
A Methodology for Designing and
Dimensioning Critical Complex Computing Systems

Gerard Le Lann
INRIA, Projet REFLECS, France

Gerard. Le-Lann@inria. fr

Abstract

It is widely recognized that real-time, fault-tolerant and
distributed computing technologies play a key role in the
deployment of many current and future (civilian or Defense)
critical and complex applications. Computing systems
needed to support such applications are referred to as C3
systems. Lack of a clear identifrcation of those issues
involved with designing and dimensioning C3 systems can
only lead to failures, as recently demonstrated by a number
of sizeable projects that have been aborted or suspended in
Europe and in the USA, in various application domains.

This paper describes a Systems Engineering methodology
that, given some specification <P, p> of a particular Systems
Engineering problem, permits to develop a specifrcation
< S , s> of a C3 system such that < S , s> provably satisfies
<P, p>. It is explicitly assumed that <P, p> includes
arbitrarily stringent timeliness requirements, arbitrary
distribution requirements as well as arbitrarily stringent
dependability requirements. Moving from <P, p> to <S, s>
involves some number of design stages and one final
dimensioning stage. It is shown how to verify whether every
single design decision satisfies the logical part of <P, p> as
well as whether a dimensioning decision satisfies the
physical part of <P,p>.

This methodology is fully orthogonal to formal
specifrcation methods or formal software engineering methods
currently in use. It does not rest on any particular
programming language either, Too ofen, system design andlor
system dimensioning stages are conducted in ad-hoc ways, or
even confused with implementation or software development.
We believe this to be the main reason why so many complex
systems fail to operate correctly or are abandoned, contrary to
widespread belief that software faults are the primary culprit.

The formal aspects of the methodology are related to
demonstrating that specific safety, timeliness and
dependability properties are enforced by a given design.
Such demonstrations lead to provably correct generic (i.e.
reusable) designs. Proofs that play a prominent part in this
methodology are called timeliness proofs (cchardw real-time
properties), serializability proofs (safety properties) and
dependability proofs (availability properties). Examples of
some techniques used to establish such proofs in the presence
of incomplete advance knowledge of the future are given.

1. Introduction

The purpose of C3 systems is to match those
requirements found in Invitations-To-Tender (Ins) issued by
Govemmental Bodies or nationaVintemational companies or
consortia operating in various business areas (e.g., banking/
finance, Defense, telecommunications, air traffic control, on-
line reservation). Issuers of ITTs will be referred to as clients
in the sequel.

There is growing evidence that those system providers
in charge of developing C3 systems have faced or are facing
serious difficulties, which manifest as deadlines being missed
repeatedly as well as by seemingly unbounded inflated
budgets. As a result, many developments are suspended or
even canceled by the clients.

Recently, this has been the case for the new US Air
Traffic Control project, the UK Taurus project
(computerization of the London Stock Exchange, 425 million
f spent, project abandoned), the US Orbital Station On-
Board Data Management system (500 million $ spent,
project abandoned), the US on-line reservation services
Confirm project (125 million $ spent, project cancelled), to
name a few. In other instances (e.g., Socrate, the French
Railways Seat Reservation system or Relit, the Paris Stock
Exchange system), C3 systems are put into operation but fail
to operate correctly too often (crashes or abnormally large
response times).

As it Seems reasonable to assume that system providers
do their best to design and build such C3 systems, it must be
that something quite essential is overlooked or addressed
empirically under current industriaVengineering practice.
This <<something>> is Systems Engineering, whose role and
nature are discussed in section 2. In section 3, we introduce a
methodology for the engineering of C3 systems, which is
based on proof obligations applied to the design and the
dimensioning stages of such systems. Examples of useful
proof techniques are given in section 4.

This methodology results from a 3-year long research
initiative undertaken by the REFLECS group at INRIA
(Rocquencourt, France). The methodology currently is being
applied within the framework of two projects (one civilian
application and one Defense application), each involving a
major French system provider. The methodology also is
being considered by European clients and system providers.

