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The computing systems considered in this article are
built from a variety of commonly available hardware
components for processing, storage, and communica-
tion, such as minicomputers, disks, and buses. Physically
distributed over short distances, these systems are usually
labeled as multiple-processor computers or local area
computer networks.

Target applications considered in this article are
transaction-oriented and exhibit some significant real-
time constraints. External users activate tasks that do not
require large amounts of processing.
A transactional system manages data files that are

dispersed over a number of storage elements. Real-time
transactional systems exhibit specific requirements that
greatly influence the design of a global executive intended
for such systems.
We begin by outlining the basic problems that were ad-

dressed during the design of Delta, an experimental
distributed transactional system built within the frame-
work of Project Sirius. We then discuss some of the ad-
vantages of distributed architectures and conclude with a
presentation of the basic aspects of Delta's distributed ex-
ecutive mechanisms.

System requirements and problems

We are interested in those transactional systems that
permit many users to access data files concurrently. In ad-
dition, we concentrate on physically dispersed systems
that provide for access from various locations. Some ex-
amples of application areas would be reservation systems,

medical information systems, and integrated offices. This
section begins with a conceptual representation of a
distributed transactional system, followed by a discussion
of requirements.

Model. The system is accessed by external agents-
human users, sensors, etc.-that activate transactions. A
transaction is a set of elementary actions-such as DE-
LETE, READ, WRITE, CREATE-that manipulate da-
ta objects grouped into files. The executive processes in
charge of controlling the execution of transactions are
calledproducers. In particular, producers are responsible
for the firing of actions. Those executive processes in
charge of performing actions are referred to as con-
sumers.

Data objects containing vital information are rep-
licated so the system can survive crashes of storage ele-
ments. By providing redundant hardware and data, a
computing system can survive failures.
There are two ways to replicate data within a given data

structure. One approach is to create p partitions and
replicate those data objects that are vital to the applica-
tion over n partitions (n S p). For two different replicated
data objects, their corresponding sets of partitions may be
different. On the other hand, all objects in the data struc-
ture may be equally vital to the application. In this case,
an adequate number of copies of the whole data structure
are maintained (full replication). Clearly, partitions con-
taining replicated data objects should not be implemented
on the same physical storage elements. For the sake of
simplicity, we will assume in the following discussion that
each partition is mapped on its own set of storage
elements.
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Figure I shows a p-partitioned system in which

* the set of data objects A is replicated in partitions 1,
p- 1, and p;

* the set of data objects B is replicated in partitions I
and p; and

* the set of data objects C is replicated in partitions I
and p - 1.

The communication subsystem is assumed to provide for
reliable end-to-end communcation-that is, messages ex-
changed between any pair of producer/consumer pro-
cesses are retransmitted until they are acknowledged.
When communication between two processes is preclud-
ed because of a crash of the communication subsystem or
of a processing element, one or both processors-if still
alive-are warned. We are not making assumptions con-
cerning the physical size of the system.

Consistency. Values taken by objects must satisfy what
are known as consistency constraints.' For example,
some objects belonging to different files may be related in
such a way that when one such object is updated, all other
related objects must also be updated. In particular, all
copies of any given object must reflect identical values at
all times-that is, they must have mutual consistency con-
straints.
We assume that transactions may be activated at any

time (i.e., have concurrent access to the files) from
anywhere. Thus, they may possibly interfere with each
other, with the consequence that consistency constraints
could be violated, as in READ/WRITE conflicts. Every
transaction is controlled from a unique producer.
A transaction may ask for an activation of an action at

any time. Transactions, delimited by BEGIN and END
commands, are viewed by the agents as being atomic-
that is, indivisible. The system executive is responsible for
guaranteeing that such a property holds at all times. Con-
sequently, it is necessary to provide mechanisms at the
distributed executive level that guarantee atomicity when
faced with concurrent transactions.

Figure 1. A partitioned and partially replicated transac-
tional system.

Robustness. We assume that failures may impact the
storage elements, the processing elements that host the
producers and the consumers, and the communication
subsystem. Such failures may preclude the correct com-
pletion of transactions. In particular, WRITE actions ini-
tialized from a transaction may be only partially per-
formed, contradicting the atomicity requirement.
The distributed executive must maintain some redun-

dant information for surviving or recovering from such
crashes. When recovery is impossible, system files must
be reinstalled in a state known to be consistent.

