
Computing American options by Exercise Rate

Optimization

March 3, 2020

Premia 22

1 Description of the algorithm

Let (Yt)t∈[0,T] denote the discounted cash-flow process corresponding to an American

option. The price of the option is, hence,

v = sup
τ

E [Yτ∧T] , (1)

where τ runs over all stopping times and E denotes the expectation with respect to some

risk-neutral measure. We assume that we are given a Markov process S describing the

dynamics of underlying asset.

Remark 1.1. Disregarding convention, S will often contain components other than

the price of the underlying asset. For instance, in the case of a Markovian stochastic

volatility model such as the Heston model, we will choose

S t = (t, Xt, vt) ,

where t denotes time, Xt denotes the log-price of the underlying asset and vt denotes

the instantaneous variance.

Under mild conditions, the optimal stopping time τ∗ of (1) will be the hitting time

of a set, the exercise region of the option. Hence, if the Markov process S lives in

[0,T] × Rd, then we may also write (1) as

v = sup
E∈B([0,T]×Rd)

E
[

YτE∧T

]

, (2)

where

τE ≔ inf { t ≥ 0 | S t ∈ E } .

An obvious – and classical – approach of approximating v is to parameterize exercise

regions E. If the expectation in (2) is, in turn, approximated by Monte Carlo simulation,

this leads to highly irregular optimization problems.

We smooth the optimization problem by randomization. That is, we exercise the

option at the first jump time of a pure-jump process with intensity λt = f (S t) depending

1

on the state of the underlying Markov process. For a given such intensity, we hence

look at the randomized stopping time

τ f ≔ inf

{

t ≥ 0

∣

∣

∣

∣

∣

∣

∫ t

0

λsds ≥ Z

}

, (3)

for some independent exponentially distributed random variable Z. After integrating Z

out again, this leaves us with

v = sup
f

E

[∫ T

0

YtUtλtdt + YT UT

]

, Ut ≔ exp

(

−

∫ t

0

λsds

)

, (4)

where f runs over all non-negative measurable functions and λt = f (S t). Note that

(4) is a smooth optimization problem (in f), and all derivatives of the right hand side

w.r.t. f can be explicitly computed.

In our implementation, f is parameterized by exponentials of polynomials in S .

More precisely, we use

f ∈ FP ≔
{

f : s 7→ 1y>0(s) exp (p(s))
∣

∣

∣ p ∈ P
}

, (5)

where y = y(s) denotes the (discounted) payoff and P denotes a finite-dimensional

space of polynomials.

2 Examples

Computing prices in the ERO-code (see [B+])provided involves two steps:

1. Generate a model, which encodes both the actual model of the underlying asset

in the sense of quantitative finance and the payoff of the option.

2. Call the pryce function, which solves the optimal stopping problem. It internally

calls the function pryce_ero when using the ERO method.

Regarding the second step, the function pryce is called as follows,

pryce(model, k, M, method=’ero’, seed=None, **kwargs),

where

• model encodes the model and the option, see below for examples.

• k denotes the polynomial degree used for parameterizing the rate function. It

takes values in {0, 1, . . .}.

• M denotes the number of samples used for the training step. For the re-sampling

stage we use 20M samples. M takes values in {2, 3, . . .}.

• method is a string indicating the method to be used, where ’ero’ denotes the

ERO method. Other methods implemented are ’ls’ for Longstaff–Schwartz and

’parallel_ero’ for a parallelized ERO method. We suggest to only use ’ero’

at this point.

• seed denotes the seed for the RNG used, which is numpy’s default RNG. It takes

unsigned integer values, or no value at all.

2

• The remaining parameters do not need to be set.

pryce returns a tuple containing the following numbers:

1. The estimated, low-biased value of the option computed by re-sampling.

2. The standard deviation corresponding to the re-sampling procedure.

3. The estimated value of the option directly obtained from the optimization proce-

dure, without re-sampling.

4. The European option price.

2.1 Possible options

Options are described by a payoff-class. While the code allows for considerable amount

of flexibility, we suggest to restrict to the following cases:

• payoff=PutPayoff(K, 1 / d * np.ones(d)). This denotes a basket-put

option, where all components of the basket have equal weights 1/d. K > 0 de-

notes the strike price. Replacing “Put” by “Call” will give the corresponding

basket-call option. If the dimension d = 1, then the weighting function does not

need to be provided.

• payoff=CallPayoff(K, weight_function=lambda x: np.max(x,axis=-1))

denotes a max-call option, with strike price K > 0.

