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Abstract. This paper provides an overview of Proof-Based System En-
gineering (PBSE), which aims at improving the current practice of de-
veloping computer-based systems. PBSE is of particular relevance for
safety critical applications and other systems where dependability prop-
erties are essential. This is particularly the case for applications in the
aerospace domain targeted in the EC FP6 Integrated Project ASSERT.
Applying PBSE both permits to eliminate most common design faults
before embarking on the development of a system and maximizes reuse,
which leads to significant savings in time and budgets. Particular empha-
sis is put on the requirements capture phase of PBSE, where a virtual
system model is used as a novel means to structure the information to
be captured.

1 Introduction

Stringent requirements for high availability, high reliability and safety in mission-
or/and life-critical applications entail specific and complex constraints on the de-
sign, verification and validation of computer-based systems (CBS). The challenges
thus involved are addressed by the Proof-Based System Engineering (PBSE)
method, which builds upon INRIA’s TRDF method (“Traitement Distribué”,
“Temps Réel”, “Tolérance aux Fautes”), a generic method that has already been
applied successfully in a number of former projects [1,2]. PBSE is currently ap-
plied in the FP6 Integrated Project ASSERT.1

Unlike most software engineering approaches, PBSE targets the entire CBS of
an application, not just the software part of its constituents’ embedded systems.
Examples are the worldwide distributed CBS for a bank or— in the case of
ASSERT — the CBS that spans spacecraft, the International Space Station, and

1 ASSERT (IST-004033) is an IST-FP6 Integrated Project sponsored by the European
Commission under the strategic objective of “Embedded Systems”. Coordinated by
the European Space Agency (ESA), the consortium consists of 29 partners from both
academia and industry. Consult www.assert-online.org for further details.
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ground stations. Traditional formal/informal software engineering methods are
primarily concerned with how to build the specification right , i.e., how to correctly
implement some given specification. PBSE is orthogonal to these methods as it
addresses the issues involved with how to build the right specification, which
consists of:

– building an adequate specification of the problem(s) to be solved , by man-
dating a dedicated requirements capture phase prior to any system design,
validation and implementation work,

– building a correct specification of the solution(s), with a priori and maximum
reusability of efforts, by mandating “forward” proofs in every step of the
solution design, rather than “backwards” verification and testing.

PBSE focuses entirely on the CBS-centric non-functional requirements “hid-
den” in an application, however. It thus actually allows to separate functional
requirements (application semantics) from non-functional requirements [3]: Ap-
plication programmers, who may use standard formal/informal software engi-
neering methods2, can safely ignore non-functional aspects during functional
analysis and design. PBSE experts, on the other hand, can abstract away func-
tional requirements in the course of their work, which rests upon splitting the
non-functional requirements into a set of models that specifies assumptions about
the CBS’s environment, and a set of properties that specifies desired system-level
services and their QoS. The system-level solutions developed according to PBSE
principles will guarantee that the CBS satisfies those properties in any environ-
ment that matches the assumptions stated in the models.

One of the primary purposes of PBSE is to eliminate faults made in the early
phases of the overall life cycle: It is well known that faults made in the course
of requirements capture phases are the dominant causes of project setbacks or
operational failures, hence the major contributors to inflated costs and project
overruns. Another primary purpose of PBSE is to reduce the complexity of the
system integration and final testing phases, phases which are not well mastered
under current practice. Finally, PBSE aims at composability checking, target-
ing the reuse and composition of designs and proofs, not just the reuse and
composition of software or hardware components.

This paper provides an overview of the rationale and life cycle of PBSE,
and introduces the virtual system model as our primary means to structure the
requirements capture phase. It is organized as follows: The rationale for the
need of a proof-based approach and some related work is given in Section 2.
An overview of the PBSE life cycle, with particular emphasis on the PBSE
requirements capture phase, is contained in Section 3. Section 4 provides a short
example of the reuse possible with PBSE. The definition and usage of the virtual
system model is presented in Section 5. A concluding discussion of PBSE in
Section 6 completes the paper.

2 Using formal SW engineering methods puts you in the desirable situation of having
a continuous chain of proofs from problem specification to implemented solution.
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2 Why PBSE ?

Consider critical systems, where criticality is related to the possible loss of life,
mission or simply money. Obviously, such systems should be designed in a way
that prevents such losses, or, more realistically, makes them sufficiently unlikely.
For air traffic control systems, for example, it is required that system unavail-
ability shall be less than 3 seconds a year, which translates into an availability
figure of 1 − 10−7. With today’s practice, however, too many of these systems
fail, and too many projects are canceled, are late or more expensive than planned
due to the difficulty of meeting such stringent requirements.

