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Abstract—In this paper, we propose the scattered byzantine
failure model. In this model processes alternate correct and faulty
periods. Specifically, during its faulty periods, a process behaves
arbitrarily (one cannot expect anything from it during these
periods) whereas during its correct periods, it behaves accord-
ing to its specification. In that sense, the scattered Byzantine
failure model generalizes the classical Byzantine failure model.
We characterize two reliable services guaranteeing timeliness
properties in the presence of Byzantine failures, namely the
Clock Synchronization and the A-Atomic Broadcast. We identify
necessary and sufficient conditions to ensure the correctness of
both services in the scattered byzantine failure model.

I. INTRODUCTION

Fault tolerance is an important issue in distributed com-
puting. To tolerate failures (from benign to malign ones)
physical redundancy is mandatory. Replication of critical data
and functionalities on a group of processors allows to increase
the overall reliability of the system. To be able to coordinate
the activities of the processors, a significant body of work
on replication techniques and agreement problems has been
done. Classically, the proposed solutions assume that all the
processors involved in the computation are classified into two
categories, and that this classification holds forever: the correct
processors and the faulty ones. A processor is correct if it
behaves according to its specification until the completion of
the computation; otherwise it is faulty. Hence, to correctly
design fault tolerant applications, one has to suppose that
a maximal subset of the whole set of the processors may
possibly fail, and once they have failed, no more failure can
happen.

Although the above failure model fits the requirements of
many common distributed applications, the specificity of the
space domain makes it not adapted essentially because of the
harshness of the environment. Quoting Shirvani et al. [22],
“radiation (such as alpha particles and cosmic rays), electronic
interference and power supply glitches (an example is the
undesired bit-flip effect which is the change of state in the
content of a storage element) may cause transient and frequent
faults in electronic devices”. Such faults cause single-event
upsets which are a major concern in a space environment.
Additionally, running times of the applications are extremely
long (typically, the useful orbital life of a satellite is expected
to last several years). Both reasons make unrealistic the
assumption that only a subset of the processors can fail during
the whole duration of a mission. Furthermore, for space,
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weight and cost savings, drastic limitations are imposed on
the computer system: spare processors are limited, and in any
case, human intervention to replace or repair hardware after
the launch of the satellite is rare. Thus a processor cannot be
excluded or precluded from participating to the forthcoming
computations under the pretence that it commits a transient
failure. Finally, most of the failures are recoverable, and more
importantly, are accidental: physical phenomena such as heavy
ion bombardments or alpha radiation can arbitrarily affect
the behavior of a processor by altering the executed code,
the data, the program counter, or the registers. But, checking
procedures or reconfiguration mechanisms are usually avail-
able in the computer system [22]. They guarantee that faulty
processors can recover some operational state. In particular,
they guarantee that the operating system and the hardware
(processor and physical clock) will operate correctly again.
On the other hand, finding an operational state does not mean
finding a safe state: an operational state can be reached through
an arbitrary sequence of transitions which may have altered
the local variables, the program counter, and/or the registers.
Thus, an operational may not be semantically correct.

In this general context, we simultaneously address two
different issues. The first one consists in providing algorithmic
solutions that guarantee processes to converge progressively
toward safe states with respect to the given service. This
convergence is obtained through self-stabilization properties:
starting from any arbitrary state, a process reaches a safe state
in a bounded time. The second issue concerns the service
availability. Beyond the properties of self-stabilization [12],
we provide algorithmic solutions that ensure a complete avail-
ability of the system in spite of concurrent failures.

We are conducting this work supported by the French
Space Agency (CNES - CENTRE NATIONAL D’ETUDES SPA-
TIALES). The aim is to propose both a generic architecture
and an universally applicable development method called
TRDF [17] on which the next generation of satellites could
be based.

A. Contributions of this Work

We start by formally defining the scattered byzantine failure
model. In this model, all the processors involved in a compu-
tation may alternate good periods and bad ones. Specifically,
during its bad periods, a processor behaves arbitrarily: one
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cannot expect anything from it during this period. For example,
a bit-flip in a location of memory that contains the instructions
of a program may cause the program to produce incorrect
results, and thus to commit a byzantine failure. ' On the
other hand, during its good periods, a processor behaves as
prescribed by its specification. This model of failure does
not limit the number of faulty processors. Rather, it frees
the application designer from the traditional and recurrent
question: “What happens if the quorum of processors that were
supposed to fail is exceeded ?” With the scattered byzantine
failure model, all the processors may possibly fail: the only
constraint, as will be detailed later, is to bound the number of
concurrent failures. In that sense, this model is a generalization
of the traditional byzantine failure model.

