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abstract
In this paper, we tackle the execution cost problem.
In fact, the price of underlying assets subject to transactions are not known in advance.
They vary according to multiple parameters such as volatility and interest rates.
The aim of this article is to focus on the implicit price impacts of large trades on
execution costs.
As a result, we build three optimal execution strategies under compound jump processes
for price impacts.
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1 introduction
The execution cost problem consists on minimizing the cost or difference between the
value of an ideal deal and its real implementation. This extra cost could come from
two possible sources, explicit cost such as commissions and broker fees, and implicit
costs which are mainly due to the price impact of large trades made by investors. To
decrease this price impact, trades are usually split into small fragments traded over a
period of time. Such procedure is called an execution strategy. To achieve this, one
should meticulously model the price impacts of large trades along with the market price
dynamics that the classical brownian motion market price model fails to capture.

The paper is organised as follows:

First, we start by modeling the price impact of large trades which we split into per-
manent price impact and temporary price impact. The permanent price impact comes
from imbalance between supply and demand and the information transmitted on the
market. The temporary price impact on the other hand reflects the liquidity cost on
additional price an investor pays for immediate execution of the trades.

Secondly, we model the market price dynamics under an additive or multiplicative jump
diffusion models based on compound Poisson Processes.
Finally, we develop closed-form expressions for naive, additive and multiplicative op-
timal execution strategies and their costs under the previous market price dynamics
accounting for permanent and temporary price impacts.

2 execution strategies
In order to build optimal execution strategies, we should present the general framework
and the mathematical formalism of the problem.
We assume that an investor plans to liquidate his holding of an asset during N periods
in the time interval.
Let 0 = t0 < t1 < t2 < . . . < tN = T where τ = tk − tk−1 = T

N for k =
1, 2, ..,N . The investors position at time tk = kτ is denoted by xk . The investors
initial position is x0 = S0 shares in number of units and the final position is xN = 0 .
The difference between positions at two consecutive times tk−1 and tk is denoted by
nk = xk−1 − xk; k = 1, 2, ..,N .
A negative nk implies that the asset is bought between tk−1 and tk.
We refer to a sequence {nk}Nk=1 satisfying

∑N
k=1 nk = S0 as an execution strategy.

3 price dynamics under additive and mul-
tiplicative jump processes

3.1 Jump Processes

We assume that the arrival time of large trades from other institutions as well as their
impact are unkown to the investor. These uncertain arrivals are modeled using a Poisson
process with constant arrival rates. The uncertain impact of these arrivals is assumed
to follow a known distribution. Combining both, we model the uncertain price impact
of uncertain trades from other institution by a compound Poisson process.

To further refine the model, we distinguish buys from sells, we assume that they are
independant and follow a Poisson Process with deterministic arrival rates.
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Let {Xt : t ∈ [0,T ]} be a Poisson process in the execution horizon [0,T ] with a constant
arrival rate λx > 0 that models uncertain arrivals of sell trades.
Let {Yt : t ∈ [0,T ]} be a Poisson process with a constant arrival rate λy > 0 represent-
ing the arrivals of buy trades.

Combining both processes we model the uncertain permanent price impact of trades
by other institution in [tk−1, tk] as:

J(k) =

Ytk
−Ytk−1∑
l=1

χl(k)−
Xtk
−Xtk−1∑
l=1

Πl(k) (3.1)

where χl(k) is a random variable with a known distribution.
{χl(k)} are independently distributed with mean µx(k) and standard deviation σx(k).
It captures the permanent price impact of the l-th buy trade in the period [tk−1, tk].

Similarly Πl(k) represents the permanent price impact of the l-th sell trade in the
period [tk−1, tk], with mean µy(k) and standard deviation σy(k).

3.1.1 Additive Jump Process

Using the equation (3.1) the additive jump process becomes:

Ja(k) =

Ytk
−Ytk−1∑
l=1

χal (k)−
Xtk
−Xtk−1∑
l=1

Πa
l (k) (3.1.1)

We note the expected value E[Ja(k)] and the variance Var[Ja(k)] as EaJ (k) and V aJ (k)
respectively.

For normally distributed jump sizes Πa
l (k) and χal (k) with means µax(k) and µay(k)

and standard deviations and σax(k) and σay (k) respectively.

