
d (n, k) at time-step n + 1 are set as

pV,h
u (n, k) = 0 ∨

µV (vn,k)h + vn,k − vn+1,kh
d

(n,k)

vn+1,kh
u(n,k) − vn+1,kh

d
(n,k)

∧ 1 and pV,h
d (n, k) = 1 − pV,h

u (n, k) (3.4)
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respectively. This gives rise to a Markov chain (V̂ h
n )n=0,...,N that weakly converges, as h → 0, to the

diffusion process (Vt)t∈[0,T ] and turns out to be a robust tree approximation for the CIR process V .
Remark that this holds independently of the validity of the Feller condition, see [2].

In Figure 1 we show an example of the lattice Vh
n together with some possible instances of the

triple (vn,k, vn+1,kh
d

(n,j), vn+1,kh
u(n,j)). Notice that, by construction, the lattice is never negative and

reaches 0 (the actual possibility that the discretized process touches 0 and remains in 0 is linked to
the transition probabilities and then to the parameter values).

Figure 1: Example of a tree for the process V , showing as the tree may be visited.

Concerning the binomial tree for the process X, for n = 0, 1, . . . , N consider the lattice

X h
n = {xn,j}j=0,1,...,n with xn,j = (2j − n)

√
h. (3.5)

Notice that x0,0 = 0 = X0. For each fixed xn,j ∈ X h
n , we define the “up” and “down” jump by means

of jh
u(n, j) and jh

d (n, j) defined by

jh
u(n, j) = min{j∗ : j + 1 ≤ j∗ ≤ n + 1 and xn,j + µX(xn,j)h ≤ xn+1,j∗}, (3.6)

jh
d (n, j) = max{j∗ : 0 ≤ j∗ ≤ j and xn,j + µX(xn,j)h ≥ xn+1,j∗}, (3.7)

µX being the drift of the process X, see (2.6). As usual, one sets jh
u(n, j) = n+1 if the set in the r.h.s.

of (3.6) is empty and jh
d (n, j) = 0 if the set in the r.h.s. of (3.7) is empty. The transition probabilities

are defined as follows: starting from the node (n, j), the probability that the process jumps to jh
u(n, j)

and jh
d (n, j) at time-step n + 1 are set as

pX,h
u (n, j) = 0 ∨

µX(xn,j)h + xn,j − xn+1,jh
d

(n,j)

xn+1,jh
u(n,j) − xn+1,jh

d
(n,j)

∧ 1 and pX,h
d (n, j) = 1 − pX,h

u (n, j) (3.8)

respectively. This gives rise to a Markov chain (X̂h
n)n=0,...,N that weakly converges, as h → 0, to the

diffusion process (Xt)t∈[0,T ] and turns out to be a robust tree approximation for the OU process X.

An example of such procedure is given in Figure 2, which draws the lattice X h
n and possible

instances of xn,j , xn+1,jh
d

(n,j) and xn+1,jh
u(n,j).
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Figure 2: Example of a tree for the process X, showing as the tree may be visited.

The whole tree procedure for the pair (V, X) is obtained by joining the trees built for V and for
X. Namely, for n = 0, 1, . . . , N , consider the lattice

Vh
n × X h

n = {(vn,k, xn,j)}k,j=0,1,...,n. (3.9)

Starting from the node (n, k, j), which corresponds to the position (vn,k, xn,j) ∈ Vh
n × X h

n , we define
the four possible jumps by means of the following four nodes at time n + 1:

(n + 1, kh
u(n, k), jh

u(n, j)) with probability ph
uu(n, k, j) = pV,h

u (n, k)pX,h
u (n, j),

(n + 1, kh
u(n, k), jh

d (n, j)) with probability ph
ud(n, k, j) = pV,h

u (n, k)pX,h
d (n, j),

(n + 1, kh
d (n, k), jh

u(n, j)) with probability ph
du(n, k, j) = pV,h

d (n, k)pX,h
u (n, j),

(n + 1, kh
d (n, k), jh

d (n, j)) with probability ph
dd(n, k, j) = pV,h

d (n, k)pX,h
d (n, j),

(3.10)

where the above nodes kh
u(n, k), kh

d (n, k), jh
u(n, j) and jh

d (n, j) and the above probabilities pV,h
u (n, k),

pV,h
d (n, k), pX,h

u (n, j) and pX,h
d (n, j) are defined in (3.2)-(3.3), (3.6)-(3.7), (3.4) and (3.8). The factor-

ization of the jump probabilities in (3.10) follows the orthogonality property of the noises driving the
two processes. As a quite immediate consequence of standard results (see e.g. the techniques in [25]),
one gets the following: the associated bivariate Markov chain (V̂ h

n , X̂h
n)n=0,...,N weakly converges to

the diffusion pair (Vt, Xt)t∈[0,T ] solution to

dVt = µV (Vt)dt + σV

√

Vt dW 1
t , V0 > 0,

dXt = −κrXt dt + σr dW 2
t , X0 = 0.

More details and remarks on the extension of this procedure to more general cases can be found in
[7], see in particular Remark 3.1 therein in the case of non null correlation between V and X.

4 The approximation on the Y -component

In this section we describe how to manage the Y -component in (2.3) and how to discretize it by taking
into account the tree procedure given for the pair (V, X). We will follow two different approaches: the
first one is based on the standard Euler scheme for the Y -component and the second one is based on the
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Feynman-Kac representation formula and on the finite difference approximation of partial differential
problems.

We go now back to (2.3), that is

dYt = µY (Vt, Xt, t)dt +
√

Vt
(

ρ1dW 1
t + ρ2dW 2

t + ρ3dW 3
t

)

+ dNt, Y0 = ln S0 ∈ R,

dVt = µV (Vt)dt + σV

√
Vt dW 1

t , V0 > 0,

dXt = µX(Xt)dt + dW 2
t , X0 = 0,

(4.1)

with µY , µV and µX given by

µY (v, x, t) = σrx + ϕt − η − 1

2
v, µV (v) = κV (θV − v), µX(x) = −κrx.

