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Abstract. A widely accepted viewpoint is that designs for distributed
real-time systems should be based on synchronous computational models.
Safety in such designs, however, requires that the target system behaves
as the synchronous model postulates. We believe that this approach is
rather risky, as it rests on solving distributed scheduling problems which
are known to be NP-hard. We therefore advocate the use of more relaxed
system models, namely asynchronous models equipped with unreliable
failure detectors.

To this end, we introduce a novel implementation of the perfect failure
detector, resting on an abstract model without upper bounds on end-to-
end message delays. Then, we demonstrate how this algorithm can be
transferred from the abstract model into a real network/system archi-
tecture. Finally, we prove that this solution exhibits real-time behavior.

1 Introduction

The research disciplines of distributed computing (DC) and real-time (RT), al-
though often dealing with common problem domains— e.g. fault-tolerant sys-
tems/networks—seem not to reflect each others’ results adequately. This might
stem from apparently contrary research directions: Due to impossibility results,
e.g. the impossibility of solving consensus in asynchronous systems [1], a major
driver for DC research was to find weak timing models as close as possible to
the asynchronous model (e.g. via unreliable failure detectors) that (1) match the
highest possible number of real applications/systems and (2) allow fundamental
non-trivial problems such as consensus or atomic broadcast to be solved [2, 3, 4].
Of course, with algorithms designed in some non synchronous model, liveness
only can be proven to hold, not timeliness (known bounded finite delays).

In contrast, RT research traditionally focuses on queuing and scheduling dis-
ciplines in order to prove timeliness properties considering synchronous models.
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However, as is well known, proofs of timeliness properties involve solving com-
binatorial problems that are NP-hard, usually considering simplified models of
reality (e.g. no failures, no cache-memory conflicts). We arrive at the mentioned
gap: DC seeks solutions that are as far as possible independent of the system’s
timing behavior while RT considers underlying timing behaviors so as to ensure
that, e.g. deadlines are met.

Is it the case that DC results regarding weak (partial) synchrony— assum-
ing weak timing behavior— are of no use for designing RT systems, as the
timeliness properties in RT should be predictable? (Exaggeratedly, one could
rephrase this question to “Do DC results that guarantee safety and liveness in
asynchronous models suddenly lose their properties when used in a synchronous
system?”)

Consider, e.g., the classic failure detector (FD) implementation by Chandra
and Toueg [5]. The guarantee we get with such FDs is that crashes can eventually
be detected if eventually some unknown bound on message transmission and
computing speeds holds . At first sight, “eventually” and “some unknown bound”
seem to be of little use when one wants to guarantee hard real-time behavior.
This is mistaken. Just run Chandra and Toueg’s FD implementation in a system
where worst-case response times have been properly established via (distributed)
schedulability analysis. In such systems one can derive worst-case response times
for failure detection. Note again, that the distributed algorithm that implements
the FD was designed for a generalized partially synchronous model (close to
asynchrony), but now it provides real-time behavior!

But why should one take such a (not really straightforward) design approach?
To this question there are several answers. Let us discuss two of them.

Safety. No timeliness failure— i.e., violation of the demonstrated timeliness
properties— can ever lead to disagreement with asynchronous consensus algo-
rithms based e.g. on eventually strong FD �S [5].

This is of great interest as every solution to some RT scheduling problem
inevitably rests on some schedulability analysis yielding “worst-cases under a
given set of assumptions”. As every assumption has a non-zero probability of
being violated during operation (as we cannot tell the future) every derived
bound on e.g. message delays could be violated. In such a case an algorithm that
relies on these bounds will cease to work. That is, one loses safety (consistency)
along with timeliness, although it need not be this way.

Performance. When trying to “implement” synchronous models, i.e., provide
applications the illusion that they run in synchronous systems, timers (e.g. round
durations, periods of scheduler activation) have to be set to worst-case values
computed for worst-case load and failure conditions (e.g. re-transmissions of
lost messages contributes to delay bounds). Thus, in many synchronous system
designs, run-time behavior which is dictated by worst-case timeouts is bound to
be worst-case behavior. Synchronous designs are inefficient by construction.
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This deficiency increases even more as new applications for real-time systems
demand highly dynamic computations. Dimensioning the systems according to
rare (on demand) computations is expensive, and often not even required from
a safety point of view. This can be avoided by favoring designs based on less
restrictive assumptions. From these considerations emerged the concept of design
immersion or late binding, which has been introduced and discussed formally
by Le Lann [6, 7, 8].