EaJ (k) = τλyE[Xa
l (k)]− τλxE[Πa

l (k)]

= τ
(
λyµ

a
y(k)− λxµax(k)

)
V aJ (k) = τλx

(
Var(Πa

l (k)) + (E[Πa
l (k)])

2)+ τλy
(
Var(χal (k)) + (E[χal (k)])

2)
= τλx

(
(σax(k))

2 + (µax(k))
2)+ τλy

(
(σay (k))

2 + (µay(k))
2)

3.1.2 Multiplicative Jump Process

As stated in the general equation (1.1) the multiplicative jump process has the form
below:

Jm(k) =

Ytk
−Ytk−1∑
l=1

(χml (k)− 1)−
Ytk
−Ytk−1∑
l=1

(Πm
l (k)− 1) (3.1.2.1)

A log-Normally distributed jump amplitudes Xm
l (k), Πm

l (k), are assumed for this im-
plementation for which an explicit expected value and variance could be written:

EmJ (k) = τλy
(

exp(µmy (k) +
(σmy (k))2

2 )− 1
)
− τλx

(
exp(µmx (k) +

(σmx (k))2

2 )− 1
)

V mJ (k) = τλx
(
Var[Πm

l (k)] + (E[Πm
l (k)]− 1)2)

+ τλy
(
Var[Πm

l (k)] + (E[Πm
l (k)]− 1)2)
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3.2 Price dynamics under jump models

The general case for price dynamics assumed in this paper is:

pk = Fk−1(pk−1)− τg(
nk
τ
); k = 1, 2, ..N − 1 (3.2.1)

where Fk−1(pk−1) denotes the market price at time tk when the investor does not trade
[tk−1, tk] and g() is a deterministic function of the trading rate that represents the per-
manent price impact of the investor’s trade.

In addition to the permanent impact investor’s trade induces a temporary price im-
pact on the execution price p̃k given by:

p̃k = p̃k−1 − h(
nk
τ
); k = 1, 2, ..N − 1 (3.2.2)

where h() is also a deterministic function representing the temporary impact function.

For the permanent impact function g() and the tempporary impact function h() the
use of linear functions is frequent.

g(v) = Gv; h(v) = Hv

where v = n
τ is the trading role.

3.2.1 Additive Price Dynamics

For the additive price model an additive jump is used as stated in section (1.2). The
change in market price comes from a Brownian increment and a jump Ja(k).

Fk−1(pk−1) = pk−1 + τ
1
2 ΣaZk + ταa0 + Ja(k) (3.2.1.1)

where
ταa0 : is the expected price due to small trades
Zk : is a standard normal random variable
σa : is the volatility of the asset price change.

The total market price change is split into two components:
- a small trades component captured by : τα0 + τ

1
2 ΣaZk

- a permanent price impact of large trades captured by Ja(k)

Using the general price form (2.1) we obtain the price dynamics for an additive jump
model as follows:

pk = pk−1 + τ
1
2 ΣaZk + ταa0 + Ja(k)− τg(nk

τ
)

where Ja(k) =
Ytk
−Ytk−1∑
l=1

χal (k)−
Xtk
−Xtk−1∑
l=1

Πa
l (k); k = 1, 2, ..N − 1

3.2.2 Multiplicative Price Dynamics

For a multiplicative price model, we consider a multiplicative jump as stated in (3.1.2.1).
The change in the market price corresponds to:

Fk−1(pk−1) = pk−1
(
1 + ταm0 + τ

1
2 ΣmZk + Jm(k)

)
(3.2.2.1)
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In this case, the term ταm0 can be interpreted as the expected return due to small trades.
Using (3.2.1), we obtain the price dynamics for a multiplicative jump model as:

pk = pk−1
(
1 + ταm0 + τ

1
2 ΣmZk + Jm(k)

)
− τg(nk

τ
)

where Jm(k) =
Ytk
−Ytk−1∑
l=1

(χml (k)− 1)−
Xtk
−Xtk−1∑
l=1

(Πm
l (k)− 1)

k = 1, 2, ..N − 1

4 optimal execution strategies
The general formulation of the cost execution problem was discussed in section (2).
An optimal execution strategy is one that minimises the overall cost of execution which
implies solving a constrained optimization problem.

Given an execution strategy {nk}Nk=1 The total amount recieved at the end of the time
horizon T is

∑N
k=1 p

N
k . The difference between this quantity and the value of an ideal

benchmark trade is the execution cost. The benchmark is commonly taken as the value
of the portfolio at the arival price p0.
Hence, the execution cost associated with the strategy {nk}Nk=1 is defined as
p0S0 −

∑N
k=1 nkp

N
k .