By isolating
√

VtdW 1
t in the second line and dW 2

t in the third one, we obtain

dYt = µ(Vt, Xt, t)dt + ρ3

√

Vt dW 3
t +

ρ1

σV
dVt + ρ2

√

VtdXt + dNt (4.2)

with
µ(v, x, t) = µY (v, x, t) − ρ1

σV
µV (v) − ρ2

√
v µX(x)

= σrx + ϕt − η − 1
2 v − ρ1

σV
κV (θV − v) + ρ2κrx

√
v.

(4.3)

To numerically solve (4.2), we mainly use the fact that the noises W 3 and N are independent of
the processes V and X. We construct an approximating process Ȳ h

t as follows: we first take the
approximating tree (V̂ h

n , X̂n)n=0,1,...,N−1 discussed in Section 3 and we call (V̄ h
t , X̄h

t )t∈[0,T ] the associ-

ated time-continuous càdlàg approximating process for (V, X), that is V̄ h
t = V̂ h

⌊t/h⌋ and X̄h
t = X̂h

⌊t/h⌋.

Then, we insert the discretization (V̄ h, X̄h
t ) for (V, X) in the approximating process for Y obtained

by freezing the coefficients in (4.2). Therefore, the final approximating process Ȳ h
t is set as follows:

Ȳ h
0 = Y0 and for t ∈ (nh, (n + 1)h] with n = 0, 1, . . . , N − 1

Ȳ h
t = Ȳ h

nh + µ(V̄ h
nh, X̄h

nh, nh)(t − nh) + ρ3

√

V̄ h
t (W 3

t − W 3
nh)

+
ρ1

σV
(V̄ h

t − V̄ h
nh) + ρ2

√

V̄ h
t (X̄h

t − X̄h
nh) + (Nt − Nnh).

(4.4)

Now, to numerically compute the price of options written on the share price S, we pursue two different
approaches.

4.1 The Monte Carlo approach

Let us show how one can simulate a single path by using the tree approximation (3.9) for the couple
(V, X) and the standard Euler scheme (4.4) for the Y -component.

Consider the process (Y, V, X) as in (4.1). Let (V̂ h
n , X̂h

n)n=0,1,...,N denote the Markov chain that
approximates the pair (V, X), described in Section 3. We construct a sequence (Ŷn)n=0,1,...,N approxi-
mating Y at times nh, n = 0, 1, . . . , N , by means of the Euler scheme defined in (4.4): we set Ŷ h

0 = Y0

and for t ∈ [nh, (n + 1)h] with n = 0, 1, . . . , N − 1 then

Ŷ h
n+1 = Ŷ h

n + µ(V̂ h
n , X̂h

n , nh)h + ρ3

√

hV̂ h
n ∆n+1

+
ρ1

σV
(V̂ h

n+1 − V̂ h
n ) + ρ2

√

V̂ h
n (X̂h

n+1 − X̂h
n) + (N(n+1)h − Nnh),
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where µ is defined in (4.3) and ∆1, . . . , ∆N denote i.i.d. standard normal r.v.’s, independent of the
noise driving the chain (V̂ , X̂). The simulation of N(n+1)h −Nnh is straightforward: one first generates
a Poisson r.v. Kh of parameter λh and if Kh > 0 then also the log-amplitudes log(1 + Jk) for
k = 1, . . . , Kh are simulated. Then, the observed jump of the compound Poisson process is written as
the sum of the logarithms of the simulated amplitudes, so that

Ŷ h
n+1 = Ŷ h

n + µ(V̂ h
n , X̂h

n , nh)h + ρ3

√

hV̂ h
n ∆n+1

+
ρ1

σV
(V̂ h

n+1 − V̂ h
n ) + ρ2

√

V̂ h
n (X̂h

n+1 − X̂h
n) +

Kh
∑

k=1

log(1 + Jk),
(4.5)

in which the last sum is set equal to 0 if Kh = 0.
The above simulation scheme is plain: at each time step n ≥ 1, one let the pair (V, X) evolve on the

tree and simulate the process Y by using (4.5). We will refer to this procedure as hybrid Monte Carlo
algorithm, the word “hybrid” being related to the fact that two different noise sources are considered:
we simulate a continuous process in space (the component Y ) starting from a discrete process in space
(the tree for (V, X)).

4.2 The partial differential approach

We go back now to (4.4). If we set

Z̄h
t = Ȳ h

t − ρ1

σV
(V̄ h

t − V̄ h
nh) − ρ2

√

V̄ h
nh(X̄h

t − X̄nh), t ∈ [nh, (n + 1)h] (4.6)

then we have

dZ̄h
t = µ(V̄ h

nh, X̄h
nh, nh)dt + ρ3

√

V̄ h
nh dW 3

t , +dNt t ∈ (nh, (n + 1)h],

Z̄h
nh = Ȳ h

nh,
(4.7)

that is Z̄h solves a jump-diffusion stochastic equation with constant coefficients and at time nh it
starts from Ȳ h

nh. Take now a function f : we are interested in approximating

E(f(Y(n+1)h) | Ynh = y, Vnh = v, Xnh = x).

By using our scheme and the process Z̄h in (4.6), we approximate it with the expectation done on the
approximating processes, that is

E
(

f(Ȳ h
(n+1)h) | Ȳ h

nh = y, V̄ h
nh = v, X̄h

nh = x
)

= E
(

f(Z̄h
(n+1)h +

ρ1

σV
(V̄ h

(n+1)h − V̄ h
nh) + ρ2

√

V̄ h
nh(X̄h

(n+1)h − X̄h
nh)) | Z̄h

nh = y, V̄ h
nh = v, X̄h

nh = x
)

.