Given this failure model, we then present a solution to two
important problems that are inherent to distributed systems: the
Clock Synchronization and the A-Atomic Broadcast problems.
Both of them are essential building blocks in the design of
fault-tolerant real-time applications. In the particular context
of the aerospace case study, both problems have been tackled
to find a solution of the very problem of real-time distributed
scheduling. Both building blocks address different facets of our
work: first, for each service s, a characterization of the minimal
period of time that has to elapse after a process failure is given.
This period of time, called in the following post-fault period
and whose duration is denoted DJ, enables a faulty process
to recover a safe state. Second, for non atomic services, the
notion of fore-fault period is introduced. A fore fault period,
whose duration is noted D;, reflects the completion time of a
given service s. It ensures that if service s has been invoked
by some process D‘Ji time units before some process failure
then s is completed at all the processes.

Finally we identify necessary and sufficient conditions to
ensure the correctness of the algorithms we propose. As
aforementioned, constraints have to be put on the number of
concurrent failures —rather than on the maximum number of
failures during the execution of a service. At any given time,
the maximal number of processors that are in a faulty period
is denoted by t. To keep the presentation of the algorithms
as simple as possible, we assume in this paper that { = 1
and show that the number n of processors has to be at least
equal to 4. This assumption (n > 3t) is a classical requirement
when one considers byzantine failures with no authentication
mechanism. The choice of ¢ = 1 which is also imposed by the
fact that the number of processors used during a space mission
has to be as small as possible, can easily be generalized to
t>1.

In this paper, we only study two specific services, namely
the A-atomic broadcast and the clock synchronization. How-
ever the same approach can be applied to any other distributed
service insofar as the service manipulates evanescent data.
Roughly speaking, data are evanescent if variables (control

'In the following, a program or activity running on a processor is called a
process. Several processes can execute on the same processor. Both processes
and processors can experience failures. For example in the above example,
the bit-fip damages the execution of a program, leading to its failure.
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and critical ones) have a limited duration of validity (e.g.,
limited to the execution of a loop, or to the execution of a task
activated by an external event), or are refreshed periodically
(e.g., in a clock synchronization algorithm, the value of the
clock is recomputed cyclically), and if logs (when they exist)
are purged recurrently to keep only information related to the
recent past or the immediate future, then our approach can be
directly used.

Paper Road map Section II presents the model assumptions
and the scattered byzantine failure model. Related works is
discussed in Section III. Sections IV and V revisit the Clock
Synchronization and Atomic Broadcast services according to
the scattered byzantine failure model. Section VI concludes,
and discusses the scope of our results.

II. MODEL OF THE SYSTEM
A. Computational Model

The system consists of a finite set of processes II =
{p1,...,pn} communicating and synchronizing with each
other by sending and receiving messages over a completely
reliable connected point-to-point network. The system is syn-
chronous, meaning that i) there exist known upper and lower
bounds on the time required for a process to execute a
computation step, ii) every process has access to a hardware
clock with bounded drift rate with respect to real time (p > 0),
and iii) there is a known upper bound on transmission delay
of the messages (& denotes the value of the maximal message
transfer time).

Each process is modeled as an automaton with (possibly)
an infinite number of states. A state comprises the execution
context of the process (e.g. registers, stack, program counter,
binary code). The transition function takes as input both the
current state and the set of received messages, and encode the
protocol the process has to follow.

B. The Scattered Byzantine Failure Model

We assume that all processes can alternate correct and faulty
periods. At any time, at most ¢ processes are in their faulty
periods. The assumption n > 3t is a classical requirement
when one considers byzantine failures with no authentication
mechanism. Regarding a faulty period, we decompose it into
two parts:

o The first one, the bad period, encompasses the time in-
terval during which processes commit byzantine failures,
i.e., during which their behavior can deviate arbitrarily
from the one prescribed by the given algorithm/service.
Note that byzantine failures are the more severe kind
of failures and encompass crash, omission, timing and
values failures. Byzantine processes may omit to send
messages, may change their content or may generate
spurious messages. However masquerading is impossible.
To prevent one process from masquerading as another,
messages are signed; a process that receives a message
must verify the signature on the message. If the signature
on the message is not valid, then the process does not
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accept the message. Note that signed messages are nec-
essary whenever one wants to solve distributed problems.
Indeed, if a process can masquerading as another, then it
can masquerading as all the other processes, and thus no
distributed problems can be solved.

