
Predictability in Critical Systems

Gérard Le Lann

INRIA, Projet REFLECS, BP 105
F-78153 Le Chesnay Cedex, France
E-mail: Gerard.Le Lann@inria.fr

Abstract. Predictability is crucial in critical applications and systems.
Therefore, we examine sources of uncertainty for each of the four phas-
es that span a project lifecycle, from initial problem capture, to system
implementation, when conducted according to proof-based system engi-
neering principles. We explore the concept of coverage applied to prob-
lems, solutions, assumptions, along with a generic problem that arises
with critical applications such as, e.g., air traffic control/management,
namely the real-time uniform atomic broadcast problem. We examine
two design styles, namely asynchronous and synchronous solutions, and
compare the resulting assumptions as well as their coverages. The cen-
tral issues of overloads and timing failures that arise with synchronous
models are investigated in detail.

1 Introduction

We consider X-critical applications and systems, where X can be any such qualifi-
er as, e.g., life, mission, environment, business or asset. Intuitively, an application
or a system is critical whenever violating a specification may lead to “catastro-
phes”. Therefore, levels of “confidence” set for such applications or systems are
extremely high. For instance, in the case of air traffic control/air traffic man-
agement (ATC/ATM), accumulated time durations of inaccessibility to critical
services should not exceed 3 seconds a year, which translates into an upper bound
of 10−7 on acceptable unavailability of critical services. With stock trading or
with some defense applications, response times of less than 2 seconds (a timeli-
ness property) are required, 10−4 being an upper bound on acceptable rates of
lateness. Acceptable failure rates of processors for urban trains should be less
than 10−12 per hour.

Let Ω be some assertion. Coverage(Ω) is defined as the probability that Ω is
true. Assumption coverage has been introduced in [17]. Assumptions relate to the
environment where a system is to be deployed or to implementation. We extend
the notion of coverage to properties, to problems and to solutions. Such coverages
are goals set for designers. For instance, with ATC/ATM, coverage (availability
property for critical services) should be shown to be as high as 1 − 10−7. Note
that an assumption coverage also is a goal set for those who are in charge of
“implementing the assumption”.

A.P. Ravn and H. Rischel (Eds.): FTRTFT’98, LNCS 1486, pp. 315–338, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

316 G. Le Lann

Endowing critical systems with specified properties that hold with such high
coverages is a notoriously difficult task. Most often, critical application prob-
lems translate into combined real-time, distributed, fault-tolerant, computing
problems. Only a small subset of such problems has been explored so far.

There are many examples of systems that have failed to meet such stringent
requirements. There is no general agreement on what are the dominant causes
of such failures. In the recent past, widespread belief has been that software -
noted S/W - must have become the major cause of failures, given that hard-
ware - noted H/W - is so “reliable”. However, a growing number of analyses
and studies demonstrate that such is not the case. For instance, a study of the
failure reports concerning the US Public Switched Telephone Network (PSTN)
establishes that S/W caused less downtime (2%) than any other source of failure
except vandalism [8]. Overloads are the dominant cause (44%) of downtime mea-
sured as the product number of customers affected·outage duration. Overloads
that occur “too frequently” result into “bad” coverages of such properties as
availability or timeliness, which is barely acceptable for the PSTN, and certain-
ly unacceptable for a business-critical system. It turns out that a vast majority
of faults that cause overloads are neither S/W originated nor H/W originated.
They are system engineering faults.

We have previously argued that, as is the case with H/W engineering and,
more recently, with S/W engineering, proof-based approaches (based upon in-
formal or, better, formal methods) should become the rule in system engineering
[10]. In this paper, we will make the (extraordinary) assumption that S/W com-
ponents and H/W components are faultless, i.e. that they actually implement
their specifications. Systems would still fail, for the following reasons: (i) speci-
fications may be flawed, due to faulty design and/or dimensioning decisions, (ii)
residual assumptions may be violated at run-time.

Ideally, only the initial application problem specification would possibly turn
out to be flawed, given that the future cannot be predicted with certainty. Any
subsequent specification should be correctly derived from this one, via system
design and dimensioning decisions assorted with proofs. With stochastic system
engineering (SE) approaches, coverages are involved with design and dimension-
ing decisions. In this paper, we consider deterministic SE approaches (determin-
istic algorithms, deterministic analyses). Then, only the coverage of the initial
specification does matter.

With critical applications, deterministic proof-based SE is appropriate for
an additional reason: Proofs of correctness must be established for worst-case
operational conditions, worst-cases being embodied, albeit not explicitly, in an
application problem specification.

Residual assumptions (RA) are those needed to prove implementation cor-
rectness. Arbitrarily fast faultless sequential processors, or byzantine processors,
or absence of H/W metastable states, or bounded broadcast channel slot times,
are examples of common RAs. Their coverages can be computed or estimated,
by resorting to, e.g., analytical modelling or statistical analysis. Only RAs that
have “very high” coverages are acceptable for critical systems - clearly not the

Predictability in Critical Systems 317

case with the first example. Consequently, provably correct system design and
dimensioning phases must be conducted until the RAs are acceptable.

Under our assumption, and proof-based SE principles being followed, the
only coverages - i.e. uncertainties - left relate to, (i) the capture of an application
problem and, (ii) the implementation of residual assumptions.

The basic principles of proof-based SE are introduced in Section 2. In Section
3, we examine sources of uncertainty for each of four important phases that span
a project life-cycle, from initial problem capture, to system implementation.
Elegant solutions, or efficient solutions, may rest on residual assumptions that
have low coverages. For the sake of illustration, in Section 4, we consider a
generic problem that arises with critical applications such as, e.g., ATC/ATM,
namely the real-time uniform atomic broadcast problem, examine two design
styles (asynchronous and synchronous solutions), and compare resulting residual
assumptions.

This leads us to revisit popular justifications of asynchronous models, as
well as popular approaches to the implementation of synchronous assumptions,
to find out that some have low coverages. The central issue of timing failures is
explored in Section 5. It is shown that dominant causes of timing failures, namely
overloads and excessive failure densities, can be dealt with more carefully than
is usually asserted.

2 Proof-Based System Engineering

The essential goal pursued with proof-based SE is as follows: Starting from some
initial description of an application problem, i.e. a description of end user/client
requirements and assumptions, to produce a global and implementable specifi-
cation of a system (noted S in the sequel), along with proofs that system design
and system dimensioning decisions made to arrive at that specification do satisfy
the specification of the computer science problem “hidden” within the applica-
tion problem.

The notation 〈Y 〉 (resp. [Z]) is used in the sequel to refer to a specification
of a problem Y (resp. a solution Z). Notation 〈y〉 (resp. [z]) is used to refer to a
specification of a set of variables which parameterize problem Y (resp. solution
Z). The term “specification” is used to refer to any complete set of unambigu-
ous statements - in some human language, in some formalized notation, in some
formal language.

Proof-based SE addresses those three essential phases that come first in a
project life-cycle, namely the problem capture phase, the system design phase,
and the system dimensioning phase (see figures 1 and 2, where symbol ⇒ stands
for “results in”). Proof-based SE also addresses phases concerned with changes
that may impact a system after it has been fielded, e.g., modifications of the
initial problem, availability of new off-the-shelf products. Such phases simply
consist in repeating some of the three phases introduced above, and which pre-

318 G. Le Lann

cede phases covered by other engineering disciplines (e.g., S/W engineering),
which serve to implement system engineering decisions.

2.1 The Problem Capture Phase

This phase is concerned with, (i) the translation of an application problem de-
scription into 〈A〉, which specifies the generic application problem under consid-
eration and, (ii) the translation of 〈A〉 into 〈X 〉, a specification of the generic
computer science problem that matches 〈A〉. A generic problem is an invariant
for the entire duration of a project.