Since (V̄ h, X̄h) is independent of the Brownian noise W 3 and on the Poisson process N driving Z̄h in
(4.7), we can write

E(f(Ȳ h
(n+1)h) | Ȳ h

nh = y, V̄ h
nh = v, X̄h

nh = x)

= E

(

Ψf

(

ρ1

σV
(V̄ h

(n+1)h − V̄ h
nh) + ρ2

√
v(X̄h

(n+1)h − X̄h
nh); y, v, x

) ∣

∣

∣ V̄ h
nh = v, X̄h

nh = x
)

,
(4.8)

in which
Ψf (ζ; y, v, x) = E(f(Z̄h

(n+1)h + ζ) | Z̄h
nh = y, V̄ h

nh = v, X̄h
nh = x). (4.9)
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Now, in order to compute the above quantity Ψf (ξ), we consider a generic function g and set

u(t, y; v, x) = E(g(Z̄h
(n+1)h) | Z̄h

t = y, V̄ h
t = v, X̄h

t = x), t ∈ [nh, (n + 1)h].

By (4.7) and the Feynman-Kac representation formula we can state that, for every fixed x ∈ R and
v ≥ 0, the function (t, y) 7→ u(t, y; v, x) is the solution to

{

∂tu(t, y; v, x) + L(v,x)u(t, y; v, x) = 0 y ∈ R, t ∈ [nh, (n + 1)h),

u((n + 1)h, y; v) = g(y) y ∈ R,
(4.10)

where L(v,x) is the integro-differential operator

L(v,x)u(t, y; v, x) = µ(v, x)∂yu(t, y; v, x) + 1
2ρ2

3v∂2
yyu(t, y; v, x)

+

∫ +∞

−∞
[u(t, y + ξ; v, x) − u(t, y; v, x)] ν(ξ)dξ,

(4.11)

where µ is given in (4.3) and ν is the Lévy measure associated to the compound Poisson process N ,
see (2.7). We are assuming here that the Lévy measure is absolutely continuous (in practice, we use a
Gaussian density), but it is clear that the procedure we are going to describe can be straightforwardly
extended to other cases.

FIN QUIIIIIIIIIIIIIIIIIIIIIIIIIIIII

4.2.1 Finite differences and numerical quadrature

In order to numerically solve the partial integro differential equation (hereafter PIDE) (4.10), we
generalize the approach already developed in [6] and [7]: at each time step n, we apply a finite
difference algorithm to the differential part of the problem coupled now with a quadrature rule to
approximate the integral term.

We start by fixing an infinite grid on the y-axis Y = {yi = Y0 + i∆y}i∈Z, with ∆y = yi − yi−1,
i ∈ Z. For fixed n and given x ∈ R and v ≥ 0, we set un

i = u(nh, yi; v, x) the discrete solution of (4.10)
at time nh on the point yi of the grid Y - for simplicity of notations, in the sequel we do not stress in
un

i the dependence on (v, x).
First of all, to numerically compute the integral term in (4.11) we need to truncate the infinite

integral domain to a bounded interval I, to be taken large enough in order that

∫

I
ν(ξ)dξ ≈ 1. (4.12)

In terms of the process, this corresponds to truncate the large jumps. Usually, the tails of ν decrease
exponentially, so the probability of large jumps is very small. To simplify the following discussion we
assume the Lèvy measure ν(ξ)dξ to be symmetric with respect to a point ξ0 and to go to zero outside
I - this property is quite standard, however our procedure can be adapted to other selected properties
for ν. Hence, we take R ∈ N large enough, set I = [ξ0 − R∆y, ξ0 + R∆y] and apply to (4.12) the
trapezoidal rule on the grid Y with the same step ∆y previously defined. Then, for ξk = ξ0 + k∆y,
k = −R, . . . , R,

∫ ξ0+R∆y

ξ0−R∆y
[u(s, y + ξ) − u(s, y)] ν(ξ)dξ ≈ ∆y

R
∑

l=−R

(u(s, y + ξl) − u(s, y)) ν(ξl). (4.13)

9



We adjust the numerical grid such that yi + ξk = Y0 + ξ0 + (i + k)∆y ∈ Y and then, for any i, k, the
values u(s, yi + ξk) are well defined on the numerical grid Y. These are technical settings and can be
modified and calibrated for different Lévy measures ν.

But in practice one cannot solve the PIDE problem over the whole real line. So, we have to choose
artificial bounds and impose numerical boundary conditions. We take a positive integer M > 0 and
we define a finite grid YM = {yi = Y0 + i∆y}i∈JM

, with JM = {−M, . . . , M}, and we assume that
M > R. Fixing now a time s = nh and a grid node i ∈ JM , for y = yi we have that the integral term
in (4.13) splits into two parts: one part concerning nodes falling into the numerical domain YM and
another part concerning nodes falling out of YM . As an example,

R
∑

l=−R

u(nh, yi + ξl)ν(xl) ≈
R

∑

l=−R

un
i+lν(ξl) =

∑

l : |l|≤R,|i+l|≤M

un
i+l ν(ξl) +

∑

l : |l|≤R,|i+l|>M

ũn
i+l ν(ξl),

where ũn
· stands for unknown values that fall out of the finite numerical domain YM . This implies

that we must choose some suitable artificial boundary conditions. In [31] it has been shown that a
good choice for the boundary conditions is the payoff function. Although this is the choice we will do
in our numerical experiments, for the shake of generality we assume here the boundary values outside
the YM domain to be settle by a known function b = b(t, y) which is defined in all R+ × R.

Going back to the numerical scheme to solve the differential part of the equation (4.10), as already
done in [7], we would apply an implicit in time approximation. However, to avoid to solve at each
time step a linear system with a dense matrix, the non-local integral term needs anyway an explicit
in time approximation. We then obtain an implicit-explicit (hereafter IMEX) scheme as proposed in
[15] and [8]. Notice that, more sophisticated IMEX methods may be applied, see for instance [9, 27].
The use of these techniques however increases the computational costs and it is beyond the scope of
this work.

As done in [7], to achieve greater precision we use the centered approximation for both first and
second order derivatives in space. The discrete solution un at time nh is then computed in terms of
the solution un+1 at time (n + 1)h by solving the following discrete problem: for all i ∈ JM ,

un+1
i − un

i

h
+ µ̃Y (v, x)

un
i+1 − un

i−1

2∆y
+

1

2
ρ2

3 v
un

i+1 − 2un
i + un

i−1

∆y2
+ ∆y

R
∑

l=−R

(

un+1
i+l − un+1

i

)

ν(ξl) = 0.