A process ends its bad period whenever it reaches
an operational state. With respect to the computational
model, an operational state is reached whenever a faulty
process recovers the correct automaton, and makes steady
progress in its computation, that is, is able to apply
the right transition functions associated to its automaton;
however its execution context may be altered. As previ-
ously said, such a state can be reached by resorting to
automatic recovering procedures.

For layered services, bad periods are no more defined ac-
cording to the automaton of a given service but according
to the automata of all the layered services. Specifically,
for a given processor P 2 and a set of K layered services,
P is in a bad period for level & service, with 1 < k < K,
if there is some k', 1 < k' < k, such that the automaton
associated to level k' service is in a bad period. An
operational state is reached at level k, if both the bad
period at level k£ and the post-fault period at level k — 1
are ended (see hereafter).

e The second period, called the post-fault period, defines

the delay needed for a process to reach a safe state
from an operational one. A process reaches a safe state
whenever its execution context is consistent with the one
of the processes in correct periods. An analysis of the
distributed protocol that implements the given service s
enables to determine the duration D} of the post-fault
period.
For layered services, the post-fault period of level k
service begins when both the bad period of level k service
and the post-fault period of level kK — 1 are over. For
k = 1, the post-fault period of the service starts at the
end of its bad period. To summarize, for level k service,
the faulty period starts at the beginning of its bad period
and finishes at the end of its post-fault period. This is
illustrated in Figure 1. In this figure, the different periods
that encounter some processor P during the execution
of two layered services, namely the A-atomic broadcast
(level k), and the clock synchronization (level k — 1) are
shown.

Whenever a process reaches a safe state, it becomes correct,
that is all the effects of its previous failures have disappeared.
A process remains correct as long as it does not commit a
new byzantine failure. During this period of time, the correct
period, a process behaves according to the specification of the
service it executes. Typically, the specification of a service
expresses requirements on the program execution state at a
given time, or on the desired (or undesired) evolution of this
state during a long-lasting activity. In the latter case, a com-

2When speaking of all the layered services, we use the term ‘processor”
to refer to the processes involved in the services.
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puting activity started during the correct period of a process
may not be completed at the very moment of its failure. To
exactly identify completed activities from uncompleted ones,
a correct period is divided into two successive periods: the
first one is called the good period while the second one is
the fore-fault period. The fore-fault period reflects the worst
case execution time of a given service s. In the following we
determine the duration Dy of the fore-fault period of the A-
atomic broadcast service (see Figure 1). This period ensures
that if service s has been invoked by some process p D} time
units before some process g failure then s is completed at
all the processes. Clearly nothing distinguishes a process in
a good period from a process in a fore-fault period from a
behavioral point of view; however the notion of fore-fault is
needed to limit the number of concurrent failures.

Note that, for the clock synchronization service, such a
period does not exist. This comes from the fact that the
functionality provided by this service is atomic in the sense
that a query to this service is immediately followed by a
response (i.e., the current time). This contrast with the A-
atomic broadcast in which a query to atomically broadcast
some message m requires a distributed activity among all the
processes to be effective.
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Fig. 1. Fore and Post-fault Periods of the Atomic Broadcast Service and the
Clock Synchronization Services at Processor P.

III. RELATED WORKS

Many works consider that, after a failure, a process can
recover a safe state that is consistent with the state in which it
was at the time the failure occurred. Very few works consider
an arbitrary failure model. In fact, in less complex failure
models, solutions heavily rely on the fact that failure detection
is much easier to handle. For example, in the crash failure
model, the detection of a local failure is easy to observe.
Detection of a remote crash can also be done using failure
detectors. During its recovery, a process is aware that it is
currently in a fore-fault period. This information can also
be known and trusted by the other processes. Additionally,
in a crash failure model, a running process always behaves
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according to its specification. Consequently, any data saved
in its permanent storage or logged by another process can be
used to recover to a safe state [16], [7], [1], [4]. All these
assumptions are no more true when one consider arbitrary
failures.

Works done on proactive security [9], [10], [5] have strong
connections with this paper. In a proactive security system,
any processes can experience arbitrary failures but during a
fixed period of time, no more than ¢ processes can be faulty.
To ensure security requirements, algorithms perform periodic
computations of critical data (like for example secret keys [9]).
In all these works (including ours), a byzantine failure is not
necessarily detected: locally a process does not know whether
it is correct or not.

