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Abstract 

It is widely recognized that real-time, fault-tolerant and 
distributed computing technologies play a key role in the 
deployment of many current and future (civilian or Defense) 
critical and complex applications. Computing systems 
needed to support such applications are referred to as C3 
systems. Lack of a clear identifrcation of those issues 
involved with designing and dimensioning C3 systems can 
only lead to failures, as recently demonstrated by a number 
of sizeable projects that have been aborted or suspended in 
Europe and in the USA, in various application domains. 

This paper describes a Systems Engineering methodology 
that, given some specification <P, p> of a particular Systems 
Engineering problem, permits to develop a specifrcation 
< S ,  s> of a C3 system such that < S ,  s> provably satisfies 
<P, p>. It is explicitly assumed that <P, p> includes 
arbitrarily stringent timeliness requirements, arbitrary 
distribution requirements as well as arbitrarily stringent 
dependability requirements. Moving from <P, p> to <S, s> 
involves some number of design stages and one final 
dimensioning stage. It is shown how to verify whether every 
single design decision satisfies the logical part of <P, p> as 
well as whether a dimensioning decision satisfies the 
physical part of <P,p>. 

This methodology is fully orthogonal to formal 
specifrcation methods or formal software engineering methods 
currently in use. It does not rest on any particular 
programming language either, Too ofen, system design andlor 
system dimensioning stages are conducted in ad-hoc ways, or 
even confused with implementation or software development. 
We believe this to be the main reason why so many complex 
systems fail to operate correctly or are abandoned, contrary to 
widespread belief that software faults are the primary culprit. 

The formal aspects of the methodology are related to 
demonstrating that specific safety, timeliness and 
dependability properties are enforced by a given design. 
Such demonstrations lead to provably correct generic (i.e. 
reusable) designs. Proofs that play a prominent part in this 
methodology are called timeliness proofs (cchardw real-time 
properties), serializability proofs (safety properties) and 
dependability proofs (availability properties). Examples of 
some techniques used to establish such proofs in the presence 
of incomplete advance knowledge of the future are given. 

1. Introduction 

The purpose of C3 systems is to match those 
requirements found in Invitations-To-Tender (Ins) issued by 
Govemmental Bodies or nationaVintemational companies or 
consortia operating in various business areas (e.g., banking/ 
finance, Defense, telecommunications, air traffic control, on- 
line reservation). Issuers of ITTs will be referred to as clients 
in the sequel. 

There is growing evidence that those system providers 
in charge of developing C3 systems have faced or are facing 
serious difficulties, which manifest as deadlines being missed 
repeatedly as well as by seemingly unbounded inflated 
budgets. As a result, many developments are suspended or 
even canceled by the clients. 

Recently, this has been the case for the new US Air 
Traffic Control project, the UK Taurus project 
(computerization of the London Stock Exchange, 425 million 
f spent, project abandoned), the US Orbital Station On- 
Board Data Management system (500 million $ spent, 
project abandoned), the US on-line reservation services 
Confirm project (125 million $ spent, project cancelled), to 
name a few. In other instances (e.g., Socrate, the French 
Railways Seat Reservation system or Relit, the Paris Stock 
Exchange system), C3 systems are put into operation but fail 
to operate correctly too often (crashes or abnormally large 
response times). 

As it Seems reasonable to assume that system providers 
do their best to design and build such C3 systems, it must be 
that something quite essential is overlooked or addressed 
empirically under current industriaVengineering practice. 
This <<something>> is Systems Engineering, whose role and 
nature are discussed in section 2. In section 3, we introduce a 
methodology for the engineering of C3 systems, which is 
based on proof obligations applied to the design and the 
dimensioning stages of such systems. Examples of useful 
proof techniques are given in section 4. 