(4.14)
We then get the solution un = (un

−M , . . . , un
M )T by solving the following linear system

A un = Bun+1 + d, (4.15)

where A = A(v, x) and B are (2M + 1) × (2M + 1) matrices and d is a 2M + 1 vector defined as
follows. Concerning A, it is the tridiagonal real matrix given by

A =

















1 + 2β −α − β
α − β 1 + 2β −α − β

. . .
. . .

. . .

α − β 1 + 2β −α − β
α − β 1 + 2β

















, (4.16)

with

α =
h

2∆y
µ(v, x) and β =

h

2∆y2
ρ2

3v, (4.17)
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µ being defined in (4.3). We stress on that at each time step n, the quantities v and x are constant and
known values (defined by the tree procedure for (V, X)) and then α and β are constant parameters.
B is the (2M + 1) × (2M + 1) real matrix given by

B = I + h∆y













ν(ξ0) − Λ ν(∆y) . . . ν(R∆y) 0
ν(−∆y) ν(ξ0) − Λ ν(∆y) . . . ν(R∆y)

. . .
. . .

. . .

0 ν((−R + 1)∆y) . . . ν(−∆y) ν(ξ0) − Λ













, (4.18)

where I is the identity matrix and Λ =
∑R

l=−R ν(ξl). The 2M + 1 real vector d contains the numerical
boundary values:

d = an
b + an+1

b , (4.19)

with
an

b = ((β − α)bn
−M−1, 0, . . . , 0, (β + α)bn

M+1)T ∈ R
2M+1

and an+1
b ∈ R

2M+1 is such that

(an+1
b )i =



















h∆y
∑−M−i−1

l=−R ν(xl) bn+1
i+l , for i = −M, . . . , −M + R − 1,

0 for i = −M + R, . . . , M − R,

h∆y
∑R

l=M−i+1 ν(xl) bn+1
i+l , for i = M − R + 1, . . . , M − 1,

(4.20)

where for standard notation bn
i = b(nh, yi), n ∈ N, i ∈ Z.

We then obtain the following complete scheme. For β 6= |α|, A is an invertible matrix and at each
time nh, for each fixed v ≥ 0 and x ∈ R, the discrete solution un = {un

i }i∈JM
of (4.10) is given in

terms of the solution un+1 = {un+1
i }i∈JM

at time (n + 1)h, by the following formula:

u(nh, yi; v) ≈
∑

j∈JMh

Πij(v)g(yj) + d̃i(v), i ∈ JM . (4.21)

where Π(v) = A−1(v)B and d̃(v) = A−1(v)d.

4.2.2 The final finite difference approximation

We can now come back to our original problem, that is the computation of the function Ψf (ξ; y, v, x)
in (4.9) allowing one to numerically compute the expectation in (4.8). This means that, at time step
n, the pair (v, x) is chosen on the lattice Vh

n × X h
n : v = vn,k, x = xn,j for 0 ≤ k, j ≤ n. Then, (4.21)

gives
Ψf (ζ; y, v, x) ≃

∑

l∈JM

Πil(vn,k, xn,j)f(yl + ζ) + d̃i(vn,k), i ∈ JM . (4.22)

Therefore, the expectation in (4.8) is finally computed on the approximating tree for (V, X) by means
of the above approximation:

E(f(Ȳ h
(n+1)h) | Ȳ h

nh = y, V̄ h
nh = v, X̄h

nh = x)

≃
∑

a,b∈{u,d}

∑

l∈JM

(

Πil(vn,k, xn,j)f
(

yl +
ρ1

σV
(v(n+1),ka(n,k) − v) + ρ2

√
v(x(n+1),jb(n,j) − x)

)

+d̃i(vn,k)
)

ph
ab(n, k, j).

(4.23)
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5 The algorithm for the pricing of American options

In order to outline our numerical procedure, we show here how to use our hybrid tree/finite difference
approximation (4.23) for the pricing of American options. Consider an American option with maturity
T and payoff function (Φ(St))t∈[0,T ]. We consider the log-price process, so the obstacle will be given
by

Ψ(Yt) = Φ(eYt), t ∈ [0, T ].

The price P (t, y, v, x) of such an American option is then given by

P (t, y, v, x) = sup
τ∈Tt,T

E

(

e−
∫ τ

t
(σrXt,x

s +ϕs)dsΨ(Y t,y,v,x
τ )

)

,

where Tt,T denotes the set of all stopping times taking values on [t, T ] and where we used the relation
between the interest rate r and the process X: rt = σrXt + ϕt (see (2.1) and (2.2)). Hereafter,
(Y t,y,v,x, V t,v, Xt,x) denotes the solution of the jump-diffusion dynamic (2.3) starting at (y, v, x) at
time t.

The price at time 0 of such an option is then approximated by a backward dynamic program-
ming algorithm, working as follows. First, consider a discretization of the time interval [0, T ] into
N subintervals of length h = T/N : [0, T ] = ∪N−1

n=0 [nh, (n + 1)h]. Then the price P (0, Y0, V0, X0) of
such an American option is numerically approximated through the quantity Ph(0, Y0, V0, X0) which is
iteratively defined as follows: for (y, v, x) ∈ R × R+ × R, we have


















Ph(T, y, v, x) = Ψ(y)

and as n = N − 1, . . . , 0

Ph(nh, y, v, x) = max
{

Ψ(y), e−
∫ (n+1)h

nh
(σrXnh,x

t +ϕt)dt
E

(

Ph

(

(n + 1)h, Y nh,y,v,x
(n+1)h , V nh,v

(n+1)h, Xnh,x
(n+1)h

)

)}

.

