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Abstract 

 
In this short position paper, I summarize my vision 

of how the past 25 years of research in distributed 
computing were started in the early 70’s, and then 
developed, having spent the first part of this quarter 
century in the USA, and the other part in France. In 
addition to the names that appear in this short 
summary, there are many other names of great 
scientists I have been interacting with, which I would 
have liked to mention. May they be assured that they 
are not forgotten. 

 
 
1. The past and the present 
 

I became addicted to research work in distributed 
computing when at Stanford University, 1973-1974. 

At that time, distributed computing meant 
“computer networking”, i.e. explicit process/processor 
communications and interactions only. In the Digital 
Systems Laboratory, under the lead of Professor Vint 
Cerf, we were having fun with this new thing called the 
Arpanet.  

As a contributor to the design of what became 
known as the TCP protocol, I realized how “risky” it is 
to use physical time for enforcing logical safety 
properties in distributed systems. The sliding window 
protocol, at the core of TCP, was one of the early 
algorithms solving a distributed synchronization 
problem in a partially synchronous computational 
model. 

At about the same time, not too far away from the 
Stanford campus, Xerox Park was prototyping a 
revolutionary local area networking technology, the 
Ethernet, solving a distributed unitary (a single 
resource) concurrency control problem out of a mutual 
exclusion algorithm based upon probabilistic tree 
search, also considering a partially synchronous 
computational model. As convincing as Bob Metcalfe 
could be regarding the virtues of Ethernet, I resisted 
the temptation of taking advantage of a “magic” 

hardware-provided mechanism to solve “high-level” 
distributed computing problems. Tolerance to failures 
was also a concern.  

A more fundamental and disturbing question was a 
real challenge in the mid 70’s: What makes a system 
“distributed” (rather than “centralized”)? Gradually, it 
became clear that the very distinguishing feature of 
“distribution” is the impossibility of assuming 
“natural” or cost-free knowledge of global system 
states. 

The inception of the virtual ring & circulating token 
algorithm (1977) resulted from these considerations.  
Shortly after, the organizers of the 1st ICDCS 
Conference, Doug Jensen in particular, invited me to 
be the International Liaison Chairman. Huntsville, 
Alabama, 1979: the starting point of a very successful 
Conference series, which was taken to some 
unexpected “heights” in 1990 in Paris, when ICDCS 
was organized by INRIA, with the cocktail party given 
at the Eiffel Tower! 

In the late 70’s—early 80’s, the writings which had 
the strongest influence on my research work were 
those from Leslie Lamport and Nancy Lynch, pioneers 
in the area of distributed fault-tolerant algorithms, from 
Robert Thomas (Bolt Beranek & Newman), Philip 
Bernstein and Nathan Goodman (Computer Corp. of 
America), pioneers in the area of distributed and 
replicated databases.  

Along with the well known papers from L. 
Lamport, from N. Lynch, on clocks, event orderings, 
time bounds in the presence of uncertainty, mutual 
exclusion, impossibility proofs, I consider the 1987 
book by P. Bernstein, V. Hadzilacos and N. Goodman 
on concurrency control and the serializability theory as 
one of the major milestones in the history of 
distributed computing.  

Another major piece of work which I found very 
impressive in the early 80’s, not very much publicized 
in the distributed computing scientific community, is 
the design of the GPS system, the first man-made 
(distributed) system designed after the principles of 
relativistic physics. 



Since the late 80’s, we have witnessed a flurry of 
results regarding optimality and impossibility proofs 
for generic problems in distributed fault-tolerance, for 
various computational models, ranging from pure 
synchrony to pure asynchrony.  

Group membership, leader election, exact 
consensus, approximate agreement, are well known 
examples of such generic problems. I personally regard 
as an essential research axis the quest for 
computational models that are “as close as possible” to 
pure asynchrony, for obvious theoretical reasons, but 
also for very pragmatic reasons, since the coverage of 
systems—i.e. how “trustable” systems are when being 
in use—increases with the inverse of the distance 
between a system design model and the pure 
asynchronous model, for given performance and 
efficiency figures. 

A very significant step in that direction was made 
by Tushar Chandra and Sam Toueg, when they 
published their work on unreliable failure detectors, in 
the mid 90’s. They were the first researchers who saw 
how to augment the pure asynchronous model of 
computation with some time-free semantics sufficient 
for circumventing the famous Fisher-Lynch-Paterson 
impossibility result (1983).  

Since then, an impressive number of results have 
been established with and for distributed algorithms 
(e.g., consensus, atomic broadcast, atomic commit), for 
various failure semantics, ranging from the “least 
aggressive” (permanent crash) to the “most aggressive” 
(transient unauthenticated Byzantine), based upon 
failure detectors or designed for various partially 
synchronous models of computation.  