Software design & software development is commonly blamed for these prob-
lems, giving raise to the so-called “software crisis” in critical systems design.
And indeed, as software became the dominating factor in today’s computer-
based systems, there is always some piece of software running when a system
failure occurs. However, simply accusing software turns out to be wrong or at
least misleading in many cases, since doing this ignores the difference between
the cause of a system failure, i.e. the fault, and its observed manifestation, i.e.
the failure.

In fact, several studies show that software is better than its reputation: For
instance, an analysis of the causes of failures of the US public switched telephone
network [4] shows “that SW errors caused less downtime (2%) than any other
source of failure except vandalism”. Rather, overloads were recognized as the
dominant cause (44%). Another example where software was blamed for a system
failure is the well-known loss of the Ariane 5/501 launcher, which caused a
financial loss in the order of 450 Me and a 1 year delay for the Ariane 5 program.
Although the inquiry board [5] concluded that poor software engineering practice
was the culprit, other problems actually caused the failure [6,7].

Rather than in software [engineering], these and many other critical system
failures have their roots in poor system engineering practice [8]. Of course this is
not meant to suggest that the computer industry does not have problems in the
field of software engineering, but rather that there are other areas (i.e., system
engineering) that are even less mastered and have not received enough attention.

One major reason of failure is related to the specification generation pro-
cess: With formal software engineering methods, under some restrictions, it can
be verified that specifications are implemented correctly. But where do these
specifications come from? It does not help much to be provided with a software
component “proved correct” vis-à-vis its specification, if that specification is in-
appropriate (“incorrect”) for the application/system problem considered. Proper
requirements engineering methods [9,10,11,12] must be utilized to provide an
agreed-upon specification of the problem to be solved. In general, however, this
is difficult due to the inevitable intertwining of requirements and solutions [13]
and the often conflicting requirements of different stakeholders [14]. In the con-
text of ASSERT, the problem is further exacerbated by the difficult fault-tolerant
distributed real-time computing problems typical of aerospace applications.

Another major problem is the level of complexity involved with proving
systems-in-the-large [3,15]: Even a locally verified system component can suf-
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fer from inconsistencies and hidden non-functional dependencies with respect to
other components in the system. So if such components, which behave correctly
when run in isolation from each other, are executed together within a system,
they could suffer from undesired interference and hence fail. The resulting fail-
ure is observed in the execution of the software, but the actual fault is rooted
within poor system engineering practice: Global verification would have spotted
system-level inconsistencies and hidden non-functional dependencies. Unfortu-
nately, however, such techniques suffer from well-known state explosion problems
and are hence infeasible for most real-world-size problems. Moreover, they are
necessarily “a posteriori” verification approaches, which do not a allow the de-
velopment of solutions that are correct-by-construction.

PBSE is the only method we are aware of that addresses these challenges in
a common framework: PBSE/TRDF shares some of the goals of the Design-by-
Contract approach [16] and the B method [17], notably the mandated use of non-
ambiguous specifications and the fulfillment of proof obligations. However, PBSE
addresses system-level concerns, regardless of the implementation technology
resorted to in fine, rather than software-related concerns only. In the remainder
of this paper, we will try to shed some light on how this is accomplished.

3 The PBSE Life Cycle

Before giving an overview of the phases of the PBSE life cycle, we need to
introduce some basic notations. As mentioned above PBSE is concerned with
building the correct specification of the problem to be solved, as well as building
the correct specification of the solution. A specification of a problem will be
denoted 〈Z〉, with 〈z〉 denoting the set of unvalued variables in 〈Z〉. The Design
specification of a system solution will be denoted [S], with the set of unvalued
solution variables [s] that correspond to the unvalued problem variables 〈z〉.
Typical examples of such unvalued variables are process sets, deadlines, worst-
case execution times, invariants for logical safety, density of failure occurrences.
Note that the size and type of 〈z〉 and [s] reflect the genericity of the specification
of the problem 〈Z〉 and the solution [S], respectively. The design specification
[S] is referred to as specification of a solution, because its implementation is
the solution, denoted S, of the problem stated in 〈Z〉. In ASSERT we do not
consider a specific mission, but rather (two) families of missions, resulting in two
very generic pairs {〈Z〉, [S]} of problem and corresponding solution specification,
which are referred to as System families (SF).