From the financial point of view, this means to allow the exercise at the fixed times nh, for n = 0, . . . , N .
We consider now the discretization scheme (Ȳ h, V̄ h, X̄h) discussed in Section 4.2 and we use the

approximation (4.23) for the conditional expectations that have to be computed at each time step n.
So, for every point (yi, vn,k, xn,j) ∈ YM × Vh

n × X h
n , by (4.23) we have

E

(

Ph

(

(n + 1)h, Y
nh,yn,i,k,j ,vn,k,xn,j

(n+1)h , V
nh,vn,k

(n+1)h , X
nh,xn,j

(n+1)h

)

)

≃
∑

a,b∈{d,u}

∑

ℓ∈JM

(

Πh
iℓ(vn,k, xn,j)Sn,k,jPh(ℓ, a, b) + d̃i(vn,k)

)

ph
ab(n, k, j) (5.1)

where Sn,k,jPh denotes

Sn,k,jPh(ℓ, a, b)

= Ph

(

(n + 1)h, yℓ +
ρ1

σV
(vn+1,ka(n,k) − vn,k) + ρ2

√
vn,k(xn+1,jb(n,j) − xn,j), vn+1,ka(n,k), xn+1,jb(n,j)

)

.

(5.2)
Finally, we can summarize the backward induction giving our approximating algorithm as follows. For
n = 0, 1, . . . , N , we define P̃h(nh, y, v, x) for (y, v, x) ∈ YM × Vh

n × X h
n as















































P̃h(T, yi, vN,k, xN,j) = Ψ(yi) for (yi, vN,k, xN,j) ∈ YM × Vh
N × X h

N

and as n = N − 1, . . . , 0:

P̃h(nh, yi, vn,k, xn,j) = max
{

Ψ(yi), e−(σrxn,j+ϕnh)h×
×

∑

a,b∈{d,u}

∑

ℓ∈JM

Πh
iℓ(vn,k, xn,j)ph

ab(n, k, j)Tn,k,jPh(ℓ, a, b)
}

,

for (yi, vn,k, xn,j) ∈ YM × Vh
n × X h

n .

(5.3)
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6 A schematic sketch of the major computational steps in our algo-
rithms

To summarize, we resume here the main computational steps of the two proposed algorithms.
Both hybrid Monte Carlo and hybrid tree/finite difference procedure have the same preprocessing

steps:

(p1) define a discretization of the time-interval [0, T ] in N subintervals [nh, (n + 1)h], n = 0, . . . , N ,
with h = T/N ;

(p2) set the binomial tree xn,j , 0 ≤ j ≤ n ≤ N for the process X by using (3.5);

(p3) set the binomial tree vn,k, 0 ≤ k ≤ n ≤ N for the process V by using (3.1);

(p4) merge the binomial trees in the bivariate tree (vn,k, xn,j), 0 ≤ k, j ≤ n ≤ N , by using (3.9);

(p5) compute the jump-nodes and the transitions probabilities pab, (a, b) ∈ {d, u}, using (3.10).

The bivariate tree for (V, X) has been now settled.
One way is now to pursue by applying the hybrid Monte Carlo method:

1. compute ∆1, . . . , ∆N i.i.d. standard normal r.v. independent of the noise driving the chain in
(V, X);

2. generate a positive Poisson r.v. Kh of parameter λh;

3. simulate the amplitudes Jk for k = 1, . . . , Kh;

4. starting from Ŷ h
0 = Y0, compute the approximates values Ŷ h

n , 0 ≤ n ≤ N − 1, using (4.5).

5. compute the option price ... COMPLETARE ...

On the other hand, after the preprocessing step (p5) one may pursue by applying the hybrid
tree/finite difference approach by following the next steps:

(i) set a mesh grid yi for the solution of all the PDE’s;

(ii) for each node (vN,k, xN,j), 0 ≤ k, j ≤ N , compute the option prices at maturity for each yi,
i ∈ YM , by using the payoff function.

(iii) for n = N − 1, . . . 0: for each (vn,k, xn,j), 0 ≤ k, j ≤ n, compute the option prices for each yi,
i ∈ YM , by solving PIDE (4.10) through (4.21), with terminal condition given by the weighted
sum of the values at nodes (a, b) ∈ {u, d} which have been computed in the previous step n + 1
- weight by using the transition probabilities pab.

Remark 6.1. We observe here that to compute the option price by the hybrid tree/finite difference
procedure, in step (iii) we need to solve many times the tridiagonal system (4.15). It is solved by the
LU-decomposition method in O(M) operations, being M the total number of grid values yi ∈ YM .
However, due to the approximation of the integral term (4.13), each time we have to compute the sum

∑

un
i+lν(xl), (6.1)

which is the most computationally expensive step of this part of the algorithm: when applied directly
it requires O(M2) operations. Following the Premia software implementation [26], we apply the Fast
Fourier Transform (FFT) to compute the term (6.1) and the computational costs of this step reduce
to O(M log M).
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7 Numerical results

In this section we provide numerical results in order to asses the efficiency and the robustness of the
hybrid tree-finite difference method and the hybrid Monte Carlo method in the case of plain vanilla
options. We provide results for the (standard) Bates model and also under the case in which the
interest rate process is assumed to be stochastic, the latter being a straightforward generalization.

In our numerical tests, following Chiarella et al. [12] we assume that

log(1 + J1) ∼ N
(

γ − 1

2
δ2, δ2

)

. (7.1)

7.1 The standard Bates model

In the European and American option contracts we are dealing with, we consider the following set of
parameters used in the numerical results provided in Chiarella et al. [12]:

• initial prices S0 = 80, 90, 100, 110, 120, strike price K = 100, maturity T = 0.5;

• interest rate r = 0.03, dividend rate η = 0.05;

• initial volatility V0 = 0.04, long-mean θ = 0.04, speed of mean-reversion κ = 2, volatility of
volatility σ = 0.4, correlations ρ = −0.5, 0.5;

• intensity λ = 5, jump parameters γ = 0 and δ = 0.1 (recall (7.1)).

The numerical study of the hybrid tree-finite difference method HTFD is split in two cases: HTFD1

refers to the (fixed) number of time steps Nt = 50 and varying mesh grid ∆yh = ∆y = 0.01, 0.005,
0.0025, 0.00125; we add the situation HTFD2 where the number of time steps is equal to Nt = 100,
with the same values of ∆y as before.

