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1 Introduction

The following method proposed by [1] deals with the pricing of Bermudan options via
multi-level approximation methods.

2 Theoretical framework

2.1 Standard approach

Let {X,0 <t < T} denote a Markov process and 0 =ty < t; < --- < t; = T denote
a finite set of exercise opportunities of the Bermudan option with payoff g(Z), where
Zj = Xy, forall j =0,---,J. The price V;(z) of the Bermudan option at time ¢; is given
by

V;*(Z) = sup E(gT(ZT)’Zj =2z2),2 € R?
T€T;

where 7; denotes the set of stopping times taking values in {j,j7 +1,---,J}.
A low biased-estimate for Vj is
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where
7 =if{0 < j < J:g(2) > Cry (2 (1)
C},j(2) is an estimate of the continuation value

based on the set of trajectories (Z(gi), e, Zy0) i =1, k.



In the case of local regression method and mesh method (described later), the estimates
for the continuation values are obtained via the recusrion (dynamic programming principle)

Cj(z) =
Ci(2) = E(maX(gm(Zm),CgH( Ziv)Zj = 2)
combined with Monte Carlo : at (J — 1)th step one estimates the expectation

E(max(gj41(Zj+1), Crj41(Zj11))|Z; = 2)

via regression based on the set of paths (Z; AR Ck,j+1(Zj(21)), for i = 1,--- ,k, where
Ck,j+1(2) is the estimate for C7(2) obtained in the previous step.

2.2 Mesh method and local regression method
2.2.1 Mesh method
The continuation value C; at point z is approximated via
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where (j j+1 = max{gj+1(2), Ck,j+1(2)} and
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where p;(z,-) is the conditional density of Z;;1 given Z; = x.

2.2.2 local regression method

We still define Cj ; by (2). w Z]( z) is defined by
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with 8, = 100 - k—1/(d+2)

3 Multi-Level approach

Fix some natural number L and let k = (ko, k1,--- ,kz) and n = (ng,n1,--- ,nz) be
two sequences of natural numbers, satisfying ko < k1 < --- < kp and ng >ny > --- > ny.
We define
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where T]gT) is defined in (1). For any [ = 1,---, L, both estimates Cy, ; and Cy, , ; are
based on one set of k; training trajectories.



4 Numerical algorithm

4.1 Mesh method and Black-Scholes model

In the case of the Black and Scholes model, i.e
dX} =rX}dt +ocX,dB}

where r is the risk-free interest rate and o the volatility, we simulate the process Z using
the exact formula
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where §;, i = 1,--- ,k are i.i.d. standard normal random variables. The conditional
density of Z; given Z;_ is given by
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4.2 Mesh method

In case of the standard approach, we set

for any € > 0.

In case of the MLMC approach, we set k = (ko, k1, ,kr) and n = (ng,ny,--- ,nr)
such that ky = 5 and

L
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and
L = [logy(8/(ko - €))]

4.3 Local regression

In case of the standard approach, we set
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for any € > 0.



T T

K 1 3 K 1 3
95 27.74 | 50.62 95 27.92 | 53.53
100 23.57 | 46.36 100 23.46 | 49.32
110 15.63 | 39.02 110 15.07 | 42.39

Table 1: Left : Mesh method - Right : Local regression method

In case of the MLMC approach, we set k = (ko, k1, ,kr) and n = (ng,ny,--- ,nr)
such that k3 = 100 and
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and

L = [610g,(3/(ky/° - €))1.

5 Numerical experiments

We test the algorithm on a Maximum Call option with payoff e"'T(maxlgiSd X% —-K)y

with the following parameters, for different maturities and strikes :

L r [ s [d][o]p]
10.05] 100 [4]02]0.1 |

We use L = 3 levels of Monte Carlo and J = 3 time steps. Results are given in Table
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