
Abstract

The need for drastic reductions in budgeting and du-
rations of projects that involve computer-based sys-
tems, as well as the increasing pressure to field
systems that function satisfactorily, have fostered the
need for more rigorous system engineering methods.
Via case studies, we report on why models and
proofs, which are at the core of emerging methods,
are indeed instrumental in slashing costs, by avoiding
project setbacks, operational mishaps or failures, and
by permitting correct diagnoses when necessary. The
perspectives offered by such methods help to under-
stand better what is missing with existing COTS
products, as well as what is the borderline between
software engineering and system engineering.

INTRODUCTION

As is the case with mature engineering disciplines, the
engineering of computer-based systems (CBSs) is
bound to be based on models and proofs. Models and
proofs are needed to provide ourselves with generic,
understandable, repeatable processes. Models and
proofs are instrumental in avoiding system engineer-
ing faults: A design and/or a physical dimensioning of
a CBS can be proven correct, before construction or
fielding is undertaken. This results in huge savings in
project durations and system development and main-
tenance costs, as well as in higher levels of confi-
dence into deployed systems, given that, according to
recent studies, lack of rigor in SE methods or process-
es has seemingly become the major source of prob-
lems.

First, we briefly introduce those basic features of
proof-based system engineering (SE) that are needed
to report on case studies. Then, issues raised with
COTS technology are put into perspective. Finally,
we explore whether blaming “the software” whenever
a problem arises is a surrogate for more serious anal-
yses. Could it be that many “S/W problems” and the
so-called S/W crisis would be (very much?) due to
lack of rigor in SE methods/processes?

WHAT IS PROOF-BASED SE

For a detailed presentation of the basic principles of
proof-based SE as well as the real problems that have
been addressed over the last 4 years with the TRDF
method, we refer the reader to (LL98).

Notation <N> (respectively, [N]) refers to a specifica-
tion of a problem (resp., a solution). A specification is
a self-contained and unambiguous set of statements,
expressed in some human language, or via some for-
malized notation, or in some formal language. A
problem, a solution, includes a set of requirements,
i.e. properties, and a set of assumptions, i.e. models.
Therefore, <N> is pair {<m.N>, <p.N>}, where m
stands for models and p stands for properties. A spec-
ification usually contains variables, some of which
are assigned a (range of) numerical value(s), while
others are left unvalued. Notation <n> (resp., [n]) re-
fers to the specification that contains those variables
of <N> (resp., [N]) that are left unvalued.

The essential goal of proof-based SE is as follows:
starting from AP, some initial and informal descrip-
tion of end users/customers application requirements
and assumptions (e.g., an invitation-to-tender), to
produce <AP>, a specification of the application
problem under consideration, <X>, a specification of
the computer science problem that matches <AP>,
[S], a global, modular specification of a CBS, along
with the proofs that [S] does solve problem <X>.

Proof-based SE builds upon Computer Science and
model-based SE - see, e.g., (L97), (SRMB98),
(SK97). Examples of models and properties, with
well defined semantics, that are commonly consid-
ered with CBSs - some being used in the sequel - are
given in the Appendix. Note that many of the models
involved with the engineering of CBSs are not usually
considered in S/W Engineering.

Phases of a project life-cycle which fall within the
scope of proof-based SE, and which precede phases
covered by other Engineering disciplines (e.g., S/W
Engineering), are now surveyed and illustrated.

Models, Proofs and the Engineering of Computer-
Based Systems: A Reality Check

Gérard Le Lann
INRIA - BP 105 - 78153 Le Chesnay Cedex, France

Internet: Gerard.Le_Lann@inria.fr



CAPTURE OF AN APPLICATION PROBLEM
AP ➡ <AP> ➡ <X>

A capture phase serves to translate AP into <AP> and
<X>. This is done by resorting to properties (resp.,
models) in order to specify what is commonly called
requirements (resp., environmental assumptions).

An example in Modular Avionics
Below is an excerpt from specifications we have es-
tablished for and with Dassault Aviation, within the
framework of a DGA/DSP (French DARPA) project,
related to the NATO Allied Standard Avionics Archi-
tecture Council program.

AP: Set of functions. Pilot functions U, Y and Z are
critical. Environment is aggressive (details given).

