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ABSTRACT. We describe a numerical method for pricing European options under a
wide class of jump-diffusion processes. The method uses the Crank-Nicolson scheme to
solve the partial integrodifferential equation for the option value and the improved Fast
Gauss Transform for an efficient computing the nonlocal integral term. The method
implemented into Premia 18 is based on the one developed in T. Sakuma and Y. Yamada
(2014).

Premia 22

1. INTRODUCTION

In recent years more and more attention has been given to stochastic models of finan-
cial markets which depart from the traditional Black-Scholes model. At this moment a
wide range of models is available. One of the tractable empirical models are jump dif-
fusions or, more generally, Lévy processes. We concentrate on the one-dimensional case.
For an introduction on these models applied to finance, we refer to Cont and Tankov
(2004).

By now, there exist several large groups of relatively universal numerical methods
for pricing options under exponential Lévy processes. The number of publications is
huge, and, therefore, an exhaustive list is virtually impossible. We concentrate on the
one-dimensional case.

Existing numerical methods in literature can be categorized into three groups: Monte
Carlo simulation, partial-(integro) differential equation (PIDE) methods, and backward
induction methods.

Monte Carlo methods are typically time consuming. The backward induction methods
are based on the fact that the risk-neutral valuation formula for the European option
can be seen as a convolution of the payoff function with the transition density. The key
idea is to set up a time lattice and view the option as of European type between two
adjacent dates. Hence, the backward induction method requires the transition density to
be known in closed-form, which is the case in e.g. the Black-Scholes model and Merton’s
jump-diffusion model. The approximation proposed by Geske and Johnson (1984) used
the discretization of the time parameter and the backward induction for pricing American
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options in the GBM model. The method was extended in Boyarchenko and Levendorskii
(2002) for some Lévy models, and its applications can be founded e.g. in Kudryavtsev

and Levendorskii (2006) and Levendorskii et al. (2006). If there is no an explicit formula
for the probability density, it can be recovered by inverting the characteristic function,
so the method can be used for a wide range of Lévy models.

Since convolutions can be handled very efficiently by means of the Fast Fourier Trans-
form (FFT), an overall complexity of the method is O(NM In M), where N and M
are the numbers of points on the grid in time and space, respectively. The FFT-based
backward induction method was applied in Jackson et al. (2008), see also Lord et al.
(2008).

Finite difference schemes are the standard tools to solve partial integrodifferential
equations for option prices. In the latter case, one need to compute the nonlocal inte-
gral terms related to the corresponding PIDE numerically. In a finite difference scheme,
derivatives are replaced by finite differences. In the presence of jumps, one needs to
discretize the integral term as well. Finite difference schemes were applied to pricing
European and barrier options in Cont and Voltchkova (2005), and to pricing American

options in Carr and Hirsa (2003), Hirsa and Madan (2003) and Levendorskii et al. (2005).
Wang et al (2007) calculate prices of American options using the penalty method and a
finite difference scheme. Construction of any finite difference scheme involves discretiza-
tion in space and time, truncation of large jumps and approximation of small jumps.
Truncation of large jumps is necessary because an infinite sum cannot be calculated;
approximation of small jumps is needed when Lévy measure diverges at zero. Thus, in
the case of jump-diffusion models the latter step is not needed.

The result is a linear system that needs to be solved at each time step, starting
from payoff function. In the general case, solution of the system on each time step by
a linear solver requires O(M?) operations (M is a number of space points), which is
too time consuming. In Cont and Voltchkova (2005) the integral part represented as
a discrete integral kernel sum is computed using the solution from the previous time
step, while the differential term is treated implicitly. This leads to the explicit-implicit
scheme, with tridiagonal system which can be solved in O(M In M) operations provided
that the discretized integral sum is computed by means of the Fast Fourier Transform.
Levendorskii et al. (2005) use the implicit scheme and the iteration method at each time
step.

In the fields of machine learning and computational physics, an efficient computation
of Gaussian kernel sums was originally proposed by Greengard and Rokhlin (1987) and
Greengard and Strain (1991). The computational cost of these methods called the fast
Gauss transform (FGT) is O(M), where M is a number of space points, which is less
than that of the FFT. However, in the application to computational finance indicated
above, the FGT approach requires an impractically large number of grid points in order
to achieve the same accuracy as the FFT method (see e.g. d’Halluin et al (2005)).