This methodology results from a 3-year long research 
initiative undertaken by the REFLECS group at INRIA 
(Rocquencourt, France). The methodology currently is being 
applied within the framework of two projects (one civilian 
application and one Defense application), each involving a 
major French system provider. The methodology also is 
being considered by European clients and system providers. 
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2. Systems engineering and C3 systems 

2.1. Systems Engineering 

The meaning of notation cG, g> used throughout the 
paper is as follows: under assumptions g, properties G should 
hold. Consider the generic example of an I’IT for a critical 
and complex application, as shown on figures 1 and 2, where 
i2 is a description of the application requirements and o a 
description of those assumptions under which Q should hold. 
In particular, w is a description of the future system 
environment, denoted E. 

Only the logical part of an I n ,  denoted cQ(l), o(l)>, is 
needed to start the design stages. The physical part, denoted 
<a@), a@)>, may be initially undefined. Furthermore, this 
part is prone to numerous changes, during the design stages 
as well as after a provably correct design has been 
established. 

Q(1) : N, the number of services (set C) provided by the 
application S/W, is bounded but unknown. Every service 
s E Z is instantiated as a S / W  component. The design of 
such components is independent from any OS or H/W 
technology. These components share on-line updatable 
persistent data structures. A set I of invariants (consistency 
constraints) is defined over the data structures. 
Every possible combination of components must satisfy I. 
That is, S / W  components must execute correctly despite 
arbitrary concurrency. Some services are mutually 
exclusive. 
For every possible run of any combination of components, 
any request for service s E Z must be completed in d, time 
units at most. 
Some services are critical. Unavailability of critical 
services (U) should not exceed l0-g a in the order of 9 (at 
most). 

o(1):Distribution of shared data structures is arbitrary. 
Distribution of every S / W  component is arbitrary. S / W  
components are modeled as arbitrary directed finite graphs. 
Every single S/W component satisfies I when run alone. 
A maximum execution time is known for every S / W  
component when run alone, denoted x, for service s E Z. 
Arrival laws of service requests are arbitrary. For every 
service s, an upper bound on arrivals density is given as the 
ratio aJw,, where w, is a (sliding) time window and a, is 
the highest number of requests that can be found in any 
time window of size w,. Up to p processor crash failures 
over D time units can be caused by the environment. 

Figure 1. A generic example of an I’IT, logical part 

Q(p): N = 1200 ; a = 8. Variables 4’s in milliseconds: 
d l=12 d2=850 ... dNZ110. 

o(p): p = 5 ; D = 14 hours. Variables xi’s in milliseconds: 
X I =  3 x2 = 160 ... XN = 4. Variables wi’s in seconds: 
al/wl = 4/0.3 a2/w2 = 5/15 -. aN/wN = ’7619.5. 

Figure 2. A generic example of an ITT, physical part 

It is the responsibility of a designer to translate <n(l), 
w(l)> into a non ambiguous specification of a generic 
Systems Engineering problem, denoted CA, b. No formal 
method being known yet to do this in a formal way, this 
translation is necessarily interpretative and iterative, until 
both the client and the designer agree that <A, 3u is indeed a 
“correct” capture of cQ(l), o(l)>. Beyond this capture stage, 
correctness proofs are mandatory. 

The final goal pursued by a designer is to produce a 
specification, denoted <D, b, of a system, denoted SYS, 
such that <D, d> provably satisfies <A, b. Specification 
cD, d> is a generic solution to generic problem CA, A>, 
much like in Mathematics, where the game consists in 
demonstrating theorems (G) under some axiomatics (g). That 
is, design correctness proofs hold true for every possible 
valuation of those variables appearing in CA, b. 

Along with <D, d>, a designer should specify a tool 
whose entries are CA, b and any of the many (future) 
descriptions cR(p), &)> that can be contemplated by a 
client. This tool translates <Q(p), w(p)> into a specification 
<a, p, which is a particular valuation of 4, b. Every 
possible pair <<A, b, ca, q>>. denoted cP, p>, specifies a 
particular valuation of the generic problem considered. Such 
a tool includes a feasibility Oracle, whose role is to return a 
verdict along with some data structures. In case the verdict is 
negative, reasons are given via these data structures. 
Whenever the verdict is positive, i.e. whenever the valued 
Systems Engineering problem considered has a solution, the 
Oracle produces cV, v>, which is a specification of how to 
dimension the implementation of SYS. 

