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Abstract. We investigate whether fast failure detectors can be useful — and if so
by how much — in the design of real-time fault-tolerant systems. Specifically, we
show how fast failure detectors can speed up consensus and fault-tolerant broad-
casts, by providing fast algorithms and deriving some matching lower bounds, for
synchronous systems with crashes. These results show that a fast failure detector
service (implemented using specialized hardware or expedited message delivery)
can be an important tool in the design of real-time mission-critical systems.

1 Introduction

Consensus and various types of fault-tolerant broadcast — such as atomic and reliable
broadcast — are central paradigms for fault-tolerant distributed computing. Unfortu-
nately, the implementation of these paradigms can be expensive, particularly for real-time
systems which are concerned about worst-case time behavior. For instance, consensus
requires in the worst-case timeD(1 + fmax ) in a synchronous system, whereD is the
maximum message delay andfmax is the maximum number of process that may crash.
This worst-case time complexity, which also applies to several types of fault-tolerant
broadcasts, hinders the widespread use of these paradigms in many applications. This is
especially problematic in real-time applications, which are particularly concerned about
worst-case scenarios.

In this paper we explore a new approach, namely, the use of fast failure detection,
to circumvent this lower bound and obtain faster algorithms for consensus and fault-
tolerant broadcasts. Our results show that this approach is particularly suitable to the
design of real-time mission-critical systems, where worst-case performance is crucial
and where we can use special mechanisms to implement fast failure detection.

There are several ways one can achieve fast failure detection. One way is to use
specialized hardware. For example, in some mission-critical systems, such as spaceborne
ones [19], and in some Tandem systems, failure detection has been implemented in
hardware and is very fast.

Another way to achieve fast failure detection is to use expedited message delivery. In
fact, researchers in the real-time community have long considered ways to expedite the
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delivery of selected messages that are critical to the performance of applications, e.g.,
control or clock synchronization messages. One common way to do so is to tag the urgent
messages so that they can be processed ahead of the others in the network and in the
waiting queues of the sender and receiver (e.g., [16,17]). Another way to expedite urgent
messages is to use aphysically separate medium to carry them, as in [5] or in control
networks of process control and transportation systems, or in signalling channels of
telecommunications systems. Whatever mechanism is used, these approaches boil down
to having two types of messaging services: a regular one for most application-level
messages, and an expedited service for a small set of urgent, time-critical messages. In
some of these systems, there can be a large difference between themaximum message
delays of regular and urgent messages; in fact, they can be orders of magnitude apart.
For example, in some local area networks, the highest priority messages are 8 to 30
times faster than the lowest priority ones, assuming only one stage of waiting queues
[21]. Recent work [13] has shown how to use expedited message delivery to build a fast
failure detector with an analytically-quantified maximum detection timed that is much
smaller than the maximum delayD of regular messages.1

In this paper, we investigate whether fast failure detectors can speed up consensus
and/or various types of fault-tolerant broadcasts, and if so, by how much. It is not entirely
obvious that one can take advantage of a fast failure detector to speed up some or all
of these problems. For example, a natural attempt is to use the fast failure detector to
simulate synchronous rounds, and the hope is that the failure detector will shorten some
of these rounds, namely, those that have failures. This in turn would speed up existing
round-based algorithms in the worst-case runs, which are exactly those that have failures.
But this naive idea does not work: every round could have one correct sender whose
message to every process takes the maximum delayD to arrive; thus every round could
takeD.

We show that fast failure detectors can indeed be used to significantly speed up
consensus and fault-tolerant broadcasts, and we also provide some tight lower bounds.
Specifically, our results are as follows. We consider a synchronous system with process
crashes, where the maximum message delay is some known constantD, and processes
have access to a failure detector that detects crashes within some known constantd,
whered ≤ D. We first give an algorithm for consensus that reaches decision in time
D +fmaxd, wherefmax is the maximum number of processes that may crash.2 We then
give anearly-deciding [9] algorithm for consensus that reaches decision within time
D + fd, wheref is the number of crashes that actually occur (in many runsf < fmax ).
Note that in failure-free runs, decision occurs within timeD — the fastest possible. In
addition, our consensus algorithms are message efficient: they send at most(f + 1)n
point-to-point messages.

The consensus algorithms in this paper are time optimal: we prove that in a syn-
chronous system with fast failure detection, consensus requires at least timeD + fd.

1 Here, we stress thatD is themaximum and not theaverage message delay. In many systems, the
maximum message delay of regular messages isorders of magnitude greater than their average
delay.

