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Abstract

Real-time distributed applications based on object-
oriented technology raise many complex issues, most of
them still open. We elaborate on the reasons why tradi-
tional paradigms, found adequate for tackling simple prob-
lems, cannot help in addressing these complex issues. A
detailed illustration is given with a problem in modular
avionics, which has been addressed by resorting to proof-
based system engineering, an emerging discipline aimed
at coping with real-world problems complexity. Draw-
ing from our experience with partners in industry, we re-
port on why such paradigms and technologies as object-
orientation, distributed transactions, distributed architec-
tures, transactional monitors, can be contemplated for the
construction of real-time distributed systems, provided that
appropriate on-line decision-making algorithms and proto-
cols are resorted to.

1. Introduction

State-of-the-art in real-time computing, although rich,
is mostly restricted to solutions aimed at specific central-
ized application areas. Paradigms and solutions abound for,
e.g., low-level repetitive (periodic) computing, controlling
predictable phenomena, such as fuel injection in a car en-
gine, or orientation of airplane flaps. Still, we cannot ignore
that these are particular subcases of more global applica-
tion problems, of much higher complexity. Furthermore,
object-orientation and other technologies inevitably intro-
duce variability within systems, which renders traditional
paradigms inappropriate. Stock markets would be a good
example of a complex application problem, that clearly calls
for on-line (and fast) decisions, under vastly diverse exter-
nal conditions. We focus on such object-oriented real-time
distributed computing (ORC) problems, drawing from our
experience with partners in industry. We have selected a

problem in modular avionics to illustrate those paradigms
which we believe are needed to correctly capture many real
world problems, as well as to correctly address them.

In section 2, we introduce the basics of proof-based sys-
tem engineering (SE), and show how a proof-based SE
method was applied to tackle this modular avionics problem
(section 3). In section 4 (resp., section 5), we examine so-
lutions regarding computing (resp., communication) issues
raised with this problem.

2. Proof-Based System Engineering

Those essential features of proof-based SE needed for
the reading of this paper are briefly presented. See [10] for
a more detailed presentation. Proof-based SE addresses, in
particular, those three phases that come first in a project life-
cycle, namely the problem capture, the system design, and
the system dimensioning phases (see figure 1, where sym-
bol ) stands for “results in”). NotationhY i (resp. [Z])
refers to a specification of a problem Y (resp. a solution
Z). Notationhyi (resp. [z]) refers to the specification of a
subset ofhY i (resp. [Z]) which contains those variables
which parameterize problem Y (resp. solution Z). The term
“specification” refers to a self-contained set of unambigu-
ous statements - in some human language, in some formal-
ized notation, in some formal language.

2.1. The Problem Capture Phase

This phase is concerned with, (i) the translation of an
application problem description intohAi, which specifies
the generic application problem under consideration and,
(ii) the translation ofhAi into hX i, a specification of the
generic computer science problem that matcheshAi. A
generic problem is an invariant for the entire duration of
a project.

SpecificationshAi and hX i are jointly produced by a
client and a designer, the latter being in charge of identi-
fying which are the models and properties commonly used



Problem Capture:

fdescription of an application problemg) hAi

) hxi

) hai

) hXi

System Design:

fhXi; hxig

) [S]

) [s]

) [oracle:S]

System Dimensioning:

V (hxi): input tooracle:S

V ([s]): output fromoracle:S

Figure 1. Phases Covered by Proof-Based System
Engineering

in computer science whose semantics match those of the
application problem. Consequently, a specificationhX i ac-
tually is a pairfhm:X i, hp:X ig, wherem stands for models
andp stands for properties. Notationhxi refers to a speci-
fication of those variables inhXi that are left unvalued. As
for hXi, hxi is a pairfhm:xi, hp:xig.

2.2. The System Design Phase

This phase, conducted by a designer, has a pair
fhXi; hxig as an input. It covers all the design stages
needed to arrive at [S], a modular specification of a generic
solution (generic systemS), the completion of each design
stage being conditioned on fulfilling correctness proof obli-
gations. A design phase is conducted by exploiting state-
of-the-art in various areas of computer science (e.g., sys-
tem architectures, algorithms, modeling), in various theo-
ries (e.g., serializability, scheduling, game, complexity), as
well as by applying appropriate proof techniques, which de-
pend on those types of problems under consideration.