332
0-8186-7355-9/96 $05.00 0 1996 IEEE

2. Systems engineering and C3 systems

2.1. Systems Engineering

The meaning of notation cG, g> used throughout the
paper is as follows: under assumptions g, properties G should
hold. Consider the generic example of an I’IT for a critical
and complex application, as shown on figures 1 and 2, where
i2 is a description of the application requirements and o a
description of those assumptions under which Q should hold.
In particular, w is a description of the future system
environment, denoted E.

Only the logical part of an I n , denoted cQ(l), o(l)>, is
needed to start the design stages. The physical part, denoted
<a@), a@)>, may be initially undefined. Furthermore, this
part is prone to numerous changes, during the design stages
as well as after a provably correct design has been
established.

Q(1) : N, the number of services (set C) provided by the
application S/W, is bounded but unknown. Every service
s E Z is instantiated as a S / W component. The design of
such components is independent from any OS or H/W
technology. These components share on-line updatable
persistent data structures. A set I of invariants (consistency
constraints) is defined over the data structures.
Every possible combination of components must satisfy I.
That is, S / W components must execute correctly despite
arbitrary concurrency. Some services are mutually
exclusive.
For every possible run of any combination of components,
any request for service s E Z must be completed in d, time
units at most.
Some services are critical. Unavailability of critical
services (U) should not exceed l0-g a in the order of 9 (at
most).

o(1):Distribution of shared data structures is arbitrary.
Distribution of every S / W component is arbitrary. S / W
components are modeled as arbitrary directed finite graphs.
Every single S/W component satisfies I when run alone.
A maximum execution time is known for every S / W
component when run alone, denoted x, for service s E Z.
Arrival laws of service requests are arbitrary. For every
service s, an upper bound on arrivals density is given as the
ratio aJw,, where w, is a (sliding) time window and a, is
the highest number of requests that can be found in any
time window of size w,. Up to p processor crash failures
over D time units can be caused by the environment.

Figure 1. A generic example of an I’IT, logical part

Q(p): N = 1200 ; a = 8. Variables 4’s in milliseconds:
d l=12 d2=850 ... dNZ110.

o(p): p = 5 ; D = 14 hours. Variables xi’s in milliseconds:
X I = 3 x2 = 160 ... XN = 4. Variables wi’s in seconds:
al/wl = 4/0.3 a2/w2 = 5/15 -. aN/wN = ’7619.5.

Figure 2. A generic example of an ITT, physical part

It is the responsibility of a designer to translate <n(l),
w(l)> into a non ambiguous specification of a generic
Systems Engineering problem, denoted CA, b. No formal
method being known yet to do this in a formal way, this
translation is necessarily interpretative and iterative, until
both the client and the designer agree that <A, 3u is indeed a
“correct” capture of cQ(l), o(l)>. Beyond this capture stage,
correctness proofs are mandatory.

The final goal pursued by a designer is to produce a
specification, denoted <D, b, of a system, denoted SYS,
such that <D, d> provably satisfies <A, b. Specification
cD, d> is a generic solution to generic problem CA, A>,
much like in Mathematics, where the game consists in
demonstrating theorems (G) under some axiomatics (g). That
is, design correctness proofs hold true for every possible
valuation of those variables appearing in CA, b.

Along with <D, d>, a designer should specify a tool
whose entries are CA, b and any of the many (future)
descriptions cR(p), &)> that can be contemplated by a
client. This tool translates <Q(p), w(p)> into a specification
<a, p, which is a particular valuation of 4, b. Every
possible pair <<A, b, ca, q>>. denoted cP, p>, specifies a
particular valuation of the generic problem considered. Such
a tool includes a feasibility Oracle, whose role is to return a
verdict along with some data structures. In case the verdict is
negative, reasons are given via these data structures.
Whenever the verdict is positive, i.e. whenever the valued
Systems Engineering problem considered has a solution, the
Oracle produces cV, v>, which is a specification of how to
dimension the implementation of SYS.

Proofs that verdicts and dimensioning decisions are
correct must be given along with the tool.

Hence, whenever a valued Systems Engineering problem
is declared feasible, the outcome is a specification cS, s> =
ccD, &, <V, v>> which guarantees that system SYS will
always “win against” environment/“adversary” E. Issues
raised with how to correctly implement cS, s>, that are
addressed by, e.g., S/W Engineering and ElectricaVOptical
Engineering methods, fall outside the scope of the
methodology presented in section 3.