2 Actually, this algorithm solvesuniform consensus. In fact all algorithms in this paper solve the
uniform version of the problem in question.



356 M.K. Aguilera, G. Le Lann, and S. Toueg

This proof is novel in two respects: it is the first lower bound proof for synchronous
systems equipped with failure detection, and moreover it uses a new technique to deal
with continuous-time synchronous systems (as opposed to round-based ones), which we
believe to be applicable in other contexts.

We then consider several forms of fault-tolerant broadcasts [12], and for each of
them we giveearly-delivering algorithms, i.e., algorithms where message delivery time
is proportional tof not fmax . Specifically, we first give an algorithm for terminating
reliable broadcast that delivers messages within timeD +fd. We next present a reliable
broadcast algorithm that delivers within time2D + (f − 1)d. Finally, we describe an
atomic broadcast algorithm that delivers within time2D+(f −1)d. All these broadcast
algorithms deliver within timeD in the failure-free case — this is the best possible.3

Moreover, the algorithms are message efficient: they use at most(f +2)n point-to-point
messages. Note it is surprising that we can solve atomic broadcast in time2D+(f −1)d.
For instance, once the diffusion of a broadcast message has started, it is not clear that a
process should be allowed to stop it, lest the message be delivered by some but not all
correct processes. But continuing the diffusion could lead to a message relay chain of
sizef , and hence the broadcast time would be(f + 1)D > 2D + (f − 1)d.

All the results above assume that messages are not lost, but we show how to extend
them to allow the following type of message losses. In most systems, a process sends a
message by placing it in an outgoing waiting queue before it can be transmitted. If the
machine hosting the process crashes, the waiting queue is wiped out and the message
is lost. We model such losses by defining a parameterδ such that, if the sender crashes
within δ time of sending a message, then this message may be lost (δ can be interpreted as
the maximum time a message may spend in the outgoing queue; note that ifδ = 0 we fall
back to the case without message losses). We then describe an early-deciding consensus
algorithm that takes at mostD + f(d + δ) time to decide. We next show that consensus
requires at least timeD + f(d + δ) — and thus our algorithm is time optimal. Finally,
we give message-efficient early-delivering algorithms for the fault-tolerant broadcasts
described above.

In summary, the contributions of this paper are the following:

– This is the first paper to study the impact of fast failure detectors on real-time fault-
tolerant synchronous systems. In such systems, we focus on solving consensus and
various types of fault-tolerant broadcasts.

– We give fast and simple algorithms for consensus, terminating reliable broadcast,
reliable broadcast and atomic broadcast. Our algorithms are early-deciding or early-
delivering. Their time complexity isO(D + fd) and their message complexity is
O(fn) where the constants are all very small (1 or 2).

– We show that our consensus algorithms are time optimal, by proving a lower bound
of timeD + fd. (This bound carries over to all our broadcast problems.) The proof
uses new techniques to handle failure detection in synchronous systems and to deal
with continuous time.

– We extend our results to tolerate message losses that occur when the sender crashes
within a certain period after sending.

3 To achieve delivery in timeD, two of our algorithms require some extra optimizations, as we
describe in the paper.
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We believe that the above results provide guidance on the design of future real-time
fault-tolerant systems by showing that implementing a fast failure detection mechanism
is indeed useful, and by quantifying the speed-up that can be obtained.

A remark is now in order. As we noted earlier, fast failure detection can be achieved
by using specialized hardware or by expediting selected messages. In the latter case, one
may wonder why not expedite directly the consensus or broadcast messages, instead
of the failure detector’s. The reason is that this method would not scale: the number of
selected messages that can be expedited is limited, and as we increase the number of
concurrent consensus and/or broadcasts this limit can be exceeded. In contrast, a failure
detector can be implemented as a service that isshared among concurrent applications
running on the same set of machines, and one can ensure that the number of messages
that the failure detector sends is dependent on the number of machines and is relatively
independent of the number of concurrent applications (this assumes that each failure
detector message can hold a large number of process id’s). Such a shared failure detector
service has recently been designed and built [8,15].

Related work. Failure detectors have been used to solve a variety of problems in
different environments (e.g., [6,4,11,1,14,2,8]). The idea to use priorities or deadlines to
tag messages and to process them faster in the waiting queues has long been explored in
scheduling theory and queueing theory (e.g., [10,22]). This idea is used in [13] to build
a fault-tolerant distributed system for real-time applications. This is also the first paper
to speed up consensus using expedited delivery; however, the work is for asynchronous
systems and it assumes a failure detector that has been tailored to carry some consensus
messages. [5] uses a separate network to ensure timely delivery of the messages in their
timely computing base. One could use such a separate network for the failure detector
messages.