Specifications 〈A〉 and 〈X 〉 are jointly produced by a client and a designer,
the latter being in charge of identifying which are the models and properties
commonly used in computer science whose semantics match those of the ap-
plication problem. Consequently, a specification 〈X 〉 actually is a pair {〈m.X 〉,
〈p.X 〉}, where m stands for models and p stands for properties.

For example, statement “workstations used by air traffic controllers should
either work correctly or stop functioning” in 〈p.A〉 would translate as “worksta-
tions dependability property is observability = stop failure” in 〈p.X〉. See Section
4 for examples of models and properties.

Variables appear in specifications 〈A〉 and 〈X〉. Let us focus on 〈X〉. Notation
〈x〉 is used to refer to a specification of those variables in 〈X〉 that are left
unvalued. As for 〈X〉, 〈x〉 is a pair {〈m.x〉, 〈p.x〉}.

{description of an application problem} ⇒ 〈A〉
⇒ 〈X 〉
⇒ 〈a〉
⇒ 〈x〉

Fig. 1. Problem Capture

The genericity degree of 〈X 〉 may vary from 0 (〈x〉 is empty) to ∞ (every vari-
able in 〈X〉 appears in 〈x〉). Of course, any degree of genericity has an associated
cost and a payoff.

2.2 The System Design Phase

This phase is to be conducted by a designer. A design phase has a pair {〈X〉, 〈x〉}
as an input. It covers all the design stages needed to arrive at [S], a modular
specification of a generic solution (a generic system), the completion of each de-
sign stage being conditioned on fulfilling correctness proof obligations. A design
phase is conducted by exploiting state-of-the-art in various areas of computer
science (e.g., computing system architectures, algorithms, models, properties),
in various theories (e.g., serializability, scheduling, game, complexity), as well as
by applying appropriate proof techniques, which techniques depend on the types
of problems under consideration.

Predictability in Critical Systems 319

More precisely, one solves a problem {〈m.X (.)〉, 〈p.X (.)〉} raised at some de-
sign stage (.) by going through the following three steps: specification of an archi-
tectural and an algorithmic solution designed for some modular decomposition,
establishment of proofs of properties and verification that a design correctness
proof obligation is satisfied, specification of a dimensioning oracle.

Subproblems result from a modular decomposition. Fulfilling a design cor-
rectness proof obligation (see Section 2.6) guarantees that if every subproblem is
correctly solved, then the initial problem is correctly solved as well by “concate-
nating” the individual solutions, which eliminates those combinatorial problems
that arise whenever such proof obligations are ignored. And so on. Consequent-
ly, a design phase has its stages organized as a tree structure. By the virtue of
the uninterrupted tree of proofs (that every design decision is correct), [S] - the
union of those specifications that sit at the leaves of a design tree - provably cor-
rectly satisfies 〈X〉. If 〈X〉 is a correct translation of 〈A〉, then, by transitivity,
〈A〉 is provably correctly solved with [S].

Clearly, this approach is based on compositionality principles very similar to
those that underlie some formal methods in the S/W engineering field.

Every module of [S] is deemed implementable, or is known (in a provable
manner) to be implemented by some procurable product or is handed over to
some other designer.

{〈X〉, 〈x〉}
⇒ [S]
⇒ [s]
⇒ [oracle.S]

Fig. 2. System Design

Another output of a design phase is a specification of a (system-wide) dimen-
sioning oracle - denoted [oracle.S] - which includes, in particular, a set of con-
straints called (system-wide) feasibility conditions. Feasibility conditions (FCs)
are analytical expressions derived from correctness proofs. For a given architec-
tural and algorithmic solution, they define a set of scenarios that, with certainty,
includes all worst-case scenarios that can be deployed by “adversary” 〈m.X(.)〉.
FCs link together these worst-case scenarios with computable functions that
serve to model properties stated in 〈p.X(.)〉. Of course, [oracle.S] must be im-
plemented in order to conduct subsequent system dimensioning phases. From a
practical viewpoint, [oracle.S] is a specification of a {〈X 〉, [S]}-dependent com-
ponent of a more general system dimensioning tool.

Lack of FCs is an important source of failures for critical systems, as demon-
strated by, e.g., the system shutdowns experienced with the Mars PathFinder
probe.

320 G. Le Lann

2.3 The System Dimensioning Phase

The purpose of a dimensioning phase is to find a valuation V ([s]), i.e. a quan-
tification of system S unvalued variables, such as, e.g., sizes of memory buffers,
sizes of waiting queues, processors speeds, databuses throughputs, number of
databuses, processors redundancy degrees, total number of processors.

V ([s]) must satisfy a particular valuation V (〈x〉), i.e. a particular quantifica-
tion of the captured problem-centric models and properties, which is - directly
or indirectly - provided by a client.

V (〈x〉): input to oracle.S V ([s]): output from oracle.S

Fig. 3. System Dimensioning

One or several dimensioning phases may have to be run until [oracle.S] de-
clares that there is a quantified S that solves a proposed quantified problem
{〈X〉, V (〈x〉)} (or declares that the quantified problem considered is not feasi-
ble). How many phases need to be run directly depends on the genericity of [S].
Consider for example that [s] is close to empty, which happens whenever it is
decided a priori that S must be based on specific off-the-shelf or proprietary
products. The good news are that a small number of dimensioning phases need
to be run, given that many system variables are valued a priori. The bad news
are that the oracle may find out (rapidly) that the proposed problem quantifi-
cation is not feasible (e.g., some deadlines are always missed), no matter which
V ([s]) is considered.

The pair {[S], V ([s])} is a modular specification of a system S that provably
solves problem {〈X 〉, V (〈x 〉)}. Modules of {[S], V ([s])} are contracts between a
(prime) designer and those (co/sub) designers in charge of implementing S.

2.4 The System Implementation Phase

If deemed implementable, the set {[S], V ([s])} is the borderline, i.e. the inter-
face, between system engineering on the one hand, S/W engineering, electrical
engineering and other engineering disciplines on the other hand.

S/W engineering serves the purpose of producing correct executable imple-
mentations of given specifications, which result from system engineering work.
It follows that it is useless or, at best, marginally productive to apply formal
methods in the S/W engineering field without applying proof-based methods in
the system engineering field, for the obvious reason that provably correct S/W
implementations of specifications that are flawed in the first place can only lead
to incorrect systems.

Too often, system failures due to SE faults are mistakenly believed to orig-
inate in S/W design or S/W implementation errors. See [8], [12] and [13] for
counter-examples.

Predictability in Critical Systems 321

2.5 Final Comments

Models, properties, and algorithms, can be organized into classes. Furthermore,
it is possible to structure every class after a hierarchy or a partial order. See [17]
for an example with the class of failure models. We will use the terminology in-
troduced in [10]. An element that precedes another one in a hierarchy or a partial
order will be said to be weaker than its successor (successor is stronger). As for
models, this is so for the reason that the set of predecessor runs (e.g., behaviors,
traces) is included in the set of successor runs. For instance, the byzantine failure
model [9] is stronger (albeit more “permissive”) than the omission failure model
(which is more “restrictive”). Byzantine failure behaviors include omission-only
failure behaviors. The converse is not true.

This is so for properties for the reason that they result from explicitly re-
stricting runs to those of interest (unlike models). For instance, causal atom-
ic broadcast is stronger than FIFO broadcast [6]. Similarly, bounded jitters is
stronger than latest termination deadlines [10].