A problem specification 〈Z〉 actually comprises two sub-specifications:

– Models 〈m.Z〉, which stipulate operational, technological, and environmental
assumptions. They specify the adversary (Adv) for (the designers of) [S].

– Properties 〈p.Z〉, which stipulate the desired services and QoS. They must
be guaranteed by the operational system S (assuming [S] is implemented
correctly) in the presence of an adversary no stronger than 〈m.Z〉.
Specifications such as 〈Z〉 are written in restricted natural language: All terms

in 〈Z〉 must have formal or technical definitions in scientific or engineering dis-
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Fig. 1. Schematic representation of the entire PBSE life cycle

ciplines (computer science terminology, mathematics, etc.), to the exception of
conjunctions, articles, and other syntactic elements. Examples include:

– “distributed” ≡ “current global state cannot be known”,
– “serializable execution” ≡ “interleaved execution identical to some sequential

execution”,
– “Byzantine” ≡ “arbitrary behavior”.

Figure 1 shows a schematic representation of the entire PBSE life cycle.
Phases that are proper to PBSE are the RC, SDV, FD and IT phases. The RC
and SDV phases precede the instantiation of [S], the FD phase precedes the
instantiation of every specific customized release of S, and the IT phase serves
to derive automatically the suite of tests needed to conduct the integration
testing (global verification) of S. The implementation of [S] and unitary verifica-
tion, on the other hand, are fully within the realm of formal/informal software
engineering.

Therefore, the PBSE process spans all RC, SDV, FD and IT life cycle phases
whenever a novel problem Z is considered and some solution S is to be fielded.
Conversely, after a pair {〈Z〉, [S]} has been constructed, only the FD and the IT
phases need be conducted for the fielding of some specific release of S. Cus-
tomized releases are obtained by assigning values to free problem variables
in 〈z〉 and running the FD phase, which produces values for the free system
variables in [s].

3.1 The Requirements Capture Phase

The Requirement Capture (RC) phase bridges the gap between the application-
centric requirements and the resulting CBS-centric requirements. The input
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of the RC phase is a document, called user requirements document (URD) in the
sequel, which describes the objectives of the application in the client’s domain-
specific terminology. The result of the RC phase is a specification of the system-
level computer-based problems/requirements 〈Z〉, which matches the URD.

In the RC phase, the application/mission requirements are separated from
reuse considerations— PBSE accommodates the mandatory use of pre-existing
partial solutions (e.g., COTS products). Design concerns, related to how 〈Z〉
could be solved and/or some [S] implemented, are totally ignored.

An existing or novel component of a to-be-designed system is called an
entity. The modeling of entities is done similar to the I/O automata formal-
ism [18]:

– Inputs are (specifications of) incoming events and associated shared data,
arrival laws (loads), failures,

– internals are (specifications of) processes (structure, worst-case execution
times) and shared data/states,

– outputs are (specifications of) outgoing events and associated shared data,
failures.

These models are intrinsic to a given entity. Inputs and outputs correspond
to behaviors in I/O automata. Properties serve to specify desired properties,
which may differ from (intrinsic) outputs.

Operationally, requirements capture is a two step process. In step 1, mod-
els and properties are captured on a per entity/level basis, in strict isolation of
each other. This work can be done by multiple teams in parallel, for different
entities or collections of entities. Since the collective behavior of sets of entities
(e.g. multiple programs multiplexed over a CBS) is usually also relevant, the
desired properties for such sets may also be captured. An example would be
the “serializability” property [19] for a set of application programs that share
updatable and persistent data. Finally, since computer-based systems are never
built from scratch in real projects, it is possible to specify, at RC time, which
pre-existing components (hardware, software) are to be reused. To be part of
the proof chain that spans from 〈Z〉 to [S], however, a reused component E
must have a companion technical leaflet (see Section 3.2) that also includes its
〈Z(E)〉.