It is important to understand that programming issues
need notlshould not be addressed before a provably correct
specification cS, s> is obtained. A simple way of
understanding the difference which exists between Systems

333

Engineering and Software Engineering is by observing that a
C3 system whose software is fully correct (i.e. absolutely
fault-free) can only fail if what is (perfectly) coded are
incorrect or inappropriate algorithms and architectures,
possibly incorrectly dimensioned.

Widespread belief is that projects concerned with C3
systems fail for the reason that it is very difficult, if not
unfeasible, to develop fault-free software whenever the
complexity involved exceeds some <<reasonable>> threshold.

This is, we believe, a biaised and erroneous view of
reality. A major cause of such failures is the lack of a
rigorous methodology for designing and dimensioning C3
systems. If we look back at history, empirical Systems
Engineering approaches have been deemed <<acceptable>> for
the reason that, until the mid-8OYs, application requirements,
in terms of criticality and complexity, were not as stringent as
they now are. Furthermore, quite often, system failures could
be kept hidden from the public or from users, thanks to the
<<man in the (command-and-control) loop>>, which is rapidly
becoming an elusive concept. Empirical Systems
Engineering approaches are a thing of the past. In the case of
C3 systems, it is important to acknowledge the need to
address three Computer Science areas altogether, namely
Real Time, Fault Tolerant and Distributed Computing. Hence
the name of the methodology introduced in section 3, TRDF,
which stands for Technologies for Real-time, Distributed,
Fault-tolerant computing.’

2.2. c3 systems

Criticality is defined in reference to <<catastrophes>>
resulting from system failures (e.g., loss of property, injury,
death, financial loss, environmental damage). Critical
systems are typically characterized by accepted probabilities
of catastrophic failures which are infinitesimally small (e.g.,
lO-’/flight-hour for a civilian aircraft). Complexity is partially
determined by application semantics. Non technical
requirements may influence complexity, as would be the case
with, e.g., requirements of modularity, reusability and
portability of application software components -- referred to
as application components thereafter.

More to the point, there is no doubt that having to fulfil
proof obligations while solving a C3 system design/
dimensioning problem leads to increased complexity,
compared to that faced when following empirical
approaches. Conversely, without any doubt either, the price
to be paid at design time so as to cope with increased
complexity is way smaller than tolls exacted by catastrophes
and/or project cancellations. Remember that provably correct
designs are generic, i.e. the manpower invested in design

1. TRDF also is the French name of the methodology, which stands for
<<Temps R&l, Traitement DistribuB, TolBrance aux Fautes, (T as a
common factor)

stages is paid once only, which means that a generic solution
cD, d> is available <<for free>> whenever the matching generic
problem d, 30 is to be solved again.

It is well known that formal methods are to be used in the
case of C3 systems. However, it is also recognized that there
currently are severe limitations in applying existing formal
methods when dealing with concurrency, or with asynchrony,
or with real-time constraints or with fault-tolerance [I].
Unfortunately, with C3 systems, these issues arise altogether.

Divide-and-conquer approaches are known to be
appropriate to master complexity. A C3 system should thus
be viewed as built out of components, each exhibiting a
complexity level that is tractable with existing trustable S / W
and H/W Engineering methods. This partitioning principle
fits well with increased demand for modularity and
reusability, as well as with formal approaches based on
compositionality (e.g., 121). Furthermore, there should be a
strict separation between application components and system
components. System and application components
encapsulate algorithms, which are essential w.r.t. the proof
obligations. In particular, the role of system components is to
endow any collection of application components with those
desired individual and global properties required to prove
that <A, b is satisfied. Design decisions for system
components should be kept “orthogonal” to those which are
strictly application dependent.

Computer Science has generated a great many algorithms
that, for given models, endow individual components as well
as collections of components with all those properties that
should be exhibited by C3 systems (see section 3.1). It seems
therefore reasonable and useful to take advantage of the
proofs that have been established for such algorithms and
models.