Design correctness proof obligations result from class structuring. A solution
that solves a problem {〈m.X〉, 〈p.X〉} is a correct design solution for a problem
{〈m.X ′〉, 〈p.X ′〉} if 〈m.X〉 (resp. 〈p.X〉) is stronger than 〈m.X ′〉 (resp. 〈p.X ′〉).
Given some appropriate metrics, one can similarly define dimensioning correct-
ness proof obligations. See [10] for more details.

Note that there are differences between the various sets of assumptions in-
volved with a pair {〈X 〉, [S]}.

The specification 〈m.X〉 (resp. V (〈m.x〉)) states problem (resp. valuation of
problem) assumptions. In many cases, these specifications are predictions on
future operational conditions, which must have some coverages.

Specification [m.S] (resp. V ([m.s])) states design (resp. valuation of design)
residual assumptions (design tree leaves), which are to be “implemented”. Note
that they are the only design (and valuation of design) assumptions whose cov-
erages must be estimated. Indeed, design assumptions embodied in a design
tree (design tree nodes) are necessarily correctly “implemented”, as well as their
valuations, a result of fulfulling design and dimensioning correctness proof obli-
gations.

Let C(X, V (x)) be the coverage of quantified problem {〈X〉, V (〈x〉)}. In oth-
er words, Pr{〈m.X〉 or V (〈m.x〉) is violated} ≤ 1 − C(X, V (x)). This is the
coverage of predictions - i.e. assumptions - relative to some future operational
environment.

To assess the intrinsic quality of a solution, shown to enforce properties 〈p.X〉
valued as per V (〈p.x〉), one needs to eliminate from our scope of consideration
those uncertainties due to the impossibility of telling the future. The validity
of predictions regarding models or their valuations is not discussed. Coverage
C(S, V (s)), which is the coverage of quantified solution {[S], V ([s])} for quanti-
fied problem {〈X〉, V (〈x〉)}, serves this purpose.

In other words, conditional probability Pr{〈p.X〉 or V (〈p.x〉) is violated |
neither 〈m.X〉 nor V (〈m.x〉) is violated} ≤ 1 − C(S, V (s)).

322 G. Le Lann

3 Sources of Uncertainty

3.1 Capture Phase

In any of the classes of models that are considered under a deterministic ap-
proach, there is one model that is “extreme”, in the sense that it reflects a
fully unrestricted “adversary” (e.g., the asynchronous computational model, the
byzantine failure model, the multimodal arbitrary event arrival model). Pick-
ing up these models has a price: One may run into impossibility results or one
may end up with “demanding” feasibility conditions (which translates into cost-
ly systems). The beauty of such models is that they are “safe”: No real future
operational conditions can be worse than what is captured with these models.
Therefore, the issue of estimating coverages is void with such models. Picking
up models weaker than “extreme” ones involves a risk: Operational conditions
may be “stronger than” assumed during a capture phase. Again, this is unavoid-
able, given that we cannot “tell the future”. Picking up the appropriate models
for 〈m.A〉 and 〈m.X〉 boils down to making tradeoffs between having coverage
C(X, V (x)) sufficiently close to 1 and retaining models as weak as acceptable.

As for early valuations of problem-centric models (via V (〈m.x〉)), comments
made for the dimensioning phase apply (see further).

3.2 Design Phase

Coverages do not apply to deterministic design approaches. Properties such as,
e.g., serializability, timeliness, are either not ensured or they are, under specific
feasibility conditions. There are no “proof coverages” for proofs of properties or
feasibility conditions (e.g., lower bounds on a redundancy degree or on a number
of modules, upper bounds on response times), even if solutions considered are
“complex”, possibly due to the fact that strong models appear in 〈m.X〉.

Fulfilling design correctness proof obligations guarantees that properties and
models considered during a design phase are at least as strong as those stated
in 〈X〉. Hence, there are no coverages involved with whether [S] solves 〈X〉.

This is not necessarily the case with popular design styles. For example, with
the problem described in Section 4, one ends up with having to “implement” a
synchronous communication module, referred to as Net. Picking up the periodic
arrival model for messages submitted to Net would be invalid, given that some of
the tasks which generate these messages are activated according to a unimodal
arbitrary model, which is stronger than the periodic model. It is legal only to
consider unimodal or multimodal arbitrary models. Finding optimal or “good”
solutions under such models is definitely more intricate than when considering
periodic arrivals, an assumption made by many authors, presumably for the
reason that these models are more tractable.

Residual design assumptions [m.S] and V ([m.s]) must be shown to be im-
plementable with “good” coverages. There is an inverse relationship between a
“design effort level” and subsequent “implementation effort level”.

Predictability in Critical Systems 323

To continue with the same example: To build Net in such a way that, under
unimodal arbitrary arrivals, an upper bound on message delays does hold is
not just an “implementation concern”. Stated differently: Coverage of residual
assumption “synchronous Net exists” is close to 0. This calls for further design
work. See [7] for an example where the Hard Real-Time Distributed Multiaccess
problem raised with Net is solved considering Ethernets or CableTV networks,
technologies whose coverages can be accurately estimated, given their widespread
usage, and made very close to 1, given that these technologies are well mastered.

3.3 Dimensioning Phase

Valuations of problem-centric models (via V (〈m.x〉)) have related coverages.
Assignment of a value to a number of byzantine failures has a coverage, whereas
the byzantine model itself has no related coverage.

Under a proof-based SE approach, physical dimensionings of systems have
no coverages associated to them. Those numerical values that appear in V ([s])
specify a “safe” physical dimensioning of a system, a by-product of checking the
feasibility of some problem-centric quantification V (〈x〉). Such dimensionings are
certainly sufficient (ideally, they should be necessary and sufficient).

Consequently, there are no coverages involved with whether V([s]) satisfies
V(〈x〉).

Note that, with critical applications, valuation of C(S, V (s)) is usually “fro-
zen” by a client when conducting a capture phase. Hence, most often, C(S, V (s))
appears in 〈p.X〉 only (not in 〈p.x〉).

3.4 Implementation Phase

Which are the coverages involved with implementing {[S], V ([s])}? Recall our
assumption that, thanks to some S/W and H/W formal methods, implementa-
tion of the architectural and algorithmic solutions embodied in {[S], V ([s])} is
faultless. Given that, as argued previously, the design and the dimensioning of
a solution can be faultless, the only issue left is that of implementing residual
assumptions [m.S] and V ([m.s]).

Let φ be the smallest of the coverages involved with residual assumptions. It
follows that C(S, V (s)) = φ under proof-based SE approaches.

It derives from this that it is always safer to consider strong models, which
bring φ - as well as C(X, V (x)) - arbitrarily close to 1. For instance, the byzantine
failure model or the asynchronous model cannot be “violated” at run-time, and
it is very easy to implement them correctly. However, picking up such models
may not be feasible because of, e.g., impossibility results, or may be unjustifiable
on financial grounds, given that dimensionings - i.e. system costs - may be linear
or superlinear functions of models strength.

Conversely, picking up weak (i.e. restrictive) models - while still satisfying
design correctness proof obligations - lowers φ or C(X, V (x)). This is a source
of concern with some conventional approaches to the design and construction of
critical systems.

324 G. Le Lann

4 A Generic Problem with Critical Applications

For the purpose of illustration, let us examine the real-time uniform atomic
broadcast problem, noted 〈RTUAB〉. This problem arises with applications (e.g.,
ATC/ATM, stock trading, “risky” process control, transportation, protective de-
fense) that need to be run over distributed and/or redundant real-time systems,
for the purpose of guaranteeing continuous and timely delivery of critical ser-
vices despite partial failures.