Our aim is to minimize the expected execution cost.

A generic form of the problem could be written as below:

min
x1,...xN∈RN

E[p0S0 −
N∑
k=1

nkp̃k] + cρ(p0S0 −
N∑
k=1

nkp̃k) (4.1)

s.t.
N∑
k=1

nk = S0

where ρ() is a risk measure of the execution cost and c > 0 is a risk aversion parameter.
The inequality constraints nk > 0 can be included in (4.1) to rule at buying in the
strategy.

Finally, in our implementation, only optimal risk neutral execution strategy with pur-
shasing allowed is considered:

min
x1,...xN∈RN

E[p0S0 −
N∑
k=1

nkp̃k] (4.2)

s.t.
N∑
k=1

nk = S0

For the previous problem, stochastic dynamic programming should be used to solve it.

The main ingredients of the solution rely upon the following method:
Let the optimal value formation at tk−1 corresponding to the problem (4.2) be:

V ∗k (pk−1,xk−1) = min
x1,...xN∈RN

E[p0S0 −
N∑
j=k

nj p̃j(pk−1,xk−1)]

s.t.
N∑
j=k

nj = xk−1
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Where xk−1 is the current asset holding, and pk−1 is the current market price.

For k = N , n∗N = xN−1 since there is no choice but to execute the entire remain-
ing order xN−1. Hence, the optimal value function for the last period becomes :

V ∗N (pN−1,xN−1) = min
nN

E[p0S0 − nN p̃N (pN−1,xN−1)]

= p0S0 − xN−1(pN−1 − h(
xN−1
τ

)) (4.3)

s.t. xN−1 − xN = 0

For the linear temporary price impact function h(v) = Hv , we have,

V ∗N (pk−1,xk−1) = p0S0 − xN−1PN−1 +
1
2xN−1

2H
τ
xN−1 (4.4)

Once n∗k+1 and V ∗k+1(pk,Xk) have been determined, the optimal execution n∗k and the
optimal value function V ∗k (pk−1,Xk−1) can be determined from the Bellman’s principle
of optimality which relates recusively backwards in time the optimal value function in
period k to the optimal value function in period k+1.

Based on the general method presented previously, we can define three different strate-
gies associated with different model assumptions which are the naive strategy (Zero
Expected Market Price Charge), the additive strategy and the multiplicative strategy.

The following combined impact parameter θ = 2H
τ −G will be used in the following

section.

4.1 Naive Strategy (Zero Expected Market Price Change)

The naive strategy consists on liquidating at each period [tk, tk+1]; k = 1, 2, . . . ,N the
same quantity of the asset:

nk =
S0
N k = 1, 2, . . . ,N

The naive strategy can be applied under the following assumptions:
- The expected market price change is zero (τα0 +E[J ] = 0)
equivalent to E[Fk−1(pk−1)|pk] = pk−1; k = 1, 2, . . . ,N − 1
- The impact functions g() and h() are deterministic and depend only on the trading
rate nk

τ .
Under such assumptions the general solution of the problem (4.2) using the Bellman
method (4.3) and (4.4) could be written for each iteration k as:

V ∗k (pk−1,xk−1) = p0S0 − pk−1xk−1 +
1
2xk−1

(
θ

N−k+1 +G
)
xk−1

which yields the total execution cost V ∗1 (p0,x0) =
1
2
(
θ
N +G

)
S2

0 .

It’s though important to mention that the price dynamics don’t really affect this strat-
egy as it doesn’t really depend on the market price model.
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4.2 Additive strategy

An additive strategy is associated with an additive jump model (3.1.1) and the corre-
sponding price dynamic (3.2.1.1) the optimal strategy for the problem (4.2) using the gen-
eral Bellman method defined by (4.3) and (4.4), for the additive strategy n∗ = {n∗k}Nk=1
is uniquely defined as:

n∗k =
−(bk+1 −EaJ (k+ 1) +EaJ (k) + (θ−Ak+1)x

∗
k−1)

Ak+1
, k = 1, 2, . . . ,N − 1

n∗N = S0 −
N−1∑
k=1

n∗k

where x∗0 = S0 and x∗k = x∗k−1 − n
∗
k k = 1, 2, . . . ,N − 2

Ak = Ak+1 −
(Ak+1 − θ)2

Ak+1
k = 1, 2, . . . ,N − 2

AN = 2θ > 0

bk = bk+1 −
(θ−Ak+1)(bk+1 −EaJ (k+ 1) +EJ (k))