In [21], Reischuk design an agreement protocol able to
tolerate malicious failures as long as they remain stationary
for a given interval of time. In [8], the concept of mobile
faults is introduced. In this works, a malicious agent is able
to corrupt a process and to move from one process to another
one. Malicious agents are characterized by the fact that their
moving speed is limited. More precisely, a parameter called
the roaming pace is used to denote the minimal amount of time
that has to elapse between the time at which an agent leaves an
host and the time at which it starts to corrupt another process.
In our model, a similar time interval exists. Its duration is
equal to D, + Dy. More precisely, if at a given time 7, one
process enters a post-fault period while ¢ — 1 other processes
remain in a bad period, then no other process can enter a bad
period before time 7+ D, + Dy. The proposed model refines
the interval of time into two bounded phases of computation
related respectively to the last process that has experienced
a failure and the next process that will experience a failure.
When considering stacks of protocols, this approach allows
to establish in a more simple way the assumptions (values of
Dy and D)) that have to be made for each layer: assumptions
related to the fore-fault period and the post-fault period are
cumulated separately. Another difference between our solution
and the above mentioned solutions lies in the fact that they
proceed in rounds, where processes that are not corrupted
approximately agree on the time at which a round start.

In [6], the authors describe a synchronization algorithm that
relies on a similar model. Yet the algorithmic solution is based
on a convergence function whereas our solution appears as
an extension of the protocol proposed in [23] that achieves
optimal accuracy.

IV. CLOCK SYNCHRONIZATION SERVICE

To be able to build control systems with real-time require-
ments, a clock synchronization algorithm is needed. It allows
processes to update their clocks to overcome the effects of
drifts and failures. In the space domain, some processes may
have access to an external source of timing signal (GPS time
for example). However, there exists periods of time during
which this external service is unavailable essentially because
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of technical difficulties.

Specifically, the goal of the clock synchronization algorithm
is to guarantee that the maximum deviation between the logical
clocks of all the processes (that are in a correct period) is
bounded, and that they are within a linear envelope of real
time. Clock synchronization protocols compute the logical
clock according to i) the value of the local physical hardware
clock and ii) messages exchanged with the other processes.

A. Definition of the problem

We consider that each process p; has a physical hardware
clock, denoted R;, and computes its logical time, denoted C;,
by adding a locally determined adjustment to this physical
clock [23]. The following two assumptions are made:

1) the rate of drift of physical clocks from real time is bounded
by a known constant p. That is, if R;(7) is the reading of the
physical clock of process p; at time 7, then for all 75 > 71:

(1+p) (12 = 11) < Ri(m2) — Ri(11) < (1 4 p)(72 — 71)

2) there is an upper bound J on the time required for a message
to be prepared by a process, sent to a set of processes and
processed by the recipients of the message.

Given both assumptions, a clock synchronization algorithm
has to satisfy the following two properties: For all processes
p; and p; in good period at time 7:

Agreement: There exists a constant € such that:

| Ci(T) — Cj(7)| < €

For any process p; such that p; is in a good period at time T,
then:

Accuracy: There exists a constant 4 such that, for any
execution of the algorithm,

T/(1+9)+a<Ci(r) <7(1+7)+b

for some constants @ and b that depend on the initial conditions
of the execution.

The agreement property guarantees that the maximum devi-
ation between the logical clocks of any two processes that are
in a correct period is bounded. The accuracy property states
that the logical clock of a process remains in a linear envelope
of real time while this process is in a correct period.

B. The Algorithm

1) Principles of the Srikanth and Toueg Algorithm: We
propose a clock synchronization protocol inspired from the
one of Srikanth and Toueg [23]. Their solution relies on
periodic resynchronizations. We have chosen the principles
of their protocol mainly because it is simple, and efficient:
it achieves optimal accuracy, that is, the accuracy of syn-
chronized clocks (with respect to real time) is as good as
that specified for the underlying hardware clocks. To simplify,
we assume that initially the logical clocks of processes that

3As quoted from Barak et al [6], GPS receivers cannot be use as an attractive
alternative to clock synchronization protocols mainly because the GPS signal
is easily corrupted by radio transmitters, radio interference, or malfunctions

in the satellites themselves.
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initialization:

k=1

» MRec:= /* M Rec: set of all received messages */
s MAcc:=10 /% M Acc set of accepted messages */
task 1 || task 2

task 1: /* Synchronization time */

+ when C(t) = kP
s send (Sync, k,i) to all other processes

task 2:
s on receipt of (Sync, m,j) from p; at time T = C(¢)