Roadmap. The paper is organized as follows. In Section 2 we give our model with
fast failure detectors. We consider the problem of consensus in Section 3: in Section
3.1 we present our basic consensus algorithm, and in Section 3.2 we present our early-
deciding one. We show optimality of our consensus algorithms in Section 3.3. We then
turn our attention to broadcast problems: first to terminating reliable broadcast in Section
4, then to spontaneous reliable broadcast in Section 5, and finally to atomic broadcast
in Section 6. In Section 7 we consider message losses arising from process crashes: we
first explain how to modify our algorithms to tolerate such losses in Section 7.1; we
then show optimality of the modified consensus algorithm in Section 7.2. Due to space
limitations all proofs are omitted, but they can be found in the full version of the paper.

2 Model

We consider a distributed system withn processes that can communicate with each other
by sending messages over a fully-connected network. The system is synchronous in that
there is a boundD on the time it takes to receive and process a message. Processes have
access to a clock, which we assume to be perfectly synchronized for ease of presentation,
but our results can be easily extended to clocks that are only nearly synchronized.

Processes can fail by crashing permanently, and there is an upper boundfmax on the
number of processes that can crash. We letf ≤ fmax be the actual number of failures.
Processes have access to a perfect failure detector that reports failed processes. The
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detection time, i.e. the time to detect a crash [7], is bounded by some constantd. In
useful realizations of our model (e.g., [13]),d ≤ D and in fact we make that assumption
throughout the paper. In addition, for simplicity of presentation we assume thatD is a
multiple ofd, and if it is not, we can simply increaseD to d�D/d�, the next multiple of
D.4

Links do not create or duplicate messages. Moreover, we assume there are no message
losses in the first part of the paper, but we later extend our results to allow losses due to
the sender’s crash.

We now provide a more detailed description.

2.1 Processes
The system consists of a known totally-ordered setΠ = {1, . . . , n} of processes. The
computation proceeds by steps, and a step consists of several stages: (1) the process may
first send a message to a subset of the processes, (2) the process then attempts to receive
messages addressed to it, (3) the process may then query its failure detector, and (4) the
process may change its state according to the messages it received and the information
it got from the failure detector. We assume that steps are executed instantaneously. Up
to fmax processes may fail by crashing; processes that do not crash are calledcorrect.
When a process crashes during a step, it may stop executing at any of the stages above. In
particular, it may crash while attempting to send a message to some subset of processes.
If that happens, the send may be partially successful in that it succeeds to send to only
some of the targeted processes. This behavior is explained in detail in the next section.

2.2 Links
There is a link between every pair of processes, and messages sent through links are
unique (uniqueness can be obtained through sequence numbers). Links guarantee the
following properties:

– (No Creation or Duplication) A messagem can be received at most once and only
if it has been previously sent.

– (D-Timeliness) A messagem sent at timet is not received after timet + D.

In the first part of the paper we assume that messages are not lost, that is:

– (No Loss) If p sends a messagem to q at timet andp does not crash at timet then
q eventually receivesm from p.5

We later extend our results to a more general model that allows message losses if the
sender crashes within a certain time after sending the message.

Note thatD-Timeliness together with No Loss imply that ifp sendsm to q at timet
and does not crash at timet thenq receivesm by timet + D. Moreover, ifp crashes at
timet then the messages that it sent may or may not be received. In particular, ifp sent to
bothq andq′ then it is possible that only one of them receives the message. To simplify
presentation we assume thatD is a multiple ofd, but we remove this assumption in the
full version of the paper.

4 Doing so slightly increases the time complexities of our algorithms, but the complexity can be
reduced as we explain in the full version of the paper.

5 By convention, we assume that processes receive messages even if they are crashed. Of course,
crashed process cannot do anything with these messages.
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2.3 Failure Detectors
Processes may have access to a perfect failure detector that provides a list of processes
deemed to have crashed [6]. If a processq belongs to the list of processp we say thatp
suspectsq. The failure detector guarantees the following properties:

– (Accuracy) A process suspects a processq only if q has previously crashed.
– (d-Timely Completeness) If a processq crashes at timet then, by timet + d, every

alive process permanently suspectsq.

Note that if a processp crashes between timest and t + d then some, but not
necessarily all, processes may suspectp at timet + d.

