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1 Introduction

Monte Carlo methods are widely employed in the financial context because of their simplicity
and applicability to general problems. In many situations (complex products, involved models,
high-dimensionality), Monte Carlo-based techniques are the only possible choice, since analytic
expressions or closed-form accurate approximations are not available. This is often the case when
the Stochastic Alpha Beta Rho (SABR) model [4] is considered. Although an approximated closed-
form formula (Hagan formula) was originally proposed, this formula is restricted to European
options and, furthermore, performs wrongly under certain conditions.

The technique developed here is based on an efficient simulation of SABR’s integrated variance
process. The integrated variance process appears in the so-called exact SABR model simulation
since it is part of the conditional cumulative distribution of the SABR forward asset dynamics.
We base our approach on the derivation of the cumulative distribution function of the integrated
variance and the use of a copulas to approximate the conditional distribution (integrated variance
conditional on the SABR volatility process).
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2 The SABR model

The SABR model [4] is an established SDE model which, in practice, is often used for interest
rates and foreign-exchange (FX) modeling. It is based on a parametric local volatility component
in terms of a model parameter, β, and reads

dS(t) = σ(t)Sβ(t)dWS(t), S(0) = S0 exp (rT ) ,

dσ(t) = ασ(t)dWσ(t), σ(0) = σ0.

Here S(t) denotes the forward price of the underlying asset S̄(t), with r an interest rate, S0 the spot
price and T the maturity. Further, σ(t) represents a stochastic volatility process, with σ(0) = σ0,
WS(t) and Wσ(t) are correlated Brownian motions with constant correlation coefficient ρ (i.e.
WSWσ = ρt). The parameters of the SABR model are α > 0 (the volatility of volatility, vol-vol),
0 ≤ β ≤ 1 (the variance elasticity) and ρ (the correlation coefficient).
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2.1 Almost exact SABR simulation

The forward dynamics of SABR model are governed by a Constant Elasticity of Variance (CEV)
process. An analytic approximation for the cumulative distribution function (CDF) of the SABR
conditional process (assuming independent Brownian motions dŴS(t) and dŴσ(t)) is available [5].
For some generic time interval [s, t], 0 ≤ s < t ≤ T , with S(s) > 0, the conditional CDF for forward
S(t) with an absorbing boundary at S(t) = 0, given σ(s), σ(t) and

∫ t

s
σ2(z)dz, reads

Pr

(

S(t) ≤ K|S(s) > 0, σ(s), σ(t),
∫ t

s

σ2(z)dz

)

= 1 − χ2(a; b, c), (1)

where

a =
1

ν(t)

(

S(s)1−β

(1 − β)
+

ρ

α
(σ(t) − σ(s))

)2

, c =
K2(1−β)

(1 − β)2ν(t)
,

b = 2 − 1 − 2β − ρ2(1 − β)
(1 − β)(1 − ρ2)

, ν(t) = (1 − ρ2)
∫ t

s

σ2(z)dz,

and χ2(x; δ, λ) is the non-central chi-square cumulative distribution function.
This formula is exact in the case of ρ = 0 and constitutes an approximation otherwise. Based

on Equation (1), an approximately exact simulation of SABR model is feasible by inverting the
conditional SABR cumulative distribution when the conditional integrated variance is known.

2.2 SABR Monte Carlo simulation

In order to apply an “almost exact” Monte Carlo method for the SABR model, several steps need
to be performed, that are described in the following:

• Simulation of the SABR volatility process, σ(t) given σ(s):

σ(t) ∼ σ(s) exp(αŴσ(t − s) − 1
2

α2(t − s)).

• Simulation of the SABR integrated variance process,
∫ t

s
σ2(z)dz|σ(s), σ(t).

• Simulation of the SABR forward price process, S(t)|S(s), σ(s), σ(t),
∫ t

s
σ2(z)dz.

The conditional integrated variance simulation is very challenging. In our work, we approximate
the distribution of the integrated variance conditional on the volatility dynamics by joining the
two involved marginal distributions, i.e. the SABR volatility and integrated variance distributions,
by means of copula techniques. Once both marginal distributions are available, we use copulas to
define a multivariate distribution which approximates the conditional distribution of the integrated
variance given the stochastic volatility.

