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Abstract. We describe “The method of pseudodifferential operators” (MPsDO-method)
for pricing options for a wide class of Lévy processes. The method solves backward
jump-diffusion PIDEs with splitting and matrix exponentials. The key idea behind
the approach involves representing a jump operator as a pseudodifferential operator
with subsequent transforming into operator exponential.The method implemented into
Premia 19 for European options is based on the one developed in Itkin (Algorithmic
Finance 3:233-250, 2014; J. Comput. Finance 19:29-70, 2016).

Premia 22

1. Introduction

In recent years more and more attention has been given to stochastic models of finan-
cial markets which depart from the traditional Black-Scholes model. At this moment a
wide range of models is available. One of the tractable empirical models are jump dif-
fusions or, more generally, Lévy processes. We concentrate on the one-dimensional case.
For an introduction on these models applied to finance, we refer to Cont and Tankov
(2004).

By now, there exist several large groups of relatively universal numerical methods for
pricing of American and barrier options under exponential Lévy processes. The number
of publications is huge, and, therefore, an exhaustive list is virtually impossible. We
concentrate on the one-dimensional case.

Existing numerical methods in literature can be categorized into three groups: Monte
Carlo simulation, partial-(integro) differential equation (PIDE) methods, and backward
induction methods. We will consider the last group.

The backward induction methods are based on the fact that the risk-neutral valuation
formula for the European option can be seen as a convolution of the payoff function
with the transition density. The key idea is to set up a time lattice and view the
option as of European type between two adjacent dates. Hence, the backward induction
method requires the transition density to be known in closed-form, which is the case in
e.g. the Black-Scholes model and Merton’s jump-diffusion model. The approximation
proposed by Geske and Johnson (1984) uses the discretization of the time parameter
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and the backward induction for pricing American options in the GBM model. The
method was extended in Boyarchenko and Levendorskǐi (2002) for some Lévy models,
and its applications can be founded e.g. in Kudryavtsev and Levendorskǐi (2006) and
Levendorskǐi et al. (2006). If there is no an explicit formula for the probability density,
it can be recovered by inverting the characteristic function, so the method can be used
for a wide range of Lévy models.

Since convolutions can be handled very efficiently by means of the Fast Fourier Trans-
form (FFT), an overall complexity of the method is O(mn lnn), where m and n are the
numbers of points on the grid in time and space, respectively. The FFT-based backward
induction method was applied in Jackson et al. (2008), see also Lord et al. (2008).
In terms of the theory of pseudodifferential operators (PDOs), at each time step, the
FFT-based backward induction method implements action of the PDO which symbol is
the characteristic function.

The method suggested in Itkin (2014,2016) solves backward jump-diffusion PIDEs for
option prices by splitting the related operator into differential and jump parts. The
key idea behind the approach involves representing a jump operator as a PDO with
subsequent transforming into operator exponential.

2. Lévy processes: basic facts

2.1. General definitions. A Lévy process is a stochastically continuous process with
stationary independent increments (for general definitions, see e.g. Sato [20]). A Lévy
process may have a Gaussian component and/or pure jump component. The latter is
characterized by the density of jumps, which is called the Lévy density. A Lévy process
Xt can be completely specified by its characteristic exponent, ψ, definable from the
equality E[eiξX(t)] = e−tψ(ξ) (we confine ourselves to the one-dimensional case).

The characteristic exponent is given by the Lévy-Khintchine formula:

(2.1) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy + iξy1|y|≤1)ν(dy),

where σ2 ≥ 0 is the variance of the Gaussian component, and the Lévy measure ν(dy)
satisfies

(2.2)
∫

R\{0}
min{1, y2}ν(dy) < +∞.

If the jump component is a process of finite variation, equivalently, if

(2.3)
∫

R\{0}
min{1, |y|}F (dy) < +∞,

then the last term in the integrand in (2.1) can be integrated out and added to the drift
term. Then we obtain

(2.4) ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1 − eiξy)F (dy),

with a different µ, and the new µ is the drift of the Gaussian component.
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Assume that under a risk-neutral measure chosen by the market, the price process
has the dynamics St = eXt , where Xt is a certain Lévy process. Then we must have
E[eXt ] < +∞, and, therefore, ψ must admit the analytic continuation into a strip
Im ξ ∈ (−1, 0) and continuous continuation into the closed strip Im ξ ∈ [−1, 0].

The infinitesimal generator of X, denote it L, is an integro-differential operator which
acts as follows:

(2.5) Lu(x) =
σ2

2

∂2u

∂x2
(x) + µ

∂u

∂x
(x) +

∫ +∞

−∞
(u(x+ y) − u(x) − y1|y|≤1

∂u

∂x
(x))ν(dy).