3 Consensus
In the consensus problem, each process initially proposes a value, and processes must
reach a unanimous decision on one of the proposed values. The following properties
must be satisfied:

– (Uniform Validity) If a process decidesv then some process previously proposedv.
– (Agreement) Correct processes do not decide different values.
– (Termination) Every correct process eventually decides.

Note that consensus allows processes that later crash to decide differently from correct
processes. A stronger variant, calleduniform consensus [20], disallows that by requiring
a stronger property than Agreement:

– (Uniform Agreement) Processes do not decide different values.

To strengthen our results, we use consensus for our lower bounds and provide algo-
rithms that solve uniform consensus.

A consensus algorithm is said toreach decision or decide when all alive processes
have decided. It turns out that no consensus algorithm can always reach decision within
time less than(1+fmax )D in a synchronous system without failure detection. However,
with a fast failure detector it is possible to do better, as shown in the next section.

3.1 Uniform Consensus Using Fast Failure Detection
Figure 1 shows a simple uniform consensus algorithm that terminates within time
fmaxd + D. Each processi keeps a variableei with its current estimate of the con-
sensual decision value. Its initial value is the value that the process wishes to propose
(line 2). In this algorithm, this variable never changes. We divide real time in consec-
utive rounds of durationd each, so that each roundi corresponds to the time interval
[(i−1)d, id). Note that these “mini” rounds arenot the same as the ones in a synchronous
round-based system: here, ifD > d then messages sent in a round could be received in
a higher round.

At the beginning of roundi, processi checks if it suspects all processes with a smaller
process id and, if so, it broadcasts(ei, i) to all (line 4).6 Then, at timefmaxd + D, all
processes decide on the estimate received from the largest process id (lines 5–7). It turns
out that lines 1–4 need only be executed by processes1, 2, . . . , fmax + 1; the other
processes may simply wait and decide at timefmaxd + D in lines 5–7.

6 For i = 1 note that process1 vacuously suspects all processes with smaller id, because there
are none. Thus, process 1 will send(e1, 1) to all if it does not crash.
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Code for each processi:
1 Initialization:
2 ei ← value that processi wishes to propose

3 at time (i− 1)d do
4 if suspectj for all 1 ≤ j ≤ i− 1 then send (ei, i) to all

5 at timefmaxd + D do
6 max← largestj such that received(ej , j) from j
7 decide emax

Fig. 1. Optimal uniform consensus algorithm with time complexityfmaxd + D.

Theorem 1. In a synchronous system with fast failure detection, uniform consensus can
be solved with an algorithm that decides in at most time D + fmaxd using (fmax + 1)n
messages.

3.2 Early-Deciding Uniform Consensus

The consensus algorithm in Figure 1 always decides at timeD + fmaxd, wherefmax
is the maximum number of process crashes. In practice, most of the time the numberf
of failures that actually occur is much smaller thanfmax , and we would like algorithms
to decide faster in these common cases. An algorithm is said to beearly-deciding if its
decision time is proportional tof , not fmax . We now present such an algorithm that
decides within timeD + fd. Sincef ≤ fmax , this algorithm always performs better
than our previous one and, with few failures (smallf ), it performs much better. This
early-deciding algorithm, which is shown in Figure 2, assumes thatD is an integral
multiple ofd (we handle the general case in the full version of the paper).

Like in our previous algorithm, at each roundi, processi sends its current estimate
if it suspects all processes with a smaller id. However, now processes may change their
estimateei when they receive the estimate of another process. More precisely, processes
keep a variablemax i with the id of the largest process from which it has received
an estimate (initially it is zero). When a process receives an estimate from a process
whose id is larger thanmax i it changes its estimate and updatesmax i (line 4). At times
(j − 1)d+D for j = 1, . . . , n, processes check if they trust processj; if so, they decide
on their current estimate (line 9).7

Theorem 2. In a synchronous system with fast failure detection, uniform consensus can
be solved with an algorithm that decides in at most time D+fd using (f +1)n messages.