Activities conducted within a design phase are organized
according to a tree structure. A design stageri - r being
some unique identifier among design tree nodes of leveli -
consists in solving problemhX(ri)i by deciding on a par-

ticular architecture (assuming each architectural module ex-
hibits some local properties) along with algorithms or pro-
tocols that encompass this architecture. This leads - in par-
ticular - to specify those assumptions (i.e., models) under
which the local properties postulated for each architectural
module must hold. As a result, problemhX(ri)i is decom-
posed into independent subproblems of leveli+ 1.

Fulfilling a design correctness proof obligation (de-
sign cpo) guarantees that if every subproblem is correctly
solved, then problemhX(ri)i is correctly solved as well
by composing the individual solutions. And so on. Con-
sequently, a design phase has its stages organized as a tree
structure. By the virtue of the uninterrupted tree of proofs
(that every design decision is correct),[S] - the union of
those specifications that sit at the leaves of a design tree -
provably correctly satisfieshXi. If hXi is a correct transla-
tion of hAi, then, by transitivity,hAi is provably correctly
solved with [S].

Designcpo’sThey result from class structuring (see end
of this section). A solution that solves problemhY i is a
correct design solution for problemhX(ri)i if the following
two conditions are met:

hm:Y i � hm:X(ri)i andhp:Y i � hp:X(ri)i:

One ends a design tree branch at stagetk when the spec-
ification [S(tk)] arrived at is deemed implementable, or
is known to be implemented via some procurable product
(e.g., COTS).

Dimensioning oracleAnother output of a design phase
is a specification of a system-wide dimensioning oracle
- noted [oracle:S] - which includes, in particular, a set
of constraints called (system-wide) feasibility conditions
(FCs), which are analytical expressions derived from cor-
rectness proofs. For a given architectural and algorithmic
solution, they define a set of scenarios that, with certainty,
includes all worst-case scenarios that can be deployed by
“adversary”hm:Xi. FCs link together these worst-case sce-
narios with computable functions that serve to model prop-
erties stated inhp:Xi. Of course, [oracle:S] must be im-
plemented - as a tool component - in order to conduct sub-
sequent system dimensioning phase(s).

Quite clearly, composability of design decisions - which,
ultimately, translates into composability of physical mod-
ules - is one of the essential principles that underlie proof-
based SE. A design tree can be constructed following a
pure top-down approach. Whenever COTS products or pre-
existing implementations must be (re)used, i.e., must be part
of final systemS, one proceeds bottom-up, specifications of
pre-selected products or implementations being some of the
design tree leaves.



2.3. The System Dimensioning Phase

The purpose of a dimensioning phase is to find a val-
uationV ([s]), i.e. a quantification of systemS unvalued
variables, such as, e.g., sizes of waiting queues, processors
speeds, databuses throughputs, number of processors, re-
dundancy degrees.V ([s]) must satisfy a particular valua-
tion V (hxi), i.e. a particular quantification of the captured
problem-centric models and properties, which is directly
or indirectly provided by a client. Given some appropri-
ate metrics (e.g.,R+ ), one can define dimensioningcpo’s.
For example, imagine that dimensioningV ([s]) guarantees
a boundDB on response times for taskt, for arrival densi-
ties equal toDA. V ([s]) is correct with respect tot’s dead-
lineB (stated inV (hp:xi)) andt’s arrival densityA (stated
in V (hm:xi)) if the following holds true:DA � A and
DB � B.

Tool componentoracle:S either finds a correctV ([s]),
and then declares that there is a quantifiedS that solves pro-
posed quantified problemfhXi; V (hxi)g, or declares that
the quantified problem considered is not feasible (with de-
sign solution [S]).

2.4. Final Comments

Pairf[S]; V ([s])g is a modular specification of a system
S that provably solves problemfhX i, V (hx i)g. Modules
of f[S]; V ([s])g are contracts between a (prime) designer
and those (co/sub) designers in charge of implementingS
(as software and/or hardware modules). As mentioned pre-
viously, with legacy systems or when COTS products must
be (re)used, proof-based SE proceeds bottom-up, some or
all of the design tree leaves being known ahead of design
time.

Models and properties which are resorted to for conduct-
ing these phases, as well as algorithms/protocols, can be
organized into classes. Furthermore, it is possible to struc-
ture every class after a hierarchy or a partial order. See [13]
for an example with the class of failure models. An ele-
ment that follows another one in a hierarchy or a partial
order will be said to be stronger than its predecessor, noted
successor � predecessor [10]. For example, with task
models:graph � sequence.

