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Abstract
Novel  real-time  applications  require  high-
performance real-time distributed systems, and

therefore high-performance real-time networks. We
ezamine a Hard Real-Time Distributed Multiaccess
problem which arises with such application problems.
We present a solution, based on broadcast LANs or
busses, such as Gigabit Ethernets or busses internal to
ATM nodes, associated with a deterministic Ethernet-
like protocol called CSMA/Deadline Driven Collision
Resolution. We give an analysis of balanced m-ary
tree algorithms which are used by CSMA/DDCR, and
derive feasibility conditions for the HRTDM problem.

1 Introduction

Novel real-time applications require high-
performance real-time distributed systems, and
therefore high-performance real-time networks. We
consider a particular class of such networks, those
based on broadcast media. Examples of such media
are physically dispersed local area networks (LANSs),
such as Gigabit Ethernets, and busses internal to
switch fabrics, such as busses internal to ATM nodes.

Assuming that an application problem can be un-
ambiguously and completely specified, how can we tell
whether a COTS (commercial off-the-shelf) product is
or is not a “solution” for that problem? Under current
practice, decisions to include specific COTS products
- such as ATM switches or Gigabit Ethernets in our
case - in installed systems are made without any proof
of “correctness”. More generally, lack of correctness
proofs vis-a-vis system design and/or physical dimen-
sioning decisions seems to be a major cause of project
setbacks or operational failures [1, 2].

Proof-based system engineering (SE) methods serve
to eliminate such “fuzzy” decisions. The basics of a
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proof-based SE method can be found in [3, 4]. The
generic problem considered in this paper, referred
to as the Hard Real-Time Distributed Multiaccess
(HRTDM) problem, is specified following this proof-
based SE method (section 2).

We then present a solution based on a protocol,
called CSMA /DDCR (which stands for Carrier Sense
Multi Access/Deadline Driven Collision Resolution),
which belongs to the class of balanced m-ary tree pro-
tocols (section 3).

Any provably correct or optimal solution to the
HRTDM problem that would be based on balanced
m-ary tree protocols rests on establishing exact solu-
tions for the following subproblems:

e P;: express a computable tight upper bound on
worst-case deterministic searches for a balanced
m-ary tree,

e P»: express a computable tight upper bound on
worst-case deterministic searches over multiple
consecutive balanced m-ary trees.

We present an exact solution for P, and an ex-
act asymptotic solution for P» (section 4). With
such solutions at hand, one can establish provably
correct and computable conditions under which any
user-defined instantiation of HRTDM is feasible with
CSMA /DDCR.

Finally, we discuss why the CSMA/DDCR proto-
col is directly applicable to two emerging technologies
of particular significance, namely ATM switches and
Gigabit Ethernets (section 5).

2 The HRTDM problem
2.1 What is proof-based system engineer-
ing

The essential goal pursued with proof-based SE is
as follows: starting from some initial description of
an application problem (end users/customers require-
ments and assumptions), to produce a global modu-
lar implementable specification - denoted [S] in the



sequel - of a computing system S, along with proofs
that system design and system dimensioning decisions
made to arrive at specification [S] do satisfy <X>, the
specification of the computer science problem “hid-
den” within the application problem. With proofs, it
is possible to ensure that future behavior of S is the
desired behavior, before implementation or fielding is
undertaken. Any module of [S] is a specification of
a physical module of S, which may end up being a
COTS product or a customized/proprietary product.

Novel applications that have combined high-
performance, real-time distributed requirements will
be deployed in very diverse environments. Future run-
time assumptions should then be as general as possi-
ble. Furthermore, real world customers express de-
scriptions of such requirements and assumptions that
usually are incomplete and ambiguous. How can then
a designer, a researcher, a provider of some COTS
technology, claim that he/she has a “solution”? Such
claims can be substantiated by resorting to proof-
based SE, one of the emerging disciplines of interest
to the IEEE Computer Society and to INCOSE [5, 6].