Ak+1

−EaJ (k+ 1) + 2EaJ (k) + ταa0

k = 1, 2, . . . ,N − 2
bN = EaJ (N) + ταa0

ck = ck+1 −
1
2
(bk+1 −EaJ (k+ 1) +EaJ (k))

2

Ak+1

k = 1, 2, . . . ,N − 2
cN = 0

The execution cost at each iteration k is

V ∗k (Pk−1,Xk− 1)p0S0 − 1
2x

2
k−1(θ−Ak −G)− (pk−1 + bk −EaJ (1)− ταa0)xk−1 − ck

From which we could deduce that the total execution cost

V ∗1 (p0,x0) = p0S0 − 1
2S

2
0(θ−A1 −G) + (p0 + b1 −EaJ (1)− ταa0)− c1

where EaJ (k) = EaJ constant for each k.
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Much simpler equations could be derived.

The strategy can be written as below :

n∗k =
S0
N −

N+1−2k
2θ (EaJ + ταa0); k = 1, 2, . . . ,N

The cost at each iteration:
V ∗k (pk−1,xk−1) = p0S0 − 1

2x
2
k−1(θ−Ak −G)− (pk−1 + bk −EaJ − ταa0)xk−1 − ck

The total execution cost
V ∗1 (pk−1,xk−1) = p0S0 − 1

2S
2
0(θ−A1 −G) + (p0 + b1 −EaJ − ταa0)− c1

4.3 Multiplicative Strategy

The multiplicative strategy derives its name from the multiplicative dynamics (3.2.2.1)
associated to the multiplicative jump model (3.1.2.1).

Under this assumption the optimal strategy is given by:

nk =
1

Dk+1
(1− (Bk+1 + 2Ak+1G)Lk)pk−1 − 1

Dk+1
(2Ck+1 +Bk+1)xk−1

nN = S0 −
∑N−1
k=1 nk

And the associated optimal cost at each iteration k:

V ∗k (pk−1,xk−1) = p0S0 −Akp2
k−1 −Bkxk−1pk−1 − ckx2

k−1

where :

AN = 0

Ak−1 = AkΦk−1 +AkL
2
k−1 +

1
2Dk

(1−Lk−1(2AkG+Bk))
2

BN = 1

Bk−1 = BkLk−1 +
1
Dk

(1−Lk−1(BkG+ 2AkG))(2Ck +GBk)

CN =
−H
τ

Ck−1 = Ck +
1
Dk

(2Ck +GBk)

and

Lk−1 = 1 + τα0 +EmJ (k− 1); k = 2, ..,N − 1
Qk−1 = τ (σm)2 + V mJ (k− 1)

Dk = −2AkG2 +
2H
τ
− 2BkG− 2Ck; k = 1, ..,N



true expected price under multiplicative jump model 9

The total cost of execution obtained with the Bellman principle is given by:

V ∗1 (p0,X0) = p0S0 − p0A1p0 − p0B1x0 − x2
0C1

5 true expected price under multiplicative
jump model

A closed formula for the expected price under the multiplicative jump model could be
derived.

We recall that the price under the multiplicative jump model is:
pk = pk−1(1 + ταm0 + τ

1
2 ΣmZk + Jm(k))− τg(nk

τ ; k = 1, 2, ..,N

The expected price under such model can be written as

E[pk] = p0Lk −G
∑
i = 1kniLk−i

where
L = (1 + ταm0 +EmJ )

and {ni}i = 1N the corresponding strategy.



6 the expected execution cost under mul-
tiplicative jump model for the naive and
additive strategy

6.1 True expected execution cost for the naive strategy

The true expected execution cost of the naive strategy equal :

E[p0S0 −
∑N
k=1 p̃kñk] = S0p0 + S2

0
H
Nτ +

S0
N

∑N
k=1 L

k−1(N−kN GS0 − p0)

6.2 True expected cost for the additive strategy

The true expected execution cost for the additive execution strategy equals:

E[p0S0 −
N∑
k=1

pknk] = p0S0 +
HS2

0
Nτ

+
S0
N

N∑
k=1

Lk−1(
N − k
N

GS0 − p0)

+
N−1∑
k=1

EaJ + τα0
θ

(N − 2k− 1
2 Lkp0

)
+
EaJ + τα0

θ2

[N(N2 − 1)
12τ

+
1
12

N−1∑
k=1

(N − k)(N2 − 1− 2k(k+N))GLk−1)
]

where L = 1 + ταm0 +EmJ .
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