<p.AP>: At all times, functions U, Y and Z must be
executable and must terminate within prescribed time
bounds. Time bound for function Y is known. Time
bounds for other functions: TBD (to-be-defined).

<m.AP>: Processors can fail (number of failures
without repair is TBD). External events (via sensors)
that trigger function Y or Z occur according to un-
known laws (TBD). External events that trigger func-
tion U are sampled periodically, period is known.

<p.X>: Timeliness property required for U, Y and Z
is termination within a strict deadline. Respective
deadlines, relative to (unknown) times of request for
activation, are dU , 1 ms, dZ. Absolute availability is
the dependability property required for U, Y and Z.

<m.X>: Up to f processors can fail, according to the
stop failure model. Model for external events that
trigger function Y (resp. Z) is the unimodal arbitrary
arrival model, with parameters {w, arr, sp}Y (resp.
{w, arr, sp}Z). Model for external events that trigger
function U is the periodic model, period = 20 ms.

<p.x>: dU , dZ,
<m.x>: f, {w, arr, sp}Y , {w, arr, sp}Z.

Note: It was also required that there should be no re-
striction w.r.t. programming models or CBS config-
urability, which raises serializability issues.

An example with the Ariane program
This example is related to the European Ariane pro-
gram (satellite launchers). Some analyses of the fail-
ure of Ariane 5 flight 501 (ESA96) conclude that the
failure has been caused by S/W Engineering errors, in

line with the Inquiry Board findings. Other analyses,
including ours (LL96), (LL97), establish that the fail-
ure was caused by SE faults. See (RISKS) and (SCS)
for contributions and discussions on this topic, as well
as the subsection on “The failure of Ariane 4.5”. In
this paper, we give a detailed, albeit incomplete, pre-
sentation of what could have (and what has) been
done. A correct capture would have led to the follow-
ing specifications:

<m.X> (excerpt):
◆ EXT = set of external variables, i.e. variables shared
between the CBS and other launcher subsystems. (For
example, launcher horizontal velocity HV is in EXT).
◆ For every variable var in EXT, R(var) is the range
of possible values.
◆ For every operational mode, which set of functions
need be invoked. (For instance, functions needed/not
needed after lift-off are listed).
◆ Every function, considered in isolation from the
others, satisfies global invariants I (consistency con-
straints) defined over values of mission-dependent
variables and variables in EXT. (For instance, values
taken by variable “nominal trajectory” and by HV are
not independent).
◆ Processors can fail according to the stop model.

<p.X> (excerpt):
◆ Serializability: Any concurrent activation of any
number of functions should satisfy invariants I.
◆ Timeliness: For every event ev that updates a vari-
able in EXT, latency between occurrence of ev (sen-
sors reading) and elaboration of related outputs
(actuators command) is upperly bounded.
◆ Availability/reliability of the CBS must be higher
than 1 - 10-α, α > 0 known.

<m.x> (excerpt):
◆ R(HV).
◆ Boolean “alignment function” AF. AF = true means
that alignment of the inertial platform must be opera-
tive after lift-off (false otherwise).
◆ Set of invariants I.

<p.x> (excerpt):
◆ Deadlines d(ev1), d(ev2),...

A capture phase involves iterative customer/provider
interactions. It is efficient to proceed by identifying
generic problems and subproblems, and by reusing
corresponding generic specifications (J_REQ). Set
{<AP>, <ap>, <X>, <x>} is the technical contract es-
tablished between a customer and a CBS provider.



SYSTEM DESIGN
<X> ➡ { [S], [DTool]}

This phase, which is under the responsibility of the
CBS provider, has <X> as an input, and covers all the
design stages needed to arrive at [S], a modular and
partially valued specification of a CBS, the comple-
tion of each design stage being conditioned on fulfill-
ing design correctness proof obligations (LL98).
Proofs are established by resorting to models such as
those shown in the Appendix, to algorithms, proto-
cols, and appropriate reasoning techniques - see, e.g.,
(L96) - or such disciplines as Game, Decision or
Scheduling theories.