A proof-based SE method - the TRDF method -
can be used to rigorously bridge the gap between ap-
plications and COTS products [3, 4]. That method
has been applied to a number of real world problems.
Examples are Modular Avionics (French DARPA and
Dassault Aviation), safety related control operations
in Nuclear Power Plants (Institut de Protection et de
Streté Nucléaire, French Atomic Energy Authority),
the analysis of the Ariane 5 Flight 501 failure [7]. The
TRDF method is currently being applied to Air Traf-
fic Control and critical On-Line Transactional appli-
cations.

The term “specification” refers to any complete and
unambiguous statement - in some human language, in
some formalized notation, in some formal language.
<X> is a pair {<p.X >, <m.X >}, where p.X is a
set of properties (requirements) and m.X is a set of
models (assumptions). Properties as well as models
have well defined semantics, such as those commonly
considered in computer science [8, 9, 10].

Examples of high-performance real-time applica-
tions considered in this paper are distributed inter-
active multimedia, videoconferencing, on-line transac-
tions (e.g., stock markets), surveillance (e.g., air traffic
control).

Space limitations prohibit us from showing how
to apply the TRDF method so as to, first, rigor-
ously specify any such application and, second, derive
from it the specification of a subproblem, which is the
HRTDM problem considered in this paper.

2.2 The HRTDM problem

Transit times of messages flowing between an ap-
plication task and a network module are inevitably
variable. This is due, in particular, to software and
hardware layers sitting in between an application layer
on the one hand and a network layer on the other
hand (e.g., calls to operating systems, use of diverse
scheduling policies for servicing waiting queues, etc.).
Consequently, even for those messages generated by
application tasks that are activated periodically, one
must abandon the idea that messages are submitted
periodically to a network module. Hence, we consider
unimodal arbitrary models.

With the unimodal arbitrary arrival model, an up-
per bound a(msg)/w(msg) is defined for the arrival
density of every message msg, with w(msg) being the
size of a sliding time window and a(msg) being the
highest number of message msg arrivals that can occur
within w(msg) time units. The “adversary” embod-
ied in these models is stronger than, e.g., the periodic
arrival model.

Many researchers simply assume periodic arrival
models (deterministic approaches) or Poisson arrival
models (stochastic approaches) all the way through a
design tree. This simplifies design work as well as the
establishment of feasibility conditions. However, this
does not reflect reality and, most often, leads to incor-
rect (i.e., arbitrarily optimistic) feasibility conditions.
Recent research work in this area - see, e.g., [11, 12,
13, 14] for examples - looks promising. Furthermore,
there are no restrictions on the relationships that may
exist between deadlines and arrival densities.

The HRTDM problem is specified as follows:

<m.HRTDM>:

e Message sources model: set of z sources, denoted
si, @ € [1, z]; number of sources is unrestricted.

e Message model: set of messages M SG, each mes-
sage msg of some bit length I(msg);|M SG| and
the I(msg)’s are unrestricted.

e Mapping model: subset M SG}, of M SG mapped
onto source s (MSG is partitioned into z sub-
sets); mapping is unrestricted.

e Message arrival model: unimodal arbitrary ar-
rival law for every message, with a(msg)/w(msg)
being the upper bound on msg’s arrival density.

<p.HRTDM>:

o Safety: successful transmissions of messages over
a broadcast medium must be mutually exclusive.



e Timeliness (real-time): message timeliness con-
straint = strict constant latest deadline for com-
pleting transmission, denoted d(msg) for message
msg.

Such system-wide requirements correspond to
what is called end-to-end QoS (quality-of-service)
and CoS (class-of-service) in the Telecommunica-
tion/Networking community.

To our knowledge, problem <HRTDM> still is
open. It is indeed the case that: (i) there is no known
algorithmic solution - associated with some architec-
tural solution - that has been proven optimal, (ii) there
is no known expression of feasibility conditions (FCs)
- established for a provably optimal algorithmic solu-
tion - that have been proven necessary and sufficient.

In section 4, we present two problems P; and
P> that need be solved exactly in order to establish
necessary and sufficient FCs for <HRTDM>, given
CSMA/DDCR. FCs are an essential tool for an end
user or a technology provider who has to assign nu-
merical values to message lengths, to upper bounds
of message arrival densities and to message deadlines.
By computing the FCs, it is possible to tell whether or
not any quantified instantiation of the HRTDM prob-
lem is feasible with our solution.