Similarly, the numerical study of the hybrid Monte Carlo method HMC is split in two cases:
HMC1 refers to the (fixed) number of time steps Nt = 50 and varying Monte Carlo iterations
NMC = 10000, 50000, 100000, 200000; we add the situation HMC2 where the number of time steps
is equal to Nt = 100 and same NMC as before. Concerning the American option case, we have
implemented both HMC1 and HMC2 by means of the Longstaff-Schwartz method [23].

Table 1 reports European call option prices. Comparisons are given with a benchmark value
obtained using the Carr-Madan pricing formula CF in [11] that applies Fast-Fourier transform methods
(see the Premia software implementation [26]).

In Table 2 we provide results for American call option prices. In this case we compare with the
values obtained by using the method of lines in [13] GIUSTO?????, called MOL, with mesh param-
eters 200, 250, 2995 and the PSOR method with mesh parameters 1000, 3000, 6000 that Chiarella et
al. [12] used as true solution.

Table 3 refers to the computational time cost (in seconds) of the different algorithms for ρ = −0.5
in the European case.

The numerical results show that HTFD is accurate, reliable and efficient for pricing European and
American options in the Bates model. Moreover, our hybrid Monte Carlo algorithm HMC provide
reliable European prices. As a further evidence of the accuracy of our method, in Figure 3 and 4 we
study the shapes of implied volatility smiles across moneyness K

S0
and maturities T using HTFD1

with Nt = 50 and ∆y = 0.005, HMC1 with Nt = 50 and NMC = 50000 and we compare the graphs
with the results from the benchmark values CF .
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Figure 3: Moneyness vs implied volatility for European call options. T = 0.5, r = 0.03, η = 0.05,
V0 = 0.04, θ = 0.04, κ = 2, σ = 0.4, λ = 5, γ = 0, δ = 0.1, ρ = −0.5.

Figure 4: Maturity vs implied volatility for European call options. S0 = 100, K = 100, r = 0.03,
η = 0.05, V0 = 0.04, θ = 0.04, κ = 2, σ = 0.4, λ = 5, γ = 0, δ = 0.1, ρ = −0.5.
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(a)

ρ = −0.5 ∆y HTFD1 HTFD2 CF NMC HMC1 HMC2

S0 = 80 0.01 1.1302 1.1302 10000 1.08±0.09 1.11±0.09
0.005 1.1293 1.1294 50000 1.12±0.04 1.17±0.04
0.0025 1.1291 1.1292 1.1293 100000 1.14±0.03 1.14±0.03
0.00125 1.1290 1.1291 200000 1.13±0.02 1.14±0.02

S0 = 90 0.01 3.3330 3.3312 10000 3.27±0.17 3.27±0.17
0.005 3.3316 3.3301 50000 3.32±0.08 3.40±0.08
0.0025 3.3316 3.3298 3.3284 100000 3.34±0.05 3.34±0.05
0.00125 3.3310 3.3297 200000 3.32±0.04 3.35±0.04

S0 = 100 0.01 7.5245 7.5238 10000 7.46±0.25 7.46±0.25
0.005 7.5236 7.5224 50000 7.53±0.11 7.62±0.11
0.0025 7.5231 7.5221 7.5210 100000 7.54±0.08 7.52±0.08
0.00125 7.5230 7.5220 200000 7.50±0.06 7.54±0.06

S0 = 110 0.01 13.6943 13.6939 10000 13.69±0.34 13.69±0.34
0.005 13.6923 13.6924 50000 13.71±0.15 13.81±0.15
0.0025 13.6918 13.6921 13.6923 100000 13.72±0.11 13.69±0.11
0.00125 13.6923 13.6920 200000 13.64±0.08 13.71±0.08

S0 = 120 0.01 21.3172 21.3185 10000 21.40±0.41 21.40±0.41
0.005 21.3156 21.3168 50000 21.35±0.18 21.46±0.19
0.0025 21.3152 21.3164 21.3174 100000 21.36±0.13 21.32±0.13
0.00125 21.3152 21.3163 200000 21.25±0.09 21.33±0.09

(b)

ρ = 0.5 ∆y HTFD1 HTFD2 CF NMC HMC1 HMC2

S0 = 80 0.01 1.4732 1.4744 10000 1.42±0.12 1.40±0.12
0.005 1.4724 1.4744 50000 1.49±0.06 1.47±0.05
0.0025 1.4723 1.4742 1.4760 100000 1.48±0.04 1.46±0.04
0.00125 1.4722 1.4741 200000 1.47±0.03 1.48±0.03

S0 = 90 0.01 3.6849 3.6859 10000 3.63±0.19 3.63±0.19
0.005 3.6836 3.6849 50000 3.70±0.09 3.70±0.09
0.0025 3.6832 3.6847 3.6862 100000 3.67±0.06 3.67±0.06
0.00125 3.6832 3.6847 200000 3.66±0.04 3.70±0.04

S0 = 100 0.01 7.6247 7.6246 10000 7.58±0.28 7.58±0.28
0.005 7.6238 7.6232 50000 7.66±0.13 7.65±0.13
0.0025 7.6234 7.6229 7.6223 100000 7.61±0.09 7.59±0.09
0.00125 7.6233 7.6228 200000 7.58±0.06 7.64±0.06

S0 = 110 0.01 13.4863 13.4835 10000 13.48±0.36 13.48±0.36
0.005 13.4842 13.4818 50000 13.55±0.17 13.49±0.16
0.0025 13.4837 13.4814 13.4791 100000 13.47±0.12 13.41±0.12
0.00125 13.4836 13.4813 200000 13.42±0.08 13.49±0.08

S0 = 120 0.01 20.9678 20.9661 10000 21.04±0.44 21.04±0.44
0.005 20.9659 20.9642 50000 21.05±0.20 20.98±0.20
0.0025 20.9655 20.9636 20.9616 100000 20.96±0.14 20.87±0.14
0.00125 20.9654 20.9635 200000 20.88±0.10 20.96±0.10