2.2 Black Scholes model

Compute the American option price in a multi-variate Black-Scholes model. Basket

and max-call-options are implemented. The Black-Scholes model is represented by a

class BlackScholes, which can be plugged in pryce as its model argument. It is

initialized as follows:

BlackScholes(d, T, sigma, r, S0, N, payoff=None, dividend=0).

We have the following parameters:

• d is the dimension of the model, i.e., the number of underlying assets. It takes

values in {1, 2, . . .}.

• T > 0 is the maturity.

• sigma denotes the covariance matrix of the underlying Brownian motion. In

general, it is assumed to be a numpy array of dimension d×d. If all assets are as-

sumed independent, then sigma can also be specified as the vector of variances.

Finally, if all assets are independent and have the same variance, sigma can be

specified as a positive scalar.

• r ≥ 0 denotes the interest rate.

• S0 denotes the vector of initial values of the underlying asset price process en-

coded by a numpy vector. It takes values in Rd
>0

.

• N denotes the time-discretization used for sampling the process and for comput-

ing the optimal stopping problem. It takes values in {1, 2, . . .}.

3

• payoff is a class describing the option. See above for possible choices.

• dividend ≥ 0 denotes the continuous dividend rate

2.3 Heston model

Compute the American option price in a multi-variate Heston model. This means in

our implementation that there are multiple assets which are driven by the same vari-

ance process. Basket and max-call-options are implemented. The Heston model is

represented by a class Heston, which can be plugged in pryce as its model argument.

It is initialized as follows:

Heston(d, T, nu0, theta, r, kappa, xi, rho, S0, N, payoff).

We have the following parameters:

• d is the dimension of the model, i.e., the number of underlying assets. It takes

values in {1, 2, . . .}.

• T > 0 is the maturity.

• nu0 > 0 denotes the initial value of the variance process.

• theta > 0 denotes the long-term mean of the variance process.

• r ≥ 0 denotes the interest rate.

• kappa > 0 denotes the speed of mean reversion of the variance process.

• xi > 0 denotes the vol-of-vol parameter.

• rho denotes the correlation matrix between the d asset price processes and the 1

variance process. It is assumed to be a numpy array of dimension (d+1)×(d+1).

If d = 1, then rho can also be specified as a scalar taking values in [−1, 1]. It is

the user’s responsibility to provide a proper correlation matrix.

• S0 denotes the vector of initial values of the underlying asset price process en-

coded by a numpy vector. It takes values in Rd
>0

.

• N denotes the time-discretization used for sampling the process and for comput-

ing the optimal stopping problem. It takes values in {1, 2, . . .}.

• payoff is a class describing the option. See above for possible choices.

Remark 2.1. At this point, the code does enforce the Feller condition, and will raise

an error if it is violated.

2.4 Rough Bergomi model

Compute the American option price in the rough Bergomi model. Here the asset price

process is one-dimensional (plus one further variance process), but the model lacks the

Markov property. We use a Markovian approximation by enhancing the state of the

process by parts of the history of the path. The rough Bergomi model is represented by

a class RoughBergomi, which can be plugged in pryce as its model argument. It is

initialized as follows:

4

RoughBergomi(H, T, eta, xi, rho, S0, N, r, payoff, J, memory).

It is initialized as follows:

• H denotes the Hurst index, and takes values in]0, 1/2[.

• T > 0 denotes the maturity.

• eta > 0 denotes the vol-of-vol parameter of the rough Bergomi model.

• xi > 0 denotes the initial value of the variance process.

• rho denotes the correlation between asset price process and variance process. It

takes values in [−1, 1].

• S0 > 0 denotes the initial value of the underlying asset price process.

• N denotes the time-discretization used for sampling the process and for comput-

ing the optimal stopping problem. It takes values in {1, 2, . . .}.

• r ≥ 0 denotes the interest rate.

• payoff is a class describing the option. See above for possible choices.

• J denotes the number of additional past values of the asset price and the vari-

ance processes to be included in the state of the process for the optimization

procedure. It takes values {0, 1, . . .}.

• memory denotes the time period, over which J additional past values are included

in the state. E.g., if J = 1, and we are at time t, then the state for the optimization

consists of
(

log S t, log S t−memory, vt, vt−memory

)

.

memory takes values in [0,T].

References

[B+] Ch. Bayer, R. Tempone, S. Wolfers: Pricing American Options by Exercise Rate

Optimization, arXiv preprint 1809.07300, 2018.

2

5

	Description of the algorithm
	Examples
	Possible options
	Black Scholes model
	Heston model
	Rough Bergomi model

