
A Systems Engineering Approach for Constructing Certifiable
Real-Time Distributed Systems

Binoy Ravindran�, Gérard Le Lann†, Jinggang Wang�, and Peng Li�

�Real-Time Systems Laboratory
ECE Dept., Virginia Tech, Blacksburg

VA 24061, USA
{binoy,jiwang5,peli2}@vt.edu

†INRIA
Domaine de Voluceau, B.P. 105

78153 Le Chesnay Cedex, France
Gerard.Le Lann@inria.fr

Abstract

In this paper, we present a systems engineer-
ing methodology for constructing certifiable real-
time distributed systems. In the proposed ap-
proach, an architectural and algorithmic solution
to an application problem is designed by consid-
ering the “weakest” models including the weak-
est asynchronous computational model and mul-
timodal arrival model. Furthermore, timeliness
properties are described using Jensen’s benefit ac-
crual predicates. Once a system solution is de-
signed, timeliness properties are established by
constructing necessary feasibility conditions that
are expressed as non-valued predicates. The pred-
icates are quantified and verified to produce the
specification of a certified solution. We illustrate
the approach by considering a packet transmission
problem that desire soft timeliness. We present a
certifiable solution to this problem that consists of
switched Ethernet, a soft real-time packet schedul-
ing algorithm (that was previously developed), and
feasibility conditions.

1. Introduction

Asynchronous real-time distributed systems
emerging in many domains are distinguished by
the significant run-time uncertainties that are in-
herent in their application environment, system
resource states, and failure occurrences [8]. Con-
sequently, upper bounds on timing variables in
such systems including duration of computational
and communication steps—manifestations of ap-
plication workloads and execution environment
characteristics—are not known to exist at de-
sign time with sufficient accuracy. Furthermore,
many of the emerging asynchronous real-time dis-
tributed systems are also safety-critical [13, 9].
Therefore, end-users of such systems require guar-

anteed assurance on the delivery of desired sys-
tem properties, particularly safety. This defines
a certification requirement. Asynchronous real-
time distributed systems thus raise fundamental
issues: “How to build timely systems that operate
in the presence of uncertain timeliness? Further-
more, how to certify that such systems will deliver
properties including timeliness and safety?”
In this paper, we answer these questions by dis-

cussing a proof-based systems engineering (SE)
approach that builds upon the previously devel-
oped TRDF method [9]. Central to this ap-
proach is our argument that in order to maximize
the “coverage” of desired system properties such
as timeliness, safety, and liveness, asynchronous
models and/or asynchronous designs should be
favored against synchronous ones. Furthermore,
contrary to popular belief, we argue that it is pos-
sible to establish timeliness properties including
hard and soft timeliness properties for systems
constructed using asynchronous solutions (e.g., al-
gorithms, protocols, etc.).
In the subsections that follow, we motivate our

approach by first discussing issues that we regard
as fundamental to real-time distributed systems,
namely, computational models and timeliness op-
timality. We then overview our approach.

1.1. Computational Models

As defined in [12], computational models range
from pure synchronous to pure asynchronous.
Pure synchrony means that duration of every com-
putational and communication steps have upper
bounds that are known at design time, whereas
pure asynchronymeans that no such upper bounds
are known to exist.
Asynchronous computational models have the

well known advantage that properties such as
safety and liveness can be established even when
the “adversary” embodied in design assumptions
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are violated. Examples include asynchronous con-
sensus algorithms. However, the “curse” of such
models is that many problems of interest do not
have known deterministic algorithms due to im-
possibility results [5]. To circumvent this, re-
searchers have augmented the pure asynchrony
model with additional semantics, including timed
semantics and time-free semantics. In the pure
asynchrony model augmented with timed seman-
tics, called the partially synchronous model, some
system modules have pure synchrony semantics
and others have arbitrary semantics including
pure asynchrony semantics. Pure asynchrony
models augmented with time-free semantics are
simply called asynchronous models [6]. Examples
include unreliable failure detectors [2].
Researchers have also defined the notion of

“weakest asynchronous” and “weakest partially
synchronous” models [6]. The weakest model is
a model that is necessary and sufficient for imple-
menting some given time-free semantics. Thus, a
given problem is solved using the weakest partially
synchronous model if and only if some minimal
set of modules in the solution match pure syn-
chrony assumptions and every other match pure
asynchrony assumptions.