With the event arrival model class, for every event type,
one may choose between, e.g, periodic(pm), sporadic
(sm), aperiodic(apm), and arbitrary(arm) models, the
latter being based on the concept of bounded arrival densi-
ties. The unimodal arbitrary model(uarm) is defined as
a recurring triplefw; n; spg, wherew is the size of a slid-
ing time window,n is the maximum number of arrivals (of
an event type) within any such window, andsp is a spo-
radicity interval, i.e. a minimum time separation between
two successive arrivals. The multimodal arbitrary model

(marm) serves to define a recurring finite and ordered se-
quence of such triples. Hence:marm � uarm � apm
andmarm � uarm � sm � pm.

3. A Problem in Modular Avionics

Our clients in this project1 were DGA/DRET (French
DARPA) and Dassault Aviation [1]. For the sake of con-
ciseness, we will ignore fault-tolerance issues in the sequel.
Notationtbd stands for to-be-defined.

Excerpts from application invarianthm:Ai
� Application software (S/W) is modular; dates of creation
of application S/W modules (set M of modules) span over
many years. Modules can be suppressed or created at will.
That is, set M is unbounded.
� Objects, which encapsulate persistent variables that rep-
resent current airplane, environment, and system states, are
accessed via methods (variables are read and/or written) in-
voked by application S/W modules.
� Any object may be shared among some unrestricted num-
ber of application S/W modules, as well as among (future)
system modules and the airplane’s environment.
� There should be no restrictions on the programming mod-
els used to develop application S/W modules; no restric-
tions either on which objects can be accessed by a S/W
module.
� Distribution of application S/W modules, of shared ob-
jects, overS, should be unrestricted.
� List of external event types (e.g., pilot commands, sen-
sors data). Via the updating of an external object (shared
by S and its environment), an event occurrence serves to
request the activation of one or many application S/W mod-
ules which, when executed, produce outputs (object updat-
ing), such as responses displayed to pilot, commands ap-
plied to actuators.
� Some event types are periodic sensor readings, arrival
laws for others (a majority) aretbd.

Excerpts from application invarianthp:Ai
� Many different releases of M, involving any combination
of application S/W modules, can be fielded; this should not
entail re-designing or re-provingS.
� At all times, states entered by shared objects should con-
sistently mirror the current states of the airplane, of the
environment. Object states must also be consistent with
mission-dependent variables.
� In order to slash system maintenance and evolution costs,
the architecture ofS must be modular.
� One should be able to generate any particular release of
S “rapidly” (e.g., in less than 30 minutes for a 2-hour long
mission).

1Project funded by D´elégation Généraleà l’Armement/DRET, contract
94-395.



Excerpts from problem invarianthm:Xi
� Any set T of transactions [2] drawn from M can be con-
sidered; sizes of future T’s aretbd.
� Transaction models: finite directed graphs, a node being
called an action.
� Run-time model of an action is a sequence. Messages can
be generated irrevocably while executing an action.
� Any transaction, if run alone, has a finite and upperly
bounded execution time.
� External event type models: Set EV of event types. Map-
ping of EV onto T is specified via a boolean matrix. Sub-
set EV1: periodic arrivals (values of periods:tbd). Subset
EV2: unimodal arbitrary arrivals (values of densities:tbd).
Subset EV3: aperiodic arrivals.
� Computational model: synchronous (the conventional
model, with Modular Avionics).
� Shared objects: States entered by objects must satisfy
client defined invariants (I). Any transaction, if run alone,
satisfies (I). Mapping of objects onto T is specified via a
boolean matrix.
� Architectural model: a distributed system of modules, no
shared memory; highest number of modules istbd. Map-
ping of T onto system modules is specified via a boolean
matrix.

Excerpts from problem invarianthp:Xi
� Safety: Exactly-once semantics for transactions. No
transaction roll-backs. Serializability (every possible run of
any given subset of T satisfies (I)).
� Timeliness: Transaction timeliness constraints are strict
latest relative termination deadlines.2 Values of individual
deadlines:tbd (values of deadlines ended up ranging from
a few milliseconds to one second).
� ComplexityC(oracle): pseudo-polynomial in the num-
ber of transactions in T.