Proofs that verdicts and dimensioning decisions are 
correct must be given along with the tool. 

Hence, whenever a valued Systems Engineering problem 
is declared feasible, the outcome is a specification cS, s> = 
ccD, &, <V, v>> which guarantees that system SYS will 
always “win against” environment/“adversary” E. Issues 
raised with how to correctly implement cS, s>, that are 
addressed by, e.g., S/W Engineering and ElectricaVOptical 
Engineering methods, fall outside the scope of the 
methodology presented in section 3. 

It is important to understand that programming issues 
need notlshould not be addressed before a provably correct 
specification cS, s> is obtained. A simple way of 
understanding the difference which exists between Systems 
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Engineering and Software Engineering is by observing that a 
C3 system whose software is fully correct (i.e. absolutely 
fault-free) can only fail if what is (perfectly) coded are 
incorrect or inappropriate algorithms and architectures, 
possibly incorrectly dimensioned. 

Widespread belief is that projects concerned with C3 
systems fail for the reason that it is very difficult, if not 
unfeasible, to develop fault-free software whenever the 
complexity involved exceeds some <<reasonable>> threshold. 

This is, we believe, a biaised and erroneous view of 
reality. A major cause of such failures is the lack of a 
rigorous methodology for designing and dimensioning C3 
systems. If we look back at history, empirical Systems 
Engineering approaches have been deemed <<acceptable>> for 
the reason that, until the mid-8OYs, application requirements, 
in terms of criticality and complexity, were not as stringent as 
they now are. Furthermore, quite often, system failures could 
be kept hidden from the public or from users, thanks to the 
<<man in the (command-and-control) loop>>, which is rapidly 
becoming an elusive concept. Empirical Systems 
Engineering approaches are a thing of the past. In the case of 
C3 systems, it is important to acknowledge the need to 
address three Computer Science areas altogether, namely 
Real Time, Fault Tolerant and Distributed Computing. Hence 
the name of the methodology introduced in section 3, TRDF, 
which stands for Technologies for Real-time, Distributed, 
Fault-tolerant computing.’ 

2.2. c3 systems 

Criticality is defined in reference to <<catastrophes>> 
resulting from system failures (e.g., loss of property, injury, 
death, financial loss, environmental damage). Critical 
systems are typically characterized by accepted probabilities 
of catastrophic failures which are infinitesimally small (e.g., 
lO-’/flight-hour for a civilian aircraft). Complexity is partially 
determined by application semantics. Non technical 
requirements may influence complexity, as would be the case 
with, e.g., requirements of modularity, reusability and 
portability of application software components -- referred to 
as application components thereafter. 

More to the point, there is no doubt that having to fulfil 
proof obligations while solving a C3 system design/ 
dimensioning problem leads to increased complexity, 
compared to that faced when following empirical 
approaches. Conversely, without any doubt either, the price 
to be paid at design time so as to cope with increased 
complexity is way smaller than tolls exacted by catastrophes 
and/or project cancellations. Remember that provably correct 
designs are generic, i.e. the manpower invested in design 

1. TRDF also is the French name of the methodology, which stands for 
<<Temps R&l, Traitement DistribuB, TolBrance aux Fautes, (T as a 
common factor) 

stages is paid once only, which means that a generic solution 
cD, d> is available <<for free>> whenever the matching generic 
problem d, 30 is to be solved again. 

It is well known that formal methods are to be used in the 
case of C3 systems. However, it is also recognized that there 
currently are severe limitations in applying existing formal 
methods when dealing with concurrency, or with asynchrony, 
or with real-time constraints or with fault-tolerance [I]. 
Unfortunately, with C3 systems, these issues arise altogether. 