If data is replicated, it is also necessary to provide
redundant access paths to the data in order to tolerate
failures. This means two things:

* The various occurrences of a replicated data object
may be accessed via different paths; interferences
between concurrent accesses are possible.

* There should be no single point of control for check-
ing such interferences, since it would be equivalent to
creating a single point of failure in the system.

Thus, again, there is a need for a decentralized mech-
anism at the executive level that would take advantage of
redundant hardware and data in order to guarantee high
system availability. The communication subsystem may
fail in such a way that the global system is split into more
than one subsystem. Depending on the application re-
quirements, one may decide that all subsystems or only
one of them should be kept alive. In either case, a
distributed executive mechanism is needed to allow
several subsystems to be merged while communication
failures are repaired. In particular, objects that were
located in different subsystems must have values in agree-
ment with consistency constraints. For example, all oc-
currences of a replicated object must have identical
values.

Extensibility. In transaction-oriented environments,
system configurations often are constantly being modi-
fied as, for example, more terminal equipment is needed,
older devices are replaced by more sophisticated ones, or
processing and storage elements are added to meet perfor-
mance requirements. Computing systems based on mod-
ular architectures are particularly appropriate in these en-
vironments.

Physical modularity allows incremental extension and
reduction, hardware redundancy for the sake of robust-
ness, and relaxed maintenance constraints.2 Plugging an
element in and out should be straightforward tasks with
modular hardware.

Physical modularity by itself, however, is not sufficient
for obtaining dynamically extensible systems. The global
executive must also be modular-that is, it should be im-
plemented as a set of cooperative but autonomous local
executives embedding decentralized control mechanisms,
thus achieving mutual independence among the various
system elements.

Extensibility and efficiency are related issues. For ex-
ample, it is possible to improve the performance ofa given
system-such as its response time-by adding more pro-
cessing and storage elements, provided that the executive
mechanisms do not create artificial bottlenecks. If this
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aspect is overlooked, a computing system, although
physically extensible, may not satisfy performance re-
quirements.

Recently, a number of designers have been actively in-
volved in developing distributed data-sharing systems
that are efficient, robust, and extensible.3-8A crucial issue
in this area is robustness.

Basic features of Delta

We restrict our description of Delta to the following
basic features which provide solutions for the problems
discussed above:

* the decentralized mechanism that maintains the con-
sistency of the files under concurrent access,

* the COMMIT protocol that permits correct termina-
tion of transactions in spite of producer/consumer
crashes, and

* the recovery algorithm that brings any repaired con-
sumer into a correct state.

Decentralized mechanism for concurrency control.
Each producer is given a unique, permanent identity-an
integer value-that defines its order on the set of pro-
ducers materialized as a virtual ring.9 Producers are viewed
as being sequentially arranged along the virtual ring. Each
producer at any time has a unique predecessor and suc-
cessor. Every producer is required to regularly check its
successor, s, on the ring by having life messagessent to the
successor by the communication software. These mes-
sages must be acknowledged, which is possible only if
some internal checking is successful. Successful internal
checking is also a condition for having a producer issue
life messages. In this way, checking transitivity is achieved
along the virtual ring.

If several successive life messages are not acknowl-
edged, then a reconfiguration is undertaken by the
originating producer that sends a special message to the
potential successor of its previous successor-s + 1, s + 2,
etc. This procedure is repeated until a positive response is
received. The ultimate situation is a virtual ring with only
one producer. Repaired processing elements that host
producers should be able to join the system at any time,
which is possible via the virtual ring insertion protocol
described elsewhere. I

A particular message called the control token circulates
on the virtual ring. This token carries a sequencer that
delivers sequential and unique integer values called
tickets. Each time a producer accesses the sequencer, the
current value is delivered and the sequencer is in-
cremented. Once tickets have been selected by a producer,
the token is sent to the successor. This mechanism sur-
vives failures of both producers and the communication
network.