In the second step of the RC phase, every entity E is revisited, considering all
models captured at the end of step 1 which are appropriate. For example, some
failure models and failure occurrence models have been captured (during step
1) for processing entities (abstractions of processors). Causes of such failures are
cosmic rays, vibrations, and so on. Separately, some failure models and failure
occurrence models have been captured (during step 1) for application entity E
(abstraction of a software/functional process). Causes of such failures are soft-
ware design and implementation faults. During step 2, entity E is “revisited”,
in order to specify its intrinsic behaviors in the presence of failing processing
entities (ignored at step 1).
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In the absence of tools3, the RC phase is typically performed via interactive
meetings, where the stakeholders scan the application’s URD according to the
PBSE RC Guide. The RC Guide is a menu of classes of models and of properties
orthogonal to each other, that constitute a multidimensional space Π . The 10
classes that define Π (6 model classes, 4 property classes) are as follows:

– Computational Models, Resource and Data Models, Process Models, Event
and Event Arrival Models, Failure Models, Failure Occurrence Models

– Logical Safety, Liveness, Timeliness, Dependability properties

Any specification 〈Z〉 corresponds to a region within Π .
It is this process that makes it possible to capture the properties 〈p.Z〉 and the

adversary 〈m.Z〉 for the entire CBS. Thanks to 〈Z〉, it is then possible to detect
some impossibility results at the RC stage (in addition to incompleteness, over-
specification, etc.). Since those problems are found very early in the life cycle, in
particular, before any design, implementation and testing work has been done,
this distinguished PBSE feature considerably saves time and money. The SDV
phase is in fact entered only when some 〈Z〉 that is free from obvious impossibility
results has been established.

3.2 The System Design and Validation Phase

The other PBSE phase that occurs before any implementation work on the
system is the System Design and Validation (SDV) phase, which aims at building
the specification [S] of a solution S that provably solves the problem(s) captured
in 〈Z〉. The outcome of the SDV phase is a technical leaflet (TL) for pair {〈Z〉, [S]},
which is a 5-tuple {〈Z|z〉, [S|s], proofs, Cs, FD Oracle} consisting of

– the problem specification 〈Z〉, with unvalued variables 〈z〉,
– the solution specification [S], with unvalued variables [s] (which match 〈z〉),

usually resting upon some design assumptions (DA),
– proofs (or pointers to such proofs) that [S] meets 〈Z〉,
– feasibility conditions (FCs), i.e., analytical conditions that must hold between

〈z〉 and [s] in order to ensure that S’s valued properties (e.g. response times
and availability figures) hold,

– FD Oracle, (the specification of) a computer program that instantiates the
FCs in order to simplify and speed-up the FD phase; the FD Oracle can be
developed any time after completion of the SDV phase.

PBSE does not make any requirements on how the properties and models
are expressed. Typically, however, Logical Safety properties are expressed as in-
variants defined over values taken by sets of variables which represent the state
of the spacecraft (or more generally, of the CBS). Proofs for Logical Safety or
3 For the past decade, PBSE/TRDF has been applied without tool support. One of

the goals of ASSERT is to develop the prototype of a RC tool (SDV and FD tool
prototypes as well), whereby the RC work conducted manually at the beginning of
ASSERT would be replayed in a somewhat automated manner.
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Liveness are proofs in logic. Timeliness proofs are proofs in Combinatorial Anal-
ysis/Scheduling Theory. Dependability proofs are combinations of such proofs,
augmented with coverage analysis. In 〈p.Z〉, one finds Cov([S]), which stands for
the smallest acceptable coverage to be met by [S], as stipulated by the client.

The Technical leaflet for the whole CBS system or the system family —
that is for the pair {〈Z〉, [S]} — is inevitably a set of TLs, one for each of its
components, which can be either application-centric building blocks (ABBs) or
computer-centric building blocks (CBBs). Typical CBBs deal with system-level
issues like distributed resource management, failure detection and/or masking,
synchronization, concurrency control, timeliness, etc, whereas ABBs realize the
actual functional requirements. CBBs provide the abstraction of a computing en-
vironment as “perfect” as required for the ABBs. Quite often, “perfection” means
keeping invisible such things as concurrent computations or failures. Application
programmers, who design ABBs, can hence concentrate solely on application-
related issues, using their favorite formal/informal software engineering methods,
and need not worry about specific peculiarities or/and imperfections of the un-
derlying CBS. Moreover, ABBs can be developed and verified in isolation of each
other, with no (or quite limited) need for global or integrated verification.

The specification of the solution [S] is in fact a modular specification, which
results from building a design tree rooted at 〈Z〉: Top-level ABBs are typically
just “containers” for application-level functionality. The DAs of such top-level
ABBs are hence fairly idealistic, like “there are only perfect processors in the
system”. Since such assumptions have a rather bad coverage, this leads to corre-
sponding (sub-)problem specification(s) to be met by the specifications of novel
or reused CBBs, which must be dealt with at the next (lower) level of the de-
sign tree. This process of successive refinement proceeds along some number of
branches. On a given branch, one stops designing whenever both (1) the speci-
fication arrived at is deemed implementable and (2) its DAs have a coverage at
least as high as Cov([S]).