4. Computing Issues

4.1. Admissible Solutions

GivenhXi, published solutions to ORC problems do not
meet the first condition of a designcpo. Namely, arrival
models usually considered are periodic or sporadic, and
tasks are modeled as sequences.

4.1.1 Arrival Models

An arrival is a request for launching some activity, of some
duration. Consider the case shown in fig. 2(a), whereby
a user specifies bounded arrival densities for some partic-
ular event type, via the multimodal arbitrary model. Let
us assume that worst-case triple is triple 3, i.e. computing

2If one knows how to solve a “strict deadline” problem, it is straigth-
forward to solve a “0-jitter” problem.

backlog (processor load accumulated in a waiting queue) is
highest with triple 3. In order to emulate an equivalent re-
curring worst-case arrival scenario with a periodic model,
one would have to specify an arrival frequency of1=sp3
(fig. 2(b)). Therefore, with respect to schedulability, adop-
tion of the periodic model in this case is equivalent to con-
sidering artificial processor loads, which leads to - possibly
very - pessimistic feasibility conditions (FCs). Indeed, in
our case, worst-case triple 3 occurs only once over any time
interval of sizew1 +w2 +w3, while it would occur perma-
nently under equivalent periodic arrival assumptions. An
identical conclusion can be drawn whenever unimodal arbi-
trary models are emulated with periodic models.

w1 w2 w3

sp1 sp2 sp3

(a)

sp3

(b)

Figure 2. Multimodal Arbitrary Arrivals

In other words, whenever reality is accurately specified
via an arbitrary arrival model, as is the case with problem
hXi, there is a price to be paid if one wants to stick to peri-
odic models. Either an (overdimensioned) equivalent peri-
odic model is retained, in which case poor FCs is the penalty
incurred, even if one would adopt scheduling algorithms
which have been proven optimal (in the restricted class of
fixed-priority algorithms), such as HPF (Highest-Priority-
First) - priorities being computed a la Rate-Monotonic or
Deadline-Monotonic. Or some underdimensioned periodic
model is retained, in which case the penalty is that timeli-
ness proofs turn irrelevant. Indeed, proofs that the second
condition of a designcpo is met (no deadline is missed)
would be of no value, given that the first condition is vio-
lated (marm � uarm � pm).



4.1.2 Task Models

A transaction is modeled as a finite directed graph. Par-
allelism or dependencies (graph edges) between actions
(graph nodes) depend uniquely on the semantics of the ap-
plication function instantiated as a transaction, i.e. on pro-
grammer’s decisions. At run time, depending on how ob-
jects and transactions are mapped onto the processing mod-
ules, a method invocation (object access) may be a strictly
local operation or a remote one. How to handle object
access concurrency internal to a transaction (invariants (I)
must be satisfied by each transaction in isolation from oth-
ers) is under the responsibility of a programmer. How
to handle object access concurrency between transactions
(invariants (I) must be satisfied by any run of any set of
transactions) is under the responsibility of system design-
ers. Such COTS products as transactional monitors and
CORBA-compliant middleware enforce serializability, al-
beit most of these products/solutions are “blocking” (i.e.
deadlocks can occur).

As is the case most often in reality, the execution time of
an action is not constant. This time depends on which exe-
cution path is followed, which depends on input parameters.
Hence, only a worst-case execution time can be predefined
for an action. A fortiori, run-time transversal of a trans-
action depends on input parameters. Messages are gener-
ated by actions while executing. Actions have variable run-
times and times when messages are generated also depend
on input values. Consequently, unimodal or multimodal ar-
bitrary models (rather than periodic or sporadic models) are
appropriate for modeling message creation laws. We also
offer programmers the possibility of assigning any (rela-
tive) deadline to a message. By default, if none is speci-
fied, a message deadline is an (analytically established) up-
per bound on network transit delays (see section 5).

As is well known, transaction serializability is achieved
by enforcing a unique and system-wide total ordering! of
conflicting transactions [2]. Consider a processorp, whose
waiting queue contains, ranked first, some action of transac-
tion i, notedai, and some action of transactionj, notedaj ,
rankedkth(k > 1), as per!. Althoughai is first in wait-
ing queue when processorp becomes available, it might be
thatai cannot execute, asai may depend on other actions
of transactioni, which are mapped onto other processors,
those actions not being completed yet. There are two possi-
ble cases. Eitheraj does not conflict with any of the actions
ranked1; ::; k � 1: aj may be allocated processorp. Or aj
conflicts with at least one of these actions:aj cannot run
either. If the latter holds for every action of rankj > 1 in
the waiting queue,p remains idle.

