
The Distributed Computing Scene Seen From La Seine

Gérard Le Lann
INRIA Rocquencourt, France

Gerard.Le_Lann@inria.fr

Abstract

In this short position paper, I summarize my vision

of how the past 25 years of research in distributed
computing were started in the early 70’s, and then
developed, having spent the first part of this quarter
century in the USA, and the other part in France. In
addition to the names that appear in this short
summary, there are many other names of great
scientists I have been interacting with, which I would
have liked to mention. May they be assured that they
are not forgotten.

1. The past and the present

I became addicted to research work in distributed
computing when at Stanford University, 1973-1974.

At that time, distributed computing meant
“computer networking”, i.e. explicit process/processor
communications and interactions only. In the Digital
Systems Laboratory, under the lead of Professor Vint
Cerf, we were having fun with this new thing called the
Arpanet.

As a contributor to the design of what became
known as the TCP protocol, I realized how “risky” it is
to use physical time for enforcing logical safety
properties in distributed systems. The sliding window
protocol, at the core of TCP, was one of the early
algorithms solving a distributed synchronization
problem in a partially synchronous computational
model.

At about the same time, not too far away from the
Stanford campus, Xerox Park was prototyping a
revolutionary local area networking technology, the
Ethernet, solving a distributed unitary (a single
resource) concurrency control problem out of a mutual
exclusion algorithm based upon probabilistic tree
search, also considering a partially synchronous
computational model. As convincing as Bob Metcalfe
could be regarding the virtues of Ethernet, I resisted
the temptation of taking advantage of a “magic”

hardware-provided mechanism to solve “high-level”
distributed computing problems. Tolerance to failures
was also a concern.

A more fundamental and disturbing question was a
real challenge in the mid 70’s: What makes a system
“distributed” (rather than “centralized”)? Gradually, it
became clear that the very distinguishing feature of
“distribution” is the impossibility of assuming
“natural” or cost-free knowledge of global system
states.

The inception of the virtual ring & circulating token
algorithm (1977) resulted from these considerations.
Shortly after, the organizers of the 1st ICDCS
Conference, Doug Jensen in particular, invited me to
be the International Liaison Chairman. Huntsville,
Alabama, 1979: the starting point of a very successful
Conference series, which was taken to some
unexpected “heights” in 1990 in Paris, when ICDCS
was organized by INRIA, with the cocktail party given
at the Eiffel Tower!

In the late 70’s—early 80’s, the writings which had
the strongest influence on my research work were
those from Leslie Lamport and Nancy Lynch, pioneers
in the area of distributed fault-tolerant algorithms, from
Robert Thomas (Bolt Beranek & Newman), Philip
Bernstein and Nathan Goodman (Computer Corp. of
America), pioneers in the area of distributed and
replicated databases.

Along with the well known papers from L.
Lamport, from N. Lynch, on clocks, event orderings,
time bounds in the presence of uncertainty, mutual
exclusion, impossibility proofs, I consider the 1987
book by P. Bernstein, V. Hadzilacos and N. Goodman
on concurrency control and the serializability theory as
one of the major milestones in the history of
distributed computing.

Another major piece of work which I found very
impressive in the early 80’s, not very much publicized
in the distributed computing scientific community, is
the design of the GPS system, the first man-made
(distributed) system designed after the principles of
relativistic physics.

Since the late 80’s, we have witnessed a flurry of
results regarding optimality and impossibility proofs
for generic problems in distributed fault-tolerance, for
various computational models, ranging from pure
synchrony to pure asynchrony.

Group membership, leader election, exact
consensus, approximate agreement, are well known
examples of such generic problems. I personally regard
as an essential research axis the quest for
computational models that are “as close as possible” to
pure asynchrony, for obvious theoretical reasons, but
also for very pragmatic reasons, since the coverage of
systems—i.e. how “trustable” systems are when being
in use—increases with the inverse of the distance
between a system design model and the pure
asynchronous model, for given performance and
efficiency figures.

A very significant step in that direction was made
by Tushar Chandra and Sam Toueg, when they
published their work on unreliable failure detectors, in
the mid 90’s. They were the first researchers who saw
how to augment the pure asynchronous model of
computation with some time-free semantics sufficient
for circumventing the famous Fisher-Lynch-Paterson
impossibility result (1983).