Most C3 system design problems being “-hard, it is
necessary to explictly include specific algorithms in
designs. Algorithms have the virtue of “breaking the
complexity”, a well established exr:.cple being that of on-line
concurrency control algorithms. With such algorithms, every
possible run of any set of concurrently executing application
components is proved to be serializable, without having to
resort to an exhaustive exploration of the system state space,
which is in general a problem of exponential complexity.

3. The TRDF methodology

3.1. Logical and physical properties

In a specification 4, b, A includes, in particular, a set
stating which are the logical properties sought. In the case of
C3 systems, logical properties sought are combinations of
safety (a system never enters ctbad, states), liveness (progress
is guaranteed) or termination, timeliness (activation and
termination of application components within specified time
windows) and dependability (correctness in the presence of

334

partial failures).
Let us illustrate timeliness properties. They can be

defined as the Cartesian product of two sets, a class set and a
type set. Examples of classes are latest deadlines, bounded
jitters. Examples of types are constants, linear functions (of
systedenvironment parameters), non-linear functions. An
example of the product “latest deadlines x non-linear
functions” for avionics would be deadline = p (altitude)2, p a
constant.

For the sake of simplicity, let us equate A with logical
properties.

Similarly, h includes a set stating which are the models
under which properties A should hold. Models involved are,
e.g., models of application components/tasks (sequence, star,
tree, directed graph), models of concurrent computations
(synchronous, partially synchronous, asynchronous), models
of event arrival laws (periodic, sporadic, aperiodic, arbitrary
-- the latter defined via bounded densities -- see fig. l),
models of failures (crash, omission, timing, in the time
domain; correct/incorrect computations in the value domain).
For the sake of simplicity, let us equate h with such models.

Physical properties simply are valued logical properties
(e.g., response times, reliability, availability, throughput).
They can be derived from a valuation of <A, h>.

Partial or total orders can- be defined over sets of
properties/models. Let symbol 2 stand for the “dominance”
relation. A 2 B means that A is equal to or more general than
B. Examples of total orders are as follows:

directed graphs 2 trees I> stars I> sequences,
bounded jitters 2 latest deadlines,
non-linear functions 2 linear functions 2 constants,
asynchronous 2 partially synchronous 2 synchronous,
arbitrary 2 sporadic a periodic,
timing a omission 2 crash.

3.2. When is a solution applicable to a problem

Imagine that the Research/R&D community has
(partially) explored the space that contains all generic
Systems Engineering problems. Whenever a system provider
is considering a generic problem 4, 3u derived from a
client originated I n , the question arises as whether, among
all generic solutions that have been established previously,
one of them at least applies to <A, b.

A solution that solves a generic problem <A’, h’> is also
a solution for CA, h> whenever the following two conditions
are satisfied: A’ 3 A and h’ 2 h .

The first condition simply says that one cannot pick up a
solution that endows a system with properties weaker than
those specified. The second condition is less well understood.
It says that a solution that yields properties A’ 2 A can be
considered if and only if these properties have been
established under assumptions h‘ that are not more restrictive
than those specified.

It is easy to check that this condition is frequently
violated, especially in scientific papers that address “hard
real-time issues. There are numerous papers containing
claims that scheduling method X is so ‘‘general” that it can
solve almost every problem arising with distributed real-time
computations. What is kept hidden, or not acknowledged as
being as severe restriction, is the fact that corresponding
timeliness properties hold true only for a particular event
arrival model, such as periodic arrivals, an obvious violation
of the second condition given above whenever specified h
refers to any of the other event arrival models.

Rate-monotonic (“generalized” or not) is a typical
example of such a method unduly “marketed” as being a
“general” solution. Rate-monotonic does not apply in the
case of, e.g., arbitrary arrivals, an arrival model that is much
more realistic than that of periodic arrivals. It is easy to
understand why clients pick up an arbitrary arrival model,
when offered a choice. They are being asked to predict the
future, in that they are in charge of providing a, a description
of environment/”adversary” E. Why would they “kill
themselves” by pretending that, say in year 2000, E will
trigger events strictly periodically?

3.3. Proofs of properties

We do not elaborate on proofs of safety or liveness, as
they are reasonably well known. Such properties can be
established only if some on-line decision making algorithm
is considered. For example, serializability (a safety property)
cannot be enforced in distributed systems without resorting
to a concurrency control algorithm or any equivalent
algorithm.