1.2. Timeliness Optimality

The vast majority of timing constraints and
timeliness optimality criteria that are currently
used for constructing real-time distributed sys-
tems include deadlines and hard timeliness opti-
mality, respectively. We believe that timing con-
straints and timeliness optimality are best de-
scribed using Jensen’s benefit functions [7] and
benefit accrual predicates [7], respectively. The
rationale for our belief is due to the following rea-
sons:

1.2.1 Difficulty with Deadlines

Deadline timing constraints have the drawback
that they implicitly (or explicitly) indicate that
the deadlines are “hard” [7]. Thus, completing
a deadline-constrained activity before its deadline
implies the accrual of some“benefit”and that ben-
efit remains the same if the activity were to com-
plete anytime before the deadline. Furthermore,
completing the activity after the deadline implies
a timing failure i.e., the accrual of zero benefit.
With deadlines, it therefore becomes difficult

to express timing constraints that are not hard,
but “soft” in the sense that completing the time-
constrained activity at anytime will result in some
benefit and that benefit varies with the activity
completion time. Furthermore, with deadlines, it
becomes difficult to specify a timeliness optimal-
ity criterion that is not hard, but soft in the sense

that completing as many soft time-constrained ac-
tivities as possible at their optimal completion
times—completion times that will yield maximal
benefit—is what is desirable.
Many timing constraints in real-time dis-

tributed systems are soft in the aforementioned
sense. Examples include [7, 18, 4]. With deadline-
based scheduling algorithms such as EDF [11],
such soft timing constraints must be converted to
deadlines. This will cause the deadline-based algo-
rithms to seek the completion of the soft activities
at anytime before their deadlines, violating their
non-uniform benefit semantics.
On the contrary, benefit functions allow the se-

mantics of soft timing constraints to be precisely
specified. This allows scheduling algorithms that
use such specifications to seek the completion of
soft activities that are precisely consistent with
their timing constraint specifications i.e., seek to
complete soft activities at times that will yield
their optimal benefit.

1.2.2 Difficulty During Overloads

Given that we cannot predict the future, it is pos-
sible that the actual operating conditions of a sys-
tem may be “stronger” than what was assumed
when the system was designed. Thus, it is pos-
sible that the models that are used to design a
real-time system solution can be violated by the
“adversaries” embodied in the models when the
system is in operation. When such conditions oc-
cur, scheduling is complicated with deadlines and
collective timeliness criteria that are specified with
deadlines in that they do not indicate what objec-
tives must be sought (during such situations).
On the other hand, benefit accrual predicates

allow the specification of timeliness optimality cri-
terion that facilitate application timeliness to be
optimized in an application-specific and inherently
adaptive way. For example, a highly desirable
criterion would be to complete all activities at
their optimal completion times if situation per-
mits, such as during conditions when the “adver-
saries” behave as reasoned and permitted by the
design assumptions. Furthermore, when the “ad-
versaries” violate design assumptions, a desirable
criterion would be to complete as many activities
as possible at their optimal completion times, less
at their suboptimal completion times, and thereby
facilitate graceful degradation of application time-
liness. Such timeliness optimality criteria can be
specified with benefit accrual predicates.