A system design phase has a tree structure. At every
node, starting from root problem <X>, rewritten
<X1>, the problem under consideration is decom-
posed into independent subproblems. The design
stage corresponding to tree node problem r of depth k
- denoted <Xk,r> - is completed when:
- a global design (i.e. a solution) has been specified
for the modular decomposition considered,
- proofs are given that this design endows the modular
decomposition with global properties that are at least
those specified in <p.Xk,r>, for assumptions that are
at least those specified in <m.Xk,r>.

Let [Si] be leaf i of a z-leaf design tree. Specification
[si] contains those unvalued variables that appear in
[Si]. Among variables found in [s], the union of the
[si]’s, one finds variables whose values directly de-
pend on values assigned to variables found in <x>.
For example, in the Ariane case, [s] should contain
Q(BH), the buffering size needed to store the values
of horizontal bias BH, which depends on R(HV). Oth-
er variables found in [s] are those that appear in the
design proofs, such as timers, processors speeds,
number of processors, sizes of waiting queues.

One stops designing along a branch whenever the
specification [Si] arrived at is known to be imple-
mentable (e.g., via some cost-effective COTS tech-
nology, or as a customized H/W and/or S/W module
- see the “COTS products issues” subsection). By the
virtue of the uninterrupted tree of proofs that every
design is correct, [S], the union of design tree leaves
[Si], i ∈ [1, z], provably solves initial problem <X>.

Proof-based SE eliminates the staggering complexity
that inevitably plagues system verification and inte-
gration testing under current SE practices. Proofs en-
tail establishing behavioral functions such as upper

bounds on response times (B), lower bounds on re-
dundancy degrees, and so on. Such functions serve to
establish feasibility conditions (FCs) - a set of analyt-
ical constraints - under which it is guaranteed that
properties <p.X> hold true, provided that the models
are not violated. FCs delineate a set of scenarios that
necessarily contains every possible worst-case sce-
nario that can be deployed by “adversary” <m.X>.
Establishing FCs does away with the need to explore
exhaustively (if at all feasible) all possible future sys-
tem states. This is how one eliminates the “state space
explosion” problem commonly encountered with ex-
isting rigorous or formal S/W Engineering methods.
FCs serve to specify a Dimensioning Tool for [S],
noted DTool. In contrast with event-driven simula-
tion, whereby expected values and standard devia-
tions are estimated over large samples of simulated
runs, DTool checks worst-case scenarios determinis-
tically, and computes guaranteed bounds (such as B).

An example in Modular Avionics
The solution that we have specified and that has been
implemented by Dassault Aviation (CHLL99) is
based on a distributed client-server architecture, un-
der the control of a combination of real-time schedul-
ing, fault detection-and-recovery, and distributed
consensus algorithms. We had to prove the worst-
case scenarios (“concentration” of event arrivals and
processor failures). That was the most difficult part.
Contrary to “traditional” scheduling (e.g., the Rate-
Monotonic or the Time-Triggered approaches), tasks
are modeled as graphs (i.e. with internal dependen-
cies) and the event arrival model that was selected by
Dassault Aviation is the unimodal arbitrary model.
The high degree of genericity/portability embodied
within such models complicates the proof exercise.
For instance, traditional schedulability reasoning falls
apart, partly because there is no commutativity prop-
erty with graphs (w.r.t. processor busy periods).

Having established functions BU, BY and BZ, those
FCs under which deadlines dU, dY and dZ are always
met are simply obtained by writing the following:

BU < dU BY < 1 ms BZ < dZ .

An example with Ariane 5/flight 501
One of the design faults is as follows. The prime con-
tractor has split initial problem <X1> into a number of
subproblems, considering a modular decomposition
that included, among others, the Inertial Reference
System (SRI) module (problem <X2,sri>) and the On-
Board Computer (OBC) module (problem <X2,obc>).
Analysis of design stages 1 and 2 reveals that the pro-



cessor stop failure model that had to appear in
<m.X2,sri> has been violated during flight 501. Rather
than “committing suicide” when they diagnosed an
error (value of BH higher than implicitly assumed),
SRI processors sent an error message to OBC proces-
sors, which was interpreted as correct flight data,
which led to the failure.

We will not discuss here whether specification
<m.X2,sri> did state or, respectively, did not state the
stop failure model. In other words, we will not discuss
whether that design fault has been made by the con-
tractor in charge of the SRI module or, respectively,
by the prime contractor.