For instance, in an ATC/ATM cell, an air traffic controller whose worksta-
tion “goes down” has immediate access to another workstation - by physical
displacement - which should display exactly what would have been displayed by
the failed workstation. Such failures “impacting” a given air traffic controller,
i.e. surveillance of a given portion of the sky, may occur a number of times before
workstations are repaired or replaced with new ones.

Given that within distributed and/or redundant systems, delays are vari-
able, that concurrency is unavoidable - decisions may be made concurrently by
different pilots, by different controllers - and that failures impact portions of a
system differently and at different times, it is far from being trivial to ensure
that redundant workstations do behave identically at all times, or that common
knowledge (e.g., of what the “current sky state” is) is indeed maintained among
all workstations, in due time, within a cell.

Non real-time versions of this problem have been considered first, such as
〈UAB〉, the uniform atomic broadcast problem (see [6]) which, informally, is as
follows. In a system of processors, some of which may stop unexpectedly and
anonymously, Messages are broadcast by processors, possibly concurrently, by
invoking an Atomic Broadcast (Message) primitive, noted ABroadcast. Correct
processors must deliver the same Messages in the same order. That is, Messages
are Atomically Delivered, noted ADelivered.

Let A be an algorithmic solution. 〈UAB〉 can be solved in various ways,
considering computational models and algorithms ranging from synchronous to
asynchronous.

Simply stated, in synchronous models - as defined in [4] and [16] - delays are
supposed to be bounded, lower and upper bound values being known, or relative
speeds of processors, and of links, are supposed to be bounded, or execution
steps are supposed to be taken simultaneously, in lock-step rounds. In section 5,
we will also consider that processors have access to synchronized clocks 1.

In asynchronous models - as defined in [5] - any execution step may take an
arbitrarily long, but finite, time. In other words, delays cannot be bounded.

It has been shown that 〈UAB〉 has no (deterministic) algorithmic solution in
asynchronous models [1], a result derived from [5]. With asynchronous models
that are “augmented” with inaccurate failure detectors - noted FDs - that exhibit
particular properties [1], 〈UAB〉 can be solved.
1 Models where processors have approximate knowledge of time, of bounds, belong to

the class of partially synchronous [4] or timing-based [16] models.

Predictability in Critical Systems 325

Solving 〈UAB〉 only does not help with critical applications. Informally, what
is missing is the requirement that Messages that are ABroadcast should be
ADelivered “in time”. Hence 〈RTUAB〉.

4.1 Problem 〈RTUAB〉

Below is a sketch of 〈RTUAB〉, adapted from a simpler problem investigated
within the ATR project 2. A processing module, referred to as a module, com-
prises a processor, tasks, data structures, system S/W, on top of which some
algorithmic solution A is run.

〈m.RTUAB〉
• Finite set Q of modules, interconnected by a network module referred to as

Net. Nominal size of Q is n > 1.
• Finite set Θ of tasks. Mapping of Θ onto Q (boolean matrix Π(Θ, Q)) is

unrestricted.
• A task θ is a finite sequence of code that invokes primitive ABroadcast, once

or many times. The longest path of execution (in “code length”) is known
for every task, noted x(θ) for task θ.

• Finite set E of external event types. Mapping of E onto Θ (boolean matrix
Π(E, Θ)) is unrestricted. Event e(θ) - an occurrence of some event type - is
the arrival of a request for running task θ.

• External event arrivals:
- sporadic for some event types (sporadicity interval sp(t) for type t),
- unimodal arbitrary for others (bounded density a(t)/w(t) for type t).

• For some external event types, causal dependencies exist between events.
• Failure model for modules: stop (correct behavior or immediate crash).
• Failure occurrences: system-wide unimodal arbitrary (bounded density f/W

for set Q).

〈p.RTUAB〉
• Validity: Every Message ABroadcast by a correct module is ADelivered by

this module.
• Uniform agreement: If Message is ADelivered by a module, Message is ADe-

livered by every correct module.
• Uniform integrity: Message is ADelivered at most once by every module, and

only if Message was previously ABroadcast.
• Uniform total order: If Message1 and Message2 are ADelivered by any two

modules, they are ADelivered in the same order.

2 Members of the ATR project are Axlog Ingénierie, Dassault Aviation, École
Polytechnique/LIX, INRIA, Thomson-Airsys, Université Paris VII/LIAFA, Uni-
versité de Grenoble/LMC. The project is supported by Délégation Générale à
l’Armement/DSP, Ministère de l’Éducation Nationale, de la Recherche et de la Tech-
nologie, and CNRS.

326 G. Le Lann

• Uniform external causality: If Messagej causally depends on Messagei

and both are ADelivered by a module, Messagei is ADelivered prior to
Messagej.

• Timeliness: Timeliness constraints are strict relative termination deadlines.
A deadline is associated to every task, noted d(θ) for task θ. If event e(θ)
occurs at time τ , task θ must be completed by time τ + d(θ) at the latest.

• Availability: Every task of set Θ should always be runnable within set Q.
• Coverage (solution) = C(S, V (s)).

Comments The unimodal arbitrary arrival model is resorted to whenever ad-
vance knowledge regarding arrivals is restricted to be an upper bound on arrivals
density, noted a(t)/w(t) for event type t, where w(t) is the size of a (sliding) time
window and a(t) is the highest number of arrivals of type t events that can occur
within w(t).

Messages are arguments of the ABroadcast and ADeliver primitives. These
primitives, as well as algorithms A, make use of lower level primitives usually
called send and receive, whose arguments are physical messages - referred to as
messages in the sequel - processed by module Net. This module is supposed to
be reliable, i.e. messages are neither corrupted nor lost.

Variable W is a time window that represents a worst-time-to-repair. For
instance, W is an upper bound on a mission duration, an upper bound on a
period of regular maintenance/repair activities. The f/W bound is the well
known “up-to-f -failures-out-of-n-modules” assumption.

Messages are ADelivered by A on every module, in a waiting queue, to be
read in FIFO order by tasks other than tasks in Θ.

Timeliness constraint d(θ) specified for task θ induces timeliness constraints
for completing each of the ABroadcast invocations (triggered by tasks) and each
of the ADeliver operations (performed by A). It is a designer’s job to derive a
Message timeliness constraint from the invoking task’s timeliness constraint. If
τ is the arrival time of e(θ), ADelivery (Message) matching the latest ABroadcast
(Message) triggered by θ must be completed by some time smaller than τ +d(θ).

Note that, on every module, the execution of tasks and the execution of A
are sequentially interleaved, i.e. the execution of a task may be suspended (its
module is preempted) so as to run A.

Observe that, contrary to common practice, availability is not stated as a
probability. Similarly, W is not the usual mean-time-to-repair variable handled
under stochastic approaches. Indeed, there is no reason to consider that depend-
ability properties should be of “probabilistic” nature, while other properties (e.g.,
timeliness or total order) are not. Critical services should always be accessible,
delivered on time, and should always execute as specified. Why make a special
case with dependability properties?

There are reasons why, ultimately, properties - any property - and/or their
valuations may not hold with certainty. A coverage is then specified for each of
them, separately. This is not the case considered here.

Coverage C(S, V (s)) applies to any of the properties or any of their valuations
stated as per {〈RTUAB〉, V (〈rtuab〉)}.

Predictability in Critical Systems 327

One possibility for specification 〈m.rtuab〉 would be that it contains all the
variables that appear in 〈m.RTUAB〉. Ditto for 〈p.rtuab〉, w.r.t. 〈p.RTUAB〉, to
the exception of C(S, V (s)) - see Section 3.3. Another possibility is that matrix
Π(E, Θ), as well as some of the elements of matrix Π(Θ, Q), would not appear in
〈m.rtuab〉, neither would some of the variables d(θ) appear in 〈p.rtuab〉, for the
reason that values taken by these variables are known and cannot be changed,
i.e. they conceal “frozen” advance knowledge.