Note that in the failure-free case, delivery occurs within timeD using onlyn messages.
An important remark is in order. A consensus box assumes that all processes have a

priori knowledge that they wish to reach consensus, and it is not the role of consensus
to convey that knowledge. Thus, to execute consensus, correct processes are expected
to propose a value initially (or at some known common fixed time) and all properties

7 At times(j − 1)d or (i − 1)d + D, if the process receives a message, we assume it executes
line 4 before lines 6 or 8.
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Code for each processi:
1 Initialization:
2 ei ← value that processi wishes to propose
3 max i ← 0

4 upon receive(ej , j) with j > max i do
5 max i ← j; ei := ej

6 at time (i− 1)d do
7 if suspectj for all 1 ≤ j ≤ i− 1 then send (ei, i) to all

8 at time (j − 1)d + D for every1 ≤ j ≤ n do
9 if trustj and not yet decidedthen decide ei

Fig. 2. Optimal early-deciding uniform consensus algorithm with time complexityD + fd.

of consensus are contingent on that. It turns out, however, that even if some correct
processes do not propose, the consensus algorithms of Figures 1 and 2 always guarantee
that if some process decides a value, this value is one of the proposed values (Uniform
Validity). This feature of our algorithms will be used in Section 5. However, it is possible
for processes to decide differently when some of the correct processes do not propose.We
do not believe this will not be a problem for most applications, but when it is, one could
use the atomic broadcast algorithm of Section 6 to solve consensus in the obvious way:
to propose a value, a process atomically broadcasts it and then processes decide on the
first atomically delivered value. By doing so, we get a consensus algorithm that always
satisfies Uniform Validity and Uniform Agreement, even if some correct processes do
not propose.

3.3 Time Optimality

Our consensus algorithms are time optimal:

Theorem 3. In a synchronous system with fast failure detection, every consensus algo-
rithm has a run in which decision takes time at least D + fmaxd.

This theorem is a special case of a more general one stated in Section 7.2.

Observation 4 No early-deciding algorithm can always ensure decision in less time
than D + fd.

This observation follows immediately from Theorem 3 (because if onlyf processes fail
then we can takefmax = f ). Thus, our early-deciding algorithm is also optimal.

4 Terminating Reliable Broadcast

In the terminating reliable broadcast problem, a designated process called the senders
wishes to broadcast a message. Processes have a priori knowledge of who the sender is
and when it intends to broadcast (but they do not know what its message is). The sender,
however, may crash and fail before or during the broadcast. The goal is for all alive
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processes to either deliver the sender’s message or to unanimously agree that the sender
has crashed by delivering a special “sender faulty” message. More precisely, terminating
reliable broadcast guarantees [12]:8

– Validity: If s is correct then it eventually delivers the message that it broadcasts.
– Uniform Agreement: If any process delivers a messagem, then all correct processes

eventually deliverm.
– Uniform Integrity:A process delivers a messagem at most once9 and ifm �= “sender

faulty” thenm is the message of the sender.
– Termination: Every correct process eventually delivers a message.

To solve terminating reliable broadcast, note that the consensus algorithm in Figure
2 always decides on the value of the first process if this process is correct. Thus, we let
the sender be that first process. So in line 2 the sender proposes its message, while other
processes propose “sender faulty”. By doing so, we get an early-delivering algorithm for
terminating reliable broadcast that delivers within timeD + fd. Its message complexity
is (f + 1)n.

Theorem 5. In a synchronous system with fast failure detection, terminating reliable
broadcast can be solved with an algorithm that delivers in at most time D + fd using
(f + 1)n messages.

Note that in the failure-free case (f = 0), delivery occurs at timeD using onlyn
messages.

5 Reliable Broadcast

In terminating reliable broadcast (Section 4), all processes have a priori knowledge that
there is a sender that wishes to broadcast a message at some known time. This is not
the case with reliable broadcast: any process can broadcast at any time, and that time
is unknown to other processes. Reliable broadcast guarantees the following properties
[12]:

– (Validity) If some correct processpbroadcasts a messagem thenpeventually delivers
m.

– (Uniform Agreement) If any processq delivers a messagem then eventually all
correct processes deliverm.

– (Uniform Integrity) A process delivers a messagem at most once and only if it has
been previously broadcast.

We focus ontimely reliable broadcast, which also satisfies the following:

– (∆-Timeliness) If some processp broadcasts a messagem at timet then no process
can deliverm after timet + ∆.

8 This is actuallyuniform terminating reliable broadcast, and in fact all broadcasts we consider
in this paper are uniform. For brevity we omit the word “uniform” from our broadcasts.

9 Throughout this paper we assume that broadcast messages are unique (e.g., they contain a
sequence number).
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Code for each processp:
1 To broadcast a messagem at timet:
2 send (m, p, t) to all

3 upon receive(m, q, t) do
4 schedule at time t + D:
5 if trustedq at timet + d then v ← m else v ← ⊥
6 proposeq,t(v)

7 upon decideq,t(m) do if m �= ⊥ then deliver m

Fig. 3. Reliable broadcast algorithm.