In Sakuma and Yamada (2014) the Crank-Nicolson finite difference scheme was used
to solve the PIDEs under jump-diffusion models and the improved fast Gauss transform
(IFGT) (see Yang et al (2005) and Raykar et al (2005)) was applied to compute the
corresponding nonlocal integral terms. Numerical results in Sakuma and Yamada (2014)

show that the IFGT evaluation is more efficient than FFT evaluation and can achieve
the same accuracy with a practical number of grid points. We implemented the method

into program platform Premia for Merton’s jump-diffusion model and we will refer on
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this method as the FD-IFGT-method. The computational complexity of the FD-IFGT-
method is O(NM), where N and M are the numbers of points on the grid in time and
space, respectively.

2. LEVY PROCESSES: BASIC FACTS

A Lévy process is a stochastically continuous process with stationary independent
increments (for general definitions, see e.g. Sato (1999)). A Lévy process may have a
Gaussian component and/or pure jump component. The latter is characterized by the
density of jumps, which is called the Lévy density. A Lévy process X; can be completely
specified by its characteristic exponent, v, definable from the equality E[e®X®)] = ¢=#(€)
(we confine ourselves to the one-dimensional case).

The characteristic exponent is given by the Lévy-Khintchine formula:

2 0o ]
(2.1 9O =28 —ine+ [ (01— gyl )uldy),

where 02 > 0 is the variance of the Gaussian component, and the Lévy measure v(dy)
satisfies

2.2 / min{1, y*}v(dy) < +oo.
22 [ min{L ()

Assume that under a risk-neutral measure chosen by the market, the price process
has the dynamics S; = SpeXt, where X, is a certain Lévy process. Then we must

have E[e*t] < 400, and, therefore, ¢ must admit the analytic continuation into a strip
Im¢ € (—1,0) and continuous continuation into the closed strip Im ¢ € [—1, 0].
If X is a jump-diffusion process with a finite Lévy measure v(dy), then the infinitesimal
generator of X, denote it L, is an integro-differential operator which acts as follows:
a? 0%u

(2.3) Du(e) = T 0 4@y 4 po(e) + [ (e + y) — ula) ()

Further, if the riskless rate, r, is constant, and the stock pays dividends d, then the
following condition (the EMM-requirement) must hold

(2.4) r—d+y(—i) =0,

which can be used to express p via the other parameters of the Lévy process:
o? +oo

(2.5) u:r—d—?Jr/ (1— e)u(dy).

Ezxample 1. If Lévy measure of a jump diffusion process is given by normal distribution:
A (z —7)?
exp| ———=+ |dx,
5v/2n p( 262
then we obtain Merton model. The parameter A characterizes the intensity of jumps.
The characteristic exponent of the process is of the form

2 52 2
(2.6) () = FE —ing + A(l —exp(- T wg)>,

v(dz) =
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where 0,0, A > 0, u,v € R.
2
Due (2.5), the drift term p = r—d— %2+)\(1—e'7+67) is fixed by the EMM-requirement.
Hence, the infinitesimal generator may be rewritten as follows:

(2.7) Lu() = 22 O () — Aula) + /R u(z + y)v(dy).

5 92\ T hg,

3. THE COMBINED FINITE DIFFERENCE AND FAST (GAUSS TRANSFORM METHODS
FOR EUROPEAN OPTIONS

Let T and K be the maturity and the strike and the stock price S; = Ke*t is an
exponential Lévy process under a chosen risk-neutral measure. The riskless rate r and
dividend rate d are assumed constant. Then the payoff at maturity is G(Xr), where
G(z) = (K — Ke®), in the case of the put option, and the no-arbitrage price of the
European option at time ¢ < T and X; = z is given by

(3.1) V(a,t) = EY [e "G (Xr)]

The price V(z,t) with maturity 7" satisfies the following partial integro-differential
equation

(3.2) (O +7r—L)V(x,t) =0
subject to the following terminal condition
(3.3) V(z,T) = (K — Ke®);.