This shows that conventional schedulability analysis
based on the concept of “busy periods”, taking actual task
run-times into consideration only, does not apply here. Pro-
cessors may be kept idle while waiting queues are not

empty, because of (i) dependencies internal to a transaction,
(ii) serializability dependencies between transactions.

One can abruptly eliminate cause (i) by pretending that
idle times due to intra-transaction dependencies are equiv-
alent to artificial run-times, i.e. artificial processor busy
times. These times can be derived from off-line analysis
of transaction graphs. Unfortunately, this cannot be done
for eliminating cause (ii), i.e. inter-transaction dependen-
cies, because such times depend on which transaction pre-
cedes another one in a waiting queue, and this is only run-
time decidable. Which explains why we could not use the
schedulability results established for task “cohorts” (fixed
dependencies). Another difficulty stems from the fact that
traditional schedulability analysis assumes task commuta-
tivity. By exchanging two sequential tasks in a schedule, a
busy period is kept unchanged. This is not the case with
transactions. “Shapes” of graphs being arbitrary, exchang-
ing two graphs in a schedule modifies the busy period.

4.1.3 Algorithmic Solutions

The handling of inter-transaction conflicts due to concur-
rency in accessing objects cannot be based on conflict de-
tection, as this would imply transaction roll-backs so as to
solve the deadlock problem, which is not acceptable (see
hXi). Hence, conflicts must be avoided. In addition to
serializability, timeliness properties are required. Hence,
global time (to be constructed) must be accessible. Global
time is used in our solution to enforce conflict avoidance.
Given that waiting queues are unavoidable, solutions that
work only under the assumption that there are no waiting
queues to be scheduled are ruled out. For example, the time-
triggered approach [8] is invalid in our case. Two observa-
tions are in order. First, from a theoretical viewpoint, “dis-
tributed systems without waiting queues” is an oxymoron -
and a violation of well known impossibility results3. Sec-
ond, any attempt made at approximating this paradigm has
far-reaching implications. Trying to solvehXi under a
time-triggered approach leads to the artificial constraint that
worst-case run-time of any transaction of subset Tp mapped
onto processorp must be less thanp’s “input polling step”,
i.e. less than ratiop’s polling period/number ofp’s input
channels, which is certainly unacceptable with many ORC
applications.

Such solutions as HPF with Priority Ceiling (PC) can-
not be considered either, given that PC is not usable in a
distributed system (assumptions that underlie PC are viola-
tions of impossibility results).

3Unless (1) one considers it acceptable to discard events - i.e. to lose
task activation requests - restricted to be periodic trackings of continuous,
predictable, and differentiable functions, (2) worst-case task run-times are
assumed to be smaller than the smallest time gap between any two consec-
utive (accepted) task activation requests, waiting queues do build up.
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4.2. Sketch of our Solution

The architectural solution is a client-server model. Client
(cl) and server (sr) modules are interconnected via a de-
terministic network module (bounded transmission times).
Clients (resp. servers) serve to multiplex sensors (resp. ac-
tuators). Root(s) of a transaction (in-node(s) of a graph)
is/are mapped onto client(s), while other actions are mapped
onto servers. Shared objects are mapped onto servers. Ex-
ecution of a transaction’s actions (a0s) is constrained by
graph-defined logical synchronization. Fig. 4 shows the
execution of transactionT (graph shown in Fig. 3) over a
setfsr1; : : : ; sr6g of servers. In this example, respective
upper bounds on execution times of actionsa1; : : : ; a6 are

4, 5, 2, 7, 3, 6 time units, and the upper bound on network
transmission time is 1 time unit. All servers are idle at time
t = 0.

ProblemhXi contains a scheduling problem which is
NP-hard. Hence, theoretically optimal algorithmic solu-
tions are out of question. Would their run-time be accounted
for, they turn into non optimal solutions. The algorithmic
solution (alg) which we have specified in delivered[S] is
a combination of periodic distributed agreement, idling and
non-idling (non-idling for urgent transactions4), preemptive
and non-preemptive, First-In-First-Out, Earliest-Deadline-
First, and template-based schedulers (for transactions other
than urgent ones). Scheduling decisions are made on-line,
periodically, or aperiodically for urgent transactions.