Here∆ is a known value that specifies how fast processes must deliver messages:
together with Uniform Agreement and Validity,∆-Timeliness implies that if a correct
processp broadcastsm then all correct processes deliverm within time∆.

In Figure 3, we give a timely reliable broadcast algorithm that uses our early-deciding
consensus algorithm in Figure 2. To broadcastm at timet, a processp sends(m, p, t) to
all. If a process receives(m, q, t), it schedules the following action at timet + D: if it
trustsq then it runs our consensus algorithm withm as the initial value; else it runs it with
⊥ as the proposed value. If and when processp decides some value,p delivers that value
if it is not ⊥ else the process does nothing. If there are multiple concurrent broadcasts,
the algorithm may start multiple instances of consensus — one for each broadcast. In
order to differentiate between these instances, we have subscriptedpropose anddecide
with a unique identifier containing the identityq of the broadcaster and the timet of
broadcast.

Notice that if the broadcaster fails in line 2 and only sends to a subset of the correct
processes then some correct processes will not propose and start consensus. In that case,
however, all processes that propose will propose⊥, because the broadcaster will be
suspected at timet+d. This is the place in which we need the Uniform Validity property
even if not all correct processes propose: it guarantees that the processes that decide will
necessarily decide⊥ (the only proposed value), and thus they will all act in harmony by
not delivering the message.

Theorem 6. In a synchronous system with fast failure detection, timely reliable broad-
cast can be solved with an algorithm that delivers10 in at most time ∆ = 2D + fd using
(f + 2)n messages.

Some simple optimizations can improve the delivery time of our algorithm. The first
optimization requires that we order processes differently, so that the first round of the
consensus algorithm is not executed by process1, but by the process that wishes to
broadcast — let us call this processq. When processes receive(m, q, t) and propose to
the consensus box, they indicate thatq should be the first process in the order (recall
that there is a total order on the process id’s); note that processes make a consistent
choice on the first id before they start running consensus. Now the next processes in the

10 If any delivery actually occurs. Note that if the sender crashes, it is possible that no process
ever delivers any message.
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order can be fixed or, for load balancing, it could be some hash function ofq and the
time t of broadcast11. Then, processq can start the consensus box by proposingm at
time t + D − d instead oft + D. It can do so because in our consensus algorithm, only
the first process acts in the firstd time units of execution. The other processes can join
in at timet + D, after receiving the(m, q, t) message thatq sent at timet. With this
optimization we saved time units, i.e., processes deliver within time2D +(f −1)d and
we saven messages, i.e., processes use(f + 1)n messages. Note that ifD = d then in
the failure-free case processes deliver within timeD (it turns out that this is true even if
there are failures but thebroadcaster does not fail).

WhenD ≥ 2d, a more important optimization allows processes to deliver within
timeD if the broadcaster does not fail. More precisely, suppose thatp delivers the initial
(m, q, t) message ofq at some timeu. Let us assumeu ≥ t + 2d (if not, p waits until
timet+2d). If p trustedq at timet+2d thenp can deliverm right away at timeu, since
p knows that (1)q’s broadcast did not fail and will reach all processes by timet + D
and (2) all correct processes will trustq at timet + d and will proposem to consensus.
Note however thatp still needs to run the consensus box, because other processes may
have suspectedq at timet + 2d and they will need the consensus box to deliverm. Now
if p still trustedq at timet + 3d thenp does not even have to bother starting consensus,
since all alive processes must have trustedq at timet + 2d and thus they deliveredm
at that time. With this optimization, if the broadcaster is correct then processes deliver
within timeD using onlyn messages12:

Theorem 7. In a synchronous system with fast failure detection, timely reliable broad-
cast can be solved with an algorithm that delivers in at most time ∆ = 2D + (f − 1)d
using (f + 1)n messages. If the broadcaster is correct then delivery takes at most time
D using only n messages.

6 Atomic Broadcast

In atomic broadcast, correct processes must deliver the same set of messages in ex-
actly the same order. More precisely, (uniform) atomic broadcast is a (uniform) reliable
broadcast that satisfies the following additional property:

– (Uniform Total Order) If any process delivers messagem beforem′ then no process
can deliverm′ unless it has previously deliveredm.