A timeliness proof has two parts. One consists in
expressing computable functions B that give upper
bounds on response times, for every possible activation of
every application component, under given component/
computational/arrival models. This can be done only if a
scheduling algorithm is considered. The other part consists
in expressing those (sufficient, necessary and sufficient)
feasibility conditions under which bounds B are valid.

Examples of timeliness proofs are (i) the optimality proof
of Earliest Deadline First for a non-overloaded preemptable
processor [3], (ii) the optimality proof of D-Over for an
overloaded preemptable processor [4].

A dependability proof has two parts as well. One
consists in demonstrating the existence of such properties as
safety (at least), or safety and liveness, under given failure
models and failure densities. This can be done only if some
on-line decision making algorithm is considered, such as,
e.g., a reliable broadcast or a group membership algorithm.
The other part is concerned with expressing feasibility
conditions or computable functions R that give lower
bounds on redundancy degrees under which safetyfliveness
properties hold true.

335

Examples of dependability proofs are the demonstrated
correctness of some consensus algorithms in any of the three
computational models. An example of function R is R =
3t+l, the smallest number of processors required to tolerate
up to t Byzantine processors in synchronous models. An
example of feasibility conditions are the weakest failure
detector properties in asynchronous models 151.

Functions such as B or R are referred to as behavioral
functions. Of course, in addition to B and R, other behavioral
functions may be needed.

3.4. Provably correct generic designs

Let us assume that generic problem <A, 3u has not been
solved yet. A simplified view of the stages followed to
produce a provably correct generic solution <D, d> is given
figure 3.

A design decision, denoted A, essentially consists in
choosing an assumption set, denoted 'y, and a composite
algorithm, denoted A*. A composite algorithm endows a
system with some combination of the logical properties
presented in section 3.1. Let T(A*) be those (proved)
properties enforced by A*, under 'y.

<n,w>

m- (logical) I ' (phylical)
dimensioning 1

r - - * <Ao,A+
I I
I 1

pfoofs decision A1
I

I t
L - - obligation K(AS1)

I

<O,q>+---.
I
I
I
I
I

ptoofs decision 4- - - - - - - - - decisio? V(AJ probfs
I 4
L - - obligation K(AJ

I

t I

I
obligation K(V) - - f

e im lementation
t

SYS

Figure 3. Systems Engineering and the TRDF methodology

1
A design A(A*) is provably correct if and only if the

following conditions are satisfied:
T (A *) z A a n d y a h .

CA, 3u, the initial problem specification, i.e. the agreed
upon capture of <O(l), o(l)>, is denoted <&, A+. A design
decision A1 is made. It is impossible to make and examine
design decision A2 as long as proof obligation K(A1) has not
been fulfilled satisfactorily. This is so for the simple reason
that the specification of problem <Al, hl> is a result of
meeting proof obligation K(A1). Design decisions and design
correctness proof obligations are applied a number of stages,
until a level amenable to implementation is reached. This
level can be determined by any kind of constraint/
consideration (e.g., imposed or favored H/W, convenient off-
the-shelf technology).

As every design in the chain satisfies the A-correctness
proof obligation, <D, d> provably satisfies <A, b.

3.5. Provably correct dimensioning

A dimensioning, denoted by the operator V, is provably
correct if it can be demonstrated that <V, v>, a valuation/
dimensioning of <D, d>, satisfies CO, q>, the valuation of
<A, b according to a pair <a@), w(p)> provided by a client.

A dimensioning of <D, d> is not an implementation of
<D, *.A dimensioning V consists in assigning values to
implementation variables appearing in behavioral
functions. Examples of such variables are processor speeds,
lower/upper bounds on message passing delays, memory
capacity, degrees of redundancy in processor groups, etc. The
discovery of a correct V usually is an iterative process, even
when a priori decisions are made (e.g., prescribed use of a
specific type of processor).

V-correctness D roof oblieation K(V) :

ifV(T(A*)) 3
A dimensioning V of a design A (A*) is provably correct

and V(y) 2 q.