4.2 Solutions

Recall that valuations of {〈m.rtuab〉, 〈p.rtuab〉}, of C(S, V (s)), are decided upon
by a client or an end user.

Proving that {〈RTUAB〉, V (〈rtuab〉)} is solved with {[S], V ([s])} is condi-
tioned not only on proving that the solution specified is correct, but also on
showing that φ is at least equal to C(S, V (s)).

Let us now consider two design solutions, namely a synchronous solution and
an asynchronous solution.

Contrary to commonly held beliefs, a critical problem can be solved with
a solution based on an asynchronous algorithm designed considering an asyn-
chronous computational model. For example, for solving 〈RTUAB〉, one can
select an asynchronous algorithm that solves 〈UAB〉 and that has been shown
to have the best worst-case termination time (e.g., in number of phases). This
algorithm would be transformed so as to internally schedule Messages according
to their timeliness constraints, as well as have the total Message orderings of
ADeliveries driven by Message timeliness constraints 3. Doing this would lead
to the best (possibly optimal) timeliness-centric FCs for 〈RTUAB〉.

The important distinction made here is between computational models re-
sorted to during a design phase and system models considered for conducting di-
mensioning and implementation phases. This distinction, which derives directly
from proof-based SE principles, has been suggested in [11]. For example, an asyn-
chronous computational model is specified in [m.S], for every processing module,
as well as for module Net. These modules are “immersed” in synchronous system
models. System models must be synchronous, given that one must know, prior
to usage, whether FCs are satisfied.

Is it worthwhile to proceed as described despite the fact that, ultimately, a
synchronous system is to be deployed? Why not consider synchronous models
up front (at design time)? One major advantage of asynchronous solutions is
that they are universally portable. No matter which system they run onto, they
retain their safety properties. This is not necessarily the case with synchronous
solutions. For example, there are synchronous algorithms that would lose some of
the safety properties stated in 〈RTUAB〉 whenever bounds on delays are violated.

3 Even though neither global time nor absolute deadlines are accessible in an asyn-
chronous system, they can be modelled via (unvalued) variables, which can be used
by algorithms to enforce particular schedules.

328 G. Le Lann

Conversely, one must keep in mind that some of the properties achieved with
asynchronous solutions immersed in a synchronous system, or their valuations,
are weaker than those achieved with synchronous solutions. This is the case, in
particular, with timeliness properties, shown by the fact that FCs established
for an asynchronous solution may be (significantly) more pessimistic than FCs
established for a synchronous solution.

Asynchronous Solutions As for 〈UAB〉, they inevitably rest on such con-
structs as, e.g., inaccurate FDs, which are characterized by their completeness
and accuracy properties [1].

It has been shown that �W (weak completeness and eventual weak accuracy)
is the weakest class of FDs for solving such problems as Consensus or Atomic
Broadcast if less than dn/2e modules fail [2]. Many algorithmic solutions are
based on FDs - e.g., �S - that can be built out of �W . Whenever FDs properties
happen to hold true in a system, liveness properties enforced by some A hold
true as well.

However, with existing asynchronous algorithms, orderings of computational
steps are not driven by timeliness constraints. Furthermore, with FDs, values of
timers - used by a module to check whether messages are received from others -
bear no relationship with timeliness constraints (the d(θ)’s in our case).

Hence, termination (ADeliveries and completion of tasks in Θ in our case) oc-
curs within time latencies that are necessarily greater than achievable lower time
bounds. In other words, as observed previously, the resulting timeliness-centric
FCs are worse (further away from necessary and sufficient conditions) than FCs
obtained when considering a synchronous solution. Timeliness is stronger than
liveness.

Let Ω1 be assertion “accuracy and completeness properties hold whenever
needed”. Let Ω2 be assertion “valuations of FDs’ timers ensure specified timeli-
ness property | accuracy and completeness properties hold”. Examples of issues
raised are as follows:

(1) Estimate coverage(Ω1),
(2) Estimate φ1 = coverage(RAs under which Ω1 holds),
(3) Estimate coverage(Ω2),
(4) Estimate φ2 = coverage(RAs under which Ω2 holds),
(5) Check that φ1 and φ2 are at least equal to C(S, V (s)).
A problem is that doing (1) or (3) accurately enough is incredibly difficult,

if not unfeasible. This is the reason why it is necessary to consider immersion
in a synchronous system. Assume for a while that synchronous assumptions are
never violated.

Firstly, FDs used by asynchronous solutions become perfect detectors (strong
completeness and strong accuracy). Therefore, any weaker properties (e.g., strong
completeness and eventual weak accuracy for �S) certainly hold. Hence, issue
(1) vanishes.

Secondly, FDs’ timer values can be set equal to the Net delay upper bound.
FCs - embedded in a dimensioning oracle - can then be run in order to check

Predictability in Critical Systems 329

whether every (valued) task deadline is met. Whenever the oracle returns a
“yes”, the specified timeliness property holds for sure. Consequently, issue (3)
vanishes.

This is clearly not the case when values chosen for FDs’ timers are guessed
optimistically. Timers values chosen being smaller than the actual upper bound,
the timeliness property and/or its valuations are violated, despite positive re-
sponse from the oracle. If timers values are guessed pessimistically (values greater
than the upper bound), then the oracle turns pessimistic as well, i.e. V (〈rtuab〉)
which is feasible is declared unfeasible.

Synchronous Solutions These solutions are based on synchronized rounds,
whereby messages sent during a round are received during that round, or on
bounded message delays; see [16] for examples.

Synchronous solutions can be defeated by timing failures. A timing failure
is a violation of proven (under assumptions), or postulated, lower (early timing
failure) and upper (late timing failure) bounds on delays.

There are two approaches for addressing issues raised with timing failures
in synchronous models. One consists in transforming algorithms proved correct
in the absence of timing failures [16]. The other consists in transforming the
models, by imposing restrictions on timing failures. Both have related coverages.
We explore timing failures in the sequel.

Comments No matter which design solution is considered, we have to show
how to correctly implement synchronous assumptions, i.e. how to address issues
raised with timing failures, so as to arrive at residual assumptions that have
computable and “very high” coverages.

For the sake of conciseness, we will only focus on how to correctly design,
dimension and implement a synchronous Net module, and under which condi-
tions a synchronous Net in the presence of timing failures is not equivalent to
an asynchronous Net.

However, let us sketch out how, going through a dimensioning phase, a lower
bound on each processor speed - some of the variables in [s] - can be determined,
V ([s]) being needed to implement synchronous (processing) modules. There are
two possibilities with respect to variables x(θ), which are expressed in “code
length” by S/W engineers.

Either only variables x(θ) are provided as inputs for conducting a dimen-
sioning phase. Then, FCs and deadlines d(θ) - valued by a client - are used to
compute an upper bound on acceptable worst-case execution time for every task
θ, noted wcet(θ), such that the valued problem under consideration is declared
feasible.

Or, in addition to variables x(θ), upper bounds wcet(θ) are also provided
by S/W engineers, considering that each task runs alone over its module. Then,
FCs serve to tell whether the valued problem under consideration is feasible.

330 G. Le Lann

In both cases, the ratio x(θ)/wcet(θ) is the lowest acceptable processor speed
for task θ 4. Knowing the mapping of set Θ onto set Q, it is then trivial to
compute the speed lower bound for each of the modules 5.

5 Timing Failures

Let b and B be, respectively, the targeted lower and upper bounds of delays for
transmitting messages through Net, with B > b.