With arbitrary arrival and graph models combined,
worst-case scenarios are not necessarily those correspond-
ing to highest arrival densities, contrary to centralized
scheduling problems. This observation holds true with the
HRTDM problem as well (see section 5). In [oracle:S],
one finds those FCs we have established by devising pre-
computed schedule templates (not precomputed schedules)
and particular constructs on graphs, which have been used
to give an appropriate definition of a “busy period”. This
has permitted to reduceC(oracle) to what was specified.
Consequently, our FCs are sufficient, albeit closer to neces-
sary and sufficient FCs than would be achieved with pure
FIFO, or pure HPF, or pure EDF.

Worst-case scenarios were formally specified by resort-
ing to matrix calculus in (max, +) algebra [3]. LetV L+

(resp. V L�) be the vector of times when servers become
idle after (resp. before) the execution of some transaction.
LetP be the (max, +) transformation matrix corresponding
to a transaction graph. VectorV L+ is given byP 
 V L�,

 being the (max, +) product.

With the previous example, as we assume that servers
are ready to executeT at time t = 0, one hasV L� =
[0; 0; 0; 0; 0; 0]t, andV L+ = [15; 8; 0; 0; 16; 0]t.

V L+=

2
6666664

14 15 �1 �1 9 �1
�1 8 �1 �1 �1 �1
�1 �1 0 �1 �1 �1
�1 �1 �1 0 �1 �1
14 16 �1 �1 9 �1
�1 �1 �1 �1 �1 0

3
7777775



2
6666664

0
0
0
0
0
0

3
7777775
=

2
6666664

15
8
0
0
16
0

3
7777775
:

Specifications [S] and [oracle:S] have been imple-
mented by Dassault Aviation. The implementation of so-
lution alg was found to be straightforward. The run-time
speed-up ratio oforacle:S compared to an event-driven
simulator built by Dassault Aviation was found to be in the
order of 25.

Furthermore, an event-driven simulator delivers statisti-
cally computed distributions (of response times, of sizes of

4Those with deadlines in the order of a few milliseconds.



waiting queues), whereas a dimensionning oracle computes
upper bounds (of the same variables), which is required in
the case of “hard” real-time problems.

5 Communication Issues

For any design stage (see section 2), there is one out
of two possible outcomes. Consider[S(rk)], of design
tree level k. If deemed implementable, that specification
(of a real (physical) module ofS) terminates a design tree
branch. If deemed non implementable as such, then[S(rk)]
translates into a levelk+1 problem - sayhX(ck+1)i - triv-
ially extracted from[m(rk)], i.e. those models found in
[S(rk)]. Let us illustrate the above with the modular avion-
ics problem, notedhX(a1)i. As explained above,[S(a1)] is
based - in particular - on a network module, noted noder1
in the design tree. In[m(a1)], one finds the following for
noder1 (excerpts):
� message arrival model: multimodal arbitrary (one se-
quence of triples per message),
� synchronous computational model : network delays range
betweenmin andmax,
� interval [min, max] comprises all message deadlines.

Given the external event arrivals and the transaction
models specified inhm:X(a1)i on the one hand, the al-
gorithmic solutionalg(a1) on the other hand, one derives
time windows within which messages can be generated by
actions, i.e. the message arrivals model to be found in
[m(a1)]. Such derivations, established during design stage
1, may raise non trivial issues, barely addressed so far in sci-
entific publications, one notable exception being the holistic
approach [6, 14]. Obviously, this postulated network mod-
ule is not directly implementable with existing COTS prod-
ucts, nor with documented proprietary products. In fact,
[m(a1)] raises the following level 2 subproblem, say design
tree nodec2 (excerpt):
� hm:X(c2)i = multimodal arbitrary message arrivals,
� hp:X(c2)i = no message deadline is missed.

Solving this subproblem entails deciding upon a network
architecture, designing a real-time communication protocol
(an algorithmic solution) and establishing timeliness proofs,
which we have done [5]. However, regarding FCs, in [5], we
have considered unimodal arbitrary arrivals, i.e. a weaker
problem (in the� sense), called the HRTDM problem (see
below).