3 Copula-based simulation of
∫ t
s σ2(z)dz|σ(t), σ(s)

In this section we summarize the algorithm for the simulation of the integrated variance given
σ(t) and σ(s) by means of a copula. For simplicity, hereafter, we denote the SABR’s integrated
variance process by Y (s, t) :=

∫ t

s
σ2(z)dz.

In order to obtain the copula joint distribution, we need the marginal distributions. In our
case, the required CDFs are Flog Y | log σ(s) and Flog σ(t)| log σ(s) (in the log-space). While the second
CDF is known (log σ(t) is normally distributed), an approximation of the CDF of the integrated
variance, Flog Ŷ | log σ(s), must be derived.
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3.1 CDF of
∫ t

s σ2(z)dz|σ(s) using the COS method

We present a technique to approximate the CDF of Y (s, t)|σ(s), i.e. FY |σ(s). We will work in the
log-space, so an approximated CDF of log Y (s, t)| log σ(s), Flog Y | log σ(s), will be estimated. We
approximate Y (s, t) by its discrete equivalent, i.e.

Y (s, t) :=
∫ t

s

σ2(z)dz ≈
M

∑

j=1

∆tσ2(tj) =: Ŷ (s, t) (2)

where M is the number of intermediate or discrete time-points, ∆t = t−s
M

and tj = s + j∆t,
j = 1, . . . , M . Ŷ (T ) is subsequently transformed to the logarithmic domain, with

Flog Ŷ | log σ(s)(x) =
∫ x

−∞

flog Ŷ | log σ(s)(y)dy, (3)

and flog Ŷ | log σ(s) the probability density function (PDF) of log Ŷ (s, t)| log σ(s).
Density flog Ŷ | log σ(s) is, in turn, found by approximating the associated characteristic function,

φlog Ŷ | log σ(s), and applying a Fourier inversion procedure. The characteristic function and the
corresponding PDF form the so-called Fourier pair.

3.1.1 Recursive procedure to recover φlog Ŷ | log σ(s)

We have proposed a recursive procedure, as described in [8], originally employed to price arithmetic
Asian options. This iterative method is based on the derivation of the characteristic function of
the integrated variance process and Fourier techniques (COS method [2]) to recover the probability
density function (PDF). We start by defining the sequence,

Rj = log
(

σ2(tj)
σ2(tj−1)

)

, j = 1, . . . , M, (4)

where Rj is the logarithmic increment of σ2(t) between tj and tj−1, j = 1, . . . , M . As the volatility
process follows log-normal dynamics, and increments of Brownian motion are independent and

identically distributed, the Rj are also independent and identically distributed, i.e. Rj
d
= R. In

addition, the characteristic function of Rj is well-known and reads, ∀u, j,

φRj
(u) = φR(u) = exp(−iuα2∆t − 2u2α2∆t), (5)

with i =
√

−1 the imaginary unit. By the definition of Rj in Equation (4), we write σ2(tj) as

σ2(tj) = σ2(t0) exp(R1 + R2 + · · · + Rj). (6)

At this point, a backward recursion procedure in terms of Rj will be defined by which we can
recover φlog Ŷ | log σ(s)(u). We define

Y1 = RM , Yj = RM+1−j + Zj−1, j = 2, . . . , M. (7)

with Zj = log(1 + exp(Yj)).
By Equations (6) and (7), the discrete integrated variance can be expressed as

Ŷ (s, t) =
M

∑

i=1

σ2(ti)∆t = ∆tσ2(s) exp(YM ). (8)

From Equation (8) and by applying the definition of characteristic function, we determine
φlog Ŷ | log σ(s), as follows

φlog Ŷ | log σ(s)(u) = E[exp(iu log Ŷ (s, t))| log σ(s)]

= exp
(

iu log(∆tσ2(s))
)

E[exp (iuYM ) | log σ(s)]

= exp
(

iu log(∆tσ2(s))
)

φYM
(u).