3 A Solution: Broadcast Media, Local
EDF and the CSMA/DDCR Proto-
col

3.1 Rationale for a solution

<HRTDM> is a design subproblem. No exist-
ing COTS product satisfies <HRTDM>. Recall that
“having a solution for HRTDM” implies - at least - de-
livering some FCs (established for some solution that
one may want or may not want to reveal). We are not
aware of any COTS product that would be accompa-
nied with computable FCs for <HRTDM>.

Our strategy consists in “adding value” to such
products. We explicitly consider ATM switches and
Gigabit Ethernets. We develop a design solution - a
module of [S] - which includes a broadcast medium
(many such media can be used in parallel), a local
scheduling algorithm, and a distributed contention
multiaccess protocol.

There are two main reasons why we are interested in
broadcast media, especially in passive broadcast me-
dia such as busses internal to ATM switches and/or
those used with Gigabit Ethernets. First, they are
commonplace, and cheap. Second, they can be shared
via protocols that have interesting fault-tolerant prop-
erties.

There are two main reasons why we are interested
in contention-prone multiaccess protocols. One is that
theoretical work on distributed multiaccess protocols
for broadcast media has established that tree proto-
cols - a particular class of contention-prone protocols
- achieve channel utilization ratios that are very close
to theoretical upper bounds [15, 16, 17, 18, 19]. The
other reason is that the dominant LAN technology
(Ethernet) happens to be based on a contention-prone
multiaccess protocol, i.e., the well known CSMA-CD
protocol. We believe that this dominance is not going
to weaken any time soon.

Consequently, we have developed a protocol called
CSMA/DDCR - Carrier Sense Multi Access/Deadline
Driven Collision Resolution - which is based on de-
terministic balanced m-ary tree searches. The rea-
son why we have chosen to develop that particular
deterministic variant of the famous original Ethernet
CSMA-CD protocol is that CSMA/DDCR emulates
a distributed Non-Preemptive Earliest-Deadline-First
(NP-EDF) scheduling algorithm. It has been shown
[20, 21] that centralized NP-EDF is an optimal solu-
tion for problems equivalent to the centralized variant
of <HRTDM>, considering periodic or sporadic mes-
sage arrival models.

3.2 The solution

For the sake of conciseness, we will only give
an informal description of the solution, which
comprises two scheduling algorithms (local EDF,
CSMA/DDCR). In the sequel, we present and ana-
lyze the CSMA/DDCR protocol for Ethernet-like net-
works, i.e., in the presence of destructive message col-
lisions. Recall that broadcast media are physically
characterized by a slot time, denoted z. A slot time is
a time interval large enough to guarantee that a chan-
nel state transition triggered by some source at time ¢
is seen by every other source at time ¢’ < t+xz/2. With
CSMA-CD protocols, a channel can enter one out of
three states, namely silence, busy, collision. This will
be reflected via variable chstate.

One obvious difference between Ethernet-like net-
works and busses internal to ATM switches is physical
spanning, which translates into small values for z (1
or a few bit times) in the latter case, i.e., into the pos-
sibility of implementing an exclusive-OR logic at the
bus level, this yielding non-destructive message col-
lisions. It is reasonably straightforward to derive an
analysis of the CSMA/DDCR protocol in the case of
ATM switches from the analysis presented below.

Source s; receives messages taken from set M SG;.
Let T'(msg) denote the arrival time of msg. Source s;
stores these messages in a waiting queue, denoted @Q;.



From now on, we will drop index ¢, unless 7 is needed.
e Local Algorithm LA

Messages in @) are serviced according to EDF. Let
msg* denote the message ranked first in () at any time,
as per LA.

e CSMA/DDCR

Channel sharing between sources works a la CSMA-
CD whenever there is no unresolved collision pending
(which is not equivalent to having the @’s empty).
When a collision is detected and every previous colli-
sion has been resolved, every source initiates algorithm
CSMA/DDCR shown below. CSMA-CD is also em-
ployed internally by CSMA/DDCR, which comprises
two inner algorithms, namely TTs (time tree search)
and STs (static tree search). Note that LA on the one
hand, TTs or STs on the other hand, run in paral-
lel. For instance, while CSMA /DDCR is being run, @
may be updated by LA, because of new incoming mes-
sage(s). EDF ranking in local () determines whether
a new message should become msg* (i.e., the current
one may have an absolute deadline DM that is not
the smallest deadline any longer).