Assume for a moment that external event arrivals (re-
quests for activating transactions) are periodic, or that there
are ways of enforcing periodic message generation by ev-
ery action. Unless extraordinary assumptions are made -
e.g., absence of waiting queues - we would still have to
consider assumptionhm:X(c2)i, or unimodal arbitrary ar-
rivals to the very least. Indeed, transit times of messages
flowing between an application S/W module and a network

module are inevitably variable. This is due, in particular, to
software (possibly, hardware) layers sitting in between an
application layer on the one hand, a network layer on the
other hand (e.g., calls to operating systems, to middleware
services (e.g., ORB), resource contention handling), as well
as to the occurrence of partial failures.

Consequently, even for those messages generated by
application tasks that are activated periodically, one must
abandon the idea that messages are submitted periodically
to a network module. In other words, “real-time” protocols
which “work well” under the assumption that messages ar-
rive periodically are not particularly attractive, given that
this assumption is unrealistic, except for very specific cases.

5.1 The HRTDM Problem

The HRTDM (Hard Real-Time Distributed Multiaccess)
problem arises when selecting a broadcast medium as a
network architecture. Sources of messages are actions (of
transactions), sensors and actuators. A message is an in-
stantiation of a message type. A finite number of message
types is defined for every source.
hm:HRTDMi

�Network model: a distributed broadcast medium, modeled
as a ternary variable (idle, busy, collision), accessed via a set
ST of stations. NumberjST j of stations istbd.
� Message sources model: Messages are generated by a set
SR of sources. NumberjSRj of sources istbd (jSRj �
jST j). MSGsr is the set of message types defined for
sourcesr 2 SR. NumberjMSGsrj is tbd.
� Mapping model: The mapping (or multiplexing) of
sources (i.e., of setsMSGsr) over stations is unrestricted.
In other words, any strict partitioning ofSR into jST j
classes can be considered.
� Unimodal arbitrary message arrival model: For every
message typemsg, triplefw(msg),n(msg), sp(msg)g de-
finesmsg’s bounded arrival density.
hp:HRTDMi

� Safety: Successful transmissions of messages must be
mutually exclusive.
� Timeliness (real-time): Message timeliness constraints =
strict constant relative deadlines for completing transmis-
sion, denotedd(msg) for message typemsg.

5.2 Admissible Solutions

With broadcast media, solutions are based either on con-
tention avoidance (CA) or on contention detection-and-
resolution (CDR). Representatives of the CA category are
explicit token-passing algorithms (e.g., Token Bus, the
many Fieldbusses), or implicit token-passing (e.g., STDMA
(Static Time Division), TTP [9]), possibly augmented with



timers and/or fixed priorities. Representatives of the CDR
category are carrier-sense algorithms (e.g., Ethernet, CAN).

It is reasonably obvious that probabilistic CDR pro-
tocols, such as Ethernet, cannot be considered for the
HRTDM problem. There are deterministic variants of CDR
protocols which can be considered, although most of them
are sub-optimal. It is reasonably obvious that (explicit, im-
plicit) token-passing is far from being the “best” class of
solutions for HRTDM. Indeed, any protocol that would be
based on static decisions (i.e. computed off-line) is dom-
inated by protocols based on dynamic (i.e. on-line) deci-
sions. There are worst-case scenarios that are accessible to
the “adversary” embodied inhm:HRTDMiwhereby mes-
sage deadlines are missed with STDMA or TTP, whereas
no deadlines is missed, under the same scenarios, with de-
terministic CDR protocols.

Think of messages transmitted according to some pre-
computed ordering. Such an ordering being uncorrelated
with message deadlines, transmissions can be arbitrarily
close to “Latest-Deadline-First”, which maximizes the like-
lihood that some message deadlines are missed. In fact, this
can lead to the poorest achievable FCs. In addition to the
above, and compared with explicit token-passing, STDMA
or TTP have the well-known drawback of wasting commu-
nication bandwidth. The size of each time slot precomputed
for every station must be such that it can accommodate the
longest message issued by any of the sources multiplexed
over that station. Whenever a message shorter than the
longest one is transmitted, the communication channel is
kept unduly silent. Conversely, the assumption that all mes-
sages issued by a given station are of equal length is, first,
unrealistic for a vast majority of ORC systems, second, an-
tagonistic with configurability and flexibility requirements.

Hence, only protocols based on deterministic CDR
should be considered, given that they generate message or-
derings arbitrarily close to EDF, which minimizes the num-
ber of deadline inversions. Of course, there is a run-time
cost incurred with any protocol. Comparing these costs only
to tell which protocol is better than another one is flawed.
The only way to tell whether a protocol is better than an-
other one, for a precisely specified problem, is by compar-
ing their respective feasibility conditions.