1.3. A Systems Engineering Approach

We present a systems engineering (SE) ap-
proach for constructing certifiable real-time dis-
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tributed systems. We presented the preliminary
concepts of this approach in [14].
The approach starts with describing the weak-

est possible models and desired properties of the
desired computer-based system.
Models are the set of assumptions regarding

the future operational conditions of the desired
computer-based system. Models include (1) com-
putational model, where the asynchronous model
dominates all others such as partially synchronous
and pure synchronous models [10], (2) external
event arrival model, where the multimodal arrival
model dominates all others such as unimodal, ape-
riodic, sporadic, and periodic arrival models, and
(3) failure model, where the byzantine model dom-
inates all others such as crash and omission mod-
els [9]. The domination of one model over another
is due to the “strength” of the “adversary”embod-
ied in the model.
Properties are the desired services that the

desired computer-based system must provide to
end-users. Example properties include timeliness,
safety, and liveness. Models and properties are
invariants of the design problem.
We consider the weakest possible models so that

impossibility results if any, can be circumvented,
and system solutions that have the maximum pos-
sible “coverage” of the desired properties can be
designed. Examples include the weakest asyn-
chronous computational model i.e., the pure asyn-
chronous model that is augmented with time-free
semantics such as [2], as such models have the well
known advantage that properties such as safety
and liveness can be established even when the“ad-
versaries”embodied in the design assumptions are
violated. Furthermore, we specify timeliness opti-
mality using benefit accrual predicates such as a
user-desired lower bound on system-wide, aggre-
gate (e.g., total) timeliness benefit.
With such computational models and timeli-

ness properties, an architectural and algorithmic
solution to a given application problem is then de-
signed. Once a system solution is designed, safety
and liveness are first provably correctly established
for the solution. Timeliness properties are later
established by constructing timeliness feasibility
conditions for the solution that are proven to be
necessary, and if tractable, sufficient as well. Such
conditions are constructed as non-valued functions
that will embody all possible scenarios that can
be deployed by the “adversaries”considered in the
design models.
The timeliness feasibility conditions are then

quantified by assigning numerical values to un-
valued variables in the solution such as processor
speeds and network throughputs. The resulting
quantified instance of the solution is then verified
to ensure that the solution satisfies the feasibility

conditions.
The quantification and verification of the feasi-

bility conditions thus produce the specification of
a computer-based system solution that can be cer-
tified to exhibit the desired timeliness, safety, and
liveness properties. Thus, the fundamental philos-
ophy of the approach is that synchrony need to be
considered only for establishing timeliness proper-
ties.
The rest of the paper is organized as follows:
To illustrate our SE approach, we consider a de-

sign subproblem that is concerned with the trans-
mission of message packets, which must exhibit
soft timeliness properties. We call this prob-
lem the Soft Real-time Packet Transmission (or
SRPT) problem. We discuss SRPT in Section 2
by simply sketching the models and properties of
the problem. In Section 3, we present a solution to
SRPT using our SE approach. The solution com-
prises of (1) switched Ethernet, (2) a soft real-time
packet scheduling algorithm called BPA, and (3)
timeliness feasibility conditions.
The timeliness feasibility conditions of SRPT

that we present in Section 3 is the main contribu-
tion of the paper. To the best of our knowledge,
we are not aware of any such feasibility conditions
for guaranteeing soft timeliness property.
Finally, the paper concludes by summarizing

the work and discussing future work in Section 4.

2. The SRPT Design Subproblem

2.1. Models of SRPT

The set of application packets is denoted as pi ∈
P, i ∈ [1, n]. The size n of the set P is unrestricted.
The bit length of a packet pi ∈ P at the

data link layer is denoted as b(pi). The physi-
cal framing overheads increase this size into an
actual bit length b′(pi) > b(pi) for transmission.
Thus, the transmission latency of a packet pi is
given by li = b

′
(pi)/ψ, where ψ denotes the nomi-

nal throughput of the underlying network medium
(e.g., 109 bits/s for Gigabit Ethernet).
Packets are generated from a set of sources,

si ∈ S, i ∈ [1, z]. The number of sources z is un-
restricted. The packet subset Pj ⊆ P is mapped
onto source sj ∈ S, j ∈ [1, z]. The mapping is un-
restricted i.e., any packet pj ∈ P can be mapped
onto any source sj ∈ S.
The arrival law for packets is the multimodal