Divide-and-conquer approaches are known to be 
appropriate to master complexity. A C3 system should thus 
be viewed as built out of components, each exhibiting a 
complexity level that is tractable with existing trustable S / W  
and H/W Engineering methods. This partitioning principle 
fits well with increased demand for modularity and 
reusability, as well as with formal approaches based on 
compositionality (e.g., 121). Furthermore, there should be a 
strict separation between application components and system 
components. System and application components 
encapsulate algorithms, which are essential w.r.t. the proof 
obligations. In particular, the role of system components is to 
endow any collection of application components with those 
desired individual and global properties required to prove 
that <A, b is satisfied. Design decisions for system 
components should be kept “orthogonal” to those which are 
strictly application dependent. 

Computer Science has generated a great many algorithms 
that, for given models, endow individual components as well 
as collections of components with all those properties that 
should be exhibited by C3 systems (see section 3.1). It seems 
therefore reasonable and useful to take advantage of the 
proofs that have been established for such algorithms and 
models. 

Most C3 system design problems being “-hard, it is 
necessary to explictly include specific algorithms in 
designs. Algorithms have the virtue of “breaking the 
complexity”, a well established exr:.cple being that of on-line 
concurrency control algorithms. With such algorithms, every 
possible run of any set of concurrently executing application 
components is proved to be serializable, without having to 
resort to an exhaustive exploration of the system state space, 
which is in general a problem of exponential complexity. 

3. The TRDF methodology 

3.1. Logical and physical properties 

In a specification 4, b, A includes, in particular, a set 
stating which are the logical properties sought. In the case of 
C3 systems, logical properties sought are combinations of 
safety (a system never enters ctbad, states), liveness (progress 
is guaranteed) or termination, timeliness (activation and 
termination of application components within specified time 
windows) and dependability (correctness in the presence of 
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partial failures). 
Let us illustrate timeliness properties. They can be 

defined as the Cartesian product of two sets, a class set and a 
type set. Examples of classes are latest deadlines, bounded 
jitters. Examples of types are constants, linear functions (of 
systedenvironment parameters), non-linear functions. An 
example of the product “latest deadlines x non-linear 
functions” for avionics would be deadline = p (altitude)2, p a 
constant. 

For the sake of simplicity, let us equate A with logical 
properties. 

Similarly, h includes a set stating which are the models 
under which properties A should hold. Models involved are, 
e.g., models of application components/tasks (sequence, star, 
tree, directed graph), models of concurrent computations 
(synchronous, partially synchronous, asynchronous), models 
of event arrival laws (periodic, sporadic, aperiodic, arbitrary 
-- the latter defined via bounded densities -- see fig. l), 
models of failures (crash, omission, timing, in the time 
domain; correct/incorrect computations in the value domain). 
For the sake of simplicity, let us equate h with such models. 

Physical properties simply are valued logical properties 
(e.g., response times, reliability, availability, throughput). 
They can be derived from a valuation of <A, h>. 

Partial or total orders can- be defined over sets of 
properties/models. Let symbol 2 stand for the “dominance” 
relation. A 2 B means that A is equal to or more general than 
B. Examples of total orders are as follows: 

directed graphs 2 trees I> stars I> sequences, 
bounded jitters 2 latest deadlines, 
non-linear functions 2 linear functions 2 constants, 
asynchronous 2 partially synchronous 2 synchronous, 
arbitrary 2 sporadic a periodic, 
timing a omission 2 crash. 

3.2. When is a solution applicable to a problem 

Imagine that the Research/R&D community has 
(partially) explored the space that contains all generic 
Systems Engineering problems. Whenever a system provider 
is considering a generic problem 4, 3u derived from a 
client originated I n ,  the question arises as whether, among 
all generic solutions that have been established previously, 
one of them at least applies to <A, b. 

A solution that solves a generic problem <A’, h’> is also 
a solution for CA, h> whenever the following two conditions 
are satisfied: A’ 3 A and h’ 2 h . 

