Stochastic Volatility and Local Volatility

Ludovic Goudenege

Premia 22

1 Problem formulation
We consider the following model for the stock price:

dsS; = (7” - q)Stdt + \/VtCTSLv(St, t)thS, (1)
dVi = a(B—Vy)dt +w/VidWY ,

with «, f and w € Ry, where WtS and W) are Gaussian processes, where r
is the interest rate, ¢ is a foreign interest or dividend, and with the correlation
between the two implied Gaussian processes given by

(AWE, WYy = pdt

The function ogry (z,t) is often called the leverage function.
This SLV model can be viewed as a mixture of the Local Volatility model

dS; = (1 — q)Sidt + opy (S;, t)dW;

with Dupire’s Local Volatility function oy, and the Stochastic Volatility model

dSt = (’I" — q)Stdt + \/thWtS,
AV, = a(f—Vy)dt +wy/VdW) .

By default, the initial values are S = Sy = 100 and V' = V) = 0.01 ; and the
parameters are = 0.09531, ¢ =0 « = 2.0, 5 =0.01, w = 0.2 and p = 0.5.

Accordingly, in financial practice the leverage function is calibrated by mak-
ing use of a relationship between the SLV model and the LV model. It is
well-known, see e.g. [1], that these models yield the same marginal distribution
for the exchange rate S; , and hence always define the same fair value for vanilla
options, if the leverage function ogrv (s,t) satisfies

oty (s,t) =E[odLy (S, )Vi|Se = s] = 0§y (s, t)E[Vi]S; = 5], (2)

for all s € Ry and ¢ > 0.



The latter term, corresponding to conditional expectation, reads
fjooj ’Up(S, U, ta 507 ‘/O)dv
fjoo p(S, v, ta SOa ‘/O)dv

oo

E[Vi|S; = s] = (3)
where p(s,v,t; Sp, Vo) denotes the joint density of (S, Vi) given by the SLV
model

Using a martingale approach for an european or an american option (call
or put), we can prove that the non-discounted value U(s,v,t) is given by the
solution of the following partial differential equation

oUu 1 0?U 1 02U 02U
5 = §S2UU§LV(5,T — t)@ + 5&121)@ + pwsvosry (s, T —t) 9550
ou ou
+(r — Q)Sg +a(B - U)av
with the following boundary conditions for the call option
Ul(s,v,t) =0 whenever s = 0,
ou
E(S’ v,t) =exp(—qt) whenever s = Spax,
ou
%(s, v, 1) =0 whenever v = Vjjax,

and the following boundary conditions for the put option

U(s,v,t) = Kexp(—rt) whenever s =0,

ou
a(s7 v, 1) =0 whenever s = Sax,
ou
%(s7 v, t) =0 whenever v = Viax,

and the initial condition given by U(s,v,0) = (b(s — K))+ with b = 1 for the
call option and b = —1 for the put option, the maturity 7" is one year and the
strike value K is 100.

On the other side, the density p(s,v,t) satisfies the Kolmogorov forward
equation

o (1, 0% 1,

3 = 7 |20 vosv(e T - b |+ 5 |t
+ 2 [ (T—t)]—*a[(—) ]—2[(/3—)]
Fegs [PwsvasLy (s, Pl = 5; [0 = a)sp] = 5 [a(B = v)p)],

with the Neumann homogeneous boundary condition (whatever call or put op-
tion is considered)

0

a—i(s,v,t) =0 whenever s =0,
(s 0.) =0 wh S
—(s,v =0 whenever s = Sjax,
as b b)

0

8—2)(5, v,t) =0 whenever v = Vi,



and the initial condition is p(s,v,0) = ds—g,0p—v, the Dirac distribution at
point (Sp, Vo).

2 ADI finite difference scheme

We refer to [3] where a similar method is described to solve the partial differential
equations. We have used the same grids whose sizes are given respectively for
time, S-space, V-space by Ny, Ng and N,. The default values are 500, 100
and 40. This choice ensures very good estimations for the prices of call or put
options in a large variety of parameters in less than 1 second.

The Douglas scheme described in [3] has been implemented, but the methods
for all the others schemes are potentially already in the code, since all the
necessary functions are already implemented.

First we will solve the forward Kolmogorov equation by ADI procedure. At
each time step, we compute the quantity

Actually, the backward Kolmogorov equation implemented in the code is
the PDE for the discounted price, since we need a non-trivial rate to ensure the
good behavior of the ADI scheme. Indeed, the rate is half distributed between
the matrix in the S-direction and the matrix in the V-direction to ensure well
behavior of these matrix involved in linear systems to solve.

3 Implementation

The main program fixes the variables and compute the grid in space and variance
variables. It defines a Dupire’s Loval Volatility as

orv(s,t) =0.01 + 0.1exp(—s/Sy) + 0.01¢

It calls the function compute_vol_then_price which first computes the den-
sity p for all time ¢ in the time grid, for all asset value S in the asset grid, and for
all variance value V' in the variance grid. It uses the ADI procedure described
in [2] returning a three-dimensional array p[Nt x Ns x Nu].

This density permits to compute the conditional expectation given by the
formula (3), and deduce the function gy from (2) returning a two-dimensional
array TimeVolSto[Nt x Ns|.

It uses this array to build matrix of a new ADI procedure for the backward
Kolmogorov equation for the same time, space and variance grids.

Finally it computes the price given by the dynamic (1).
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