(9)

We have reduced the computation of φlog Ŷ | log σ(s) to the computation of φYM
. As YM is defined

recursively, its characteristic function can be obtained by a recursion as well. In [6, 7], more details
on the derivation of φYM

are available.
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3.1.2 Recovering flog Ŷ | log σ(s) by COS method

Once the approximation of φYM
, φ̂YM

, has been efficiently derived, we can recover flog Ŷ | log σ(s)

from φlog Ŷ | log σ(s) by employing the COS method [2], as follows

flog Ŷ | log σ(s)(x) ≈ 2

b̂ − â

N−1′

∑

k=0

Ck cos
(

(x − â)
kπ

b̂ − â

)

, (10)

with

Ck = ℜ
(

φlog Ŷ | log σ(s)

(

kπ

b̂ − â

)

exp
(

−i
âkπ

b̂ − â

))

,

and

φlog Ŷ | log σ(s)

(

kπ

b̂ − â

)

= exp
(

i
kπ

b̂ − â
log

(

∆tσ2(s)
)

)

φYM

(

kπ

b̂ − â

)

≈ exp
(

i
kπ

b − a
log

(

∆tσ2(s)
)

)

φ̂YM

(

kπ

b − a

)

,

where N is the number of COS terms, [â, b̂] is the support1 of log Ŷ (s, t)| log σ(s) and the prime ′

and ℜ symbols in Equation (10) mean division of the first term in the summation by two and taking
the real part of the complex-valued expressions in the brackets, respectively. CDF Flog Ŷ | log σ(s)

can be obtained by integration, plugging the approximated flog Ŷ | log σ(s) from Equation (10) into
Equation (3).

3.2 Pearson’s correlation coefficient

For any copula some measure of the correlation between the marginal distributions is needed.
In our case, we have employed the Pearson’s correlation coefficient for log Y (s, t) and log σ(t).
For this quantity, an approximated analytic formula can be derived (more details in [6, 7]). The
approximated Pearson’s correlation coefficient reads

Plog Y,log σ(t) ≈ t2 − s2

2
√

(

1
3 t4 + 2

3 ts3 − t2s2
)

. (11)

3.3 Copula simulation

We have approximations for the components required to apply our copula-based technique for
the integrated variance simulation. The algorithm to sample

∫ t

s
σ2(z)dz given σ(t) and σ(s) then

consists of the following steps:

1. Determine Flog σ(t)| log σ(s) (known analytically).

2. Determine Flog Ŷ | log σ(s) by Equation (3).

3. Determine the correlation between log Y (s, t) and log σ(t) by Equation (11).

4. Generate correlated uniform samples, Ulog σ(t)| log σ(s) and Ulog Ŷ | log σ(s) from the chosen cop-
ula.

5. From Ulog σ(t)| log σ(s), invert Flog σ(t)| log σ(s) to get the samples σ̃n of log σ(t)| log σ(s).

6. From Ulog Ŷ | log σ(s), invert Flog Ŷ | log σ(s) to get the samples ỹn of log Ŷ | log σ(s).

7. The samples σn of σ(t)|σ(s) and yn of
∫ t

s
σ2(z)dz|σ(t), σ(s) are obtained by simply taking

exponentials as
σn = exp(σ̃n), yn = exp(ỹn).

1It can be calculated given the support of YM , [a, b].
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Gaussian Student t (ν = 5) Gumbel
Set I 5.0323 × 10−3 5.0242 × 10−3 3.8063 × 10−3

Set II 3.1049 × 10−3 3.0659 × 10−3 4.5703 × 10−3

Set III 5.9439 × 10−3 6.0041 × 10−3 4.3210 × 10−3

Table 1: Generic GOF. See [6], for more details on the parameter sets configuration.

4 Simulation of S(t) given S(s), σ(s), σ(t) and
∫ t
s σ2(z)dz

We complete the mSABR method by the conditional sampling of S(t). The most commonly used
techniques can be classified in two categories: direct inversion of the SABR distribution function
given in Equation (1) and discretization schemes. The direct inversion procedure has a higher
computational cost because of the evaluation of the non-central χ2 distribution. However some
recent developments make this computation affordable. In [1], the authors proposed a forward
asset simulation based on a combination of moment-matching (Quadratic Gaussian) and enhanced
direct inversion procedures. A second approach is the use of advanced discretization schemes, such
as the so-called Log-Euler+, which allows the incorporation of the conditional integrated variance
term. It reads

S(t) = S(s) exp
(

−1
2

S2(β−1)(s)
∫ t

s

σ2(z)dz + Sβ−1(s)
ρ

α
(σ(t) − σ(s))

+ Sβ−1(s)
√

1 − ρ2

∫ t

s

σ2(z)dWS(z)
)

.