Under our assumption that implementation of {[S], V ([s])} is faultless, there
are two causes for timing failures, namely overloads and excessive failure densi-
ties. One easy approach to these issues consists in pretending or assuming rarity
(timing failures do not occur “too often”). Typical residual assumptions are as
follows:

(RA): it is always the case that every message sent or broadcast by a module
is received in at most B time units “sufficiently often” or by a “sufficiently high”
number of correct modules.

There are synchronous algorithms that work correctly in the presence of
“small” densities of timing failures. They simply ignore late messages. Hence,
rigorously speaking, this approach boils down to avoiding the problems raised
with timing failures. However, estimating coverage(RA) is hardly feasible.

How often, how long is Net overloaded or impacted by “too many” internal
failures? Such phenomena must be under control.

For the sake of conciseness, we will not explore the issue of excessive densities
of failures (other than timing failures). Let us briefly recall that any design cor-
rectness proof rests on “up-to-f -out-of-n” assumptions (see f/W in 〈RTUAB〉,
which is the assumption that, in W time units, no more than f modules in Q
- i.e. among n modules - may stop). Valuations consist in assigning values to
variables f only, matching values of variables n (lower bounds) deriving from
feasibility conditions.

It is worth noting that, unless proof-based SE principles are obeyed, it is
impossible to assert that f cannot become equal to n. This is due to the fact that
any SE fault made while conducting a design phase and/or a dimensioning phase
is inevitably replicated over the n modules. Whenever this fault is activated, all
n modules fail (at about the same time). This is what has happened with the
maiden flight of European satellite launcher Ariane 5 [12].

SE faults being avoided, causes of violations of proven bound B are violations
of, (i) valuations of variables f (covered by C(X, V (x)), (ii) residual assumptions.

Let us now discuss ways of addressing the issue of overload prevention. Then,
we will examine how to cope with timing failures via detection.
4 In either case, some of the acceptable bounds wcet(θ) may be very small, a result of

having chosen very small task deadlines or very high external event arrival densities.
This could translate into lowest acceptable processor speeds too high to be affordable.

5 This does not raise scheduling problems. These have necessarily been solved during
a design phase, otherwise FCs would not be available.

Predictability in Critical Systems 331

5.1 Prevention

Overloads should not be viewed as uncontrollable phenomena or as a result
of necessarily fuzzy engineering tradeoffs. Module Net has a specification 〈Net〉,
which must be provably derived from pair {〈RTUAB〉, solution A}. For instance,
〈m.Net〉 should state message arrival models provably derived from the tasks
and the external event arrival models stated in 〈RTUAB〉, from A, and from the
analysis of the task schedules produced by A.

With some As - e.g., periodic algorithms - it is possible to show that message
arrivals obey a unimodal arbitrary model. A difficulty stems from the need to
establish tight bounds on arrival densities, i.e. ratios a(message)/w(message)
for every message. Then, it is possible to prove that, considering some Net
architecture and some message scheduling algorithm (a protocol), message delays
are bounded by B.

In fact, it is possible to do even better. For instance, in [7], considering
multiaccess broadcast channels (off-the-shelf technology) and tree protocols, one
shows how to guarantee delay upper bounds on an individual message basis, i.e.
a bound B(message) proper to every message. Establishing bound(s) b usually
derives easily from establishing bound(s) B.

Many 〈Net〉-like problems involving periodic or sporadic message arrivals
have well known solutions (see [19] for examples).

Proven bound(s) B may be violated if bounds on message arrival densities
are violated, i.e. with a probability no greater than 1 - C(X, V (x)). Indeed, recall
that under a proof-based SE approach, such bounds are (exactly or pessimisti-
cally) derived from bounds a(t)/w(t) stated in 〈RTUAB〉.

It follows that coverage (message arrival densities) ≥ coverage (external event
arrival densities) ≥ C(X, V (x)).

Despite the fact that, by its very nature, C(X, V (x)) cannot be equal to 1,
one can nevertheless enforce bound B, by exercising external admission control
(see [14] for example), which amounts to perform on-line model checking. On
each Net entry point, incoming message µ is rejected whenever it is found that
bound a(µ)/w(µ) is violated 6. In this case, bound B cannot be violated, which
comes at the expense of having some messages experience infinite waiting, with
a probability at most equal to 1 - C(X, V (x)).

Consequently, it is possible to prove that the delay experienced by every
message carried by Net has B as an upper bound, this holding true whenever
residual assumptions are not violated. Example of a residual assumption:

(RA): speed of physical signals over man-made passive communication links
is 2/3 of light speed at least.

To summarize, SE faults being avoided, a correct specification 〈Net〉 can be
established. A bound B can be proven to hold, and coverage(proven bound B
cannot be violated) ' 1, given the RAs usually considered.

6 As for arrival models, one can also perform external on-line model checking for failure
models, and “reject” (e.g., stop) a module that would violate its failure semantics.

332 G. Le Lann

5.2 Detection

It is granted that timing failures can occur, whatever the causes, albeit not “too
often”. An approach, suggested by many authors, aims at transforming timing
failures into omission failures: A message whose delay does not range between b
and B is not “seen” by algorithm A. This implies the existence of a “filtering”
algorithm, noted F , sitting in between Net and A. A Net timing failure detected
by F running on module q is transformed into a module q receive omission.
There are many synchronous algorithms that work correctly in the presence of
bounded omission failures.

Can there be algorithms F that detect violations of bounds b and B? If not,
which bounds can be enforced with certainty? Under which residual assumption-
s? Densities of “fake” omission failures - i.e., transformed timing failures - must
be “under control”. How?

The 1W solution Let us review a popular solution, which will be referred to
as the 1-way (1W) solution. It is based on the requirement that every module
owns a clock (n clocks in Q) and that clocks are ε-synchronized 7, that is:

for any two clocks ci and cj , for any (universal) observation time T,
| ci(T) − cj(T) |< ε, ε > 0.

Correct clocks are necessary to achieve ε-synchronization. A correct clock is a
clock whose deviation from physical time is negligible over short time intervals,
e.g. intervals in the order of small multiples of B. Clocks must resynchronize
more or less regularly, via remote clock readings (message passing), to achieve ε-
synchronization. This can be done by having each module equipped with a GPS
(Global Positioning System) or a radio receiver. In this case, very small values
of ε can be attained 8. However, it might not be realistic to assume that each
module in a critical system is physically located so that there is an unobstructed
line-of-sight path from its antenna to GPS space vehicles. Or ε-synchronization
must be maintained despite receivers going down or being jammed. In the sequel,
we assume that a few modules - called time servers - are equipped with such
receivers, and that system-wide ε-synchronization is achieved via some algorithm
whereby modules remotely read any of these time servers via messages sent
through Net (or read their clocks, mutually, whenever no time server is up).

Every message is timestamped with sender’s local time (at send time), as
well as with a receiver’s local time (upon receipt). The difference is the message
delay, as observed by a receiver, noted od. Timeliness tests retained for F are
applied by receivers. F = 1W/test consists in rejecting only those messages that
fail test.

A message whose real delay - noted rd - lies within interval [b, B] will be said
to be correct. Otherwise, a message will be said to be incorrect.
7 ε-synchronization is a well known Approximate Agreement problem.
8 see [18] for a comprehensive presentation of recent results.

Predictability in Critical Systems 333

Let u = B − b. Real lower bound is β, 0 < β ≤ b. There is no upper bound
for a late timing failure. With critical problems such as 〈RTUAB〉, early timing
failures matter as much as late timing failures. Indeed, in order to establish
timeliness-centric FCs, one must identify worst-case scenarios, which is achieved
by resorting to adversary proofs and arguments, whereby messages controlled
by the “adversary” experience smallest delays, while messages issued by the
task under consideration experience highest delays. Any violation of delay lower
bounds would invalidate the proofs that underlie the FCs.