At iteration 1, if both conditions are satisfied, a designer
should consider a less ecostly>> (i.e., less powerful)
dimensioning of <D, d>. Such <<backward>> iterations are
repeated until one of the K(V) conditions at least is not
satisfied. When this happens, say with Vi+1, one can
conclude that Vi is the least <<costly>, provably correct
dimensioning of <D, d>. (This does not imply that Vi is the
optimal dimensioning, unless <D, d> is a provably optimal
design (i.e., every A comprised in <D, d> is optimal)).

In the case one condition at least is not satisfied initially, a
designer should consider a more crcostly>> dimensioning of
<D, d>. Such crforward>> iterations are repeated until both

336

conditions are satisfied, yielding also the least <<costly>>
provably conect dimensioning of <D ,d>. A dimensioning
translates into real costs. If a provably necessary and
sufficient dimensioning V is found to be too costly, this is an
indication that (i) either the generic problem considered,
valued as per 4, p, has no provably correct solution, given
the technology that is affordable or accessible, (ii) or other
designs A must be considered. The latter outcome should
occur less and less often as our accumulated knowledge
about provably optimal designs increases with time.

It is only after a provably correct dimensioning has been
identified that cV, v> can be established. The pair ccD,d>,
cV, v>> is the specification of a system SYS that is proved to
behave correctly provided that environment E behaves as
specified, logically as per h, physically as per cp.

Too often, dimensioning is addressed in ad-hoc ways.
This is the case whenever arbitrarily simple computational
models (e.g., zero-delay or constant-delay abstractions,
sequential fault-free computing) are relied upon for the sake
of facilitating correctness proofs. The essential issues of
asynchrony, concurrency, real-time and fault-tolerance are
mostly ignored, left to be addressed by those in charge of
implementing some utterly simple models.

This leaves implementors with the job of designing,
dimensioning and implementing the equivalent of a
distributed, real-time, fault-tolerant <<executive>>. Very often,
the implementors’ sole obsession is to devise an ccefficienb
(i.e., <<fast>>, <<slim>>) executive, so that SYS would mimic an
imposed idealistic computational model (e.g., infinite
computational power is available). Such ad-hoc customized
executives have two obvious drawbacks, one being that their
cost cannot be amortized over many releases, the other one
being that they break the <<proof chain,,. At best, proofs that
SYS satisfies ccD,d>, cV, v>> are established under
clairvoyance assumptions or for specific and simple cases,
almost inevitably in violation of principles n1/7c2/n3 given in
the next section.

Another ad-hoc approach is over-dimensioning. This
approach being fully empirical, proofs of 1ogicaVphysical
properties simply cannot be established, even for unbounded
system budgets.

Implementation

This is the well-known chain of stages that consist in
selecting and/or adapting commercial off-the-shelf hardware
and software technology (e.g., operating systems or
executives, middleware, microcode, processors) or in
developing some specific hardware or software technology,
such that ccD,d>, cV, v>> is satisfied. Most often, existing
formal approaches run into difficulties with specifications of
physical properties, such as cV, Y>. Recognition that the V-
correctness proof obligation comes before the
implementation stages should help in this respect. As

indicated before, implementation issues are not covered by
the TRDF methodology.

From a general perspective, the enforcement of the K(A)
and K(V) proof obligations is of utmost importance for early
detection of faulty design/dimensioning decisions. Being
aware of these obligations, a client (e.g., a certifier) can
easily and justfully reject a proposal or a request for
certification. Would such obligations have been enforced,
some <<easy-to-understand>> and well marketed <<solutions>>
that violate impossibility results would not be in use. Again,
when failures will (inevitably) occur, the real cause
(algorithms presented as being able to deliver deterministic
services, despite a proof that they can only deliver such
services probabilistically) will be kept hidden behind alleged
software faults.

4. Principles and useful proof techniques

4.1. Principles

Let us first recall that with C3 systems, the accepted
probability of catastrophic failure, denoted E, usually is
infinitesimal. Let o be the smallest coverage factor of the
models involved in a chain of design decisions. An obvious
principle can be given :

(nI) Any proof of property must be based on models such
that Q 2 1-E holds true.