A very appealing feature of failure detectors is their 
natural potential for fitting “low” levels of abstraction, 
making it possible to run distributed algorithms 
parallel to failure detectors, which lends itself well to 
leveraging standard results in scheduling theory, 
leading to new (and improved) optimal worst-case 
complexity bounds, as shown in our joint work (with 
M. Aguilera and S. Toueg, 2000) on fast failure 
detectors.  

That a distributed system is not “flat”, that 
schedulers used at various abstraction/implementation 
levels may “favor” some processes/messages against 
others, and that this results into different end-to-end 
delays for different levels, is something not very well 
exploited yet. 

Since the late 90’s, we have been witnessing the 
emergence of time-free semantics (aimed at 
augmenting the pure asynchronous model) based upon 
“relativistic” assumptions regarding end-to-end 
message passing and processing delays, rather than 
absolute lower/upper delay bounds. Our current work 

(with U. Schmid, Vienna University of Technology) is 
an example of such “relativistic” approaches.  

The main motivation for these types of time-free 
semantics lies with their ability to maintain logical 
safety properties in the presence of violations of 
postulated upper bounds on delays.  

It is speculated that these types of semantics will 
flourish, since they match quite well the uncertainty 
which is germane to many distributed system settings, 
such as, e.g., continent-wide dispersion of publicly 
accessed services, peer-to-peer applications, highly 
mobile and wireless systems, groups of anonymous 
members, deep space missions, safety/life-critical 
embedded applications and systems. 

 
Besides the above mentioned topics, a number of 

other important novel “branches” of distributed 
computing have emerged over the past 25 years, such 
as linearizability, self-stabilization, routing in ad hoc 
wireless networks, languages (e.g., TLA, I/O automata) 
and tools for formal specifications and formal 
validation/verification, to name a few.  

 
2. The future 
 

Looking backwards helps in identifying what we 
should do better in the future.  

It appears there is a need for the distributed 
computing community to be more proactive in 
explaining and transferring the theoretical and applied 
research results to the real world.  

How many failures of deployed distributed systems 
are due to design faults that could be avoided if the 
basic state-of-the-art in distributed computing would 
be more widespread and practiced than it currently is?  

There seems to be two major tracks for the future of 
“classical” distributed computing, which are as 
follows: 

-- A scientific track, where the many open problems 
that belong to the intersecting set of real-time 
computing (scheduling theory, queuing theory) and 
fault-tolerant distributed computing would be 
addressed. Complexity bounds, optimality proofs, 
proofs of timeliness, in the presence of concurrency, 
mobility, and failures, are not very common yet. That 
scheduling theory may influence the way problems in 
distributed computing are specified and resolved—and 
vice-versa—is not sufficiently well understood. There 
is not even an agreement on whether timeliness proofs 
(e.g., bounds on response times) boil down to logical 
safety proofs (a viewpoint backed by some fraction of 
the distributed computing community) or whether they 
can only result from solving problems in combinatorial 
analysis (a viewpoint backed the real-time computing 



community). How useful is it to mix up “real-time” 
with “synchrony assumptions”? From a more general 
standpoint, there is a need for considering generic 
integrated problems in distributed computing, not just 
one problem in isolation from others. How useful is it 
to ignore concurrency and failures, when addressing a 
distributed scheduling problem? How useful is it to 
claim having a solution for a distributed real-time 
computing problem while ignoring the existence of 
waiting queue phenomena? 

-- An engineering track, where new system 
engineering lifecycles & processes based upon 
continuous chains of proofs, from application 
requirements capture to system design & validation, 
down to implementation, integrated testing and 
fielding, would be defined, increasing significantly the 
applicability of scientific achievements.  

 

The future of “non classical” distributed computing 
is harder to predict. There are well known trends, such 
as, e.g., non von Neumann computers, bio-computing, 
fully autonomous systems. Given its wide scope, it is 
much more difficult to state a grand challenge for 
distributed computing than it is for, e.g., formal 
software methods. What could be, in our area, the 
counterpart of “The Verifying Compiler: A Grand 
Challenge for Computing Research” (≈ 1000 man-
years of research effort, spread over 10 years or more), 
as defined by Tony Hoare, Journal of the ACM, 
January 2003? 

However, given the impressive increase of the 
number of papers submitted to the ICDCS 
Conferences, we should feel confident that the future 
of the distributed computing field, be it the “non 
classical” or the “classical” type, is quite bright.  

 
 