5.3 Sketch of our Solution

Our solution comprises a local scheduling algorithm and
a distributed communication protocol. Incoming messages
are stored by each source in a waiting queue, which is ser-
viced according to EDF (local algorithm). We have devel-
oped a deterministic protocol called CSMA/DDCR (which
stands for Carrier Sense Multi Access/Deadline Driven Col-
lision Resolution) [5]. This protocol works exactly like the
well-known Ethernet CSMA-CD protocol whenever there is

no unresolved collision pending. Collisions are resolved de-
terministically (viam-ary tree searches) rather than proba-
bilistically (via theBEB algorithm). Collision resolutions,
i.e. messages transmissions, are deadline-driven, rather
than arbitrarily ordered. A deterministic tie breaking algo-
rithm, called CSMA/DCR [11], is resorted to whenever col-
lisions occur among messages of equivalent (close enough)
deadlines. By emulating a distributed Non-Preemptive (NP)
EDF scheduling algorithm, CSMA/DDCR happens to be
closer to optimality than other solutions, given that central-
ized NP-EDF is an optimal solution for problems equiva-
lent to the centralized variant of HRTDM, for periodic or
sporadic arrival models [4, 7].

Determining whether every messagemsg 2 MSG al-
ways meets its transmission deadlined(msg) is a NP-hard
problem. Given the requirement on C(oracle) stated in
hp:Xi, only pseudo-polynomial time feasibility conditions
(FCs) are acceptable. Schedulability analysis is far from
being trivial, given that combination of the unimodal arbi-
trary model and the dynamic behavior of the CSMA/DDCR
protocol raises issues similar to those mentioned in section
4.2.

FCs given in [5] have been perfected, thanks to hav-
ing established the exact upper bound� on the worst-case
time needed to resolve collisions via successivem-ary tree
searches, that is:
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whereu, v, h respectively denote the number of messages
to be transmitted, the number of tree searches needed, and
the depth of them-ary trees. Fig. 5 shows worst-case times
needed to transmitu 2 [2; 50] collided messages viav 2
[1; 25] successive quaternary tree searches.

10
20

30
40

50

5
10

15
20

25
0

20

40

60

80

100

120

140

160

Figure 5. Fonction�42

u;v , u 2 [2; 50], v 2 [1; 25]



6 Conclusions

There are many open issues raised with ORC systems.
We believe that it is misleading to claim - without prov-
ing - that those traditional paradigms which are adequate
for tackling simple problems are appropriate for addressing
complex ORC issues, such as those dealt with in this paper.
For instance, design solutions based on strong “synchrony”
assumptions are very fragile. They “break” abruptly when-
ever any of their underlying assumptions is violated at run-
time. The “predictability” one can expect from such solu-
tions needs careful examination.

We hope this paper contributes usefully to show that
such paradigms and technologies as object-orientation, dis-
tributed transactions, transactional monitors, ORB-based
middleware [12], Ethernet-like networks, can be contem-
plated for the construction of real-time distributed systems,
provided that appropriate on-line decision-making algo-
rithms and protocols are resorted to, such as combinations
of distributed agreement and deadline driven scheduling.
This has been illustrated with a modular avionics problem,
drawn from the international ASAAC program. There is ev-
idence that many real applications raise similarly complex
problems.

Coping with real-world problems complexity is one of
the goals set to any proof-based SE method. We have re-
ported on how proof-based SE has been applied to address
this modular avionics problem. Our method has also been
resorted to in other areas (e.g., air traffic control5, nuclear
power plants, satellite launchers, telecommunication net-
works). A particularly significant reduction in complexity
that has been verified - and that can be achieved for similar
problems - relates to application software development. It
suffices to check the correctness of every program (transac-
tion) in isolation from others to guarantee that the overall
application software is correct: correctness is a stable prop-
erty w.r.t. program composability.

Another appealing feature of proof-based SE is that it
permits to verify unambiguously whether some COTS tech-
nology is appropriate for a given ORC application prob-
lem, without embarking on exponentially complex testing
phases.

Being able to design, dimension, build and operate ORC
systems satisfactorily is an essential goal set to our commu-
nity, which has deep theoretical and practical implications.
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