Let £.Q be a reference to local ). For each message
msg in @, let I.msg be a data structure which
contains a reference to msg, denoted f.msg, and
absolute deadline DM (msg) = T(msg) + d(msg).
For any source s:

CSMA/DDCR (£.Q)

% msg* is the message first in Q %
% while @ empty, msg* := nil %
begin
reft := local physical time
begin loop
TTs (reft, £.Q)
if out = false then
| reft:=reft+0(c)
else
begin
attempt transmit msg* & la CSMA-CD
if chstate = collision then
| reft := local physical time
fi
end

fi
end loop
end

Boolean out is maintained by TTs, with out = true
meaning “time tree search is over, one message at least

has been transmitted”, out = false meaning “time
tree search is over, no message has been transmitted”.

Variable reft stands for reference time. Every
source maintains reft locally. Variable reft is always
set to local physical time whenever CSMA/DDCR is
started. Whenever TTs sets boolean out to false
(i.e., whenever m consecutive empty slots are heard
while running TTs), this is an indication that pend-
ing messages have “large” absolute deadlines (which
prohibited them from entering that search). In or-
der to avoid lengthy channel idleness, we may want to
“reduce” their absolute deadlines. This is called the
“compressed time” mode. When operating under this
mode, 6(c) is assigned some positive value. 6(c) is any
linear fonction of ¢. When “compressed time” mode
is not on, #(c) is set to value 0. Constant ¢ is a time
interval, the size of a deadline equivalence class (see
further).

Each time TTs is over and boolean out is set to
false, a source does reft := reft +6(c). This may be
repeated consecutively many times. Assignment reft
:= local physical time is effected whenever a message
is successfully transmitted during a time tree search,
or whenever a static tree search is completed (see fur-
ther).

Obviously, 6(c) determines a tradeoff between re-
ducing potential channel idleness and potentially in-
creasing the number of deadline inversions (or vice-
versa).

Note that CSMA/DDCR is run even though local
Q@ is empty. Also, if a message is waiting in @ at
the end of some execution of TTs, its transmission
is attempted, & la CSMA-CD, when that time tree
search is over. If a collision ensues, CSMA/DDCR is
invoked again.

TTs (reft, £.QQ)

begin

% msg* is the message first in Q %

% msg* := nil if Q empty %

if msg* # nil then

| time-index*:= f(reft,I.msg*)

fi

if time-index® > F — 1 then

| msg* = nil

fi

if msg* = nil then

| time-index™ := nil

fi

m-ts((f-msg*), time-index™)

% m-ts serves to conduct a m-ary tree search %
% when msg* is successfully transmitted,




f.msg* is suppressed from @,

and next message in () becomes msg* %

% whenever a collision is detected while searching
a time tree leaf, STs(f.msg*) is invoked %

out := true or false

% depending on the outcome of

the time tree search %

end

A source must run TTs even if it does not have to
or cannot transmit a message during that time tree
search. Integer F' is the number of leaves in a time
tree (some integer power of m), which determines cF,
the “scheduling horizon”. Function f is detailed fur-
ther. Each execution of algorithm TTs, as well as STs,
involves a balanced m-ary tree search, denoted m-ts.
Note that when STs is invoked by TTs, the static tree
root has already been “searched”.

Principles of m-ary tree search m-ts.

Let N be a power of m, which is the number of
some tree leaves, numbered from 0 to N — 1 from left
to right. First time there is a collision, search proceeds
by “examining” the leftmost subtree (out of m). Only
those sources that have an index (see further) which
belongs to that subtree allow themselves to remain ac-
tive, i.e., to persist attempting transmitting. If only
one source remains active, its message is successfully
transmitted. If there is a collision again, the splitting
process is repeated (the leftmost subtree of the sub-
tree is “examined”). And so on. When a subtree o of
height A has been fully searched (silence or one mes-
sage transmission), the search process is “reversed”,
i.e., the subtree (of height greater than or equal to h)
adjacent to o is then searched.