arbitrary arrival model [9]. Multimodal arrival
model is a finite, ordered sequence of unimodal ar-
rivals. For a packet pi, the unimodal arrival model
defines the size of a sliding time window w(pi) and
the maximum number of arrivals a(pi) that can oc-
cur during any window w(pi). Thus, the sequence
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〈(aπ(pi), wπ(pi)) , π ∈ [1, k]〉 , i ∈ [1, n] is defined,
where the number of sequences k is unrestricted.
Each source si ∈ S is equipped with a clock

synchronization module, denoted Ci. (We discuss
the motivation for clock synchronization in Sec-
tion 3.2.) The clock synchronization module gen-
erates clock synchronization packets periodically
with a period θ. Such packets are assumed to be
always transmitted before application packets are
transmitted.
The bit length of a clock synchronization packet

at the data link layer is a constant and is denoted
as bc. The physical framing overheads increase
this size into an actual bit length b′c > bc.
Thus, we are considering a weak asynchronous

model. The only synchronous assumption that is
needed to implement this model is the synchrony
of clocks.

2.2. Properties of SRPT

The only property of interest is timeliness. The
timeliness property is defined using benefit func-
tions and benefit accrual predicates as follows:
Each packet pi ∈ P has a unimodal benefit

function that is non-increasing, denoted as Bi.
Unimodal benefit functions are those benefit func-
tions for which any decrease in benefit cannot be
followed by an increase in benefit [7]. Benefit func-
tions, which are not unimodal are called multi-
modal.

✲
Time t

✻
Benefit

Bi (t)

Ii Di

(a)

✲
Time t

✻
Benefit

Bi (t)

Ii Di

(b)

✲
Time t

✻
Benefit

Bi (t)

Ii Di

(c)

✲
Time t

✻
Benefit

Bi (t)

Ii Di

(d)

Figure 1. Example Unimodal Functions

Example unimodal functions are shown in Fig-
ure 1. Note that the classical “hard” deadline can
be expressed as a “rectangular”unimodal function
such as the one shown in Figure 1(c), where the
arrival of a packet at its destination at anytime
before its deadline will result in uniform benefit;

the arrival of the packet after the deadline will re-
sult in zero benefit. All non-rectangular benefit
functions express soft timing requirements [7].
Example multimodal benefit functions are

shown in Figure 2.
Unimodal functions that are non-increasing are

simply those benefit functions for which bene-
fit never increases when time advances. Fig-
ures 1(a), 1(b), and 1(c) show examples. The
class of non-increasing unimodal functions allow
the specification of a broad range of timing con-
straints, including hard constraints and a majority
of soft constraints. Therefore, we focus on non-
increasing unimodal benefit functions here.

✲
Time t

✻
Benefit

Bi (t)

(a)

✲
Time t

✻
Benefit

Bi (t)

(b)

Figure 2. Example Multimodal Functions

All benefit functions Bi, i ∈ [1, n] have an ini-
tial time Ii and a deadline time Di. Initial time
is the earliest time for which the function is de-
fined and deadline time is the time at which the
function drops to a zero value. Furthermore,
Bi (t) � 0, ∀t ∈ [Ii, Di] , i ∈ [1, n] and Bi (t) =
0, ∀t /∈ [Ii, Di] , i ∈ [1, n].
The timeliness property is a desired lower

bound on system-wide, aggregate timeliness ben-
efit denoted ATBl, where the system-wide, aggre-
gate timeliness benefit denoted ATB, is defined
as the sum of the individual benefit accrued by
the arrival of packets at their destinations. Thus,
ATB =

∑n
i=1 Bi(ti) � ATBl, where ti is the ab-

solute time at which packet pi arrives at its desti-
nation end-host, since its release at its source end-
host. The functions Bi, i ∈ [1, n] and the value of
ATBl are unknown.

3. A Solution Using Switched Real-
Time Ethernet

A solution to SRPT involves two components:
(1) an algorithmic solution that is associated with
some architectural solution; and (2) timeliness fea-
sibility conditions. Our solution to SRPT consists
of a single-segment switched real-time Ethernet, a
MAC-layer, real-time packet scheduling algorithm
called Best-Effort Packet Scheduling Algorithm
(or BPA), and timeliness feasibility conditions.
We had presented BPA, its implementation,

and construction of a switched real-time Ether-
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net in [17]. To discuss our solution to SRPT, we
first overview switched Ethernets and the BPA al-
gorithm. We then derive the timeliness feasibility
conditions.