Design correctness proofs would have revealed the
inconsistency, which would have led someone to
question the underlying assumption that there is no
common mode failure (of the SRI module).

COTS products issues
A design phase can also be conducted bottom-up, the
case whenever COTS or customized products must be
reused, such as, e.g., those which minimize cost and
risk criteria. Knowing ahead of design time that spe-
cific products must be part of a CBS is tantamount to
“freezing” some of the design tree leaves a priori.
Correctness proof obligations still apply. FCs are
needed as well (see Mars PathFinder mishaps).

Imagine that every COTS product of interest would
be accompanied with a specification [Si], along with
FCs, or with the specification of which problem <Xi>
this product solves. It would then be trivial to decide
whether a COTS product can be part of a global de-
sign solution. Why should the Systems Engineering
community keep bearing the burden of “looking in-
side” COTS boxes, of exercising them, and the like,
in order to infer such specifications? This work is un-
der the responsibility of COTS technology vendors.

Specifications akin to [Si] , FCs or <Xi> are available
with refrigerators. Why not with real-time monitors
or middleware? Success with projects involving com-
plex and/or critical CBSs partially or fully built out of
COTS products will keep resting on heroic efforts and
luck - not a very exciting perspective - until the Sys-
tems Engineering community makes it clear to the
COTS vendors that they must change their habits and
make contractual commitments on such specifica-
tions as {[Si], [si]}, or FCs, or {<Xi>, <xi>}, correct-
ness proofs being disclosed or not, which has
significant legal and commercial implications.

SYSTEM DIMENSIONING

Before an implementation can be undertaken, or fi-
nalized in cases where existing modules are reused,
the physical dimensioning of every module must be
specified. This entails finding a correct valuation
V([s]) for those variables that appear in [s], the spec-
ification that contains those variables of [S] left un-
valued. Of course, V([s]) must match V(<x>), a
customer provided valuation of problem <X>. Many
different quantifications V(<x>) may be contemplat-
ed by a customer or a prime contractor, for various
CBS releases, without invalidating design work.

Finding a correct dimensioning of a CBS is condi-
tioned on fulfilling correctness proof obligations,
which are enforced by DTool, i.e. by checking the
FCs established during a design phase. V(<x>) is an
input to DTool; V([s]) is an output from DTool.

An example in Modular Avionics
In our work, [s] contains such variables as, e.g., t, the
invocation period of the distributed scheduling/con-
sensus algorithm, speed(k), speed of processor k,
Q(k), the size of the task scheduler waiting queue lo-
cal to processor k. V(<p.x>) - resp. V(<m.x>) - serves
to assign numerical values to dU and dZ - resp. to f,
{w, arr, sp}Y , and {w, arr, sp}Z.

By iterating on values of t, of speed(k), and by com-
puting the FCs, DTool either returns a negative an-
swer - meaning V(<x>) is not feasible (given design
[S]) - or declares feasibility, in which case values of t
and speed(k) found to be sufficient are returned, as
well as the highest value attained for each of the
Q(k)’s, i.e. the memory capacity needed to avoid an
overflow of waiting queues. In case different assign-
ments V([s]) meet a given V(<x>), that V([s]) which
minimizes some criterion (e.g., cost) is selected.

Checking whether FCs are met rather than proceeding
with statistical analysis, as is the case with event-driv-
en simulation, has an impact on running times. Per-
formance speed-up ratio of DTool compared to an
event-driven simulator developed by Dassault Avia-
tion is in the order of 25.

An example with the Ariane program
Assuming the capture phase would have been con-
ducted as described previously,and assuming that the
Ariane 4 CBS design and software are reused un-
touched for Ariane 5, the outputs of the respective di-
mensioning phases would have been as shown below.



Recall that the dimensioning of unsigned integer BH,
noted Q(BH), is a known (design-dependent) func-
tion F of the dimensioning of HV, which dimension-
ing is fully and exclusively determined by those space
engineers who had to decide on a particular launcher
technology for Ariane 4 first, and then for Ariane 5
(not a S/W issue). It turns out that Ariane 5’s HV can
be as much as 5 times higher than Ariane 4’s HV.