Another important output of the SDV phase are the FCs, which are typi-
cally a set of constraints required for the solution [S] to work. In order to sim-
plify checking of the feasibility of some particular dimensioning of the problem
variables 〈z〉 and calculating the corresponding dimensioning of [s], FCs are in-
stantiated as a computer program (referred to as an FD Oracle, valid for pair
{〈Z〉, [S]}), which can be developed any time after completion of the SDV phase.

3.3 The Feasibility and Dimensioning Phase

For any given problem 〈Z〉, the SDV phase leading to [S] —as well as implemen-
tation & unitary verification, which is not a PBSE activity— is conducted only
once, i.e., [S] for 〈Z〉 needs to be established and proved only once.

By contrast, the Feasibility and Dimensioning (FD) phase (as well as the
following instantiation phase and the IT phase) has to be conducted every time
a specifically customized release of [S] is to be fielded. The FD phase consists in
a user choosing some specific valuation V al(〈z〉) of the unvalued problem vari-
ables in 〈Z〉, running the FD Oracle, and (if possible) obtaining the resulting
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valuation V al([s]) of the unvalued system/solution variables in [S]. For exam-
ple, this is how one knows the smallest period of activation of a scheduler, the
smallest memory space for a waiting queue, or the smallest degree of redundancy
which are necessary for meeting the required reliability figures. If the FCs are
violated, the FD Oracle indicates the reasons why, in which case some of the
values assigned to 〈z〉 must be “relaxed” (e.g., some deadlines augmented).

3.4 The Integration Testing Phase

As stated above, implementation & unitary verification is not a PBSE activity.
However, in order to maintain a continuous chain of proofs, not only from 〈Z〉
to [S], but also from [S] to S, automatic code generation and formal (local)
verification should be used also during implementation of S.

When implementation and unitary verification has been conducted for all
BBs that are part of S, the Integration Testing (IT) phase can be performed in
order to check whether the composition of BBs is correct— a daunting task under
current practice, since exponential complexity is to be faced. This is not the
case under PBSE, which eliminates the classic state explosion problem involved
in global verification and improves the achieved coverage compared to current
testing practices, respectively, for two reasons essentially:

– No or just some limited global verification is necessary (proofs replacing
possibly huge sets of tests).

– The suite of tests to be performed can be generated (if so desired) as a
by-product of running the FD Oracle, rather than by “guessing” them.

Consequently, with PBSE, integration testing work is typically unnecessary
or at least limited, since “composition correctness” has been proved during the
SDV phase (otherwise, [S] would not exist).

4 A Design and Reuse Example

Among the major advantages of PBSE, which is also a major target of ASSERT,
is its potential for re-using BBs specified and designed in former projects. Given
that (1) PBSE is concerned about system-level problems, which appear over and
over again in many different applications, and (2) reuse in PBSE also includes
reusing the design specifications and the proofs, the potential for reuse is indeed
high.4 Thanks to the TLs, the common practice of developing everything from
scratch and/or best-effort reuse of existing components can be replaced by a
systematic reuse exercise according to PBSE principles, i.e. conditioned upon
using provably correct compositions of components.

A major goal of ASSERT in this realm is the definition of system families
(SF), which represent a reasonably large class of space applications that share a

4 Consequently, the budget and time savings that can be achieved with PBSE are high
as well.
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sufficiently large set of common properties. Ideally, when a new application is to
be developed from a system family, most of the family’s generic BBs are reused,
and only the few ones that encapsulate application-specific functionality need to
be modified/added.

One of the pilot projects in ASSERT is devoted to the definition of a system
family for satellite missions. It is based upon a generic specification 〈Z(SF)〉 that
captures the CBS problem common to such missions. ASSERT shall end up with
the design specification (+ implementation) of a solution [S(SF)], consisting of a
set of generic BBs, that matches 〈Z(SF)〉. In order to develop a particular satellite
mission, say, a telecommunications satellite (TS), which is known to belong to
SF (since 〈Z(TS)〉 ≡ 〈Z(SF)〉), a user simply decides on some valuation V al(〈z〉)
mirroring the TS-centric instantiation of SF and runs the FD Oracle that was
built for 〈Z(SF)〉, [S(SF)]. In other words the user has to conduct the FD and
IT phases only. If 〈Z(TS)〉 �≡ 〈Z(SF)〉, then some SDV work is necessary, re-
using the BBs developed for SF. Consequently, the design tree for TS quickly
reaches nodes that are already available. As a consequence, real design and
implementation work is only needed for features that are specific for TS.