3.1. Switched Ethernet Networks

In switched Ethernet networks, end-hosts are
interconnected through switches using full-duplex
Ethernet segments. Furthermore, the switch de-
termines the destination host of incoming pack-
ets and schedules them on the appropriate out-
going network segment. Thus, unlike in shared
Ethernets, where a hub simply broadcasts every
packet that it receives and causes collisions, a
switch “directs” the traffic by scheduling packets
on the “right” outgoing network segment.
The switched real-time Ethernet approach,

which is gaining wide support in the real-time in-
dustry is presented in EtheReal [16], SIXNET In-
dustrial Ethernet Switch [15], and [1].
We consider a single-segment switched Ether-

net network, where end-hosts are interconnected
through a single switch as our architectural solu-
tion to the design subproblem.
In single-segment switched Ethernets, packets

first arrive at the MAC-layer of source end-hosts
where they are generated. Upon arrival, they are
queued in the outgoing packet queue of the host.
Furthermore, when the network segment from the
host to the switch becomes “free” for transmis-
sion, it triggers the packet scheduling algorithm at
the end-host, which then executes and schedules a
packet from the packet queue for transmission.
The switch maintains a list of packet ready-

queues, one queue per host. Each queue stores
the packets that are destined for the correspond-
ing host. When packets arrive at the switch,
they are queued in the outgoing packet queue at
the switch for the corresponding destination host.
When the network segment from the switch to
an end-host becomes free for transmission, it trig-
gers the packet scheduling algorithm at the switch,
which then executes and schedules a packet from
the packet queue of the destination host for trans-
mission (on the corresponding output port).
Thus, time-constrained application packets (of

the SRPT problem) must be scheduled at the
MAC-layer of source end-hosts as well as that at
the switch using an appropriate real-time schedul-
ing algorithm (at the end-host and at the switch,
respectively) such that the system-wide, trans-
node, end-to-end timeliness property is satisfied.

3.2. Overview of BPA

BPA is a packet scheduling algorithm that
executes at the MAC-layer of end-hosts and

the switch for selecting packets for outbound
transmission. The algorithm considers a packet
model, where packets have non-increasing, uni-
modal benefit function constraints and seeks to
maximize the aggregate benefit that is accrued
when packets arrive at their destinations i.e.,
Maximize

∑n
i=1 Bi(ti), where ti is the absolute

time at which packet pi arrives at its destina-
tion. This optimization problem is NP-hard [17].
In [17], we show that BPA is the “best” heuris-
tic algorithm for this problem, outperforming the
previously known best algorithm presented in [3].
BPA is an asynchronous algorithm i.e., it is

“time-free.”The algorithm is invoked whenever the
outgoing network link (from an end-host or that
from the switch) becomes “free” for transmission.
Thus, the only scheduling event of the algorithm
is the release of the network resource by a packet.

3.2.1 BPA Heuristics

BPA first constructs a tentative schedule by sort-
ing packets in decreasing order of their “return
of investments.” The return of investment for a
packet is the potential timeliness benefit that can
be obtained by spending a unit amount of network
transmission time for the packet. Thus, “high re-
turn” packets will appear early in the tentative
schedule. The return of investment for a packet is
determined by computing the slope of the packet
benefit function.
From this tentative schedule, packets that are

found to be infeasible are moved to the end of
the schedule. Infeasible packets are packets that
cannot arrive at their destinations before their
deadlines, no matter what. This is because, the
remaining transmission time of such packets are
longer than the time interval between their arrival
at an end-host or the switch and the packet dead-
lines. Packets that are not infeasible are feasible
packets.
To determine whether a packet is infeasible, the

algorithm therefore needs global time. Thus, as
discussed previously, we assume that the end-hosts
and the switch have access to synchronized clocks.
Once infeasible packets are moved to the

schedule-end, the algorithm maximizes the lo-
cal aggregate benefit in the resulting sched-
ule. The local aggregate benefit is maximized
by observing that given two schedules σa =
〈σ1, pi, pj , σ2〉 and σb = 〈σ1, pj , pi, σ2〉 of a
packet set A, such that σ1 �= 0, σ2 �= 0,
σ1