The first condition simply says that one cannot pick up a 
solution that endows a system with properties weaker than 
those specified. The second condition is less well understood. 
It says that a solution that yields properties A’ 2 A can be 
considered if and only if these properties have been 
established under assumptions h‘ that are not more restrictive 
than those specified. 

It is easy to check that this condition is frequently 
violated, especially in scientific papers that address “hard 
real-time issues. There are numerous papers containing 
claims that scheduling method X is so ‘‘general” that it can 
solve almost every problem arising with distributed real-time 
computations. What is kept hidden, or not acknowledged as 
being as severe restriction, is the fact that corresponding 
timeliness properties hold true only for a particular event 
arrival model, such as periodic arrivals, an obvious violation 
of the second condition given above whenever specified h 
refers to any of the other event arrival models. 

Rate-monotonic (“generalized” or not) is a typical 
example of such a method unduly “marketed” as being a 
“general” solution. Rate-monotonic does not apply in the 
case of, e.g., arbitrary arrivals, an arrival model that is much 
more realistic than that of periodic arrivals. It is easy to 
understand why clients pick up an arbitrary arrival model, 
when offered a choice. They are being asked to predict the 
future, in that they are in charge of providing a, a description 
of environment/”adversary” E. Why would they “kill 
themselves” by pretending that, say in year 2000, E will 
trigger events strictly periodically? 

3.3. Proofs of properties 

We do not elaborate on proofs of safety or liveness, as 
they are reasonably well known. Such properties can be 
established only if some on-line decision making algorithm 
is considered. For example, serializability (a safety property) 
cannot be enforced in distributed systems without resorting 
to a concurrency control algorithm or any equivalent 
algorithm. 

A timeliness proof has two parts. One consists in 
expressing computable functions B that give upper 
bounds on response times, for every possible activation of 
every application component, under given component/ 
computational/arrival models. This can be done only if a 
scheduling algorithm is considered. The other part consists 
in expressing those (sufficient, necessary and sufficient) 
feasibility conditions under which bounds B are valid. 

Examples of timeliness proofs are (i) the optimality proof 
of Earliest Deadline First for a non-overloaded preemptable 
processor [3], (ii) the optimality proof of D-Over for an 
overloaded preemptable processor [4]. 

A dependability proof has two parts as well. One 
consists in demonstrating the existence of such properties as 
safety (at least), or safety and liveness, under given failure 
models and failure densities. This can be done only if some 
on-line decision making algorithm is considered, such as, 
e.g., a reliable broadcast or a group membership algorithm. 
The other part is concerned with expressing feasibility 
conditions or computable functions R that give lower 
bounds on redundancy degrees under which safetyfliveness 
properties hold true. 
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Examples of dependability proofs are the demonstrated 
correctness of some consensus algorithms in any of the three 
computational models. An example of function R is R = 
3t+l, the smallest number of processors required to tolerate 
up to t Byzantine processors in synchronous models. An 
example of feasibility conditions are the weakest failure 
detector properties in asynchronous models 151. 

Functions such as B or R are referred to as behavioral 
functions. Of course, in addition to B and R, other behavioral 
functions may be needed. 

3.4. Provably correct generic designs 

Let us assume that generic problem <A, 3u has not been 
solved yet. A simplified view of the stages followed to 
produce a provably correct generic solution <D, d> is given 
figure 3. 

A design decision, denoted A, essentially consists in 
choosing an assumption set, denoted 'y, and a composite 
algorithm, denoted A*. A composite algorithm endows a 
system with some combination of the logical properties 
presented in section 3.1. Let T(A*) be those (proved) 
properties enforced by A*, under 'y. 

<n,w> 
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Figure 3. Systems Engineering and the TRDF methodology 

1 
A design A(A*) is provably correct if and only if the 

following conditions are satisfied: 
T ( A * ) z A a n d y a h .  