The infinitesimal generator L also can be represented as a pseudo-differential operator
(PDO) with the symbol −ψ(ξ): L = −ψ(−i∂x). Recall that a PDO A = a(−i∂x) acts
as follows:

(2.6) Au(x) = (2π)−1
∫ +∞

−∞
eixξa(ξ)û(ξ)dξ,

where û is the Fourier transform of a function u:

û(ξ) =
∫ +∞

−∞
e−ixξu(x)dx.

Note that the inverse Fourier transform in (2.6) is defined in the classical sense only
if the symbol a(ξ) and function û(ξ) are sufficiently nice. In general, one defines the
(inverse) Fourier transform by duality.

Further, if the riskless rate, r, is constant, and the stock pays dividends q, then the
discounted price process must be a martingale. Equivalently, the following condition
must hold

(2.7) r − q + ψ(−i) = 0,

which can be used to express µ via the other parameters of the Lévy process:

(2.8) µ = r − q −
σ2

2
+
∫ +∞

−∞
(1 − ey + y1|y|≤1)F (dy).

Example 1. [Tempered stable Lévy processes] The characteristic exponent of a
pure jump KoBoL process of order ν ∈ (0, 2), ν 6= 1 is given by

(2.9) ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+. Formula (2.9) is derived in Boyarchenko
and Levendorskǐi (2000, 2002) from the Lévy-Khintchine formula with the Lévy densities
of negative and positive jumps, F∓(dy), given by

(2.10) F∓(dy) = ceλ±y|y|−ν−1dy;

in the first two papers, the name extended Koponen family was used. Later, the same
class of processes was used in Carr et al. (2002) under the name CGMY-model. More
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general version with c± instead of c, and the different exponents ν± is known as a
Tempered Stable Lévy model. In this case, we have for ν+, ν− ∈ (0, 2), ν+, ν− 6= 1

(2.11) ψ(ξ) = −iµξ+c+Γ(−ν+)[λ
ν+

+ −(λ+ +iξ)ν+ ]+c−Γ(−ν−)[(−λ−)ν− −(−λ− −iξ)ν− ],

where c+, c− > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 2. [Normal Inverse Gaussian processes] A normal inverse Gaussian
process (NIG) can be described by the characteristic exponent of the form (see Barndorff-
Nielsen (1998))

(2.12) ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2],

where α > |β| > 0, δ > 0 and µ ∈ R.

Example 3. [Variance Gamma processes] The Lévy density of a Variance Gamma
process is of the form (2.10) with ν = 0, and the characteristic exponent is given by (see
Madan et al. (1998))

(2.13) ψ(ξ) = −iµξ + c[ln(λ+ + iξ) − lnλ+ + ln(−λ− − iξ) − ln(−λ−)],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 4. [Kou model] If F∓(dy) are given by exponential functions on negative
and positive axis, respectively:

F∓(dy) = c±(±λ±)eλ±y,

where c± ≥ 0 and λ− < 0 < λ+, then we obtain Kou model. The characteristic exponent
of the process is of the form

(2.14) ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
.

The version with one-sided jumps is due to Das and Foresi (1996), the two-sided version
was introduced in Duffie, Pan and Singleton (2000), see also S.G. Kou (2002).

3. Solution to pure jump equation

We shortly describe a numerical framework of Itkin (2014,2016) to value options in
exponential Lévy models. As a basic example to illustrate the method we consider
pricing European put options under Tempered stable Lévy processes. Let T,K be the
maturity, strike, and the stock price St = eXt is an exponential Lévy process under a
chosen risk-neutral measure. The riskless rate is assumed constant r > 0.

Then the payoff at maturity is G(x) = (K − ex)+, and the no-arbitrage price of the
European option at time t < T and Xt = x is given by

(3.1) V (t, x) = V (T,G; t, x) = Et,x
[

e−r(T−t)G(XT )
]

.
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It is well-known that V (t, x) is the solution to the following problem

(∂t + L− r)V (t, x) = 0, t < T ;(3.2)

V (T, x) = G(x).(3.3)

It follows from (2.5), that the infinitesimal generator of a Lévy process is the sum of the
infinitesimal generator of the diffusion component (with drift) and pure jump component,
which we denote by LG and LJ , respectively. Then we can rewrite (2.5) as

(3.4) Lu = LGu+ LJu.

Consider equally spaced dates tk, k = 0, 1, . . . ,m, where t0 = 0, tm = T . Set ∆τ := T/m.
Using splitting technique (for further reading see Marchuk (1978)) as described in Itkin
(2014,2016), we approximate V (x, t) in the correspondent discrete time model (3.1) as
follows. We have

(3.5) V (x, tm) = (K − ex)+.

For k = m− 1,m− 2, . . . , the numerical scheme includes three steps.