⋃
σ2 = A − {pi, pj}, and σ1

⋂
σ2 = ∅, the

scheduling decision at a time t, where t =∑
k∈σ1

lk, that will lead to maximum local aggre-
gate benefit is determined by computing ∆i,j (t),
where ∆i,j (t) = [Bi (t+ li) +Bj (t+ li + lj)] −
[Bj (t+ lj) +Bi (t+ lj + li)] . Thus, if ∆i,j (t) ≥
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0, then schedule σa will yield a higher aggregate
benefit than σb.
BPA maximizes local aggregate benefit by ex-

amining adjacent pairs of packets in the schedule,
computing ∆, and swapping the packets, if the re-
verse order can lead to higher local aggregate ben-
efit. The procedure is repeated until no swaps are
required. The packet that appears first in the re-
sulting schedule is then selected for transmission.
In [17], we show that given n application pack-

ets, BPA has a worst-case complexity of O
(
n2

)
,

which is faster than the O
(
n3

)
cost of the algo-

rithm presented in [3].
It is important to note that the superiority of

BPA is not affected by the accuracy and precision
of global time that is achieved through synchro-
nized clocks (i.e., clock drift rates). Given that
any implemented solution to the SRPT problem
must rely on global time (in order to behave as
closely as possible to optimality), BPA’s superi-
ority is not affected, nor is it jeopardized when
considering multi-segment switched Ethernets.

3.3. Timeliness Feasibility Conditions

In order to establish the timeliness feasibility
conditions, we must now “bind” BPA to a syn-
chronous model that matches the switched Ether-
net system model that we are considering. That is,
synchrony assumptions are now needed to estab-
lish the feasibility conditions. This “late binding”
process permits to translate the time-free or event-
based activation conditions of BPA into timed con-
ditions.
To establish the desired timeliness property, we

need to determine the worst-case lower bound on
the system-wide, aggregate timeliness benefit that
is possible under the models of SRPT. This can be
determined by first determining the lower bound
on the individual benefit that is accrued by the ar-
rival of any given packet at its destination. Aggre-
gation of the individual benefit lower bounds will
yield the lower bound on the system-wide benefit.
To determine the lower bound on individual

benefit, we need to determine an upper bound on
the packet delay. We thus seek to construct a com-
putable function denoted R(si, p), that gives an
upper bound on the delay incurred by any packet
p to arrive at its destination, since its arrival at the
MAC-layer of any source si, i ∈ [1, z] for outbound
transmission.
In a single-segment switched network, a packet

will experience contention for two network re-
sources once it arrives at the MAC-layer of its
source. The resources include (1) the network seg-
ment from the source to the switch and (2) the
network segment from the switch to the destina-
tion. Thus, we define R(si, p) = R1(si, p)+R2(p),

where R1(si, p) is the upper bound on the delay
incurred by any packet p to arrive at the switch,
since its arrival at the MAC-layer of any source
si, i ∈ [1, z] and R2(p) is the upper bound on the
delay incurred by any packet p to arrive at its des-
tination, since its arrival at the switch.

3.3.1 Construction of R1(si, p)

Consider a packet p that arrives at the MAC-layer
of a source si. Let A(p) denote the arrival time
of the packet p at the MAC-layer of the source
si and let d(p) denote its relative deadline (i.e.,
relative to the arrival time A(p)). Let I(p) denote
the time interval [A(p), A(p)+d(p)]. To determine
R1(si, p), we need to determine an upper bound on
the number of packets belonging to subset Pi that
will be scheduled for outbound transmission (by
BPA) on source si, over any interval I(p), before
packet p is transmitted. We denote this upper
bound as ui

1 (p).
The bound ui

1 (p) must be established consider-
ing the strongest possible “adversary” that is em-
bodied in the arrival model i.e., assuming that
packet arrivals occur at their bounded densities
over all time windows over I(p).