A traditional way to implement atomic broadcast is to order messages by increasing
time of broadcast. To do so, the broadcaster timestamps its message, and a recipient can
deliver a message as soon as it knows that there are no outstanding messages with a
smaller timestamp. More precisely, ifp wishes to atomically broadcastm at timet then
p uses timely reliable broadcast to broadcast(m, t). If ∆ is the maximum delay of the
timely reliable broadcast box, a process that gets(m, t) from the box can atomically
11 It is possible to modify the algorithm so that the broadcasterq selects the order of id’s and

includes it in its message, instead of just sending(m, q, t).
12 It is worth noting that processes can deliver even earlier if they receive the message quickly,

i.e., the actual message delay happens to be less thanD.
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Code for each processp:
1 To atomic-broadcastm at timet:
2 reliable-broadcast(m, t)

3 upon reliable-deliver(m, t) do
4 for eachg ≤ fmax − 1, schedule at time t + ∆(g) + d:
5 if suspect at mostg processes
6 then atomic-deliver in order all atomic-undelivered
7 messages with timestamp up tot
8 schedule at time t + ∆(fmax ):
9 atomic-deliver in order all atomic-undelivered
10 messages with timestamp up tot

Fig. 4. Atomic broadcast algorithm with time complexity∆(g) + d.

deliverm at timet+∆, because it knows that the box will not later output any messages
with a smaller timestamp thant. This idea can be made to work even if∆ = ∆(f)
is a function of the numberf of failures — as long as processes can knowf . It turns
out there is a simple way to obtain a conservative bound onf : if at some timeu + d a
process suspects exactlyf0 processes, then our failure detector guarantees that at timeu
we necessarily havef ≤ f0 (this is because our failure detector guarantees that a crashed
process is suspected withind time of the crash). Using this idea, we get the algorithm
shown in Figure 4.13

This algorithm works as follows: when a processp delivers(m, t) from the timely
reliable broadcast box, it schedules for execution some subtasks that will atomic-deliver
messages. For eachg ≤ fmax −1, processp schedules at timet+∆(g)+d a subtask that
checks ifp suspects at mostg processes and, in that case, delivers in order all messages
with timestamp up tot (includingm). Processp also schedules at timet + ∆(fmax ) a
subtask that will definitely atomically deliverm if it has not done so yet; here there is no
need to test the number of crashed processes, becausefmax is the maximum allowed.

It turns out that there is a way to shave off an extrad from the running time, as
follows. Our early-deciding consensus algorithm of Figure 2 actually decides a little
faster than within timeD + fd: it decides by timeD + gd if there are onlyg suspicions
at timeD+gd.14 Consequently, our timely reliable broadcast also delivers a little faster:
a message broadcast at timet is delivered at timet + 2D + (g − 1)d if there are only
g suspicions at that time. That means that our atomic broadcast algorithm can deliverd
time earlier: ifm is broadcast at timet and at timet + 2D + (g − 1)d there are onlyg
suspicions then at this time it can atomically deliver all messages with timestamp up to
t, because there are no messages with lower timestamp in transit. With this optimization,
we get the following:

13 Strictly speaking, this algorithm requires that∆(f) be a monotonically nondecreasing function
of f , which is always the case for our algorithms.

14 To see why this can be faster, note that with our failure detector a process is only suspected if
it has crashed, so at any time the number of suspicions is at most the number of crashes.
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Theorem 8. In a synchronous system with fast failure detection, atomic broadcast can
be solved with an algorithm that delivers in at most time 2D + (f − 1)d using (f + 1)n
messages. In the failure-free case, it delivers in at most time D using only n messages.

7 Losses in the Outgoing Buffers

In many systems, if a process crashes soon after sending a message, that message may
be lost because the low-level outgoing message buffers of that process get wiped out.
We now extend our model to allow this type of message losses. We assume that if the
sender of a message crashes withinδ time of the sending, this message may be lost. Here
δ is a system-dependent constant (clearlyδ < D). More precisely, we weaken the No
Loss property so that it guarantees no loss only if the sender remains alive forδ time:

– (δ-Hold No Loss) If p sends a messagem to q at timet andp does not crash by time
t + δ thenq eventually receivesm from p.

Note thatD-Timeliness together withδ-Hold No Loss imply that ifp sendsm to q
at timet and does not crash by timet + δ thenq receivesm by timet + D. Moreover,
if p crashes between timest andt + δ then the messages that it sent may or may not be
received. In particular, ifp sent to bothq andq′ at timet, it is possible that only one of
the messages is received. Note that if we setδ = 0 then we get our previous model with
no message losses.