Therefore, in one execution of TTs, a source trans-
mits at least all those local messages whose absolute
deadlines are smaller than ¢t + cF', t being the time
when CSMA/DDCR is started.

While running m-ts, a collision may be detected
on a time tree leaf. This is an indication that s > 1
sources tried to transmit s messages using the same
time-index. This is similar to trying to schedule sev-
eral tasks of equal absolute deadlines with centralized
EDF. Some tie breaking algorithm must be resorted
to. Static tree searches are the rule here. Algorithm
STs is immediately run whenever a time tree leaf col-
lision occurs. Only when STs is over is the time tree
search resumed.

Function f that appears in TTs can be any func-
tion that computes an integer ranging between 0 and
F — 1. However, as our goal is to emulate distributed
NP-EDF, we must avoid contention between mes-
sages that have drastically different absolute dead-

lines DM (deadline inversions result into non optimal
schedules). Of course, deadline inversions may occur
because the channel is a non preemptable resource.
However, such inversions are unavoidable, no mat-
ter which protocol is used. Ideally, only those mes-
sages that have absolute deadlines belonging to the
same deadline equivalence class should enter compe-
tition. In our work, we considered f(reft,I.msg*) =
maz{[(DM(msg") — (a + reft))/c], f*+ 1}.

Constant « is a tunable parameter that serves to
allow messages enter a time tree search before it is
“too late” (the duration of a static tree search may
be greater than c). Integer f* is the highest value of
those time tree leaves searched last (reset to —1 when
TTs is exited). The max function over integer f* + 1
serves to guarantee that no source servicing a “late”
message will ever compute a negative time index or
a positive time index that has been searched already,
which would mean that its (“late”) msg* message -
as well as subsequent messages in ) - will be put to
wait until a new TTs is started. The effect of the
max function over f* +1 is to guarantee that a “late”
message is always processed as soon as possible, i.e.,
right upon arrival.

Let us now examine STs. Let ¢ be some power of
m that is higher than or equal to z. Static trees have
q leaves, numbered 0 to ¢ — 1, from left to right. Let ¢’
be some subset of [0,¢ — 1] (not all ¢ integers need be
allocated to sources). Set ¢’ is partitioned into exactly
z subsets. Integers belonging to the subset allocated
to source s; are called s;’s static indices. Let v; be
the number of static indices allocated to s;. These in-
dices are locally ranked by increasing values. Static
tree search ST's is initiated by every source, using first
static index, whenever there is a time tree leaf colli-
sion. Procedure m-ts is also run by STs. At any time,
a source knows which of its static indices it has used
for its most recent message transmission. Next index
in the ranking is used to keep conducting m-ts. In
one execution of STs, source s; may transmit up to
v; messages. Variable reft is updated by STs, upon
completion, by doing reft := local physical time.

Note that F' and ¢ can be different. Also, a time
tree and a static tree may have different branching
degrees m.

4 Analysis, Proofs
Conditions
Proving that a protocol is a correct solution to a
real-time problem consists in establishing feasibility
conditions (FCs). Given that CSMA/DDCR makes
use of m-ary tree searches, problems P, and P, pre-
sented below need be solved in order to express the

and Feasibility



desired FCs.

Let &} denote the worst-case search time for isolat-
ing k leaves in a t-leaf balanced m-ary tree. Search
times are expressed in numbers of tree nodes vis-
ited (collision slots) or empty channel slots (searches
of subtrees containing no active source). Successful
transmissions do not contribute to search times. The
physical time duration that corresponds to ¢! simply
is z&.

4.1 Problem P;

P1: Express a computable tight upper bound on
worst-case searches for a t-leaf balanced m-ary tree.

In the sequel, we give an exact expression of &f.
Furthermore, we establish the asymptotic expression
of &f, denoted {k, and prove that &, is a tight upper
bound on worst-case search time for isolating k leaves
in a t-leaf balanced m-ary tree.

Let us consider a t-leaf balanced m-ary tree,
t=m" m € N\ {1}, n € N*. ¢ is the high-
est of search times computed over binomial(t, k) =
t!/k!/(t — k)! ways of choosing k leaves from ¢ distinct
leaves. &}, satisfies the following recursive equation:

1+maz {ﬁt/m+ +§Z{nm} ifke(2,t,
k1+. . .+km_k
G (ke k) €[0,8/m]"™. (1)
0 ifk=1,
1 ifk=0.