Contribution. This paper provides an example of how weak synchrony assump-
tions can be immersed into systems to achieve real-time behavior. In Sect. 3, we
present a novel algorithm for implementing the perfect FD P [5] in the Θ-Model,
where one does not assume local clocks, or bounded computational step time or
upper bounds on message transmission delay [9, 4, 10]. Rather, the Θ-Model as-
sumes just eventual step/termination and a bounded ratio of end-to-end delays
experienced by messages that are in transit simultaneously. We then show how
to immerse our algorithm into a system where clocks may exist and bounded
computational step times are used to implement and prove real-time behavior.
To this end, we revisit the architecture that was employed in [11]. This allows
us to compare timeout based FD implementations to our solutions that are
message-driven and timer-free.

2 Model

For our presentation of the algorithm and our formal analysis1 we consider a sys-
tem of n distributed processes denoted as p, q, . . ., which communicate through
a reliable, error free and fully connected point-to-point network. We assume
that a non-faulty receiver of a message knows the sender. The communication
channels between processes need not provide FIFO transmission, and there is no
authentication service.

At most f processes may stop by prematurely halting. A process is consid-
ered correct until it stops operation. Since we will immerse our solution into
a broadcast network (Deterministic Ethernet [13]) later, we assume that any
broadcast message is either received by all correct processes or by none (in the
case the sender crashes before finishing its broadcast). This leads to simple fault
semantics, i.e., clean crashes.

We now give two different models. The dynamic model of Sect. 2.1 will just be
considered for coverage analysis. In this model, upper bounds on message end-
to-end delays do not exist. There is just a relation of long and short transmission
times of those messages which are simultaneously in transit. In order to keep the
analysis simple we give the static model in Sect. 2.2 which is logically equivalent,
i.e., any problem solvable in one of the models has a solution in the other model
(see Theorem 1). However, both models assume that processes have no access
to local clocks and can take a computational step only as a reaction to received
messages, thus they are message-driven.
1 Due to space restrictions we had to omit the full analysis of our algorithm. It can

be found in the full version of the paper [12].
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2.1 Dynamic Timing Model

In our dynamic model, processes communicate by message passing. The time
interval a message m is in transit consists of three parts: Local message prepa-
ration and queuing at the sender, transmission over the link, and local receive
computation and queuing at the receiver. We denote as tms the instant the prepa-
ration of message m starts. The instant the receive computation is finished we
denote as tmr . We assume that all communication is done by broadcasting.

In the dynamic model we say that message m is in transit during time interval
(tms , tmr ]. We denote ηm = tmr −tms the finite end-to-end computational + queuing
+ transmission delay of message m sent from one correct process to another. Let
M(t) be the set of all messages which are in transit at time t. Let δ(t) be a lower
envelope function on transmission delays of all messages that are in transit at
time t, such that for any time t it holds that δ(t) ≤ min(ηm) for all m ∈ M(t)
if |M(t)| > 0 and δ(t) = 1 otherwise. We define for a fixed Θ ∈ IR, Θ ≥ 1
the upper envelope function Δ(t) = Θδ(t). At any time t it must hold that
Δ(t) ≥ max(ηm) for all m ∈ M(t) if |M(t)| > 0.

2.2 Static Timing Model

In contrast to the dynamic model, the static one stipulates an upper bound Δ
on end-to-end delays as well as a lower bound δ such that 0 < δ ≤ ηm ≤ Δ < ∞,
where δ and Δ are not known in advance. Since Δ < ∞, every message sent
from a correct process to another one is eventually received. The transmission
delay ratio is Θ = Δ/δ. For our formal treatment we assume that processes
have a priori knowledge of some integer Ξ (a function of Θ; cf. Theorem 5) but
no knowledge on time bounds. Moreover, there is no access to an external time
base, hardware clocks or similar devices that allow to get a notion of elapsed
time; in other words, executions are message-driven. It follows that time passing
information has to be obtained solely out of the message pattern.

In [10] we have shown the following theorem by proving that the runs of the
dynamic and the static model cannot be distinguished by the processes. It follows
that an algorithm that was proven correct in the static model is correct in the
dynamic model as well.

Theorem 1 (Equivalence [10, Theorem 1]). The dynamic model and the
static model have the same expressive power.