CA, 3u, the initial problem specification, i.e. the agreed 
upon capture of <O(l), o(l)>, is denoted <&, A+. A design 
decision A1 is made. It is impossible to make and examine 
design decision A2 as long as proof obligation K(A1) has not 
been fulfilled satisfactorily. This is so for the simple reason 
that the specification of problem <Al, hl> is a result of 
meeting proof obligation K(A1). Design decisions and design 
correctness proof obligations are applied a number of stages, 
until a level amenable to implementation is reached. This 
level can be determined by any kind of constraint/ 
consideration (e.g., imposed or favored H/W, convenient off- 
the-shelf technology). 

As every design in the chain satisfies the A-correctness 
proof obligation, <D, d> provably satisfies <A, b. 

3.5. Provably correct dimensioning 

A dimensioning, denoted by the operator V, is provably 
correct if it can be demonstrated that <V, v>, a valuation/ 
dimensioning of <D, d>, satisfies CO, q>, the valuation of 
<A, b according to a pair <a@), w(p)> provided by a client. 

A dimensioning of <D, d> is not an implementation of 
<D, *.A dimensioning V consists in assigning values to 
implementation variables appearing in behavioral 
functions. Examples of such variables are processor speeds, 
lower/upper bounds on message passing delays, memory 
capacity, degrees of redundancy in processor groups, etc. The 
discovery of a correct V usually is an iterative process, even 
when a priori decisions are made (e.g., prescribed use of a 
specific type of processor). 

V-correctness D roof oblieation K(V) : 

ifV(T(A*)) 3 
A dimensioning V of a design A (A*) is provably correct 

and V(y) 2 q. 

At iteration 1, if both conditions are satisfied, a designer 
should consider a less ecostly>> (i.e., less powerful) 
dimensioning of <D, d>. Such <<backward>> iterations are 
repeated until one of the K(V) conditions at least is not 
satisfied. When this happens, say with Vi+1, one can 
conclude that Vi is the least <<costly>, provably correct 
dimensioning of <D, d>. (This does not imply that Vi is the 
optimal dimensioning, unless <D, d> is a provably optimal 
design (i.e., every A comprised in <D, d> is optimal)). 

In the case one condition at least is not satisfied initially, a 
designer should consider a more crcostly>> dimensioning of 
<D, d>. Such crforward>> iterations are repeated until both 
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conditions are satisfied, yielding also the least <<costly>> 
provably conect dimensioning of <D ,d>. A dimensioning 
translates into real costs. If a provably necessary and 
sufficient dimensioning V is found to be too costly, this is an 
indication that (i) either the generic problem considered, 
valued as per 4, p, has no provably correct solution, given 
the technology that is affordable or accessible, (ii) or other 
designs A must be considered. The latter outcome should 
occur less and less often as our accumulated knowledge 
about provably optimal designs increases with time. 

It is only after a provably correct dimensioning has been 
identified that cV, v> can be established. The pair ccD,d>, 
cV, v>> is the specification of a system SYS that is proved to 
behave correctly provided that environment E behaves as 
specified, logically as per h, physically as per cp. 

Too often, dimensioning is addressed in ad-hoc ways. 
This is the case whenever arbitrarily simple computational 
models (e.g., zero-delay or constant-delay abstractions, 
sequential fault-free computing) are relied upon for the sake 
of facilitating correctness proofs. The essential issues of 
asynchrony, concurrency, real-time and fault-tolerance are 
mostly ignored, left to be addressed by those in charge of 
implementing some utterly simple models. 

This leaves implementors with the job of designing, 
dimensioning and implementing the equivalent of a 
distributed, real-time, fault-tolerant <<executive>>. Very often, 
the implementors’ sole obsession is to devise an ccefficienb 
(i.e., <<fast>>, <<slim>>) executive, so that SYS would mimic an 
imposed idealistic computational model (e.g., infinite 
computational power is available). Such ad-hoc customized 
executives have two obvious drawbacks, one being that their 
cost cannot be amortized over many releases, the other one 
being that they break the <<proof chain,,. At best, proofs that 
SYS satisfies ccD,d>, cV, v>> are established under 
clairvoyance assumptions or for specific and simple cases, 
almost inevitably in violation of principles n1/7c2/n3 given in 
the next section. 

