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Abstract

In this note we describe the stratified lognormal approximation of [2] ap-
plied to the pricing and hedging of Asian options. In addition we provide an
approximation for hedging strategies.
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1 Introduction

Asian options on the time integral ΛT :=
∫ T

0
Stdt of geometric Brownian motion

St = S0e
σBt+(r−σ2/2)t, t ∈ [0, T ], (1.1)

have been priced in [3], [1] by approximating ΛT by a lognormal random variable, as
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)+
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1
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log(E[ΛT ]/(KT ))
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√
T

2
=

µ̂T + σ̂2T − log(KT )

σ̂
√
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√
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and µ̂, σ̂ are estimated as

σ̂2 =
1

T
log

(

E[Λ2
T ]

(E[ΛT ])2

)

(1.3)

and

µ̂ =
1

T
log E[ΛT ] − 1

2
σ̂2, (1.4)

based on the first two moments of the lognormal distribution, cf. (3.1) below.

In [2], a more accurate approximation has been proposed by applying stratified sam-

pling to the computation of (1.2), via the conditioning

E
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∫ T

0
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)+
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 =
∫

∞

0
E





(

1
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∫ T

0
Stdt − K

)+ ∣
∣

∣

∣

ST = z



 dP (ST = z).

Stratified sampling usually acts as a variance reduction method in Monte Carlo sim-

ulations, and in the present setting it also improves numerical precision as seen in the

graphs of Figure 1 below.

2 Conditional calculus

In this section we recall and state some facts on the conditional distribution and

moments of ΛT given ST . Rewriting (1.1) as the solution of

dSt = (1 − p)
σ2

2
Stdt + σStdBt,

with p = 1 − 2r/σ2, and

dP (ST = z | S0 = x) =
1

σ
√

2πT
e−(pσ2T/2+log(z/x))2/(2σ2T ) dz

z
,

we can rewrite the conditional law of ΛT given ST = z without using the parameter

p ∈ IR.

Lemma 2.1. For all z, T > 0 we have

P

(

ΛT ∈ dx

∣

∣

∣

∣

ST = z, S0 = 1
)

= σ

√

πT

2
exp

(

(log z)2

2σ2T
− 2

1 + z

σ2x

)

θ

(

4
√

z

σ2x
,
σ2T

4

)

dx

x
,

x > 0. (2.1)
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Next we define the functions

aT (z) :=
1

σ2p(z)

(

Φ

(

log z√
σ2T

+
1

2

√
σ2T

)

− Φ

(

log z√
σ2T

− 1

2

√
σ2T

))

, (2.2)

and

bT (z) =
1
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(

Φ

(

log z√
σ2T

+
√

σ2T

)

− Φ

(

log z√
σ2T

−
√

σ2T
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,

where

p(z) =
1√

2πσ2T
e−(σ2T/2+log z)

2

/(2σ2T ), and q(z) =
1√

2πσ2T
e−(σ2T +log z)

2

/(2σ2T ),

z > 0, and

Φ(x) =
1√
2π

∫ x

−∞

e−y2/2dy, x ∈ IR,

is the standard Gaussian cumulative distribution function.

Proposition 2.2. We have

E[ΛT | ST = z, S0 = 1] =
1

σ2p(z)

(

Φ

(

log z√
σ2T

+
1

2

√
σ2T

)

− Φ

(

log z√
σ2T

− 1

2

√
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,

and

E[(ΛT )2 | ST = z, S0 = 1] =
2

σ2
(bT (z) − (1 + z)aT (z)), z > 0. (2.3)

3 Stratified lognormal Asian option pricing

The lognormal distribution with mean −pσ2T/2 and variance σ2T has the probability

density function

g(x) =
1

σx
√

2πT
e−(pσ2T/2+log x)2/(2σ2T ),

where x > 0, µ ∈ IR, σ > 0, and moments

E[X] = e(1−p)σ2T/2 and E[X2] = e(2−p)σ2T , (3.1)

i.e.

p = 1 − 2

σ2T
log E[X] and σ2 =

1

T
log

(

E[X2]

(E[X])2

)

. (3.2)

In the next proposition, as a consequence of (3.2) and Proposition 2.2 we fit the

conditional distribution of ΛT given ST = z and S0 = 1 to a lognormal distribution

using its first two moments.
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Proposition 3.1. Given z > 0, letting

σ2(z) =
1

T
log

(

2

σ2aT (z)

(

bT (z)

aT (z)
− 1 − z

))

and p(z) := 1 − 2

Tσ2(z)
log aT (z),

the lognormal random variable with parameter (−p(z)σ2(z)T/2, σ2(z)T ) has same first

and second moments as ΛT given ST = z and S0 = 1.

Based on Proposition 3.1 we will approximate the law of ΛT given ST = z and S0 = 1

as

dP
(

ΛT = x
∣

∣

∣

∣

ST = z, S0 = 1
)

≃ 1

σ(z)
√

2πT
e−(p(z)σ2(z)T/2+log x)2/(2σ2(z)T ) dx

x
, (3.3)

x > 0. As a consequence of this approximation we have
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

 =
1

T
e−rT E





(

∫ T

0
Stdt − KT

)+

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where

d1(K, z, x) =
log(E[ΛT | ST = z, S0 = x]/(KT ))
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√

T
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√
T

2

=
1

2σ(z/x)
√

T
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σ2K2T 2
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+ σ(z/x)

√
T

2
,

and

d2(K, z, x) = d1(K, z, x) − σ(z/x)
√

T

=
1

2σ(z/x)
√

T
log

(

2x(bT (z/x) − (1 + z/x)aT (z/x))

σ2K2T 2

)

− σ(z/x)
√

T .

Figure 1 compares the Asian option prices obtained from (3.4) (stratified lognormal

approximation), with the standard lognormal approximation (1.2) of [1] with the

Monte Carlo method. Significant discrepancies in the approximations can be observed

for large values of time to maturity, and the stratified approximations appear to

perform better than the standard lognormal approximation.
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Figure 1: Asian option prices with σ = 1, r = 0.05, K/S0 = 1.1, S0 = 1.5.

Hedging

The Delta of the option with respect to x = S0 can be estimated from the approxi-

mation (3.4) as

∆t = e−rT ∂

∂x
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