Transmission of the token between adjacent producers
is monitored through a positive acknowledgment + re-
transmission protocol. The token carries with it an integer
value called the cycle number which is incremented for
every complete revolution on the ring. This incrementa-
tion is performed by producer x such that x > succes-
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sor (x). At all times, this producer is unique. The cycle
number is used for detecting possible duplicates of the
token as well as for deciding, upon a reconfiguration of
the virtual ring, whether or not the token and the se-
quencer have been lost. The algorithm can be found
elsewhere.'0
The circulating sequencer mechanism is used to time-

stamp transactions submitted to producers by agents.
Each transaction receives a unique ticket, and all actions
invoked for a given transaction carry the value of the
ticket allocated to that transaction. Every request for an
action received by a consumer is acknowledged. Further-
more, a producer is notified when a requested action's state
is changed, in terms of the five states defined in Figure 2.
For such actions as WRITE, CREATE, and DELETE,

no modification actually takes place in the system files.
These actions are processed within the execution context
of the originating transaction; they work on a copy of the
objects requested. Only when a producer decodes the
END command (END may be either COMMIT or
ABORT) from the agent do the actual modifications take
place within the system files (in the case of a COMMIT)
and only then are execution contexts destroyed.
When two transactions have conflicts at different con-

sumers, the conflicts are resolved identically at all such
consumers, and the decision is immediate (move from
stateD to stateA or to state W). When an "older" action
is received-that is, an action that carries a smaller
ticket-a consumer may decide either to roll back (move
to g) or abort (move to A) the "younger" action. When

Figure 2. State-transition graph of an action managed by a
consumer.



an action is made to wait, other actions fired by the cor-
responding transaction are not altered. When an action is
aborted, the corresponding initiator will abort all other
related actions. Rollbacks and aborts are kept trans-
parent to external agents. In case of an abort, the corre-
sponding transaction will be resubmitted automatically
by the original producer.

Tickets define a total ordering on the set oftransactions
initiated by producers. This condition is sufficient to
guarantee consistency. A wide spectrum of decentralized
mechanisms intended for solving the consistency problem
exists. Our mechanism represents one end of the spec-
trum, since no information (except ticket values) is
necessary for a consumer to correctly schedule competing
actions. At the other end of the spectrum are those
mechanisms based on actual representations of the
system state, such as wait-for-graphs and conflict
graphs.5'" In between are those mechanisms based on
partial knowledge of the system state.8 The trade-off is
between the overhead incurred for collecting state infor-
mation and savings from unnecessary rollbacks or aborts.
We believe that in real-time transactional systems,

transactions do not represent large amounts of process-
ing. Therefore, when acceptable by an application,
rollbacks and aborts should not represent high processing
costs when compared with the cost of exchanging state in-
formation across processing elements in a distributed
system. This is one of the reasons we adopted this
mechanism for synchronizing conflicting transactions in
Delta.

Atomic transactions under failures. Transactions ini-
tiating WRITE, CREATE; and DELETE actions update
only copies of objects to prevent the consistency of files
from being threatened by failures, interrupting at random
the execution of transactions. However, all modifications
must be made effective-that is, the actual data objects
must be updated-for any transaction that reaches com-
pletion. This final step also must be atomic. Special care is
required if it is assumed that processing elements which
host producers and consumers as well as storage elements
may crash at random.

Stated in terms of the conceptual model presented
earlier in this article, the problem is as follows. A transac-
tion T which has been given ticket t and which has
manipulated objects managed by a set of consumers C
has reached completion. Possible intermediate rollbacks
or aborts have been kept transparent to the agent. By
means of either a software command or a terminal control
key, the agent indicates his willingness to commit T.

Let p be the producer in charge of controlling Twhen
the COMMIT command is issued (p need not be the ini-
tiator of T). The problem is that, although distributed, a
COMMIT must be atomic. More precisely, we want to
providep and consumers in C with a COMMIT protocol
that is reliable in case of failures and meets the require-
ment of mutual independence as much as possible.

For coping with the first of these two constraints, a
two-phase COMMIT protocol similar to the. one that
Gray described5 is convenient. The first phase begins
when p sends a PREPARE TO COMMIT message to
each consumer in C. This message allows a consumer to

tell p if a given action can be committed locally before all
other consumers are told to commit. It can also be used to
provide a consumer with some new values to be commit-
ted which have not been computed locally. The first phase
ends when every consumer involved has acknowledged
this message (corresponding actions move from stateD to
state P) and when all acknowledgments have been re-
ceived byp. If one or more consumers ask for an abort, T
is aborted by p, and the other consumers are informed
about this fact.