With ε-synchronized clocks, for some given od, real delays range between
od − ε and od + ε. Therefore, stricto sensu, the following restrictive timeliness
test RTT should be considered:

RTT : b + ε ≤ od ≤ B − ε.

A problem is that every message, including correct messages, is rejected with
F = 1W/RTT . Indeed, it has been shown that ε has ε0 = u(n− 1)/n as a lower
bound with deterministic clock synchronization algorithms, assuming perfect
(i.e. non drifting) clocks [15]. With correct clocks, it follows that ε = γε0, γ > 1.

It can be easily verified that B−ε cannot be greater than b+ε. Hence, RTT
does not make sense.

One could then consider semi-restrictive timeliness tests SRTT s, such as:

SRTT : b + αu/2 ≤ od ≤ B − αu/2, 0 < α < 1.

With such tests, a correct message whose real delay is δ is accepted only if
transmitted while sender’s clock is less than δ − (b + αu/2) ahead of receiver’s
clock and sender’s clock is less than B − (αu/2 + δ) behind receiver’s clock.

Such tests are seldom considered, given that it is generally felt unacceptable
to reject correct messages possibly arbitrarily often. With such tests, the initial
issue of estimating the coverage of a bounded density assumption relative to
timing failures translates into the issue of estimating the coverage of a bounded
density prediction relative to accepted correct messages!

Consequently, only permissive timeliness tests are considered. The classical
permissive test, PTT , suggested by many authors, is as follows:

PTT : b − ε ≤ od ≤ B + ε.

Of course, every correct message is certainly accepted. However, incorrect
messages may also be accepted, whose real delays satisfy any of the following
constraints:

max{β, b − 2ε} ≤ rd < b, B < rd ≤ B + 2ε.

Surprisingly, this appears to be barely addressed in the literature.

In summary:
(1) Assuming ε-synchronized clocks, it is impossible to detect violations of

bounds b − ε or B + ε with certainty when using the 1W solution.

334 G. Le Lann

(2) Only early timing failures such that rd < b − 2ε and late timing failures
such that rd > B + 2ε are certainly detected with F = 1W/PTT .

(3) Bound on message delay uncertainty - initially postulated to be u - can
only be amplified with F = 1W/PTT . Actual bound on message delay uncer-
tainty U guaranteed to some algorithm A by 1W/PTT is:

U = u[1 + 2γ(1 − 1/n)] + (b − β), if β > b − 2ε
U = u[1 + 4γ(1 − 1/n)], if β ≤ b − 2ε.

(4) With F = 1W/PTT , bounds on tasks response times or, equivalent-
ly, feasibility conditions for having the timeliness property stated in 〈RTUAB〉
hold true, must be established considering that the actual upper bound on Net
message delays is B′ = B + 2ε, rather than B.

(5) With any filtering algorithm F based on 1W that would use a test more
permissive than PTT , the difficult issue of estimating the coverages of the fol-
lowing assertions is raised:
– every timing failure is detected,
– every correct message is accepted.

The ε-synchronization assumption Given that we are assuming timing fail-
ures, it is very much appropriate to examine whether those conditions under
which ε-synchronization is achieved are or are not invalidated by incorrect mes-
sages, when considering clock synchronization algorithms based on message pass-
ing. Unfortunately, it is impossible to use 1W so as to enforce bounds b and B
on delays of clock synchronization messages - which is required to enforce ε -
given that restrictive test RTT cannot be contemplated.

Solutions other than 1W exist. However, they come at the expense of some
amplification of the achievable ε lower bound. In synchronous systems subject to
timing failures, ε-synchronization either rests on the assumption that synchro-
nization messages exchanged among clocks are correct, and then “small” values
of ε can be contemplated, or ε-synchronization holds despite timing failures,
provided that “greater” values of ε are acceptable.

Let us explore the coverages involved with ε-synchronization, and compute
the “cost” of establishing “guarantees” for one simple example.

Coverage that ε holds true, denoted C(ε), is an increasing function of ε = γε0.
Picking up low values for γ leads to low coverages. Indeed, for γ ' 1, C(ε) ' 0.
Is there a value ε∗ yielding C(ε) ' 1 ? The answer is yes. We sketch out below an
example of an algorithm F that permits to safely detect timing failures impacting
clock synchronization messages. This algorithm, denoted 2W/TT , has previously
been proposed for solving the remote clock reading problem [3]. For the sake of
simplicity, we neglect factors in time derivatives (which is equivalent to assuming
perfect clocks).

Timing failures are detected by each module, by locally measuring message
round-trip delays (2-ways, hence 2W). A module q that triggers such a measure,
by issuing a request message at time T1, is to receive a response message res from
the module being polled, referred to as the sender. Without loss of generality,

Predictability in Critical Systems 335

assume that it takes no time for the sender to generate res. Let T2 be the time
at which res is received by q. Variable rd is the real delay of message res. T2−T1

is the (observed, i.e. real) round-trip delay.
Timeliness test TT applied by q is:

TT : 2b ≤ T2 − T1 ≤ 2B.

Hence, early timing failures experienced by res that are not detected with
certainty are such that β ≤ rd < b, whereas late timing failures experienced by
res that are not detected with certainty are such that B < rd ≤ 2B − β.

Consequently, clock synchronization message delay uncertainty is 2(B − β).
It follows that ε∗ = 2(u + b − β)(n − 1)/n.

Knowing a lower bound of guaranteed ε when using F = 2W/TT , it is trivial
to re-compute what can be achieved with F = 1W/PTT w.r.t. messages issued
by tasks, as well as to quantify the “cost” incurred with achieving certainty (i.e.
C(ε) ' 1). Let us examine the “cost” - denoted ∆B - incurred with guaranteeing
a message delay upper bound.

B′
0 = B + 2ε0 being the highest upper bound that cannot be considered

(γ = 1), it follows that ∆B = B + 2ε∗ − B′
0 = 2[u + 2(b − β)](n − 1)/n.

This “cost” has 2ε0 as a lower bound, attained if one makes no mistake in
predicting lower bound b.

Note that checking timing failures with 2W increases the message load of-
fered to Net. Bounds b and B with 2W would then be greater than the bounds
considered without 2W . However, no matter which message-based clock synchro-
nization algorithm is considered, it is possible to resort to piggybacking: Clock
synchronization data is transmitted taking advantage of “normal” messages (e.g.,
those generated by A, by system S/W or application S/W components). In this
case, neither bound b nor bound B is affected by clock synchronization traffic.

In summary:
(6) It is possible to achieve ε-synchronization in the presence of timing fail-

ures, considering residual assumptions that have coverages higher than usually
asserted. Indeed, given that ε-synchronization is known to be achievable in syn-
chronous systems in the presence of a minority f of faulty clocks (e.g., n > 3f
with f byzantine clocks), it follows that we have moved from (RA): clocks are
ε-synchronized, to (RA): n − f clocks at least are correct. The latter being on-
ly one of the assumptions that underlie the former, its coverage is necessarily
higher.

(7) Synchronous systems in the presence of timing failures are not necessarily
equivalent to asynchronous systems.

(8) With F = 2W/TT for clock synchronization messages, F = 1W/PTT
for task messages, and under (RA): n − f clocks at least are correct, the actual
delay upper bound that is guaranteed - with some coverage ≥ φ - for messages
exchanged among modules that own correct clocks is B∗ = B + 4ε∗, which has
B + 4ε0 as a lower bound. Claims or proofs of quantified “real-time behavior”
based on considering that B + ε is the actual upper bound are flawed.