Since then, an impressive number of results have
been established with and for distributed algorithms
(e.g., consensus, atomic broadcast, atomic commit), for
various failure semantics, ranging from the “least
aggressive” (permanent crash) to the “most aggressive”
(transient unauthenticated Byzantine), based upon
failure detectors or designed for various partially
synchronous models of computation.

A very appealing feature of failure detectors is their
natural potential for fitting “low” levels of abstraction,
making it possible to run distributed algorithms
parallel to failure detectors, which lends itself well to
leveraging standard results in scheduling theory,
leading to new (and improved) optimal worst-case
complexity bounds, as shown in our joint work (with
M. Aguilera and S. Toueg, 2000) on fast failure
detectors.

That a distributed system is not “flat”, that
schedulers used at various abstraction/implementation
levels may “favor” some processes/messages against
others, and that this results into different end-to-end
delays for different levels, is something not very well
exploited yet.

Since the late 90’s, we have been witnessing the
emergence of time-free semantics (aimed at
augmenting the pure asynchronous model) based upon
“relativistic” assumptions regarding end-to-end
message passing and processing delays, rather than
absolute lower/upper delay bounds. Our current work

(with U. Schmid, Vienna University of Technology) is
an example of such “relativistic” approaches.

The main motivation for these types of time-free
semantics lies with their ability to maintain logical
safety properties in the presence of violations of
postulated upper bounds on delays.

It is speculated that these types of semantics will
flourish, since they match quite well the uncertainty
which is germane to many distributed system settings,
such as, e.g., continent-wide dispersion of publicly
accessed services, peer-to-peer applications, highly
mobile and wireless systems, groups of anonymous
members, deep space missions, safety/life-critical
embedded applications and systems.

Besides the above mentioned topics, a number of

other important novel “branches” of distributed
computing have emerged over the past 25 years, such
as linearizability, self-stabilization, routing in ad hoc
wireless networks, languages (e.g., TLA, I/O automata)
and tools for formal specifications and formal
validation/verification, to name a few.

2. The future

Looking backwards helps in identifying what we
should do better in the future.

It appears there is a need for the distributed
computing community to be more proactive in
explaining and transferring the theoretical and applied
research results to the real world.

How many failures of deployed distributed systems
are due to design faults that could be avoided if the
basic state-of-the-art in distributed computing would
be more widespread and practiced than it currently is?

There seems to be two major tracks for the future of
“classical” distributed computing, which are as
follows:

-- A scientific track, where the many open problems
that belong to the intersecting set of real-time
computing (scheduling theory, queuing theory) and
fault-tolerant distributed computing would be
addressed. Complexity bounds, optimality proofs,
proofs of timeliness, in the presence of concurrency,
mobility, and failures, are not very common yet. That
scheduling theory may influence the way problems in
distributed computing are specified and resolved—and
vice-versa—is not sufficiently well understood. There
is not even an agreement on whether timeliness proofs
(e.g., bounds on response times) boil down to logical
safety proofs (a viewpoint backed by some fraction of
the distributed computing community) or whether they
can only result from solving problems in combinatorial
analysis (a viewpoint backed the real-time computing

community). How useful is it to mix up “real-time”
with “synchrony assumptions”? From a more general
standpoint, there is a need for considering generic
integrated problems in distributed computing, not just
one problem in isolation from others. How useful is it
to ignore concurrency and failures, when addressing a
distributed scheduling problem? How useful is it to
claim having a solution for a distributed real-time
computing problem while ignoring the existence of
waiting queue phenomena?

-- An engineering track, where new system
engineering lifecycles & processes based upon
continuous chains of proofs, from application
requirements capture to system design & validation,
down to implementation, integrated testing and
fielding, would be defined, increasing significantly the
applicability of scientific achievements.

The future of “non classical” distributed computing
is harder to predict. There are well known trends, such
as, e.g., non von Neumann computers, bio-computing,
fully autonomous systems. Given its wide scope, it is
much more difficult to state a grand challenge for
distributed computing than it is for, e.g., formal
software methods. What could be, in our area, the
counterpart of “The Verifying Compiler: A Grand
Challenge for Computing Research” (≈ 1000 man-
years of research effort, spread over 10 years or more),
as defined by Tony Hoare, Journal of the ACM,
January 2003?

However, given the impressive increase of the
number of papers submitted to the ICDCS
Conferences, we should feel confident that the future
of the distributed computing field, be it the “non
classical” or the “classical” type, is quite bright.