Uncertainty. Processes only communicate by broadcasting. In literature (in
particular in work on clock synchronization [14]), usually, the delay uncertainty
E = Δ − δ is employed to discuss the effect of timing uncertainty (jitter). Our
analysis reveals, however, that for our broadcast based algorithm we can employ
a finer grained measure. Assume that a message m is broadcast at time t. It will
be received by correct processes in the interval [t + rm, t+ Rm] with rm ≥ δ and
Rm ≤ Δ. We define the broadcast uncertainty ε ≥ Rm − rm for all messages
m. Obviously we have ε ≤ E < Δ. We will see in Sect. 5.2 that distinguishing
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between ε and E makes a big difference. It will turn out that in our targeted
architecture the value of ε is close to 0 while E remains close to Δ.

Significant Timing Values. In this paper, we consider a round based algo-
rithm that is executed in asynchronous rounds, i.e., every correct process sends
a message in every round k. The transition to round k + 1 occurs when n − f
messages for the current round are received. It will turn out that the uncertainty
we have to deal with does not stem from the ratio of message delays directly
but rather from the ratio of the longest message delay and the shortest round
switching intervals. The shortest round-switching interval δr, however, is not
determined by only one single correct message. Rather it is determined by the
sending time of the first message and the receive time of the (n − f)th message.
This might seem irrelevant since any message is bounded by δ, and all could
be sent simultaneously. From a practical point of view — as is confirmed by our
analysis in Sect. 4— this is very important, however. If one tries to establish an
analytical expression for δ one would examine an idle system and the sending of
a single message in this system— which could be a self reception as well. Obvi-
ously the receiver just has to deliver one message here. However, assuming that
a receiver can process, say n − f messages as fast as a single one is typically not
valid in real systems —this would amount to assuming infinite computational
power. Choosing δr = δ hence would be overly conservative since round switch-
ing requires n − f messages, i.e. is determined by the (n − f)th fastest message.
Moreover, in broadcast bus networks one cannot transmit two messages simul-
taneously over the bus, i.e. the n − f fastest messages must be transmitted one
after the other. The time for n−f messages to be transmitted in such networks is
hence always larger than the best-case time of sending a single message in an idle
system. Using δ in the analysis would lead to over-valuation of its significance.

In our analysis, we will hence set δr equal to the transmission time of the
(n − f)th fastest message. That is, we will use δr as expression for the shortest
time it may take to send n − f messages from distinct processes to a single
receiver (end-to-end). Let us formalize this:

Definition 1 (Incoming Messages). For any correct process q, δq is the n−f
smallest ηm for all messages m sent by distinct correct processes that enable an
event at q. δr is defined as the the smallest δq of all correct processes q.

Lemma 1 (Sending Time). If a correct process receives messages from at
least n − f distinct correct processes by time t, then at least one message was
sent by time t − δr.

2.3 Event Generation

In previous work [15, 4] we considered purely message-driven algorithms. These
algorithms are started by an external event, which triggers the first computa-
tional step. All steps after the first one are direct responses to received messages.
As already shown in [4], such protocols can be employed efficiently in systems
with large delay×bandwidth product; e.g. satellite broadcast communication



Implementing Reliable Distributed RT Systems with the Θ-Model 339

link. In the architecture of Sect. 4, we show how to fine tune the overhead by in-
troducing mute periods.2 To this end we add local events to the model. Previous
work that investigated the intersection of message-driven and time-driven seman-
tics can be found in [16] where one has shown that message-driven semantics
are weaker than time-driven ones by proving that the problem of self-stabilizing
failure detection cannot have a message-driven solution [16] while time-driven
solutions are known [17]. In fact, in [16] we proved even more. We showed that
the impossibility result even holds if there are locally generated (deadlock pre-
vention) events where no assumption is made on the occurrence of their arrival
such that their semantics are too weak to employ them as clocks.

Following this result we add local events without assumptions on arrival laws
to our model as well. We use local event generation in order to start instances of
the basic round synchronization algorithm. In our theoretical analysis we show
that the correctness of the algorithm does not depend on the actual intervals
between these events. In our implementation example we then use these events
in order to control the overhead such that we compare our performance with
previous failure detector implementations [11].

3 General Implementation and Analysis of Perfect
Failure Detector P

The need for a definition of (unreliable) FDs emanated from the impossibility [1]
of deterministic fault-tolerant consensus in asynchronous distributed systems. In
their seminal paper, Chandra and Toueg [5] characterized FDs by the two proper-
ties completeness and accuracy. In an asynchronous distributed system equipped
with FDs consensus is solvable. In this paper we will give an implementation of
the perfect failure detector P that ensures the following two properties.