336 G. Le Lann

Many clock synchronization algorithms could have been considered. Other
algorithms F exist, and other bounds and coverages can be established.

Nevertheless, apart from numerical calculations, these conclusions have gen-
eral applicability.

5.3 Prevention or Detection?

It is worth noting that there is no choice. It is very risky to resort to timing
failure detection only, as there would be no way of showing that a “good” bound
B has been picked up, no matter which timeliness test is considered 9. Therefore,
coverage(no correct message is rejected) has no significance. The concept of a
“correct” message becomes elusive when permissive timeliness test PTT turns
out to be unduly restrictive in fact, i.e. bearing no relationship with reality.
Would real B be greater than guessed B, proven liveness or timeliness properties
would not hold at run-time.

For instance, ε-synchronization is achievable provided that clock synchroniza-
tion messages are tested correct “often enough” (e.g., once per period, for pe-
riodic clock synchronization algorithms). Similarly, algorithmic solutions would
serve no real purpose if their messages - as well as those generated by tasks - are
not tested correct “often enough”.

Consequently, timing failure prevention is mandatory for developing solutions
such that coverage(no correct message is rejected) and coverage(every incorrect
message is rejected) are, (i) accurately estimated, (ii) “very high”.

For any such problem as 〈Net〉, which is correctly derived from some higher
level problem by applying proof-based SE principles, there exists a matching
bound B, which must and can be established, exactly or pessimistically, by solv-
ing a distributed real-time scheduling problem, as briefly explained under Section
5.1. A proven bound B, noted B, being established, the definition of a correct
message matches reality. Therefore, messages tested incorrect are incorrect in-
deed. As a result, it is possible to show that the following coverages can be very
close to 1, given the RAs that can be considered:

- coverage(no message whose real delay is B at most is rejected),
- coverage(every message whose real delay is greater than B∗ is rejected).
Note also that doing this is the only way to bound densities of “fake” omis-

sion failures (with sufficiently high coverages).

With critical systems, there is definitely no choice. Irrespective of which com-
putational models are contemplated for a design phase, synchronous system
models must be considered for dimensioning and implementation phases.

With synchronous models, predictability assorted with “very high” coverages
is illusory, unless (off-line) prevention and (on-line) detection of timing failures

9 Bounds B estimated via statistical analysis of traffic measurements have poor cover-
ages most often. Furthermore, predictability obligations also apply to systems that
are yet to be built.

Predictability in Critical Systems 337

are resorted to jointly. Hence, the relevance of proof-based SE principles for such
systems 10.

6 Conclusions

We have examined issues that arise with critical applications and systems, for
each of the four phases that span a project lifecycle, from initial problem capture,
to system implementation, when conducted according to proof-based system en-
gineering principles. In particular, assuming correct implementations of H/W
and S/W components, we have explored those irreducible sources of uncertain-
ty which restrict predictability, as well as the concept of coverage applied to
problems, solutions, assumptions.

A generic problem that arises with critical applications such as, e.g., air traffic
control/management, namely the real-time uniform atomic broadcast problem,
has been presented. Two design styles, namely asynchronous and synchronous
solutions, have been compared in terms of resulting assumptions as well as cover-
ages. This has led us to revisit popular justifications for asynchronous models, as
well as popular approaches to the construction of synchronous systems, paying
special attention to the issues of overloads and timing failures.

Critical systems raise many open research issues. Examples of areas where
further work is needed are formal methods for proof-based system engineer-
ing, models and properties class structuring, algorithms for solving combined
real-time, distributed, fault-tolerant computing problems, complexity and com-
binatorial analysis for establishing necessary and sufficient feasibility conditions.

¿From a more general perspective, for generic problems raised with critical
systems, it would be very useful to compare design and dimensioning solutions,
feasibility conditions, and associated coverages, as obtained under, respectively,
deterministic and stochastic approaches.

Acknowledgements
I would like to thank Anders P. Ravn for his comments and suggestions that

helped improving the paper.

References

1. Chandra, T.D., Toueg, S.: Unreliable Failure Detectors for Asynchronous Systems,
Journal of the ACM 43(2) (March 1996) 225-267.

2. Chandra, T.D., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving
Consensus, 12th ACM Symposium on Principles of Distributed Computing (August
1992) 147-158.

10 Specifications such as 〈Net〉 or bounds B are almost never established under current
SE practice. Therefore, overloads occur at unpredictable rates. It follows that, as
stated in the Introduction Section, dominant causes of such overloads are SE faults,
rather than S/W or H/W faults.

338 G. Le Lann

3. Cristian, F.: Probabilistic Clock Synchronization, Distributed Computing (3) (1989)
146-158.

4. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the Presence of Partial Syn-
chrony, Journal of the ACM, 35(2) (April 1988) 288-323.

5. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus
with One Faulty Process, Journal of the ACM 32(2) (April 1985) 374-382.

6. Hadzilacos, V., Toueg, S.: A Modular Approach to Fault-Tolerant Broadcasts and
Related Problems, Technical Report TR 94-1425, Cornell University (May 1994),
83 p.

7. Hermant, J.F., Le Lann, G.: A Protocol and Correctness Proofs for Real-Time
High-Performance Broadcast Networks, 18th IEEE Intl. Conference on Distributed
Computing Systems (May 1998) 360 - 369.

8. Kuhn, D.R.: Sources of Failure in the Public Switched Telephone Network, IEEE
Computer (April 1997) 31 - 36.

9. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem, ACM Trans.
on Programming Languages and Systems 4(3) (July 1982) 382 - 401.

10. Le Lann, G.: Proof-Based System Engineering and Embedded Systems, in Em-
bedded Systems, Springer-Verlag LNCS on Embedded Systems (G. Rozenberg, F.
Vaandrager Eds.) (to appear in 1998) 41 p.

11. Le Lann, G.: On Real-Time and Non Real-Time Distributed Computing, invited
paper, 9th Intl. Workshop on Distributed Algorithms, Springer-Verlag LNCS 972
(J.M. Hélary, M. Raynal Eds.) (1995) 51-70.

12. Le Lann, G.: An Analysis of the Ariane 5 Flight 501 Failure - A System Engineering
Perspective, IEEE Intl. Conference on the Engineering of Computer-Based Systems
(March 1997) 339 - 346.

13. Leveson, N.G., Turner, C.: An Investigation of the Therac-25 Accidents, IEEE
Computer (July 1993) 18 - 41.

14. Liebeherr, J., Wrege, D.E., Ferrari, D.: Exact Admission Control for Networks with
a Bounded Delay Service, IEEE/ACM Trans. on Networking, 4(6) (December 1996)
885-901.

15. Lundelius, J., Lynch, N.A.: An Upper and Lower Bound for Clock Synchronization,
Information and Control 62(2-3) (August-September 1984) 190 - 204.

16. Lynch, N.A.: Distributed Algorithms, Morgan Kaufmann Pub., ISBN 1-55860-348-
4 (1996) 872 p.

17. Powell, D.: Failure Mode Assumptions and Assumption Coverage, 22nd IEEE Intl.
Symposium on Fault-Tolerant Computing (July 1992) 386-395.

18. Special Issue on Global Time in Large Scale Distributed Real-Time Systems,
Schmid, U. Guest Editor, Journal of Real-Time Systems 12(1-2) (1997) 230 p.

19. Tindell, K., Burns, A., Wellings, A.J.: Analysis of Hard Real-Time Communica-
tions, Journal of Real-Time Systems 9(2) (1995) 147-171.