◆ Ariane 4 (A4)
V(<x>): AF = true, R(HV) = HV4.
V([s]): Q(BH4) = F(HV4) = 15 bits.

◆ Ariane 5 (A5)
V(<x>): AF = false, R(HV) = HV5 ≤ 5 HV4.
(As a consequence, BH5 ≤ 5 BH4).
V([s]): Q(BH5) = F(HV5) = 18 bits.

The 501 failure entailed the destruction of the launch-
er and its satellites, a loss in the order of US$ 700 Mil-
lion, setting to approximately Euro 210 Million the
cost of each missing bit.

An example with Mars PathFinder
System shutdowns that were observed during testing
at NASA/JPL were attributed to obscure H/W glitch-
es, whose occurrence during mission was declared
very much unlikely. That guess was wrong. Neither
Wind River nor JPL felt it necessary to establish Vx-
Works-dependent FCs. Consequently, no dimension-
ing oracle (DTool) was built. Such FCs can be
established - assuming a capture phase has been con-
ducted correctly, given that VxWorks is a real-time
monitor which schedules tasks according to a well
known fixed priority-based algorithm.

Had DTool been built and run before launching the
probe, JPL would have discovered that the 125 ms
bound specified (via V(<p.x>)) for the cycle time of
task bc_dist was violated - violation of this timeliness
property led to the system shutdowns - with option PI
(priority inheritance) turned off.

They could then have found that DTool returns a pos-
itive response when PI is turned on. PI had been arbi-
trarily set to off - without telling the customer -
because Wind River engineers know that this shortens
VxWorks execution time.

PI is an example of a CBS variable that should have
been valued via V([s]). This is an illustration of what
must change, in terms of contractual commitments,
with COTS products.

SUMMARY

{[S], V([s])} is a modular and fully quantified speci-
fication of a CBS that provably solves quantified
problem {<X>, V(<x>)}. Each of these specification
modules can then be implemented as desired, in H/W,
in S/W, or in any appropriate technology. In case
some existing module is reused, its specification must
be checked against the modules of {[S], V([s])},
which are technical contracts established between a
prime contractor and co/subcontractors.

That SE issues must be addressed prior to addressing
S/W Engineering issues is not acknowledged in cer-
tain circles. Yet, it does not help much to check or to
prove S/W design or S/W implementation correctness
for specifications that are incomplete or incorrect in
the first place. Similarly, oversight of SE issues, or
confusion between SE issues and S/W Engineering is-
sues usually leads to projects setbacks, or to opera-
tional mishaps and/or failures, or to erroneous a pos-
teriori diagnoses.

Many analyses and audits, in various areas, demon-
strate that problems often are mistakenly believed to
originate in S/W. Besides the Ariane 5 and the Mars
PathFinder examples, this has been shown to be the
case with, e.g., Therac-25 (LT93), the FAA AAS
project (air traffic control), the US PSTN (K97), the
Danone vs. C case (see further).

A PROBLEM? IT’S THE SOFTWARE!

The failure of Ariane 4.5
An Inquiry Board was formed to identify the cause(s)
of the 501 failure. Their report concludes that causes
are S/W design and S/W implementation errors
(ESA96), a view which is disputed - see (L98) for ex-
ample. In fact, it is almost straightforward to show
that the unique cause of the failure is a SE fault.

The origin of the causal graph that leads to the 501
failure is a fault rooted in the launcher requirements
capture phase. The alignment task was running, de-
spite the fact that realignment of the inertial platform
after lift-off, needed with A4, is useless in the case of
A5. This task contains the conversion procedure that
computes integer BH from HV.

What if someone had had the idea of disallowing the
execution of this task after lift-off? The BH overflow
could not have occurred, and the scenario which has
led to the 501 failure could not have occurred either.