7 if (I=14) /* validity tests */
8 AN=(14+p)e<T—mP(1+p) <(d+¢€)(1+p)) then
9 send(Sync,m, j) to all
0 else
1 lf] 75 [ then
12 add(Sync,m, j,1) to M Rec
13 if ' 1" #1 s.t. (Syne,m, j,I") € M Rec then
1 add (Sync,m,j) to M Acc
s if 35" : j' # j st.(Sync,m, j') € M Acc
16 Nk 75 m + 1 then
17 C(t) =mP+«a
18 MRec := M Acc := () /* cleaning™®/
19 k=m+1 /* clock resynchronization */
20 endif
21 endif
22 endif
23 endif
Fig. 2. Clock Synchronization Algorithm Run by Process p;.

are in correct periods are synchronized. Principles of their
protocol is as follows. Let P be the logical time between
resynchronizations. The resynchronization protocol proceeds
in rounds, a period of time during which processes exchange
messages and reset their clocks: when the logical clock of
some process p; shows time kP, with k£ > 1, this process
broadcasts a resynchronization message, indicating that it is
ready to resynchronize. When a process in a correct period
receives t + 1 messages, the algorithm ensures that i) all the
processes that are in correct periods receive them at least 26
time units after their sending and ii) one of them has been
sent by a process during a correct period. Upon receipt of a
resynchronization message from 2t + 1 processes, process p;
knows that £ + 1 other processes are ready to synchronize.
Thus, p; accepts this message and resynchronizes its logical
clock to kP + a, with a some constant value guaranteeing that
logical clocks are never set back. Then p; relays this message
to ensure that all the processes that are in correct periods will
resynchronize too.

2) Principles of the Algorithm we Propose: We extend this
clock synchronization algorithm to handle scattered byzantine
failures, that is, to guarantee that i) the local structures of the
processes that are in correct periods are never corrupted by
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the recovering processes, and ii) faulty processes recover by
resynchronizing its local clock within a bounded delay (i.e.,
within 2P (1 + p) time units).

The algorithm is detailed in Figure 2. Processes locally
maintain a resynchronization counter k, and two buffers of
resynchronization messages. The first one, M Rec contains the
set of all the relayed messages. Their pattern is as follows:
(sync, k,s,r), where sync is the type of the message, k
represents the resynchronization number, s the identifier of
the process that sends the resynchronization message, and r
the identifier of the process that relayed it. The second buffer
M Acc contains the set of resynchronization messages that
have been relayed twice. Their pattern is similar to the ones
contained in MRec, except that the identity of the process that
has relayed the message does not appear.

Periodically (when the logical clock of some process p;
reaches kP, line 4), each process p; sends to all the processes
(except itself) a resynchronization message to inform all the
other processes that it is ready to make its kth resynchroniza-
tion. Upon receipt of such a message (line 6), a recipient p;
first checks whether the receipt of this kth resynchronization
message makes sense (that is if both p; and p; are within
the same round of resynchronization, line 8). In that case, p;
relays this message to all the processes, otherwise, it discards
it. Upon receipt of a relayed message from two processes
(different from the source of the resynchronization message),
a recipient p; keeps this relayed message (line 14): p; knows
that there are at least two processes that have received the
resynchronization message from a source. However, p; does
not know whether the source of the message is correct or
not. Indeed, nothing prevents a process in a bad period from
relaying its own resynchronization message (which might
lead to an incorrect resynchronization!). Thus, p; makes its
kth resynchronization only when it has received two other
relayed resynchronization messages corresponding to a second
source (line 15). We say that p; accepts the resynchronization
message k. In other words, p; resynchronizes its logical clock
whenever it receives a request to resynchronize from two
different sources, each request being relayed twice. Similarly
to the protocol of Srikanth and Toueg [23], p; resynchronizes
its logical clock with kP + «, with a some constant that
prevents from setting clocks backward. Specifically, a >
((1+ p)e +28)(1+ p), and P > 26(1 + p) + 2e.

The following proposition gives an intuition of how the
algorithm handles scattered byzantine failures. Specifically,
it shows that i) the local structures of the processes that
are in correct periods are never corrupted by the recovering
processes, and ii) faulty processes recover by resynchronizing
its local clock within 2P(1 4 p) time units, i.e., the duration
of the post-fault period equals to 2P(1 + p) time units.