3.3.2 Upper bound ui
1 (p)

Upper bound ui
1 (p) is established by observing

that any packet q will be scheduled by BPA on
source si before packet p, only if packet q arrives
no sooner than A(p) − d(q) and no later than
A(p) + d(p) − b′(p)

ψ . This is because, if packet q
were to arrive before A(p) − d(q), then its abso-
lute deadline will occur before the arrival of packet
p. Thus, when packet p arrives, BPA has either
already scheduled packet q for transmission or has
dropped packet q because it has become infeasible.
Similarly, if packet q were to arrive after A(p)+

d(p) − b′(p)
ψ , then at that time, BPA would have

either already scheduled packet p for transmission
or has dropped p because it has become infeasible.
Note that q cannot be scheduled before p once p
has been scheduled and is in transmission (even if
q were to arrive before A(p) + d(p)), since packet
transmission is non-preemptive.
Note that if packet q were to arrive after A(p)+

d(p)− d(q) but before A(p) + d(p)− b′(p)
ψ , the ab-

solute deadline of packet q will occur after that
of p. Under an EDF packet scheduler, this will
cause packet q to be scheduled after packet p, since
packet q has a longer absolute deadline than that
of p. However, under BPA, it is quite possible
that packet q can be scheduled before packet p.
Thus, with EDF, the latest arrival time of q after
which q cannot be scheduled before p will occur

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03) 
0-7695-1928-8/03 $17.00 © 2003 IEEE 



at A(p)+ d(p)− d(q), whereas with BPA, this will
occur at A(p) + d(p)− b′(p)

ψ .

Since
[
A (p) + d (p)− b′(p)

ψ

]
− [A (p)− d (q)] =

d (p) + d (q)− b′(p)
ψ , it follows that:

ui
1 (p) =

∑
q∈Pi

k∑
π=1




[
d (p) + d (q)− b

′
(p)
ψ

]

wπ (q)



aπ (q)

+



d (p)− b′(p)

ψ

θ


 .

Now, R1(si, p) is given by the sum of (1) the
time needed to physically transmit ui

1 (p) pack-
ets at throughput ψ and (2) the upper bounds
on aggregate worst-case execution times for BPA
to make scheduling decisions for ui

1 (p) packets.
The worst-case execution time of BPA will depend
upon factors such as processor speed and mem-
ory access latencies. Given a COTS product that
guarantees a worst-case execution time δh for BPA
at an end-host, R1(si, p) is given by R1 (si, p) =

=
∑
q∈Pi

k∑
π=1




[
d (p) + d (q)− b

′
(p)
ψ

]

wπ (q)



aπ (q)

×
[
b′ (q)
ψ

+ δh

]
+



d (p)− b′(p)

ψ

θ




[
b′c
ψ
+ δh

]
.

3.3.3 Construction of R2(p)

R2(p) is the upper bound on the delay incurred by
any packet p to arrive at its destination, since its
arrival at the switch. This upper bound can be es-
tablished in a manner similar to that of R1(si, p).
The only difference is that we now need to con-
sider all packets q that can arrive from all sources
si, i ∈ [1, z] such that they will contend for the
same outgoing network segment at the switch as
that of packet p. Since the destination of packets
is not specified in the models of SRPT, we will
consider all packets q ∈ P .
Similar to R1(si, p), to determine R2(p), we

need to determine u2 (p) i.e., an upper bound
on the number of packets belonging to set P
that will be scheduled for outbound transmission
by BPA on the switch over any interval I(p) =
[A(p), A(p) + d(p)], where A(p) is the arrival time
of packet p at the switch MAC-layer and d(p) is
its relative deadline.