More generally, assume that, at some node of the SDV tree rooted at 〈Z(TS)〉,
one is contemplating the specification of a sub-problem {〈m.Z(X)〉, 〈p.Z(X)〉},
and that there is an existing TL matching this specification (searches for match-
ing TLs will be done by an SDV tool in the future). Since the specification [S]
found in this TL has been proved correct for 〈Z(X)〉, the corresponding solution
can simply be reused as such (with or without prior dimensioning), provided the
conditions for stopping the SDV work for that SDV tree node are met.

For example, consider that 〈Z(X)〉 is the specification of some problem that
was addressed in the A3M project5. The A3M objective was to develop a new
generation of generic components as basic building blocks for the development of
middleware targeting various on-board space applications [20]. The core CBBs
developed in A3M employ asynchronous distributed fault-tolerant algorithms
[21] for distributed consensus, coordination, and atomic commit, which are built
atop of Chandra/Toueg unreliable failure detectors [22]. They rest upon design
assumptions such as processor crashes, arbitrarily variable delays, and reliable
communications, but do not need any notion of global time in the system. Thus
the logical safety and liveness properties stated in {〈m.Z(X)〉, 〈p.Z(X)〉} hold
with these CBBs regardless of the (implementation-dependent) timing properties
of the underlying system.

When the design assumptions meet the conditions for stopping the SDV
work, then A3M solution can be reused in ASSERT as such. If some design
assumption, say, Y, does not meet the conditions for stopping the SDV work (e.g.,
if processor omission failures and/or unreliable communications are assumed for
the ASSERT SF), then Y translates into a sub-problem {〈m.Z(Y)〉, 〈p.Z(Y)〉}
(e.g., simulating processor crashes in the presence of omissions and providing
reliable communications over unreliable channels), and the SDV work continues.

5 Advanced Avionics Architecture and Modules, conducted by EADS Astrium, INRIA,
LAAS, Axlog Ingenierie and funded by ESA/ESTEC (2001–2003).
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5 The Virtual System Model

The PBSE requirements capture phase poses some particular challenges in that
it targets inherent application needs only, rather than (premature) design con-
siderations. In fact, freezing requirements actually rooted in traditional or even
anticipated solutions in 〈Z〉 unnecessarily restricts the solution space for the later
SDV work. This problem became particularly apparent during the RC phase for
the complex system families/pilot projects in ASSERT, which was conducted
by multidisciplinary teams: Following industrial practice, and quite natural for
engineering disciplines, the initial versions of the URDs were heavily populated
with a priori chosen system architectures, failure management strategies, process
synchrony assumptions and other design considerations. Extracting out exactly
those requirements that must be fulfilled by a CBS in order to meet the demands
of the particular application (but nothing else) turned out to be a challenging
task, cf. [13].

5.1 Using the VS Model for RC

In order to alleviate this problem, we introduced the virtual system model (VS
model) for requirements capture. The virtual system model consists of several
levels, which represent different levels of abstraction of a computer-based system.
A level is populated by entities that represent components of a CBS at the
corresponding level of abstraction, i.e., can be seen as a suitable “projection” of
a CBS onto some specific abstraction level. Consequently, the VS model can be
employed for reasoning about a yet-to-be-designed system as well.

The levels foreseen in the VS model may be domain-dependent. In ASSERT,
the following levels have been identified to be necessary and sufficient for embed-
ded systems in the aerospace domain: Equipment & Humans level (EH-Level),
Application level (AP-Level), Middleware level (MW-Level), Basic Service level
(BS-Level), and Hardware level (HW-Level).

The EH-Level provides the highest level of abstraction. It “connects” a CBS
with its environment. It is populated with entities that may or may not be con-
sidered part of the CBS. They include external equipment, sensors and actuators
as well as human users. Although in the implemented system EH-Level entities
are connected by means of the HW-Level, which encompasses the raw computing
and communication hardware of a CBS, in the VS model the EH entities can
directly interact with entities at any level.