Proposition 1: Suppose that process p; recovers an opera-
tional state at time 7 (i.e., enters its post-fault period). Then
by time 2((P — a)(1 + p) + 20), p; is resynchronized with all
the processes that are in correct periods.

We first show that the period between resynchronizations
is bounded, and is equal to (P — a)(1 + p) + 24. From the
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algorithm, every process p; that is in a correct period and
sends its (k + 1)th resynchronization message does so before
time (k+ 1)P on its clock (i.e., C;(7) = (k+1)P). Now, the
time that elapses since p;’s kth resynchronization is no more
than (k + 1)P — (kP + &) = P — « on p;’s clock. Thus no
more than (P — «)(1 + p) since the slowest process did its
kth resynchronization. Thus every process in a correct period
accepts the (k + 1)th resynchronization within a further 20
time units, which proves the assertion.

When process p; recovers, both its logical clock and its
buffer of messages are possibly corrupted. On the other hand,
all the other processes are in correct periods and thus continue
to resynchronize their logical clock. Thus, it is quite possible
that upon receipt of a mth resynchronization message, p;
does not relay it because its logical clock is desynchronized.
However, it stores all the relayed messages in its M Rec buffer,
and since all the other processes are in correct periods (by
assumption of the proposition, there is only one process in a
bad period at a given time in the system), then p; receives
all the relayed messages for the mth resynchronization. Thus
p; stores at least two resynchronization messages sent by two
different sources. However, since its local variables may be
corrupted, the value of k£ may be equal to m + 1. Thus the
“if-then” test fails, thus p; does not accept the resynchroniza-
tion message m, and thus does not reset its local variables
(including k). On the other hand, the next resynchronization
will succeed, and will enable p; to resynchronize its logical
clock and reset its local variable k. Thus if p; recovers at time
T, then two resynchronizations later p; is resynchronized with
all the processes that are in correct periods, that is by time
T+ 2((P — a)(1 + p) + 26).

From this proposition, it follows that the duration of the
post-fault period is equal to 2((P —a)(1+ p) +24) time units,
while the one of the fore-fault period is null (see Section II-B).

For space limitations, proofs of correctness of the algorithm
cannot be given in this paper. The reader is invited to read the
full paper [2].

V. A-ATOMIC BROADCAST
A. Definition of the problem

Atomic broadcast is a powerful communication paradigm
for fault-tolerant computing. It allows processes to reliable
broadcast messages, so that they agree on the set of messages
they deliver and the order of messages deliveries. Atomic
broadcast has been identified as a basic communication prim-
itive used by many systems [20]. Atomic Broadcast is defined
in terms of two primitives broadcast(< m, ¢ >) and deliver(<
m, 1 »), where m is a message drawn from a set M of possible
messages, and ¢, the identifier of the message. In the scattered
byzantine failure model, the A-Atomic Broadcast has to satisfy
the following four properties:

o Validity: If process p; broadcasts < m,¢ > at time 7
during a good period, then every process p; in a good
period at time 7 delivers < m, ¢ > exactly once during
this correct period.
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o Agreement: If process p; delivers < m,j > at time 7
during a good period, then any process in good period at
time 7 delivers < m,j >

o A-timeliness: If process p; delivers < m,j > at time
T during a good period, then p; broadcast < m,j >
between time 7 — A and time 7.

e Total Order: If two processes p; and p; deliver two
messages < mq, k1 > and < mg, ke > during a good
period then both messages are delivered in the same order
by p; and p;.

If we assume that faulty periods last forever, like in the

classical model, the specification given above corresponds to
the classical one [11], [14], [18].

B. Algorithm

The atomic broadcast algorithm is shown in Figure 3. It
relies on the clock synchronization algorithm detailed in the
previous section. The general structure of this algorithm is
not original: there is a sending task (task 1), a delivering
task (task 2), and a task in charge of reaching an agreement
on the received messages and on their ordering (task 4).
On the other hand, the innovative aspect of this algorithm
is to cope with the scattered byzantine failures, that is, to
guarantee that i) the local data structures of the processes that
are in correct periods are never corrupted by the recovering
processes, and ii) the recovering processes have again both
a correct state and correct data structures in a bounded time
(task 3). The main strategy looks like the one adopted in the
clock synchronization algorithm: messages are initially sent
by the source to all the processes except the source itself, and
are relayed to all the processes. Furthermore, upon receipt
of a message, the recipient checks whether the logical dates
contained in the received message are mutually consistent
(lines 19-20).