Transactions initiating WRITE,
CREATE, and DELETE actions update

only copies of objects.

When all acknowledgments to PREPARE TO COM-
MIT messages have been received byp, this fact is record-
ed by p, and the second phase begins. Producer p sends
every consumer a COMMIT message. Upon reception of
this message, a consumer makes all changes permanent by
deleting, updating, or creating data objects. Locks set on
the corresponding local objects are released, and the ex-
ecution context is destroyed. At any time after the begin-
ning of the second phase, producer p can tell the agent
that transaction Thas been successfully committed.

This protocol, however, suffers some drawbacks.
Because of the failure ofp during either the first or the sec-
ond phase, objects may be kept locked for arbitrarily
large time intervals. Consequently, several transactions
may be rejected or made to wait. Agents should be
prepared to experience arbitrarily large response times
before they are told their transactions have been either
committed or aborted. This situation violates the princi-
ple of mutual independence. What this principle states is
that a failure of producer ishould impact producerj (j . i)
as little as possible. To meet this requirement, we have
modified the original two-phase COMMIT protocol as
follows. Every PREPARE TO COMMIT message also
includes C, the list of all consumers involved in the execu-
tion of T, which enables any consumer, noticing that p
has failed, to get in touch with the other consumers
belonging to C to decide whether to commit or abort T.
Ticket t of T is used as a common reference for such in-
quiries. If at least one consumer has aborted, all con-
sumers that are up will abort since they are running the
first phase of the commit. Likewise, if at least one of them
has committed, all consumers that are up will commit.

Ifp is down and all consumers involved in the execution
of Tare up and have acknowledged the PREPARE TO
COMMIT messages, then transactions Twill be commit-
ted. The decision will be made by the consumers, based on
the knowledge that they have all agreed to commit T.
The only undecidable situation is when none of the con-

sumers that are up has either committed or aborted andp
as well as some consumers in C are down. In this case,
which is not expected to occur frequently, consumers will
have to wait until failed consumers come up again. Still, it
would be possible to devise a solution which would fur-
ther reduce the probability of such a situation occurring.

COMPUTER46



However, since it is not necessary to wait forp, process-
ing/storage elements that host producers may behave as
memory-less systems. Only consumers are provided with
stable storage. It is therefore possible for an agent, using a
producer that failed, to access another producer in order
to figure out whether a transaction was committed or
aborted.

Recovering from crashes. For recovering from crashes,
a journal must be maintained for each partition. In fact, a
journal is part of a partition. That is to say, a partition in-
cludes two subsets-one containing the agents' data ob-
jects, the other (the journal) containing all information
necessary to survive failures which would impact the ob-
jects belonging to that partition. For every partition, the
two subsets are implemented on different physical storage
elements. If the agents' objects and journal are im-
plemented on the same storage element, then the journal
should be replicated. Any producer may read or update a
journal by submitting actions to the pertinent consumer.
Ajournal contains four different kinds ofinformation:

the agents' table, images, checkpoints, and a list of
descriptors.
The agents' table has one entry per agent that contains

the value of the ticket corresponding to the most recent
transaction committed for this agent.

Locally, a consumer may decide at any time to copy the
current state of the partition on the journal. This is called
an image, which has no system-wide significance.
Named markers are called checkpoints. A checkpoint

corresponds to a state known to be consistent system-
wide.
A descriptor-created by a consumer for everyWRITE

action (WRITE includes CREATE and DELETE) that
has reached state P-contains

* ticket t of the transaction invoking the action,
* the new value of the object,
* the state of the action (P, C, or A),
* a version ID (V) if the object is replicated, and
* list H of all other consumers involved in the COM-
MIT of the transaction.

Since there is no reason why data objects on journals
would be more reliable than other data objects, it may be
necessary to replicate journals or parts of journals across
various partitions. For every transaction, a producer
should initiate the explicit actions from an agent that ap-
pear between the BEGIN and COMMIT commands, all
actions needed to create or update descriptors on jour-
nals, and all actions needed to update consistently
replicated data objects, which may also belong to jour-
nals.