When a collision occurs, the set of indices allocated
to the message sources allowed to remain active is split
into m sets of equal size. Thus, we have:

& = 1+max {ét/m—}— —|—§t/m} ke(2,t]
ki+ - +km=k,
(klr--; km) € [Oa t/m]m'

(collision slots).

When no collision occurs, the set of indices allo-
cated to the message sources allowed to remain active
contains at most one active source. Thus, we have:

£l 0 if k=1 (successful transmission),
711 if k=0 (empty channel slot).

Solving Eq. 1 is far from being trivial. In [22], we
prove by induction on ¢ that the & function also sat-
isfies the following divide-and-conquer recursive equa-
tions:

1+ Z ft/Tmn(p t/m)+zJ
g =itp e [1 Lt/2J] (2)

1
if p=0.

—2maxz(0,p—t/m)

£3p+1 = 531) - ]-7 pE [07 |—t/2-| - 1]
t=m" meN\{l}, ne N\ {1}. (3)

For a m-leaf balanced m-ary tree, we know by def-
inition that:

&' =1 &, =1+m—2p, pe[l,[m/2]], and
Epr1 = &3y — 1, p€[0,[m/2] —1]. (4)

Let us now concentrate on the {51, function. We get
the following equations from Eq. 2 and Eq. 4:

f; =mlog,(t) — 1,

t=m", me N\ {1}, n e N". (5)

, t—1 2t

o= 4 (e 2=

gzt/m m_1+ m )’

t=m", m e N\ {1}, n e N". (6)
t—1

t_

gt_m_la

t=m", me N\ {1}, n e N". (7)

§§p+2 - éép = m(logm(t) - Llogm(mp)J) -2,

p€[L,[t/2] - 1],
t=m", meN\{l}, ne N\ {1}. (8)

Eq. 5 gives the worst-case search time for isolating
2 leaves in a t-leaf balanced m-ary tree. Eq. 6 gives the
worst-case search time for isolating 2¢/m leaves in a
t-leaf balanced m-ary tree. Eq. 7 gives the worst-case
search time for isolating ¢ leaves in a t-leaf balanced
m-ary tree. Eq. 8 gives the “derivative” of the {51,
function. From these equations, we get the following
closed form of the &}, function:

mltogm (mp)l _q

‘ m—1 +mp [logm (mLp)J +(m—-2)p

g | TP 172 o
1
ifp=0.



Finally, we derive the following closed form of the
&} function from Eq. 3 and Eq. 9:

L2t o g )| -l

. Jit k€ ]2,
=
Oif k=1
1if k=0.
t=m", meN\ {1}, n e N (10)

Let us now examine the g",{ asymptotic function of
the & function, which is derived from the closed form
of the & function:

k
¢ _my—1 k 2t\
gk—im_l +m2logm<k> k,
k=2mi, i € [0, Llogm(t/2)]] (11

In [22], we prove the following:

k
o _my-l K 2
o (= —— —|—m2logm<k k, k€ [2,t].

e By construction (see Eq. 11), £ is a tight upper
bound on the & function over interval (2, 2¢/m)].
Furthermore, we establish the following proper-

ties:
Mazyep 2t /m) {52 —§i} =Mazpe[at/m2 2t /m) {52 —5}3} ,
(12)
~ mmeT 1
Maﬂfke[2,2t/m] {fi—flt;} < (m—m> t, (13)

VvV o1

Mazie2,2t/m) {é}i‘fi} < (m-g) t<9.54%t.
(14)

Eq. 14 helps quantify the tightness of £, over inter-
val [2,2t/m]. Indeed, the difference between &% and &
over interval [2, 2t/m] is small. Over interval [2t/m, t],
the € function is not needed, given that the & func-
tion satisfies the following equation:

€= — (- 2) =20 - (15)

m—1

The é,f asymptotic function is concave. An example
is shown in fig. 1.