Another ad-hoc approach is over-dimensioning. This 
approach being fully empirical, proofs of 1ogicaVphysical 
properties simply cannot be established, even for unbounded 
system budgets. 

Implementation 

This is the well-known chain of stages that consist in 
selecting and/or adapting commercial off-the-shelf hardware 
and software technology (e.g., operating systems or 
executives, middleware, microcode, processors) or in 
developing some specific hardware or software technology, 
such that ccD,d>, cV, v>> is satisfied. Most often, existing 
formal approaches run into difficulties with specifications of 
physical properties, such as cV, Y>. Recognition that the V- 
correctness proof obligation comes before the 
implementation stages should help in this respect. As 

indicated before, implementation issues are not covered by 
the TRDF methodology. 

From a general perspective, the enforcement of the K(A) 
and K(V) proof obligations is of utmost importance for early 
detection of faulty design/dimensioning decisions. Being 
aware of these obligations, a client (e.g., a certifier) can 
easily and justfully reject a proposal or a request for 
certification. Would such obligations have been enforced, 
some <<easy-to-understand>> and well marketed <<solutions>> 
that violate impossibility results would not be in use. Again, 
when failures will (inevitably) occur, the real cause 
(algorithms presented as being able to deliver deterministic 
services, despite a proof that they can only deliver such 
services probabilistically) will be kept hidden behind alleged 
software faults. 

4. Principles and useful proof techniques 

4.1. Principles 

Let us first recall that with C3 systems, the accepted 
probability of catastrophic failure, denoted E, usually is 
infinitesimal. Let o be the smallest coverage factor of the 
models involved in a chain of design decisions. An obvious 
principle can be given : 

(nI) Any proof of property must be based on models such 
that Q 2 1-E holds true. 

Issues of concurrency and asynchrony -- often called 
(<distribution>> -- arise with C3 systems. It follows that such 
systems must be designed in accordance with distributed 
systems design principles. One basic principle was 
established as an impossibility result [6,7] : 

Global system states are not directly observable. 
At best, such states can be reconstructed a posteriori by 

resorting to specific algorithms (i.e. at some cost). In 
distributed systems, communication delays are variable and 
queuing phenomena inevitably develop. It is thus all the 
more obvious that future system states cannot be predicted. 
Failures are additional sources of uncertainty w.r.t. future 
state values and timings. Hence the principle : 

(x2) Future system ”/timing histories cannot be 
predicted with certainty. 

Proofs of logical and physical properties cannot be 
established unless the environmenV‘adversary” is restricted. 
However, it is wise to avoid considering artificially restricted 
“adversaries”. For example, it is impossible to predict every 
possible pattem of arrival times for external events. They 
follow unpredictable arrival laws (think of threats or physical 
phenomena). Hence the principle : 
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( ~ 3 )  Advance knowledge of future environmental 
scenarios is limited. 

Such assumptions as constant-delay communications or 
such artifacts as ccperiod enforcers (the rate-monotonic 
approach) violate principle 9. So called cctime-triggered>> 
models or periodic arrivals assumptions are antagonistic with 
principle 7r3. 

Clairvoyance postulates contradict both 7c2 and 7 5 .  
Solutions aimed at C3 systems and developed under such 
postulates either are inapplicable (such solutions violate 
principle nl) or are incorrect. 

4.2. Nature of some proof techniques 

For the sake of conciseness, we will only sketch out the 
principles of some the proof techniques used to satisfy the 
K(A) and K(V) correctness proof obligations imposed with 
the TRDF methodology. From principles 7c1/7cg7c3, one 
derives the obvious conclusion that optimal solutions can 
only rest on on-line algorithms. With "-hard problems, one 
has to sacrifice optimality whenever algorithms of 
polynomial complexity only can be considered. In that case, 
partial off-line computations can be contemplated. 