Now the argument. How could this someone know
that this was the right thing to do? Obviously, only by
correctly capturing the problem to be solved by the
A5 CBS, i.e. by specifying the interface between this
particular A5 subsystem and the A5 inertial platform
subsystem - a SE issue (see above). The only way to
do this is by asking an Ariane engineer: “Given A5
technology, do you need to have the strap-down iner-
tial platform aligned after lift-off?”. Only then would
have it been known that boolean AF had to be set to
false. That knowledge, which relates to a specific
launcher technology, is totally independent of the fact
that the thing that, after lift-off, happens to be needed
(A4), or not needed (A5), is implemented in hard-
ware, in software, or in melloware, correctly or incor-
rectly. It has never been the intent of ESA, of CNES,
or Arianespace, to embark on building or operating a
launcher whose technology is A5’s technology and
which needs inertial platform alignment after lift-off,
a fictitious launcher that could be labelled Ariane 4.5,
half-way between A4 and A5. End of the argument.

Therefore, stricto sensu, neither the work invested in
“inspecting the code” and ironing out the “S/W er-
rors” from the alignment task, nor the contributions
(including ours) to the “Is the 501 failure due to S/W
or System Engineering mistakes?” debate, apply to
the Ariane 5 program. They are relevant for this ficti-
tious Ariane 4.5 launcher, that will never be operated,
and whose unique flight is labelled 501. The real
qualification flights of A5 have been (successful)
flights 502 and 503, which were conducted with the
alignment task inhibited after lift-off.

And there is no “S/W error” involved with the design
or the implementation of the alignment task, anyway.
Calling a faulty dimensioning of a memory buffer a
“S/W error” is as misleading as calling the choice of
too slow a processor a “S/W error”. What if the pro-
cedure which correctly computes values of BH had
been correctly implemented in H/W? Flight 501
would have failed as well - unless Q(BH) would have
been correctly dimensioned. However, the Inquiry
Board would have then diagnosed a “H/W design er-
ror”, an equally superficial conclusion.

Expertise required to be a “good” system researcher/
engineer is not the expertise required to be a “good”
S/W researcher/engineer (and vice-versa). There is a
particularly striking illustration of the above in the
Board report. The Board found that "there isconsid-
erable redundancy at the equipment level" (p. 3 of the
report). The Ariane CBS implements simple non di-

versified replication (2 identical SRI processors, 2
identical OBC processors). And this is theweakest
kind of redundancy that can be imagined.

The Mars PathFinder shutdowns
Luck! Some JPL engineers had time to engage in he-
roic “code inspection”, patch the value of PI, to see
that this would solve the shutdown problem. Hence
the illusion that it was a S/W problem!

The VxWorks code is not flawed (at least for what is
of concern here). It was run under some inappropriate
(1 out of 2) option, a SE issue. It’s like driving your
car in first gear all the time, to find out that your car
is too slow in some occasions, and complain that “the
engine has a problem”. Imagine that VxWorks would
have been ASIC-implemented. The JPL engineers
would have done “H/W inspection”. Then the conclu-
sion would have been: It’s a H/W problem...

Overcoming the limitations of formal S/W Engi-
neering methods
Models and properties that are tractable with proof-
based SE methods match reality (e.g., the multimodal
arbitrary arrival model, concurrent/distributed com-
putations in the presence of shared persistent updat-
able variables). Some are even “worse than” reality
(e.g., byzantine processors, asynchronous computa-
tional models). Models and properties that are tracta-
ble with formal S/W Engineering methods do not
match reality very well (e.g., the sequential processor
model vs. look-ahead techniques, the zero-time exe-
cution/infinite storage capacity assumptions).

Proof-based SE serves the purpose of capturing and
reasoning about the “ugly” reality (technology, com-
plexity, environment). In particular, design work is
conducted until one shows how these “ideal” models
currently accommodated with formal or rigorous S/W
Engineering methods are indeed supported. Then, it is
possible to reap the benefits that result from using
such methods.

This has been our experience with the Modular Avi-
onics project. The Dassault Aviation team had devel-
oped S/W components in Esterel, a programming
language that permits to develop S/W correctness
proofs for “simple” models. But how to prove that an
entire embedded system is correct w.r.t. the specifica-
tion of interest (see capture phase)? To make matters
worse, “practical” constraints also have to be ac-
counted for (COTS, the “cheaper, faster” motto, the
reusability requirement, etc.). They acknowledged



they had hit a wall: Esterel arsenal does not help in de-
veloping correctness proofs, once for ever, for any
possible combination of S/W components drawn
from a given set, which share persistent updatable
variables, in the presence of concurrency and partial
failures. Even less to develop timeliness proofs. Even
less to specify correct system dimensionings. After 1
year of SE work and 1 year of implementation and ex-
perimentation, the Dassault team could see that proof-
based SE (the TRDF method) had permitted to
“bridge the gap”. In particular, with the DTool we
have specified, they can dimension their CBS at will,
for any possible assignment of any subset of tasks
(modeled as directed finite graphs of Esterel compo-
nents), of shared variables, over the processors.