° gt

20 - 64
OO,

o 10 20 30 40 50 60 k

Fig. 1: Worst-case search times
for a 64-leaf balanced quaternary tree

Let us illustrate these results by comparing worst-
case search times for 64-leaf balanced binary and qua-
ternary trees (fig. 2).

+++: 4381
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Fig. 2: Worst-case search times
for 64-leaf balanced binary and quaternary trees

It is interesting to note that 43-£54, the worst-case
search time for isolating k leaves in a 64-leaf balanced
quaternary tree, is smaller than or equal to 20-¢8*, the
worst-case search time for isolating k leaves in a 64-
leaf balanced binary tree, for all k in [2,64]. Thus,
better algorithmic efficiency is achieved with a 64-leaf
balanced quaternary tree than with a 64-leaf balanced
binary tree. More generally, optimal m is derived from
the general expression of &f.

4.2 Problem Ps

‘P,: Express a computable tight upper bound on
worst-case searches over multiple consecutive t-leaf
balanced m-ary trees.

To solve P, we use the £ asymptotic function of
the ¢! function. P, can be re-written as the following
optimization problem:



{&, +---+¢&. ), (16)
ki+-+ky =u,
(kla---akv) € [27t]U'

Maximize

where u is the number of messages to be transmit-
ted over v consecutive t-leaf balanced m-ary trees.

We know that, by construction, the & function is
a tight upper bound on the ¢ function. Hence,

{&.+ -+, (D
kit - ko = u,
(klr--;kv) € [27t]U'

Max  {& + +¢ } <Max
kyt - ko = u,
(klr--;kv) € [27t]U'

In [22], we prove that:

Max  {& +-+,} = vél), =&~
kit -k, =u, m
(klr--;kv) € [27t]U'

v—1

- (18)

Therefore, £’ — 2=L is the solution to P, given

that Eq. 17 and Eq. 18 yield the following:

N ~1
Max  {gh+-+¢,} < & - ——
kit -k, =u, e
(klr--;kv) € [27t]U'

(19)

4.3 Feasibility Conditions

Our goal is to express a computable function, called
Bppcor(si,msg), an upper bound on successful trans-
mission latency for any given message msg processed
by any source s;,1 € [1, z].

Let ¥ be the nominal physical throughput of the
communication medium considered (e.g., 10? bit/s for
Gigabit Ethernet). Observe that, for any message
msg, l(msg) is the bit length of a Data Link - Pro-
tocol Data Unit, which is encapsulated into a Phys-
ical - Protocol Data Unit (Ph-PDU). The physical
framing and signalling overhead incurred at the phys-
ical layer translates into an actual Ph-PDU bit length
I'(msg) > l(msg).

Let us consider some message M generated by some
source s;. Recall that T'(M) is the arrival time of M
and d(M) is its relative deadline. Let I(M) be inter-
val [T(M),T(M) + d(M)). Establishing worst-case
conditions for M implies expressing two functions:

e 7(M), an upper bound on the ranking of M in
queue (;; in other words, 7(M) — 1 is an up-
per bound on the number of messages of subset
M SG; that will be serviced by source s; over any
interval I(M) before M is successfully transmit-
ted,

e u(M), an upper bound on the number of mes-
sages that will be transmitted by all sources over
any time interval I(M).

These bounds need be established assuming peak-
load (i.e., worst-case) conditions, i.e., assuming that
all message arrivals occur at their bounded densities
over I(M).

Bound (M)

Bound r(M) is easily established by observing that
source s; can service a message msg before servicing
M only if msg has arrived no sooner than T'(M) —
d(msg) and no later than T'(M) +d(M) — d(msg). It
follows that:

Bound u(M)

Bound u(M) is easily established by observing that
a source may service a message msg over interval
I(M) only if msg has arrived no sooner than T'(M) —
d(msg) and no later than T (M) + d(M) — ﬂl/}ﬂl It
follows that:

u(M) = Z wm) v a(m).

meMSG

We can now compute v(M), an upper bound on
the number of static trees that need be searched to
transmit message M ranked 7(M)™" in s;’s waiting
queue. Given that v; indices are used by source s; to
conduct a complete static m-ary tree search STs (see
end of section 3), it follows that:

g =1s [ 700].