Atomicity should be guaranteed. This is achieved by
transforming every WRITE action into a logical WRITE
action as follows. A specific subset of the system data in
the global data'structure is called the directory, which in-
cludes all information needed to infer to which partitions
a given data object belongs. The directory may be either
partially or fully replicated over partitions. As is the case
for agents' and'journals' objects, mutual and internal
consistency must be guaranteed for objects that represent

the directory. It is expected that WRITEs do not occur
too frequently on directories.
As explained earlier, WRITE actions are performed on

volatile copies of data objects. When the COMMIT com-
mand is decoded, every WRITE action belonging to the
corresponding transaction must be finalized. The pro-
ducer that acts as the COMMIT coordinator (CC)
transforms every WRITE into a logical WRITE
(L-WRITE) action by looking in a directory to determine
which partitions contain an occurrence of the object to be

L-WRITEs are atomic, even if
processing and/or storage elements crash.

written (this is list h,) and which partitions contain an oc-
currence of the journal which is to retain the descriptor
for this WRITE action (this is list h2). In some cases, it is
also necessary to build up a list h3 that includes the names
of the partitions containing a copy of the directory-such
as when a WRITE is actually a CREATE or a DELETE.
Let h be the compound list (hI, h2, h3). List His the con-
catenation of all lists h built for everyWRITE action for a
given transaction. When H has been built, the CC may
initiate the COMMIT protocol. From this point, the
system behaves as described previously.

This procedure will achieve updating of all copies ofthe
object, writing of a new descriptor, updating of the cor-
responding agents' table entry in all occurrences of the
relevant journal, and possibly an updating of directory
copies. Most important, L-WRITES are atomic, even if
processing and/or storage elements crash.

Since producers may behave as memory-less processes,
the removal (or insertion) of a producer that has crashed
(or been repaired) does not create any particular problem
in data consistency. When a consumer has to join the
system, it begins by consulting its journal-any copy if
several exist. Storage elements are updated by receiving a
copy ofthe partition known to be correct but late-for ex-
ample, the most recent image ofthat partition recorded in
the journal. Then, the consumer processes all descriptors
"older" than the retrieved image.
Each time it encounters a WRITE action in state P, it

asks those consumers belonging to the corresponding list
H about the current state of that action in order to decide
whether to commit or abort this particular action. When
this is completed, the consumer sets itself to a state "up."
From there on, it behaves as any other consumer.

Unrecoverable faults and failures. It is well known that
a given recovery mechanism does not guarantee that a
system will tolerate all possible failures. For instance, the
system described in this article does not tolerate a situa-
tion where copies of an object are not identical and the
most recent descriptor has been lost. In this case, the
system "loses" transactions, leading perhaps to a
domino-effect situation.
The probability that such situations will occur can be

made as low as possible by choosing an appropriate
number of copies for objects and descriptors. However, it
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is fundamental for the external agents to be aware of the
possibility of a catastrophe.
To this end, each time an agent enters the system, it is

given the transaction name associated with the ticket cor-
responding to the transaction committed most recently
for this agent. In case the name retained by the system is
"younger" than the name remembered by the agent, the
agent knows that although the system became silent at the
time the COMMIT command was issued, the correspon-
ding transaction was effectively committed. Unnecessary
duplicate execution is then avoided.

If the agent reads a name "older" than the one it holds,
some unrecoverable failures have occurred since the agent
left the system. The agent may then make the appropriate
decision based on the knowledge ofwhich transaction has
been committed last. To completely present how the
system recovers from failures, it would be necessary to ex-
plain how the distributed executive performs global
checkpoints and how these checkpoints are used to install
a past but consistent state when a catastrophe occurs. This
subject, however, has to be left to a future article.

The mechanisms described in this article have been
designed by Group Score* of Project Sirius. Delta is an
experimental distributed transactional system built on
three minicomputers, locally interconnected. 12 The initial
interconnection scheme is very straightforward (point-to-
point links). We decided to focus our attention on the
problem of designing and implementing a distributed ex-
ecutive for real-time transactional systems rather than
building another locally distributed communication sub-
system. However, the design of the executive is totally in-
dependent ofthe physical topology ofthe communication
subsystem. The interconnection of Delta's elements by
some other communication medium, such as Ethernet,
should not create any problem at the executive level.
The executive offers higher levels of abstraction

primitives for initializing and terminating transactions
with the guarantee that transactions remain atomic.
Transaction content is transparent to the executive. This
approach offers reasonable flexibility regarding the type
of application software implemented on such distributed
systems. *
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