Sakuma and Yamada (2014) suggest to solve (3.2)-(3.3) via Crank-Nicolson scheme.
We approximate V(z,t;) in (3.2) by the price v¥(x) of the European option at the
corresponding equally spaced dates ¢, £k = 0,1,..., N, where t5 = 0, ty = T. Set
A7 :=T/N and Az := (Tymar — Timin) /M, where ([Emax, :L'mm) is a localization domain in
x-space, and M is the number of space discretization points. Then we have

(3.4) v (z) = (K — Ke)y,

and for k = N — 1, N — 2,..., the price v*(x) at the space discretization points z; =
Tmin + 1Az, 1 =1,..., M, can be found as the solution to the problem:

(3.5) “+@i;“@”:;D@Hhmm@»—§@+»@HtHMun+@@m
where
0% v(wig) = 20(x) + (@) V(i) —v(wio1)
Do) = 2 : 2(Ax)? T 2(Ax) ’

oo z—x; —)?
Ii(z;) = 5\/%/ v (2 exp( (2527)>dz

In Sakuma and Yamada (2014), the integral term Iy (z;) is approximated by the trapezoid
rule:

(3.6) I Zv T exp( (= xi_”Q)kam,

5\/ 27 |, 242
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where the weights w; = wy; = 0.5 and w, = 1, for kK = 2,...,M — 1. At each time
step the integral term [y (x;) is calculated explicitly by means of the improved fast Gauss
transform (IFGT) developed in Yang et al. (2005) and Raykar et al. (2005). The
advanced technique for automatic parameters tuning for the IGFT can be found in
Morariu et al. (2009). We briefly summarize the IFGT, which was developed for an
efficient calculation the discrete Gauss transform:

My
(3.7) Gly;) =3 e ims0*/n*,

where ¢; are weight coefficients, x;, 1 = 1, ..., M; are the centers of the Gaussians (“source”
points), y;, 7 = 1, ..., My are the “target” points), h is the bandwidth of the Gaussians.

In straightforward computations with M; “source” points, and M, “target” points, we
need to evaluate and sum M; x M, square exponentials. The Improved Fast Gauss Trans-
form is an e-exact approximation that reduces complexity from O (M1 Ms) to O(My+Ms).
In our option pricing problem M; = My = M.

To achieve the desired error bound, the points are divided into clusters by using k-
center clustering (the farthest point algorlthm) The sum of Gaussians considered is
approximated as the following sum of monomials:

N
(s —z)2 /B2
G(y]) — 2%6 (yj—=i)?/h

=1
Y Y Chetwmewn <%‘ - Ck)“
« h Y

|yj —cCk | Shpy a<pmaz

Q

where ¢, are the centers of the clusters Si, k = 1,..., kpaz, py is the maximal cluster
radius, p,q. is the maximum truncation number and

k (zi—cp)?/h* (Li T~ Ck
Co = 'qu ' (h)

a: x; €Sk

The clustering step can be performed in O(Mk,,,,) time using a simple algorithm de-
veloped in Gonzalez (1985).

4. IMPLEMENTATION TO THE PREMIA 18

We implemented FD-IFGT-method for European call and put options under the Mer-
ton model. One can use the routine for the other types of European options by replacing
the payoff. The method can be applicable to the barrier option pricing with a slight

modification of the finite difference scheme.
Helper functions are taken with a slight modification from the file figtree.cpp be-

longing to the FIGTree library (a library for fast computation of Gauss transforms
in multiple dimensions, using the Improved Fast Gauss Transform and Approximate
Nearest Neighbor searching). The full version of the FIGTree library can be found at
http://www.umiacs.umd.edu/ morariu/figtree/

Note that in the program implemented to Premia 18 one can manage by two param-
eters of the algorithm: the number of space points M and the number of time steps N.
To improve the results one should increase M and/or N.
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The other algorithm’s parameters are fixed (the error bound € = 0.00001, the trunca-
tion numbers p,,.. = 35, the upper limit on the number of clusters k,,,, = 6) and can
be modified inside the routine’s code.
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