V1(x, tk+1) = exp

(

∆τ

2
(LG − r)

)

V (x, tk+1);(3.6)

V2(x, tk+1) = exp (∆τLJ)V1(x, tk+1);(3.7)

V (x, tk) = exp

(

∆τ

2
(LG − r)

)

V2(x, tk+1).(3.8)

Thus, instead of an unsteady PIDE, we obtain one PIDE with no drift and diffusion
(the second equation in (3.7) and two unsteady PDEs ((3.6) and (3.8)). Recall that
exp (τL) is the operator exponential, which acts exactly like the Taylor series expansion
of exp (τL) around τ = 0. Let ψG and ψJ be the Gaussian and jump parts of the
characteristic exponent ψ in (2.1). Hence, we have

LGu(x) = −ψG(−i∂x)u(x) =
σ2

2

∂2u

∂x2
(x) + µ

∂u

∂x
(x),(3.9)

LJu(x) = −ψJ(−i∂x)u(x).(3.10)

The steps (3.6)–(3.8) can be numerically implemented by using finite difference method.
Let ∇x denote the discrete analogue of ∂x obtained by finite difference discretization of
∂x on the space grid x = {xl}. Accordingly, let us define the matrix AG = −ψG(−i∇x)
and the AJ = −ψJ(−i∇x) to be the discrete analogues of the operators LG and LJ ,
respectively.

Let A be a matrix which represents differential or jump operator. It follows from Itkin
(2016) that the finite difference scheme

V (x, t) = exp (∆τA)V (x, t+ ∆τ)

is unconditionally stable in time τ and preserves nonnegativity of the vector V (x, t) if
there exists an M -matrix B such that ∆τA = −B, where τ is the time step of the
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scheme. Once the discretization is performed, we need to compute a matrix exponential
exp (∆τA), and then a product of this exponential with V (x, t+ ∆τ).

This statement gives us a recipe for the construction of the appropriate discretization
of the operators LG and LJ . Notice that (3.6) and (3.8) can be reduced to implicit finite
difference schemes

(

1 +
∆τ

2
(r − AG)

)

V1(x, tk+1) = V (x, tk+1);(3.11)

(

1 +
∆τ

2
(r − AG)

)

V (x, tk) = V2(x, tk+1);(3.12)

Since a constant time step is used for computations, the matrix exp (∆τAJ) can be
precomputed once the space grid.

In order to reach unconditional stability of the finite difference scheme in time τ in
(3.11)-(3.12), we need to approximate ∂2

x using the central difference, and choose an
approximation for the first spatial derivative depending on the drift sign. If µ > 0, we
use the forward differences, otherwise we use the backward ones.

Let AG = (dij) and h be the uniform space step. In the case of Tempered Stable Lévy
models (see Example 1), σ = 0, hence we need to approximate in LG the first spatial
derivative only. In particular, if µ > 0, we set

di,i = 1 + µ
∆τ

2h
+ r

∆τ

2
;

di,i+1 = −µ
∆τ

2h
;

di,i+j = 0, j 6= 0, j 6= 1;

otherwise, we set

di,i = 1 − µ
∆τ

2h
+ r

∆τ

2
;

di,i−1 = µ
∆τ

2h
;

di,i+j = 0, j 6= 0, j 6= −1;

We implemented into Premia the case of ν± ∈ (0, 1). Consider a finite difference
approximation for LJ . We represent the correspondent matrix AJ as follows

(3.13) AJ = c+Γ(−ν+)[(λ+I+AB)ν+ −λ
ν+

+ I] + c−Γ(−ν−)[(−λ−I−AF )ν− − (−λ−)ν−I],

where AB and AF are the backward and forward first order differences, respectively. It
can be shown that AJ is the negative of an M -matrix and it gives O(h) approximation
of the operator LJ .

The computation of a real power of a matrix Aν by definition uses the formula Aν =
exp(ν lnA), which involves implementation of matrix exponential and matrix logarithm
functions. The function of matrix exponential is available in the PNL-library. For the
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moment, the function of matrix logarithm lnA only works if A is diagonalizable. In our
case, one need to use the Mercator series to compute the logarithms of matrix in AJ .

4. Implementation to the Premia 19

We implemented the MPsDO-method for call and put European options under the
Tempered Stable Lévy model (see Example 1). One can use the routine for other types
of Lévy processes by replacing the corresponding part with the computation of jump
matrix AJ , according to the formulas in Itkin (2014,2016).

Note that in the program implemented to Premia 19 one can manage by three param-
eters of the algorithm: the space step h, the scale of logprice range L and the number
of time steps N . Parameter L controls the size of the truncated region in x-space; it
corresponds to the region (−L;L). The typical values of the parameter are L = 2 and
L = 3. To improve the results one should decrease h and/or increase N , when L is fixed.
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