Table 1: Prices of European call options. K = 100, T = 0.5, r = 0.03, η = 0.05, V0 = 0.04, θ = 0.04, κ = 2,
σ = 0.4, λ = 5, γ = 0, δ = 0.1, ρ = −0.5, 0.5.
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(a)

ρ = −0.5 ∆y HTFD1 HTFD2 PSOR MOL

S0 = 80 0.01 1.1365 1.1365
0.005 1.1356 1.1358
0.0025 1.1354 1.1356 1.1359 1.1363
0.00125 1.1353 1.1355

S0 = 90 0.01 3.3579 3.3563
0.005 3.3564 3.3551
0.0025 3.3560 3.3548 3.3532 3.3530
0.00125 3.3559 3.3547

S0 = 100 0.01 7.6010 7.6006
0.005 7.6001 7.5992
0.0025 7.5997 7.5989 7.5970 7.5959
0.00125 7.5996 7.5989

S0 = 110 0.01 13.8853 13.8854
0.005 13.8836 13.8842
0.0025 13.8832 13.8839 13.8830 13.8827
0.00125 13.8831 13.8838

S0 = 120 0.01 21.7180 21.7199
0.005 21.7168 21.7187
0.0025 21.7166 21.7184 21.7186 21.7191
0.00125 21.7165 21.7183

(b)

ρ = 0.5 ∆y HTFD1 HTFD2 PSOR MOL

S0 = 80 0.01 1.4817 1.4837
0.005 1.4809 1.4830
0.0025 1.4807 1.4828 1.4843 1.4848
0.00125 1.4807 1.4828

S0 = 90 0.01 3.7134 3.7148
0.005 3.7121 3.7139
0.0025 3.7118 3.7137 3.7145 3.7146
0.00125 3.7118 3.7137

S0 = 100 0.01 7.7044 7.7051
0.005 7.7036 7.7039
0.0025 7.7033 7.7036 7.7027 7.7018
0.00125 7.7032 7.7036

S0 = 110 0.01 13.6770 13.6756
0.005 13.6752 13.6742
0.0025 13.6747 13.6739 13.6722 13.6715
0.00125 13.6747 13.6738

S0 = 120 0.01 21.3668 21.3671
0.005 21.3655 21.3658
0.0025 21.3653 21.3655 21.3653 21.3657
0.00125 21.3652 21.3653

Table 2: Prices of American call options. K = 100, T = 0.5, r = 0.03, η = 0.05, V0 = 0.04, θ = 0.04, κ = 2,
σ = 0.4, λ = 5, γ = 0, δ = 0.1, ρ = −0.5, 0.5.

∆y HTFD1 HTDF2 NMC HMC1 HMC2

0.01 0.25 0.97 10000 0.18 0.35
0.005 0.49 1.96 50000 0.88 1.73
0.0025 1.09 4.37 100000 1.74 3.45
0.00125 2.35 9.20 200000 3.49 6.88

Table 3: Computational times (in seconds) for European Call options for S0 = 100, ρ = −0.5.
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7.2 Bates model with stochastic interest rate

We consider now the case of Bates model associated with the Hull-White model for the stochas-
ticinterest rate. We consider in particular the initial interest rate r0 = 0.03, the speed of mean-
reversion κr = 1, the interest rate volatility σr = 0.2; The time-varying long-term mean θr(t) fit
the theoretical bond prices to the yield curve observed on the market. We have chosen for this pur-
pose the following interest rate curve Pr(0, T ) = e−0.03T . We study the cases ρ1 = ρSV = −0.5,
ρ2 = ρSr = −0.5, 0, 0.5 and no correlation is assumed to exist between r and V . We consider now
mesh grid ∆yh = ∆y = 0.02, 0.01, 0.005, 0.0025 because the cases ∆y = 0.00125 requires huge compu-
tational times. The benchmark value B-MC is obtained using a Monte Carlo method MC by simu-
lating paths through the accurate third-order Alfonsi [1] discretization scheme for the CIR stochastic
volatility process and an exact scheme for the interest rate with a huge number of Monte Carlo simula-
tions (1 million iterations) and Nt = 300 discretization time steps. In the American case, we consider
the Longstaff-Schwartz [23] algorithm MC-LS with 20 exercise dates. All Monte Carlo results report
the 95% confidence intervals.

Tables 4 and 5 report European and American call option prices. Table 6 refers to the compu-
tational time cost (in seconds) of the different algorithms in the call European case. The numerical
results confirm the good numerical behavior of HTFD and HMC in the Bates-Hull-White model as
well.

8 Conclusions

In this paper we have extended the hybrid tree/finite difference method already introduced in [6] to
the Bates model, which can be seen as the Heston model with jumps. We have also developed a Monte
Carlo simulation scheme, which works as usual in the direction of the underlying asset price process
but uses a discrete approximation in space (Markov chain) to approximate the volatility process. We
use our schemes to numerically evaluate American options. The results turn out to be good and
reliable, the comparison with existing pricing methods shows that our numerical methods are efficient
also in terms of computing time costs.

Acknowledgements. The authors wish to thank Andrea Molent for having implemented the Alfonsi
Monte Carlo scheme and the Longstaff-Schwarz algorithm.
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(a)

ρSr = −0.5 ∆y HTFD1 HTFD2 B-MC NMC HMC1 HMC2

S0 = 80 0.02 1.0169 1.0079 10000 1.00±0.09 0.96±0.09
0.01 1.0201 1.0188 50000 1.02±0.04 0.97±0.04

0.0050 1.0199 1.0194 1.0153±0.01 100000 1.00±0.03 1.00±0.03
0.0025 1.0197 1.0193 200000 1.01±0.02 1.01±0.02

S0 = 90 0.01 3.1172 3.1032 10000 3.05±0.16 3.05±0.16
0.01 3.1186 3.1137 50000 3.10±0.07 3.03±0.07

0.0050 3.1174 3.1135 3.1008±0.02 100000 3.07±0.05 3.08±0.05
0.0025 3.1174 3.1136 200000 3.09±0.04 3.10±0.04