Correct solutions rest on composite algorithms, which 
enforce multiple properties altogether. Such properties can be 
obtained by exploiting state-of-the-art algorithms in 
Concurrency Control [8], Scheduling and Fault-Tolerance [9] 
areas. The obligation of addressing these three areas 
altogether was identified a few years ago [lo]. 

It must be understood that we are shooting for proofs 
which characterize deterministic behavior at some boundary 
conditions in the presence of partial knowledge (of the f i t w e ,  
in particular). Consequently, we cannot expect solving our 
problems by resorting to probabilistic approaches (e.g., 
Queueing theory) or statistical approaches (e.g., simulation) 
which are nevertheless useful to predict average behaviors. 
The intent of the approach advocated here is to <<let the 
probabilities in>> only when a client is asked to postulate 
physical environmental scenarios, that is affer design, rather 
than <<let them in>> when a designer establishes (design) 
correctness proofs. Reluctance to use on-line algorithms with 
C3 systems stems from the erroneous belief that future 
system behaviors would become unpredictable with such 
algorithms. This is a strange view, given that so many results 
proving the opposite have been published in the past. 

We have used pure on-line algorithms to solve the 
following distributed scheduling problem [ 113 : A distributed 
multiaccess broadcast channel is shared by a number of 
message sources. The exact number of sources is unknown 
but bounded. Message arrival laws are arbitrary (only upper 
bounds on arrival densities are given). Messages are to be 
transmitted within strict deadlines, revealed upon message 
arrivals only. Give A*, T(A*) and feasibility conditions. 

A distributed message scheduling algorithm A* being 
chosen or devised, a timeliness proof consists in giving the 
expression of function B(i,r), the upper bound on service 
times for a message ranked r-th in source i's waiting queue, 
Vr, Vi. Such bounds are obtained using adversary arguments. 
In Ell], we have considered an arbitrarily devilish adversary 
which is provided with an infinite amount of messages. The 
game imposed upon the adversary is a deterministic variant 
of Ethernet, called Deadline-Oriented-Deterministic CSMA- 
CD. Clearly, this problem cannot be solved with solutions 
based on off-line computations, such as 112, 131. Such 
solutions are falsely reassuring. Their coverage factor Q is 
provably inferior to I-E for most c3 systems. In [14], we 
demonstrate that optimal solutions to the problem introduced 
in [ l l ]  can only be in class Non-Preemptive Earliest- 
DeadIine-First/Collision-Detection-and-Resolution (that is, 
Token-Passing cannot be optimal). 

Using the TRDF methodology, we have been able to 
deliver a specification <D, d> of a generic problem 4, h> 
derived from an ITT that resembles the generic example 
shown fig.1. We have also delivered the specification of a 
corresponding feasibility Oracle. 

Proof techniques used for this work have been drawn 
from different disciplines, such as conventional analytical 
calculus, conventional scheduling theory, adversary 
arguments and computations on graphs in a specific algebra. 

From a more general perspective, reasoning under 
uncertainty is known to be possible, as amply demonstrated 
by e.g., Game theory or Decision theory. Optimality of 
composite on-line algorithms can be established by resorting 
to Competitive Analysis [4, 151. 

5. Conclusion 

The major aims of this paper are, (i) to contribute to a 
better understanding of the nature of some issues which do 
not seem to be rigorously addressed with the design and the 
dimensioning of C3 systems, a prerequisite to identifying the 
correct solutions, (ii) to introduce the TRDF methodology 
which seems to be an early Systems Engineering 
methodology for C3 systems that is based on mathematical 
reasoning. The prominent part played by the provably correct 
generic design and provably correct dimensioning stages in 
the lifecycle of a (possibly to-be-certified) C3 system have 
been emphasized. 

Combining formal methods (for specifying initial 
application requirements, generic design problems, generic 
solutions) with the TRDF methodology is believed to be a 
very promising approach to the development of correct and 
trustable C3 systems. There is a wide open field of research 
and experiments to be conducted by our community so as to 
provide clients with provably correct C3 systems. 
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