Issues of concurrency and asynchrony -- often called
(<distribution>> -- arise with C3 systems. It follows that such
systems must be designed in accordance with distributed
systems design principles. One basic principle was
established as an impossibility result [6,7] :

Global system states are not directly observable.
At best, such states can be reconstructed a posteriori by

resorting to specific algorithms (i.e. at some cost). In
distributed systems, communication delays are variable and
queuing phenomena inevitably develop. It is thus all the
more obvious that future system states cannot be predicted.
Failures are additional sources of uncertainty w.r.t. future
state values and timings. Hence the principle :

(x2) Future system ”/timing histories cannot be
predicted with certainty.

Proofs of logical and physical properties cannot be
established unless the environmenV‘adversary” is restricted.
However, it is wise to avoid considering artificially restricted
“adversaries”. For example, it is impossible to predict every
possible pattem of arrival times for external events. They
follow unpredictable arrival laws (think of threats or physical
phenomena). Hence the principle :

337

(~ 3) Advance knowledge of future environmental
scenarios is limited.

Such assumptions as constant-delay communications or
such artifacts as ccperiod enforcers (the rate-monotonic
approach) violate principle 9. So called cctime-triggered>>
models or periodic arrivals assumptions are antagonistic with
principle 7r3.

Clairvoyance postulates contradict both 7c2 and 7 5 .
Solutions aimed at C3 systems and developed under such
postulates either are inapplicable (such solutions violate
principle nl) or are incorrect.

4.2. Nature of some proof techniques

For the sake of conciseness, we will only sketch out the
principles of some the proof techniques used to satisfy the
K(A) and K(V) correctness proof obligations imposed with
the TRDF methodology. From principles 7c1/7cg7c3, one
derives the obvious conclusion that optimal solutions can
only rest on on-line algorithms. With "-hard problems, one
has to sacrifice optimality whenever algorithms of
polynomial complexity only can be considered. In that case,
partial off-line computations can be contemplated.

Correct solutions rest on composite algorithms, which
enforce multiple properties altogether. Such properties can be
obtained by exploiting state-of-the-art algorithms in
Concurrency Control [8], Scheduling and Fault-Tolerance [9]
areas. The obligation of addressing these three areas
altogether was identified a few years ago [lo].

It must be understood that we are shooting for proofs
which characterize deterministic behavior at some boundary
conditions in the presence of partial knowledge (of the f i t w e ,
in particular). Consequently, we cannot expect solving our
problems by resorting to probabilistic approaches (e.g.,
Queueing theory) or statistical approaches (e.g., simulation)
which are nevertheless useful to predict average behaviors.
The intent of the approach advocated here is to <<let the
probabilities in>> only when a client is asked to postulate
physical environmental scenarios, that is affer design, rather
than <<let them in>> when a designer establishes (design)
correctness proofs. Reluctance to use on-line algorithms with
C3 systems stems from the erroneous belief that future
system behaviors would become unpredictable with such
algorithms. This is a strange view, given that so many results
proving the opposite have been published in the past.

We have used pure on-line algorithms to solve the
following distributed scheduling problem [113 : A distributed
multiaccess broadcast channel is shared by a number of
message sources. The exact number of sources is unknown
but bounded. Message arrival laws are arbitrary (only upper
bounds on arrival densities are given). Messages are to be
transmitted within strict deadlines, revealed upon message
arrivals only. Give A*, T(A*) and feasibility conditions.

A distributed message scheduling algorithm A* being
chosen or devised, a timeliness proof consists in giving the
expression of function B(i,r), the upper bound on service
times for a message ranked r-th in source i's waiting queue,
Vr, Vi. Such bounds are obtained using adversary arguments.
In Ell], we have considered an arbitrarily devilish adversary
which is provided with an infinite amount of messages. The
game imposed upon the adversary is a deterministic variant
of Ethernet, called Deadline-Oriented-Deterministic CSMA-
CD. Clearly, this problem cannot be solved with solutions
based on off-line computations, such as 112, 131. Such
solutions are falsely reassuring. Their coverage factor Q is
provably inferior to I-E for most c3 systems. In [14], we
demonstrate that optimal solutions to the problem introduced
in [l l] can only be in class Non-Preemptive Earliest-
DeadIine-First/Collision-Detection-and-Resolution (that is,
Token-Passing cannot be optimal).