When process ps executes broadcast(< m, s >), it sends a
message M = (< m,s »,ds,ds) to all the processes except
itself. Variable d; is the local time at which p, broadcast
< m,s >. When a process p; relays this message, it sends a
message M = (< m, s >, d,,d;) to all the processes. Variable
d; is the local time at which p; relays < m, s >. Each process
p; maintains two different buffers of messages. The first
one, M Rec contains information about the recent messages
(=X m,s >,ds,d;) that have been relayed by a process p;
that seems to be correct. Information about a message directly
received from the source is never logged. After a positive
control of the value of d; (line 19), (< m, s >,ds, j) is kept in
M Rec. Note that the origin of the relayed message is logged
rather than the date at which the relayed message was issued.
The second buffer M Deliver is an array of sets of messages
such that M Deliver(d) contains all the messages that have to
be delivered at local time d + 2(1 + p)d + 2 + 2¢. The time
at which a process delivers a message is determined by the
time at which the source has broadcast the message. Messages
broadcast at the same logical time are delivered in a predefined
order based on the identities of sources and messages.
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A message (< m,s >) is said to be accepted by a process
p; when < m,s > is inserted in the set Mdeliver managed
by p;. If < m,s = is inserted by p; in the set Mdeliver
for the first time at time 7, the local time C;(7) is called the
acceptation time of (< m,s >) by p;.

For space limitations, we only give an intuition of cor-
rectness proofs. Furthermore, for legibility reasons, proof of
Lemma 1 is given in the full paper [2].

C. Sketch of the Correctness Proof

Lemma 1: Let p; and p; be any two processes such that p;
is in a correct period during the time interval [7,7 + §] and
pj is not in a bad period during the same time interval. If
message m is sent by p; at time 7, then m is received by p;
and the validity test (lines 19-20) holds.

Theorem 1: Consider any synchronous system subject to
scattered byzantine failures and in which physical clocks are
e-synchronized clocks. For A = 2(1 + p)d + 2a + 3e, the
algorithm given in Figure 3 ensures all the properties of A-
Atomic Broadcast, assuming that the fore-fault period lasts at
least A time units and the post-fault period (1 + p)A time
units.

Proof of the theorem follows from the following four proper-
ties:

Lemma 2 (Validity property): Suppose that ps; broadcasts
< m,s > attime d; = Cs(7) during a good period. Because
Dy > 26, any process p; in a good period at time 7 is in a
correct period during the time interval [, 7 + J]. All messages
sent by p, at time 7 are received by all processes p;. By
Lemma 1, any process that receives a message from p, relays
it (execution of line 22). By assumption, there are at least
two such processes. Again, by Lemma 1, any process p; in a
correct period during [7, T + 24] receives at least two relayed
messages. Consequently, the validity test (lines 19-20) holds
at least twice at p;. Therefore, p; accepts < m,s > before
local time ds + 2(1 + p)d + 2a + 2¢ (line 28). Moreover,
< m,s > is inserted in a single entry of M Deliver, namely
M Deliver(ds). Hence, this message is delivered only once
by process p; during a correct period.

Lemma 3 (Agreement property): Suppose that at time 7/,
p; is in a good period and delivers message < m,s >. By
task 2, Ci(7') = ds + 2(1 + p)d + 2a + 2e. First, we show
that < m, s > delivered at time 7' has not been erroneously
inserted in M Deliver while p; was in a bad period. Proof is
by contradiction. Suppose that p; inserted message < m, s >
in M Deliver(ds) while it was in a bad period. Assume that p;
started the subsequent post-fault period at time 7'’. If message
< m, s > was not removed from M Deliver when p; executed
task 3 at time 7", condition (ds —€) < C;(7"") had to be true.
As p; is in a good period at time 7', we have 7' — 7" > D,,.
Thus, C;(7") — Ci(7") > D, /(1 + p). As D, = (1+p)(2(1+
p)d + 2a + 3€) and Ci(7') =ds +2(1 + p)d + 2 + 2,
we have: ds > C;(7") + €. This contradicts the fact that
ds < Ci(m") + e

In the first stage of the proof, we have shown that message
< m,s » is accepted and delivered by p; during the same
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initialization:
i MRec:=10 /* Mrec: set of all received messages */
» Vd : M Deliver(d) := ()

/% MDeliver(d): messages to be delivered at time d */

task 1 || task 2 || task 3 || task 4

task 1:

s on ABcast(m) do

s d; :=date(); /% query of the local clock */
s send (<X m,i>,d;,d;) to all other

s done

task 2:

7 at time d do

s Deliver each < m,s =€ M Deliver(d') with

9 d' =d—2(1+ p)d — 2a — 2¢ in some predefined order
10 done

task 3:

n while true do

i forall (X m,s >,ds,j) € MRec s.t.