The AP-Level is made up of all the entities that instantiate the application’s
semantics. They are distributed/partitioned according to functional analysis
considerations.

MW-Level entities typically serve two purposes: First, they provide a level
of encapsulation, which allows application-level entities to access resources in a
way that is independent of their physical location. Second, they typically host
all the distributed fault-tolerant algorithms and protocols needed to “solve” 〈Z〉,
i.e., the system-level algorithms and protocols specified within [S].
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The BS-Level is populated with entities that augment/encapsulate the raw
services provided by HW-Level entities in a generic manner, in order to provide
universal and elementary services needed by entities residing at higher levels.
Typically, BS entities are operating systems, real-time kernels, link communi-
cation protocols, TCP-like communication protocols, I/O handlers, memory ac-
cess/management protocols, etc.

Finally, the HW-Level is populated with entities which provide the physical
capability to execute programs (SW, firmware, gate-level compiled code, etc.),
and to exchange bits over physical communication entities (both on-board and
long-haul communications, communications with sensors and actuators, etc.). In
other words the HW-Level provides the raw “execution machinery”, but does
not include programs written in HW, such as the logic in gate level compiled
code of an ASIC.

In fact, although the VS levels above appear to follow traditional implemen-
tation levels, it is important to understand that they are not meant to imply
any particular implementation, since an AP-Level entity may actually be imple-
mented as a real AP-Level SW process, or as a triple {AP-Level SW component,
BS-Level SW component, HW-Level HW component}, and might even involve
on-line reconfiguration. Moreover, VS levels do not have any particular hierarchi-
cal relationship. They must rather be viewed as sets of orthogonal entities that
may have all kinds of mutual interactions: AP-Level entities in the VS model are
not restricted to interact solely with the MW-Level in order to invoke services,
nor do MW-Level entities provide services to the AP-Level only. For example,
a BS-Level entity — and even a HW-Level entity— may invoke a service at the
MW-Level.

Consequently, the VS model used for conducting a PBSE RC phase is generic,
in the sense that it does not carry any restrictions relative to the construction
of 〈Z〉 or future SDV work leading to [S]. Hence, it can indeed be employed for
capturing 〈Z〉 for a yet-to-be-designed system in the PBSE RC phase.

The VS model opens up another level of “separation of concerns”, beyond
PBSE’s ability to deal with an application’s functional and non-functional as-
pects independently of each other: It allows to capture models and properties at
every VS level independently and in strict isolation of each other. This leads to a
significant reduction of the overall complexity of the PBSE RC phase and allows
even further parallelization of the RC work, which reflects reality as experts in
AP-Level software are most likely not experts in space-compliant hardware.

More specifically, the whole set of application requirements can be mapped
onto (or rather: “sliced” according to) the different levels of abstraction corre-
sponding to the VS levels. For every level, the resulting projections (“slices”)
can then be captured independently of the other levels. Note that properties are
always associated with the level where they are required to hold. If, for instance,
some AP level processes shall enjoy the ACID properties of transactions, the
atomicity, concurrency, isolation, and durability properties [19] are captured for
the AP-Level in 〈p.Z〉. Although those properties are likely to be provided by
MW-Level concurrency control algorithms in the yet-to-be-developed solution
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Fig. 2. Visualization of the relation between system requirements and designed system
projected onto VS levels: The designed system must provide properties that are fully
within the specified properties when exposed to an adversary that is not stronger than
the specified models

[S], given the currently affordable technology, this shall not be frozen at RC
time. Hence, the ACID properties, which are captured at the AP-Level, are not
captured for the MW-Level. Any entity E of any level that has a TL show-
ing that E provides the ACID properties is a correct BB for providing those
properties at the AP-Level.

5.2 Using the VS Model for SDV

Figure 2 visualizes the resulting orthogonalization of the RC capture phase en-
abled by the VS model. Consider the AP-Level, for example. Let 〈m.Z(AP)〉
and 〈p.Z(AP)〉 denote the models and properties captured for this level, i.e., the
projections of the whole set of requirements “hidden” in the application’s URD
onto the AP-Level. PBSE SDV work must eventually ensure that, whenever the
HW-Level faces an adversary Adv(HW) that is not stronger than specified in
〈m.Z(HW)〉, the behavior of the forthcoming solution [S] (and hence the fielded
system S) projected onto the AP-Level must stay within the behaviors stated in
〈p.Z(AP)〉.