Using the TRDF methodology, we have been able to
deliver a specification <D, d> of a generic problem 4, h>
derived from an ITT that resembles the generic example
shown fig.1. We have also delivered the specification of a
corresponding feasibility Oracle.

Proof techniques used for this work have been drawn
from different disciplines, such as conventional analytical
calculus, conventional scheduling theory, adversary
arguments and computations on graphs in a specific algebra.

From a more general perspective, reasoning under
uncertainty is known to be possible, as amply demonstrated
by e.g., Game theory or Decision theory. Optimality of
composite on-line algorithms can be established by resorting
to Competitive Analysis [4, 151.

5. Conclusion

The major aims of this paper are, (i) to contribute to a
better understanding of the nature of some issues which do
not seem to be rigorously addressed with the design and the
dimensioning of C3 systems, a prerequisite to identifying the
correct solutions, (ii) to introduce the TRDF methodology
which seems to be an early Systems Engineering
methodology for C3 systems that is based on mathematical
reasoning. The prominent part played by the provably correct
generic design and provably correct dimensioning stages in
the lifecycle of a (possibly to-be-certified) C3 system have
been emphasized.

Combining formal methods (for specifying initial
application requirements, generic design problems, generic
solutions) with the TRDF methodology is believed to be a
very promising approach to the development of correct and
trustable C3 systems. There is a wide open field of research
and experiments to be conducted by our community so as to
provide clients with provably correct C3 systems.

338

References 9. J.C. Laprie (ed.), Dependability : Basic Concepts and

1.

2.
3.

4.

5.

6.

7.

8.

3. Rushby, Formal Methods and the Certification of
Critical Systems, SRI-CSL Technical Report 93-07
(Nov. 1993) 308 p.
J.R. Abrial, The B Method, Prentice Hall pub., (1994).
C.L. Liu, J.W. Layland, Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,
J.ACM, 20-1 (Jan. 1973) 46-61.
S. Baruah et al., On-Line Scheduling in the Presence of
Overload, 32nd Symp. on Foundations of Computer
Science (1991) 100-110.
T.D. Chandra, V. Hadzilacos, S . Toueg, The Weakest
Failure Detector for Solving Consensus, ACM PODC-11

G. Le Lann, Distributed Systems - Towards a Formal
Approach, IFIP Congress, North-Holland pub. (1977)

L. Lamport, Time, Clocks and the Ordering of Events in
a Distributed System, Com. ACM, 21-7 (July 1978) 558-
565.
C.H. Papadimitriou, The Theory of Concurrency
Control, Computer Science Press, (1986) Rockeville
(MD).

(Aug. 1992) 147-158.

155-160.

Terminology, vol. 5 of Dependable Computing and
Fault-Tolerant Systems, Springer-Verlag (1991).

10. G. Le Lann, Distributed Real-Time Processing, in
Computer Systems for Process Control, R. Guth ed.,
Plenum Press pub. (1986) 69-88.

11. G. Le Lam, N. Rivierre, Real-Time Commynications
over Broadcast Networks : the CSMA-DCR and the
DOD/CSMA-CD Protocols, INRIA Res. Report 1863
(1993) 35 p.

12. H. Kopetz, G. Griinsteild, TTF' - A Protocol for Fault-
Tolerant Real-Time Systems, IEEE Computer (Jan.

13. L. Sha, S.S. Sathaye, A Systematic Approach to
Designing Distributed Real-Time Systems, IEEE
Computer (Sept. 1993), 68-78.

14. J.F. Hermant, G. Le Lann, N. Rivierre, CA General
Approach to Real-Time Message Scheduling over
Distributed Broadcast Channelsn, IEEE/INRIA Conf. on
Engineering Technologies and Factory Automation,

15. R.M. Karp, On-Line Algorithms Versus Off-Line
Algorithms : How Much is it Worth to Know the
Future ?, IFIP Congress, Vol I, Elsevier pub. (1992) 416-
429.

1994) 14-23.

(1995), 191-204.

339

