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1 Scheme specification

The low-bias SABR1 Monte Carlo simulation scheme proposed by Bin Chen, C.W. Oosterlee and H. Van Der
Weide in [1] is an alternative when a truncated Euler scheme gives rise to significant bias, even with a very large
number of time steps, which is the case, for example, when S0 ≈ 0 or when the skewness parameter, β, is less
than 1

2 .
This scheme can deal with the martingale property of the discrete scheme, and with the - often problematic -
behavior of the CEV2 process St in the vicinity of the zero boundary. The low-bias scheme is stable and exhibits
a highly satisfactory convergence behavior compared to the truncated Euler scheme.
It used the fact that the conditional SABR process, given the terminal volatility level and the integrated
variance, is a squared Bessel process. The scheme is based on the idea of mixing conditional distributions and
a direct inversion of the noncentral chi-square distributions.

2 Model specification

The SABR stochastic volatility model is used for the pricing of fixed income instruments, interpolation of
volatility surfaces and the hedging of volatility risk. Here we compute the prices relative to specifiable strike.
The Stochastic Alpha Beta Rho Stochastic Volatility is given by the following system of stochastic differential
equations with constant parameters α and β:

dSt = σtS
β
t dW1,t

dσt = ασtdW2,t

〈dW1,t, dW2,t〉 = ρdt, with ρ ∈ [−1, 1]

In [1], it is proved that the cumulative distribution of S∆ with an absorbing boundary at St = 0 given σ∆ and
∫∆

0
σ2

sds, for some S0 and 0 < β < 1, reads:

P

(

S∆ ≤ K|S0 > 0, σ∆,

∫ ∆

0

σ2
sds

)

= 1 − χ2(a; b, c) (1)

where,

a =
1

ν(∆)

(

S
1−β
0

1 − β
+
ρ

α
(σ∆ − σ0)

)2

, b = 2 − 1 − 2β − ρ2(1 − β)

(1 − β)(1 − ρ2)
,

c =
K2(1−β)

(1 − β)2ν(∆)
, ν(∆) = (1 − ρ2)

∫ ∆

0

σ2
s , ds

and χ2(a; b, c) is the noncentral chi-square cumulative distribution function.
From this result we can define the absorbtion probability:

P

(

S∆ = 0|S0 > 0, σ∆,

∫ ∆

0

σ2
sds

)

= 1 − χ2(a; b, 0).

1Stochastic Alpha Beta Rho.
2Constant Elasticity of Variance
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Knowing that if U has a U [0, 1] distribution, then P

(

S∆ ≤ K|S0 > 0, σ∆,
∫∆

0
σ2

sds
)

∼ U . Thus, one can easily

handle the absorbing boundary at zero:
If S0 = 0, then S∆ = 0.

Else if U < P

(

S∆ = 0|S0 > 0, σ∆,
∫∆

0
σ2

sds
)

, then S∆ = 0.

Otherwise, we sample S∆ by using either the Moment-matched quadratic Gaussian approximation or
the Direct inversion scheme. The reason is that the quadratic Gaussian approximation is accurate only if
S0 is sufficiently large (i.e: the probability of absorption is small). If so, we invert (1) using a Newton-type
method.

2.1 Moment-Matched quadratic Gaussian approximation

For large initial asset price S0, the probability of hitting zero is almost zero (i.e P(inf t|St = 0 < ∆) −→
∆→0

0 )

and the distribution function approches an ordinary noncentral chi-square distribution:

P

(

S∆ ≤ K|S0 > 0, σ∆,

∫ ∆

0

σ2
sds

)

= 1 − χ2(a; b, c)

= χ2(c; 2 − b, a) + P(inf t|St = 0 < ∆)

≈ χ2(c; 2 − b, a).

As in [?] we determine the values of the relevant parameters by moment matching; if Y ∼ χ(c; 2 − b, a),
(E[Y ] = 2 − b+ a and var(Y ) = 2(2 − b+ 2a)), then Y is computed by :

Y = d(e+ Z)2, Z ∼ N (0, 1).

where,

e2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1, d =
E[Y ]

1 + e2
, ψ =

var(Y )

(E[Y ])2
.

We then compute c =
S

2(1−β)

∆

(1−β)2ν(∆) (where we have set K = S∆ in (1)) by the quadratic normal approximation :

S
2(1−β)
∆

(1 − β)2ν(∆)
= d(e+ Z)2 =⇒ S∆ =

(

(1 − β)2ν(∆)d(e+ Z)2
)

1
2(1−β)

2.2 Direct inversion scheme

If S0 is small, we invert (1) (where we have set K = S∆) using the Newton-Raphson algorithm : we determinine
the root c∗ of the equation H(a, b, c) = 1 − χ(a; b, c) − U = 0 :

cn+1 = cn − H(a, b, cn)
∂H(a,b,cn)

∂cn

where,

∂H(a, b, cn)

∂cn

= −1

2
(
cn

a
)

b−2
4 exp(−a+ cn

2
)I| b−2

2 |(
√
acn)

and I the Bessel function of the first kind. We then apply the inverse coordinate transform to recover the
random numbers in asset price space:

S∆ =
(

(1 − β)2ν(∆)c∗
)

1
2(1−β) .

2.3 Computation of the volatility and the integrated variance

For further details on this topic, the interested reader is referred to [?].
The volatility at time step ∆ reads :

σ∆ = σ0 exp

(

αW2,∆ − 1

2
α2∆

)
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where,

dW1,t = ρdW2,t +
√

1 − ρ2dZt, Z ∼ N (0, 1), Z⊥⊥W2,t

For the integrated variance A∆ =
∫∆

0
σ2

sds, we use the log-normal distribution:

m = E(A∆) ≈ σ2
0∆(1 + αW2,∆ +

1

3
α2(2W 2

2,∆ − ∆

2
) +

1

3
α3(W 3

2,∆ −W2,∆∆) +
1

5
α4(

2

3
W 4

2,∆ − 3

2
W 2

2,∆∆ + 2∆2)),

v = var(A∆) ≈ 1

3
σ4

0α
3∆3,

µ = log(m) − 1

2
log(1 +

v

m2
),

σ2 = log(1 +
v

m2
),

A∆ = exp(σN−1(u) + µ), u ∼ U(0, 1)

where N−1 is the normal-inverse Gaussian distribution.

2.4 Premia code

Finally, the scheme is compute by the Premia code source sabr_low_bias_scheme:

int sabr_low_bias_scheme(const double S0, const double K, const double T, const double alpha, const dou-
ble sigma0, const int N, const double dt, const double rho, const double beta, double *price, double *up, double
*down, double *delta).
Input :

• S0: the spot price of the underlying

• K: the strike price of the option

• T: the maturity of the option

• sigma0: the volatility of the underlying at time t=0

• N: the number of Monte Carlo iterations

• n : the number of the time intervals

• rho : correlation factor

Output :

• price: the price of the asset

• up: upper confidence bounds

• down: lower confidence bounds
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