S0 = 100 0.02 7.2528 7.2472 10000 7.17±0.24 7.17±0.24
0.01 7.2528 7.2479 50000 7.21±0.11 7.18±0.11

0.0050 7.2528 7.2480 7.2315±0.02 100000 7.18±0.08 7.24±0.08
0.0025 7.2528 7.2480 200000 7.22±0.05 7.25±0.05

S0 = 110 0.02 13.4553 13.4565 10000 13.30±0.32 13.30±0.32
0.01 13.4465 13.4440 50000 13.37±0.15 13.40±0.15

0.0050 13.4435 13.4407 13.4256±0.03 100000 13.35±0.10 13.46±0.10
0.0025 13.4432 13.4404 200000 13.40±0.07 13.47±0.07

S0 = 120 0.02 21.1320 21.1356 10000 20.89±0.40 20.89±0.40
0.01 21.1243 21.1239 50000 21.03±0.18 21.09±0.18

0.0050 21.1222 21.1214 21.1070±0.04 100000 21.01±0.13 21.17±0.13
0.0025 21.1215 21.1207 200000 21.06±0.09 21.16±0.09

(b)

ρSr = 0.5 ∆y HTFD1 HTFD2 B-MC NMC HMC1 HMC2

S0 = 80 0.02 1.3459 1.3379 10000 1.29±0.11 1.28±0.11
0.01 1.3482 1.3471 50000 1.34±0.05 1.30±0.05

0.0050 1.3479 1.3475 1.3446±0.01 100000 1.32±0.03 1.31±0.03
0.0025 1.3477 1.3473 200000 1.33±0.02 1.34±0.02

S0 = 90 0.01 3.7320 3.7233 10000 3.62±0.18 3.62±0.18
0.01 3.7323 3.7304 50000 3.69±0.08 3.65±0.08

0.0050 3.7311 3.7298 3.7263±0.02 100000 3.66±0.06 3.68±0.06
0.0025 3.7311 3.7299 200000 3.69±0.04 3.72±0.04

S0 = 100 0.02 8.0100 8.0073 10000 7.83±0.26 7.83±0.26
0.01 8.0112 8.0102 50000 7.92±0.12 7.93±0.12

0.0050 8.0114 8.0107 8.0069±0.03 100000 7.91±0.08 7.97±0.08
0.0025 8.0114 8.0107 200000 7.95±0.06 8.02±0.06

S0 = 110 0.02 14.1482 14.1505 10000 13.89±0.35 13.89±0.35
0.01 14.1413 14.1414 50000 14.01±0.16 14.05±0.16

0.0050 14.1388 14.1388 14.1323±0.03 100000 14.01±0.11 14.10±0.11
0.0025 14.1386 14.1386 200000 14.06±0.08 14.17±0.08

S0 = 120 0.02 21.6737 21.6772 10000 21.37±0.42 21.37±0.42
0.01 21.6670 21.6674 50000 21.50±0.19 21.55±0.19

0.0050 21.6651 21.6653 21.6501±0.04 100000 21.52±0.13 21.63±0.13
0.0025 21.6645 21.6646 200000 21.57±0.10 21.71±0.10

Table 4: Prices of European call options. K = 100, T = 0.5, η = 0.05, , r0 = 0.03, κr = 1, σr = 0.2, V0 = 0.04,
θ = 0.04, κ = 2, σ = 0.4, λ = 5, γ = 0, δ = 0.1, ρSV = −0.5,ρSr = −0.5, 0.5.
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(a)

ρSr = −0.5 ∆y HTFD1 HTFD2 MC-LS

S0 = 80 0.02 1.0561 1.0470
0.01 1.0598 1.0588

0.0050 1.0597 1.0596 1.0544±0.01
0.0025 1.0596 1.0595

S0 = 90 0.01 3.2511 3.2364
0.01 3.2537 3.2493

0.0050 3.2528 3.2494 3.2273±0.01
0.0025 3.2528 3.2495

S0 = 100 0.02 7.6012 7.5952
0.01 7.6020 7.5976

0.0050 7.6022 7.5980 7.5589±0.02
0.0025 7.6022 7.5980

S0 = 110 0.02 14.1510 14.1524
0.01 14.1443 14.1425

0.0050 14.1420 14.1401 14.0909±0.03
0.0025 14.1419 14.1399

S0 = 120 0.02 22.2466 22.2505
0.01 22.2412 22.2419

0.0050 22.2398 22.2402 22.1736±0.03
0.0025 22.2394 22.2397

(b)

ρSr = 0.5 ∆y HTFD1 HTFD2 MC-LS

S0 = 80 0.02 1.3551 1.3470
0.01 1.3576 1.3566

0.0050 1.3573 1.3570 1.3559±0.01
0.0025 1.3571 1.3569

S0 = 90 0.01 3.7696 3.7606
0.01 3.7705 3.7688

0.0050 3.7694 3.7685 3.7633±0.02
0.0025 3.7694 3.7686

S0 = 100 0.02 8.1285 8.1249
0.01 8.1308 8.1301

0.0050 8.1311 8.1308 8.1122±0.03
0.0025 8.1312 8.1309

S0 = 110 0.02 14.4455 14.4468
0.01 14.4409 14.4414

0.0050 14.4389 14.4395 14.3884±0.03
0.0025 14.4388 14.4394

S0 = 120 0.02 22.2859 22.2893
0.01 22.2815 22.2827

0.0050 22.2802 22.2813
0.0025 22.2798 22.2808 22.2039±0.04

Table 5: Prices of American call options. K = 100, T = 0.5, η = 0.05, r0 = 0.03, κr = 1, σr = 0.2, V0 = 0.04,
θ = 0.04, κ = 2, σ = 0.4, λ = 5, γ = 0, δ = 0.1, ρSV = −0.5,ρSr = −0.5, 0.5.

∆y HTFD1 HTDF2

0.02 9.79 78.2
0.01 22.2 167.6
0.005 46.4 330.9
0.0025 91.2 725.4

Table 6: Computational times (in seconds) for European Call options for S0 = 100, ρSr = −0.5.
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