3.3.4 Upper bound u2 (p)

Upper bound u2 (p) is established by observing
that any packet q will be scheduled by BPA on

the switch before packet p, only if packet q ar-
rives no sooner than A(p)−d(q) and no later than
A(p) + d(p) − b′(p)

ψ . The rationale for this is ex-
actly the same as that for establishing the bound
ui

1 (p). It follows that:

u2 (p) =
∑
q∈P

k∑
π=1




[
d (p) + d (q)− b

′
(p)
ψ

]

wπ (q)



aπ (q)

+



d (p)− b′(p)

ψ

θ


 .

Now, R2(p) is given by the sum of (1) the time
needed to physically transmit u2 (p) packets at
throughput ψ and (2) the upper bounds on aggre-
gate worst-case execution times for BPA to make
scheduling decisions for u2 (p) packets. Again,
given a COTS product that guarantees a worst-
case execution time δs for BPA at the switch,
R2(p) is given by R2 (p) =

=
∑
q∈P

k∑
π=1




[
d (p) + d (q)− b

′
(p)
ψ

]

wπ (q)



aπ (q)

×
[
b′ (q)
ψ

+ δs

]
+



d (p)− b′(p)

ψ

θ




[
b′c
ψ
+ δs

]
.

3.3.5 Timeliness Feasibility Conditions

The feasibility conditions are therefore:

ATB =
z∑

i=1

∑
pj∈Pi

Bj (R (si, pj)) � ATBl,

where R (si, pj) = R1 (si, pj) +R2 (pj) .
Now, to dimension a computer-based system

solution to the SRPT problem, an assignment of
values to unvalued variables in models of SRPT in-
cluding number of packets n, packet sizes b(pi), i ∈
[1, n], number of sources z, mappings Pj , j ∈ [1, z],
number of arrival sequences k, and arrival den-
sities 〈(aπ(pi), wπ(pi)), π ∈ [1, k]〉 , i ∈ [1, n]; and
properties of SRPT including benefit functions
Bi, i ∈ [1, n] and lower bound on system-wide, ag-
gregate timeliness benefit ATBl must be made.
The resulting quantified instance of the SRPT

problem must then be verified using the feasibility
conditions presented here. If a feasible solution ex-
ists (to the problem instance), a quantified system
that will have values assigned to unvalued vari-
ables in the solution including network throughput
ψ and BPA’s worst-case execution times δh and δs

can be obtained (using the feasibility conditions).
The quantification of the feasibility conditions

and the associated verification of system solutions
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can be automatically performed by constructing
system dimensioning tools. The dimensioning
tools simply encapsulate the timeliness feasibil-
ity conditions and verify whether a quantified in-
stance of the problem satisfies the desired proper-
ties under the assumed models.

4. Conclusions, Future Work

In this paper, we present an SE approach for
constructing certifiable solutions for soft real-time
distributed systems by building upon the TRDF
method. Central to the approach is our argument
that the coverage of desired system properties in-
cluding timeliness properties are maximized by fa-
voring asynchronous models and solutions in the
design of such systems. Given that many domains
can only be modelled with asynchrony assump-
tions, this is good news.
We demonstrate our SE approach by consider-

ing a packet transmission problem with soft time-
liness properties. We show how necessary timeli-
ness feasibility conditions can be constructed for
this problem. The feasibility conditions that we
present constitute the main contribution of the
paper. To the best of our knowledge, we are not
aware of any such feasibility condition for a soft
real-time solution.
Several aspects of the work are currently be-

ing studied. The feasibility conditions presented
here are necessary, but not sufficient. Construct-
ing necessary and sufficient conditions is a diffi-
cult problem, especially for best-effort scheduling
algorithms such as BPA as they make scheduling
decisions at each scheduling event that are func-
tions of the remaining packet transmission times
at the event (unlike EDF).
Further, constructing feasibility conditions for

satisfying application-level soft timeliness proper-
ties is a challenging problem due to the presence
of multiple software layers such as that of the OS
and middleware systems and the interactions be-
tween the layers. Furthermore, extending the sys-
tem model for wide-area network systems that in-
clude multiple switches and routers and deriving
feasibility conditions for such systems broadens
the scope of the certification approach. All these
issues are currently being studied.
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