Of course, the SDV work that provides the solution specification [S] must
eventually consider all combinations of models captured in 〈m.Z〉 in order to con-
sider the worst-case failure occurrences at all levels simultaneously, for example.
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That is, in sharp contrast to the RC phase, where everything can be considered
in isolation, the SDV phase must deal with the combinatorial complexity of com-
bining the independently captured models and properties, including combined
failure occurrences, worst-case event arrivals, etc.

From the virtual system model point of view in ASSERT, the most important
levels for RC capture are the AP- and EH-Level, since entities at these levels
are in fact the “end users” of the CBS. Note that, for the EH-Level, only the
specification (models and properties) with respect to the interface(s) with the
CBS is of concern.

If there was no reuse of pre-existing products, nothing would have to be
captured at the levels below the AP-Level. Since systems are almost never im-
plemented from scratch, however, the RC phase is also concerned with the identi-
fication of models and properties that characterize pre-existing BBs at any level,
especially at the HW-Level and BS-Level. Any pre-existing product is either
trusted or not trusted. By definition, at the time of writing, all existing products
have been developed in some former projects without applying PBSE. Trusted
products are those which have been developed and tested following certain rules,
typically those stipulated by agencies or enforced by certification bodies (e.g.,
DO-178 or IEC standards, SILs in the UK).

Of course, although such products are considered trusted on the basis of
careful design, diversified redundancy, sufficient testing, space-compliance and
other means, this does not imply that they are fault-free. Nevertheless, the nature
of the technical data available for a trusted product makes it possible to do some
reverse PBSE work, i.e., to construct its TL a posteriori, at least partially (its
models and properties, as well as its design assumptions). This way, pre-existing
trusted products can be incorporated in 〈Z〉 and [S].

6 Concluding Discussion of PBSE

To achieve its ambitious goal of facilitating provably correct and reusable engi-
neering work for critical fault-tolerant distributed real-time embedded systems,
PBSE combines a number of different features in a common framework. First
of all, a dedicated requirements capture phase has to be conducted, which pro-
vides an agreed-upon specification of the problem 〈Z〉 to be solved. 〈Z〉 not only
describes what is to be achieved (properties 〈p.Z〉), but also under which condi-
tions/circumstances (models 〈m.Z〉). The VS model has been introduced as an
effective means to capture those properties and models in isolation of each other.

In general, conducting a requirements capture phase is difficult, for several
reasons, such as: The intertwining of requirements and solutions, conflicting re-
quirements of different stakeholders or the need for early freezing of requirements
(waterfall model). PBSE does not suffer from those problems, however, for two
reasons essentially: First, PBSE focuses solely on non-functional CBS-centric
issues, which are reasonably independent of the particular application require-
ments. Second, the unvalued problem and solution variables 〈z〉 and [s] allow to
introduce a user-decided degree of genericity in 〈Z〉 and [S], respectively, which
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effectively eliminates the well known problem having to nullify SDV work when-
ever 〈Z〉 is changed.

Finally, rather than on “a posteriori” global verification, PBSE rests upon “a
priori” proof obligations to be fulfilled in the course of system design activities.
PBSE hence necessarily saves time and money due to the fact that it provides
solutions that are correct-by-construction; no time and money are wasted on
trial and error-detection-and-correction iterations. Additionally, the concept of
reuse also goes beyond what is commonly associated with this term: Not only
existing implementations of BBs can be reused, but also their designs and proofs.
Component reuse in PBSE is in fact similar in spirit to the use of existing lemmas
for proving a new theorem in mathematics.

There is the widespread belief that proofs are too difficult to do in daily
practice, a problem that has also slowed down the acceptance of formal soft-
ware engineering methods. However, system engineers are not supposed to “do
the proofs” (unless they run into a non-generic or unknown system problem).
A fully developed PBSE process will eventually allow engineers and technicians
to simply use instruction manuals, supported by appropriate tools, as is the
case in other fields with good and mature engineering practice [23]: In hand-
books for electricians, for example, one finds rules for how to install derivations,
for computing voltages, etc. It is never the case that an electrician is asked to
demonstrate anew the correctness of his doings based on Ohm laws or Kirchoff
laws. Nevertheless, rules of good practice in mature engineering domains rest
entirely upon such scientific results. We anticipate that this is going to happen
to system engineering for computer-based systems as well: Rather than being
founded on “experience, “intuition”, or “good sense”, rules of good system engi-
neering practice will eventually rest upon science, and PBSE has been developed
for reaching this goal.
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