5 One time-step SABR simulation

The one-step SABR simulation is a particular case within our general framework. Our copula-
based simulation for the conditional integrated variance becomes much simpler. Since at the
initial time, s = 0 and the final time t = T , the process log(S) turns into a constant value and the
marginal distributions involved in the copula are then Flog σ(T ) and Flog Ŷ (T ). The computation
of the corresponding characteristic function, φlog Ŷ (T ), is much easier than for the general multiple
time-step approach, and very fast.

5.1 Copula analysis

In [6], a copula analysis based on the one-step SABR simulation was carried out. Several types of
copulas were considered: Gaussian, Student t and Archimedean (Clayton, Frank and Gumbel). In
order to select the most suitable one for our purposes, we have evaluated the so-called goodness-of-
fit (GOF) of a copula, i.e. one test for the Archimedean copulas and another one for the general
overall assessment (i.e. see Table 1). Resulting was that Gaussian and Archimedean Gumbel
copulas perform best under our conditions. As a general strategy, the Gumbel copula is the most
robust choice, but the Gaussian copula may be a satisfactory alternative for short maturities.

5.2 Numerical tests

The one-step SABR simulation is appropriate for pricing European options under SABR dynamics.
In Table 2, the convergence of our method when the number of samples, n is increased is shown.
Regarding the computational time, also in Table 2, the execution times of the one-step SABR
method are shown. We can see that, up to n = 100000, the number of MC paths does not affect
the performance.

According to these results and others presented in [6], we conclude that the one-step SABR
simulation we have proposed is a fast alternative to the well-known Hagan formula. It overcomes
the known issues of the formula, like in the case of low strikes and high volatility. When longer
maturities or more complex products (not only European style option) are encountered, however,
the multiple time-step version should be employed.
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n = 1000 n = 10000 n = 100000 n = 1000000
Gaussian (Set I, X1)

Error 519.58(204.02) 132.39(68.03) 37.42(16.55) 16.23(7.66)
Time 0.3386 0.3440 0.3857 0.5733

Gumbel (Set I, X1)
Error 151.44(199.36) −123.76(86.33) 34.14(17.03) 11.59(6.58)
Time 0.3492 0.3561 0.3874 0.6663

Table 2: Convergence in n: mean and standard deviation of the error (basis points) and time
(sec.). See [6], for more details on the parameter set configuration.

Samples Without SCMC With SCMC
NŶ = Nσ = 3 NŶ = Nσ = 7 NŶ = Nσ = 11

100 1.0695 0.0449 0.0466 0.0660
10000 16.3483 0.0518 0.0588 0.0798

1000000 1624.3019 0.2648 0.5882 1.0940

Table 3: SCMC time in seconds.

6 Multiple time-step SABR simulation

By the Monte Carlo technique described in Section 3, we have obtained a multiple time-step
version of our copula-based SABR simulation. In [7], we have presented the complete methodology,
that we have called mSABR simulation. Unlike the one-step version, the direct application of
the recursive procedure to derive a characteristic function for the integrated variance is more
complicated and much more expensive in terms of computational cost. In any intermediate time
step, the computation of characteristic function, φlog Ŷ | log σ(s), (and, consequently, Flog Ŷ | log σ(s))
needs to be performed for each sample of log σ(s). This makes the conditional integrated variance
sampling (that relies on the inversion of Flog Ŷ | log σ(s)) unafforable when the required number of
samples is large. In order to overcome this issue, we have proposed the use of the Stochastic
Collocation Monte Carlo (SCMC) sampler [3]. Briefly, the insight behind this method is that any
number of samples can be obtained by inverting the distribution at hand in some predefined points
(called collocation points) and then applying interpolation techniques (Lagrange interpolation in
this case) together with the sampling of another cheaper distribution.

For the problem at hand, we require samples from the integrated variance conditional on the
initial volatility, i.e. log Ŷ (s, t)| log σ(s). Therefore, we need to make use of the 2D version of the
SCMC technique. Two levels of collocation points need to be chosen, one for each dimension. If
we denote them by NŶ and Nσ, respectively, the resulting number of inversions equals NŶ · Nσ.
The formal definition of the 2D SCMC technique applied to our context reads

yn|vn ≈ gN
Ŷ

,Nσ
(xn) =

N
Ŷ

∑

i=1

Nσ
∑

j=1

F −1

log Ŷ | log σ(s)=v̄j

(FX(x̄i))ℓi(xn)ℓj(vn),

where xn are the samples from X ∼ N (0, 1), which is used as the cheap variable, and vn the
samples of log σ(s); x̄i and v̄j are the collocation points for approximating variables log Y and
log σ(s), respectively. The ℓi and ℓj terms represent the Lagrange polynomials.