This demonstrates that there are limitations to what
can be achieved with S/W Engineering, that many of
these limitations correspond to SE issues, and that is
useless to address them as S/W Engineering issues.

A costly confusion
In the mid 80’s, a company - say C - was awarded a
contract by Danone for delivering a CBS intended for
operating an automated plant (dairy products). Ac-
ceptance tests demonstrated that the CBS was not
functioning properly. This was acknowledged by C,
which argued that problems were due to errors in the
application S/W. Danone granted an extension of the
contract. Months later, the CBS failed the acceptance
tests again. Danone refused to take delivery of the
CBS, and did not pay the final (big) check. This
turned into a lawsuit, which lasted 2.5 years.Official
diagnosis and legal battle: Final CBS still plagued
with application-level S/W errors.

An analysis (a few days) of the application problem
revealed that the CBS had to be designed as a distrib-
uted system, so as to meet extensibility and depend-
ability requirements, which raises well known
synchronization problems such as, e.g., distributed
global snapshots, distributed mutual exclusion. These
problems have algorithmic solutions documented in
the open literature (some algorithms are even imple-
mented in some COTS products).Real cause: Lack of
a distributed synchronization algorithm.

An analysis revealed that the CBS was not equipped
with a synchronization algorithm, a major SE mistake
(C was unaware of the issue!). Hence, application
programs were run interleaved in arbitrary manner.
As is well known, even with perfect (bug-free) S/W,
that CBS could not behave correctly anyway.

Lessons learned are:
(1) spending time and budgets for fixing S/W errors
makes no sense when issues at stake are SE issues,
(2) the 2.5 year long litigation that focused on S/W is-
sues was a waste of time and money.

The US Public Switched Telephone Network
A study conducted by NIST (K97) on those outages
experienced by the US PSTN between 1992 and 1994
has led to interesting conclusions, which contradict
widely held beliefs. Excerpts:

“An unexpected finding, given the complexity of the
PSTN and its heavy reliance on S/W, was that S/W er-
rors caused less system downtime (2%) than any oth-
er source of failure except vandalism”.
“S/W is not the weak link in the PSTN system’s de-
pendability”.
"Overloads caused nearly half of all downtime (44%)
in terms of outage minutes”.

Hence, the dominant cause of outages are SE faults.
Overloads result from incorrect capture of environ-
mental assumptions <m.X>, faulty designs, incom-
plete designs (such as lack of FCs), faulty
dimensionings, even when S/W implementations are
correct.

CONCLUSIONS

It is difficult to imagine how the engineering of CBSs
could become a mature discipline without resting on
rigor and scientific achievements. Via the investiga-
tion of real cases, we have tried to show the relevance
of models and proofs. There are obvious technical ad-
vantages that result from embracing proof-based SE.
Yet, we believe that widespread adoption of proof-
based SE will occur when our community gets a cor-
rect picture of the significant economic and strategic
advantages at stake.

REFERENCES

(CHLL99) P. Carrère, J.-F. Hermant, G. Le Lann, “In
Pursuit of Correct Paradigms for Object-Oriented
Real-Time Distributed Systems”, 2nd IEEE ISORC
Symposium, May 1999, 9 p.

(ESA96) European Space Agency, "Ariane 5 - Flight
501 Failure", Board of Inquiry Report, 19 July 1996,
18 p. [http://www.esrin.esa.it/htdocs/tidc/Press/
Press96/ariane5rep.html].



(J_REQ) The Requirements Engineering Journal,
Springer-Verlag UK, ISSN 0947-3602.

(K97) D.R. Kuhn, “Sources of Failure in the Public
Switched Telephone Network”, IEEE Computer,
April 1997, 31-36.