3 —((ds — €) < date() < (ds +2(1 + p)d + 2 + 2¢)) do

14 remove (< m,s =,ds,j) from M Rec;
is M Deliver(ds) :== 0

1 done

task 4:

17 on receive (< m,s >,ds,d;) from p; do

18 d, = date();

/* validity test:*/
19 1f((ds—e)§d]S(ds+(1+p)(5+a+e))
0 and ((d; —€) <d; < (dj + (1+ p)d + o+ ¢€)) then
21 if (S = J) and (ds = d]) then

2 send (< m,s »,ds,d;) to all
23 else
24 if (S 75 ]) then
2 add (X m,s >=,ds, j) to M Rec
2% if 3k, k' k£ E N (<m,s>,ds, k) € MRec
7 A=< m,s =,ds, k') € M Rec then
% M Deliver(ds) := M Deliver(ds) U{< m,s >}
2 endif endif endif endif done
Fig. 3. Atomic Broadcast Algorithm Run by Process p;.

correct period. Now, suppose that p; accepts < m,s > at
some time 7 < 7'. To insert < m, s > in M Deliver(ds), p;
must have received at least two relayed messages by time 7:
(< m,s »>,ds,d;) from p; and (< m,s >,ds,dy) from py
(with £ # j and s # j and s # k). By definition, at least
one of these processes (p; or pg) is in a good period at time
7 and was not in a bad period when it relayed the message
from p,. Let p; be this process. As the validity test has been
evaluated to true by p; before relaying the message, we have:
di <(ds+(1+p)d+a+e).

Two cases have to be considered:

i) pr, was in a good period when it relayed p, message. In

nn
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that case, any process p; such that p; is in a good period at time
T also receives a message from py. Consequently, the message
< m, s = is accepted by p; before time ds+2(1+p)d+2a+2¢
and delivered by p;.

ii) pr, was not in a good period when it relayed ps message.
Thus, p, was in a correct period when it broadcast its message
< m,s > at time ds. End of the proof follows by Lemma 2.

Lemma 4 (A-timeliness property): Straightforward  from
the fact that if < m,j > is delivered at time d then the
message was broadcast at time dy = d— 2(1 + p)d — 2 — 2¢)
and by Lemma 3.

Lemma 5 (Total order property): Messages are delivered
according to their sending time which guarantees a total
order delivery (identifier of the sender can be used to break
symmetry if needed).

Theorem 2: Consider any synchronous system subject to
scattered byzantine failures in which physical clocks are not
e-synchronized clocks. For A = 2(1 + p)d + 2a + 3e, the
algorithm given in Figure 3 altogether with the one in Figure 2
ensure all the properties of A-Atomic Broadcast, assuming
that the fore-fault period lasts at least A time units and the
post-fault period (1+ p)A+2((P—a)(1+ p)+2§) time units.
Proof directly follows from Theorem 1 and Proposition 1.

VI. CONCLUSION

In this paper, we have considered the byzantine recovery
problem. We have formalized the scattered byzantine failure
model. This model enables a process to alternate correct and
faulty periods. Such model has been mainly inspired from
the space model. We have considered two fundamental prob-
lems within this model: the clock synchronization problem
and the atomic broadcast problem. We have revisited their
specifications and designed simple and efficient solutions for
these problems. Notice that, when failures last forever, the
specifications (and the solutions) we propose come down to
the ones proposed in the classical Byzantine model. Finally,
we have evaluated the time needed for a process in a faulty
period to recover a correct state and thus to resume correct
operation with all the other processes.

We are currently working on the real-time distributed
scheduling problem. Solving this problem in our model of
computation amounts in ensuring that all the processors deliver
the same sequence of messages in an order approximating EDF
(Earliest Deadline First) ordering system wide in the presence
of scattered byzantine failures. To the best of our knowledge,
this problem has never been investigated so far.
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