Vi

Upper bound Bppcr(si, M) is equal to the sum
of:

e the time needed to physically transmit w(M)
messages at throughput v,

e the upper bounds on worst-case search times for
isolating;:

— u(M) messages over v(M) consecutive
static tree searches; this is obtained by ap-
plying the solution to problem P» (cf. sec-
tion 4.2)

— v(M) time tree leaves over interval I(M). It
is known (verification is obvious) that having



2 active leaves per (time) tree is the worst-
case assignment. Hence, worst-case search
will be conducted over [v(M)/2] consecu-
tive time trees.

That is: Bppcr(si, M) =

d(M) + d(m) — L m
5 (”wim; )M 1,

meMSG

~"

physical transmission time
for the u(M) messages
at throughput ¢

with: ~
S=v(M)E ppy oy + [0M)/21 85

v

81 82
S1: upper bound on worst-case search times for
isolating u(M) messages over v(M) consecutive static
trees.
Sa: upper bound on worst-case search times for iso-

lating v(M) time tree leaves over [v(M)/2] consecu-
tive time trees.

Hence, feasibility conditions are as follows:

Vs, @ € [].,Z], VM € MSG;, BDDCR(SiaM) < d(M)

5 Applicability of the CSMA/DDCR
Protocol

As defined by the IEEE 802.3z standard Work-
ing Group, half duplex Gigabit Ethernet retains the
CSMA-CD protocol, the 802.3 and Ethernet frame
format, and the 802.3 flow control and managed ob-
ject specifications [23]. By exercising packet burst-
ing, a source may transmit the first & messages (EDF
ranked) waiting in Q, k¥ > 1, without relinquishing
channel control, for up to 512 bytes at most. This
will entail much less deadline inversions than those
resulting from using deadline equivalence classes. It
is indeed very uncommon for users to define message
deadlines with an accuracy smaller than 4.096 mi-
croseconds. Therefore, CSMA /DDCR is fully compat-
ible with the half duplex Gigabit Ethernet standard.
Similarly, CSMA/DDCR is fully compatible with the
emerging CATV Protocol standard (IEEE 802.14), no-
tably with tree-based algorithms [24].

IEEE 802.1Q specifies explicit priorities in 802 net-
work packet headers. With those real-time appli-
cations we consider, Classes-of-Service are naturally

defined via task deadlines D, transformed into mes-
sage deadlines d, which can be passed on to the
CSMA /DDCR layer via the standard conformant pri-
ority field. Furthermore, IEEE 802.1p specifies the use
of priority queuing mechanisms, which paves the way
for local EDF queue schedulers.

The fact that standard committees have somewhat
recently started paying attention to QoS/CoS consid-
erations is good news to end users and to researchers.
In the 80’s, we succeeded in transferring an STs-
like protocol - called 802.3D or CSMA/DCR [25] -
to French customers (e.g., the French Navy) as well
as to French system developers/integrators (e.g., Das-
sault Electronique and APTOR, a CAP-SESA Indus-
trie subsidiary), which have deployed CSMA/DCR-
based single and dual bus Ethernets for such various
applications as discrete/continuous manufacturing or
local area networking (e.g., across the Ariane launch-
pad in Kourou). Transferring a TTs-like protocol was
unthinkable at that time, because of lack of compat-
ibility with existing standards. This is not the case
any longer.

Similarly, ATM cells can be prioritized. Many pri-
ority based schemes have been proposed (see [26] for
an example). Again, in our case, message deadlines
would serve as priorities.

6 Conclusions

Novel real-time applications require high-
performance real-time distributed systems, and
therefore high-performance real-time networks. We
have specified a Hard Real-Time Distributed Mul-
tiaccess problem which arises with such application
problems. We have presented a solution, based on
broadcast LANs or busses, such as Gigabit Ether-
nets and busses internal to ATM nodes, associated
with a deterministic Ethernet-like protocol called
CSMA /Deadline Driven Collision Resolution. This
protocol has been informally described. We have
given an analysis of balanced m-ary tree algorithms
which are used by CSMA/DDCR, and have derived
feasibility conditions for the HRTDM problem.
Hopefully, the solution presented as well as the
feasibility conditions can be useful to those in charge
of developing COTS products aimed at supporting
novel real-time high-performance applications.
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