Throughout Section 7, we assume thatD is a multiple ofd + δ (this can always be
ensured by increasingD), but we handle the general case in detail in the full version of
the paper.

7.1 Algorithms

In the full paper, we show how to modify our algorithms to work in the lossy model
above. We have the following results:

Theorem 9. Consider a synchronous system with fast failure detection, and suppose
that messages sent δ time before the sender crashes may be lost.

– Uniform consensus can be solved with an algorithm that decides in at most time
D + f(d + δ) using (f + 1)n messages.

– Terminating reliable broadcast can be solved with an algorithm that delivers in at
most time D + f(d + δ) using (f + 1)n messages.

– Timely reliable broadcast can be solved with an algorithm that delivers in at most
time ∆ = 2D + (f − 1)(d + δ) using (f + 1)n messages. If the broadcaster is
correct then delivery takes at most time max{D, 2d + δ} using only n messages.

– Atomic broadcast algorithm can be solved with an algorithm that delivers in at most
time 2D+(f −1)(d+δ) using (f +1)n messages. In the failure-free case, it delivers
in at most time max{D, 2d + δ} using only n messages.
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7.2 Lower Bound

In the full version of the paper we show that, ifD ≥ d + δ, our consensus algorithm is
time optimal, by proving that no algorithm can guarantee decision in less time thanD +
fmax (d + δ). This lower bound result automatically carries over to terminating reliable
broadcast, timely reliable broadcast and atomic broadcast, since all these problems can
be easily used to solve consensus without any extra time.

Theorem 10. Consider a synchronous system with fast failure detection. Suppose that
messages sent δ time before the sender crashes may be lost and D ≥ d + δ. Every
consensus algorithm has a run in which decision takes time at least D + fmax (d + δ).

Observation 11 No early-deciding consensus algorithm can always ensure decision in
less time than D + f(d + δ).

Note that Theorem 10 is a generalization of Theorem 3 of Section 3.3: we obtain the
latter by takingδ = 0.

8 Discussion

A consensus lower bound in the continuous-time synchronous model. There is a well-
known lower bound of1+fmax rounds to solve consensus in synchronous systems with-
out failure detectors [18]. This result is for the round-based model, in which processes
execute in lock-step rounds, and it does not immediately translate to the continuous-time
synchronous model, in which there is no notion of round and processes take steps at any
time they wish. In the latter model, one would expect a time lower bound of(1+fmax )D
to solve consensus. Indeed, such a bound is correct and it follows from Theorem 10: we
simply taked = D andδ = 0. This seems to be the first proof of this fact.

Issues on achieving fast failure detection. Some fault-tolerant and real-time sys-
tems have fast built-in circuitry to detect failures, but often failure detection is not avail-
able in hardware and so it needs to be implemented in software by message passing. To
achieve small detection time, one needs to use expedited delivery for the failure detector
messages and send them frequently. In practice the bandwidth available for expedited
messages is limited and so we should reduce the number of failure detection messages
as much as possible. This can be achieved as follows. First, note that the straightforward
way implement a perfect failure detector is for each process to periodically send I-am-
alive messages to each other — a total ofO(n2) periodic messages. It turns out, however,
there are better failure detector implementations that only send linearly many messages
while impacting the detection time by only a small factor (using similar techniques as
in [3]). Second, note that our consensus algorithms do not require a failure detector
among alln processes, but only amongfmax + 1 of them: in many applications,fmax
is significantly smaller thann. Thus, onlyfmax + 1 processes need to run the failure
detector to solve consensus.15 Third, if the failure detector is implemented as a shared
service [8,15,13], the failure detector traffic does not significantly increase as the number
15 This particular optimization does not apply to our broadcast algorithms because any process is

allowed to broadcast and the broadcaster needs to be monitored by the failure detector.
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of concurrent instances of consensus and broadcast increase: such an implementation
sends machine-to-machine messages that combine the I-am-alive messages of different
applications that share the same machine. Finally, note that [13] has shown that it is pos-
sible to implement a failure detector in a local area network with very fast detection time
while maintaining a reasonably low total bandwidth and processor consumption: In an
Ethernet network with (a) a total consumption chosen to be limited by 5%, (b)fmax = 5
and (c)n ranging from 16 to 1024, the optimal values of the maximum detection timed
ranged from 51.9ms to 68.5ms (asn varied), while the maximum message delayD of
regular messages ranged from 106.6ms to 6 828.7msplus the maximum sojourn time of
a regular message in the interprocess waiting queues of sender and receiver.
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