(L98) P. Ladkin, “The Ariane 5 Accident: A Pro-
gramming Problem?”, Article RVS-J-98-02,
Bielefeld University, Germany, March 1998 [http://
www.rvs.uni-bielefeld.de].

(LL96) G. Le Lann, “The Ariane 5 Flight 501 Failure
- A Case Study in System Engineering for Computing
Systems”, INRIA Res. Report 3079, Dec. 1996, 26 p
[http://www.inria.fr/RRRT/publications-fra.html].

(LL97) G. Le Lann, “An Analysis of the Ariane 5
Flight 501 Failure - A System Engineering Perspec-
tive”, 10th IEEE Intl. ECBS Conference, March
1997, 339-346.

(LL98) G. Le Lann, “Proof-Based System Engineer-
ing and Embedded Systems”, invited paper, Lecture
Notes in Computer Science 1494, G. Rozenberg, F.
Vaandrager Eds., Springer-Verlag Pub., Oct. 1998,
208-248.

(LT93) N.G. Leveson, C. Turner, “An investigation
of the Therac-25 Accidents”, IEEE Computer, July
1993, 18-41.

(L97) H. Lykins, “A Framework for Research into
Model-Driven System Design”, Proc. of the 7th An-
nual INCOSE Symposium, L. Hritz, E. Barker, Eds.,
Aug. 1997, 765-772.

(L96) N. Lynch, "Distributed Algorithms", Morgan
Kaufmann Pub., ISBN 1-55860-348-4, 1996, 872 p.

(RISKS) The RISKS Forum [http://catless.ncl.ac.uk/
Risks].

(SCS) Safety Critical Systems Mailing List
[ftp.cs.york.ac.uk, directory hise_reports/sc.list].

(SRMB98) S. Schulz, J. Rozenblit, M. Mrva, K.
Buchenrieder, “Model-Based Codesign”, IEEE Com-
puter, Aug. 1998, 60-67.

(SK97) J. Sztipanovits, G. Karsai, “Model-Integrated
Computing”, IEEE Computer, April 1997, 110-111.

APPENDIX

Examples of models
● Computational/system models. Used to specify
knowledge relative to computing/communication de-
lays. From synchronous (upper bounds exist, values
are known), to asynchronous models (delays cannot
be bounded).
● Data models.Used to specify external variables,
i.e. those shared between a CBS module and its envi-
ronment. Used to specify invariants to be satisfied by
values taken by external variables and application-
dependent variables.
● Task models. From finite directed graphs (nodes
are sequential subtasks, edges represent dependen-
cies between subtasks), to trees, and so on, to
sequences. For each task, events or conditions under
which it can/should be run/suspended/aborted.
● Event arrival models (for every event). Periodic,
sporadic, aperiodic, unimodal or multimodal arbi-
trary. The unimodal arbitrary model serves to specify
a bounded arrival density, via a time window of size
w, an upper bound arr on the number of arrivals con-
tained within any such window, and a minimum time
separation sp between any two consecutive arrivals.
● Failure models. They apply to modules. The weak-
est model is the stop model (either behavior is correct
or a permanent crash has occurred). The strongest
model is the byzantine model (behavior is arbitrary).

Examples of properties
● Safety. Every possible system run (collective exe-
cution of tasks) satisfies some given invariants (e.g.,
mutual exclusion, serializability, data consistency).
● Liveness. Tasks make progress despite concurrency
(e.g., no deadlocks).
●Timeliness. Timeliness constraints are defined for
every task. Type: latest termination deadline, bound-
ed termination jitter, earliest start time. Nature: con-
stant, linear, non-linear, functions of system or
environment parameters.
● Dependability: availability, reliability, security,
confidentiality, are examples of classical measures.

AUTHOR BIOGRAPHY

G. Le Lann is director of INRIA’s Project REFLECS,
Rocquencourt (F). He holds a PhD in Computer Sci-
ence (Univ. of Rennes, F) and an Engineer Degree in
Informatics (ENSEIHT, Toulouse, F). He has previ-
ously worked at CERN (Geneva, CH), University of
Rennes (F), and Stanford University (USA). He also
is and has been acting as a consultant for national and
international companies and agencies.