In order to illustrate how powerful the SCMC method can be in our case, in Table 3, the
execution times for generating different numbers of samples are presented, with and without the
use of SCMC and for several choices of collocation points.

6.1 Numerical tests

A wide range of experiments for the mSABR method were carried out (see [7]), including conver-
gence in the number of samples, convergence in the number of time steps, stability in terms of
the SABR parameter ρ and pricing of barrier options. In all of these experiments, our method
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Strikes K1 K2 K3 K4 K5 K6 K7

Antonov 73.34% 71.73% 70.17% N/A 67.23% 65.87% 64.59%
m = T/4 71.34% 69.98% 68.65% 67.36% 66.11% 64.92% 63.80%
Error(bp) −199.96 −174.93 −151.81 N/A −111.81 −94.64 −78.93
m = T/2 71.90% 70.41% 68.95% 67.54% 66.20% 64.91% 63.70%
Error(bp) −143.63 −132.23 −121.75 N/A −103.55 −95.89 −89.16

m = T 73.05% 71.46% 69.92% 68.45% 67.03% 65.68% 64.42%
Error(bp) −28.72 −26.40 −24.28 N/A −20.28 −18.61 −17.10
m = 2T 73.24% 71.62% 70.06% 68.55% 67.11% 65.74% 64.45%

Error(bp) −10.21 −10.66 −11.05 N/A −12.29 −13.03 −14.07
m = 12T 73.38% 71.76% 70.19% 68.69% 67.25% 65.88% 64.59%
Error(bp) 4.25 3.52 2.73 N/A 1.55 0.88 0.22

Table 4: Implied volatility, increasing m: Antonov vs. mSABR. Set I.

provides high accuracy using only a few time steps. As an example, in Table 4 the convergence in
the number of time-steps (m) is presented. We can observe a very fast convergence with very few
time-steps.

References

[1] Bin Chen, Cornelis W. Oosterlee, and Hans van der Weide. A low-bias simulation scheme
for the SABR stochastic volatility model. International Journal of Theoretical and Applied
Finance, 15(2):1250016–1 – 1250016–37, 2012. 5

[2] Fang Fang and Cornelis W. Oosterlee. A novel pricing method for European options based on
Fourier-cosine series expansions. SIAM Journal on Scientific Computing, 31:826–848, 2008. 3,
4

[3] Lech A. Grzelak, Jeroen A. S. Witteveen, M. Suárez-Taboada, and Cornelis W. Oosterlee.
The stochastic collocation Monte Carlo sampler: highly efficient sampling from “expensive”
distributions. Quantitative Finance, 19(2):339–356, 2019. 6

[4] Patrick S. Hagan, Deep Kumar, Andrew S. Lesniewski, and Diana E. Woodward. Managing
smile risk. Wilmott Magazine, pages 84–108, 2002. 1

[5] Othmane Islah. Solving SABR in exact form and unifying it with LIBOR market model, 2009.
Available at SSRN: http://ssrn.com/abstract=1489428. 2

[6] Álvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee. On a one time-step Monte Carlo
simulation approach of the SABR model: application to European options. Applied Mathemat-
ics and Computation, 293:461–479, 2017. 3, 4, 5, 6

[7] Álvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee. On an efficient multiple time step
Monte Carlo simulation of the SABR model. Quantitative Finance, 17(10):1549–1565, 2017. 3,
4, 6

[8] Bowen Zhang and Cornelis W. Oosterlee. Efficient pricing of European-style Asian options un-
der exponential Lévy processes based on Fourier cosine expansions. SIAM Journal on Financial
Mathematics, 4(1):399–426, 2013. 3

7


	Introduction
	The SABR model
	Almost exact SABR simulation
	SABR Monte Carlo simulation

	Copula-based simulation of Lg
	CDF of Lg using the COS method
	Recursive procedure to recover Lg
	Recovering Lg by COS method

	Pearson's correlation coefficient
	Copula simulation

	Simulation of S(t) given S(s), (s), (t) and st 2 (z)dz
	One time-step SABR simulation
	Copula analysis
	Numerical tests

	Multiple time-step SABR simulation
	Numerical tests