Strong Completeness. Eventually, every correct process permanently suspects
every crashed process.

Strong Accuracy. No process is suspected before it crashes.

Our implementation of P follows an idea originally proposed in [9]; its pseudo-
code is given in Fig. 1. It is executed in consecutive instantiations which are
numbered using variable i (see line 1). We will see that each instantiation can be
regarded independently and that a process that crashes before instantiation j is
started will be suspected at the end of j. The algorithm is started independently
at each process by sending (round, 0, 0) in line 4— round being just a message
identifier. Note that round k = 0 is the only round where not all correct processes
must send messages. The code inside the statement starting at line 6 is a simple
round synchronization algorithm, i.e., the round number is a counter of the
terminated rounds of computation. If a process has received n − f messages
from distinct processes for the current round k it increases k and sends its

2 This is done in all FD implementations where e.g. heartbeats are sent every x (phys-
ical) time units while the FD remains mute in between.
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0: VAR k : integer := 0; /* round number */
1: VAR i : integer := 0; /* instantiation number */
2: VAR SL[n] : boolean := false; /* list of suspected processes */
3: VAR saw max[n][∞] : integer := 0;

4: broadcast (round, 0, 0) [once]; /* Initialization */

5: /* Round Synchronization */
6: if received (round, i, k) from at least n − f distinct processes
7: → k := k + 1;
8: if k > Ξ
9: → ∀q: if saw max[q][i] = 0 → SL[q]:= true;
10: k := 0;
11: i := i + 1;
12: control overhead ;
13: broadcast (round, i, k) [once]; /* start next round */

14: if received (round, j, �) from q /* Store received messages */
15: → saw max[q][j] := max(�, saw max[q][j]);

Fig. 1. Perfect Failure Detector Implementation

message for the new round. Due to a priori knowledge of Ξ, a process can
determine upon updating its counter whether messages from other processes
for past rounds are missing. It does so in line 8 where it checks whether all
processes succeeded in sending at least (round, i, 1). Processes which did not,
must have crashed and are therefore suspected, i.e., added to the list of suspects
SL which is the interface to upper layer applications (see Sect. 4). After that, k
and i are updated and the next instantiation is started after the control overhead
command (see line 12), which will be used to create silent intervals between two
instantiations, when the algorithm is immersed into our targeted architecture. It
does so by, e.g., scheduling the transmission of the given message for some later
point in time. Another way to implement timer-free local waiting are hardware
instructions that exist in certain computers that allow to trigger some event
when x instructions have been executed.

The chosen value of this timeout— we will introduce τ in Definition 3 as
upper bound on it— neither has an influence on the correctness of the FD im-
plementation (it could as well be set to 0) nor must be the same at every process.
Moreover if there is no local timer, diverse local information may be used to get
some rough estimate of elapsed time (counting interrupts or updates of the pro-
gram counter etc.). In our example (Deterministic Ethernet in Sect. 5), we derive
a timeout value which leads to a worst-case overhead of 5% for FD messages.

Contrary to most other FD implementations, we do not use hardware clocks
to achieve FD properties, neither do we require upper bounds on message delays.
Other FD implementations use local clocks or timers to timeout (1) τ and (2) the
upper bound on end-to-end delays. Our solution neither relies on local informa-
tion about τ nor on the existence of some upper bounds on end-to-end delays in
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order to detect a crashed process. It follows that our timeout mechanism remains
message-driven.

To complete the description of our algorithm: The code of the statement in
line 14 stores which processes have sent messages for which round. Only the
message for the largest round number has to be stored here. (Note that the
declaration of saw max in line 3 includes an infinity of rows in the matrix just
for conciseness of presentation. In real implementations, information from past
instantiations need not be stored such that just bounded memory is needed in
order to maintain the required information.)

In order to show that our algorithm does implement P we first analyze some
properties of its included round synchronization algorithm (line 6) where k is
the local round number. Since messages for different instantiations do not inter-
fere logically with each other, we just examine the rounds for one instantiation
here. For conciseness we therefore suppress i in the following. We follow the
analysis of [15] where a logical clock synchronization algorithm in the presence
of Byzantine faults was considered. We just focus on crashes and therefore have
a simpler algorithm. After that we show the FD properties based upon these
round synchronization properties. We start with some preliminary definitions.

Theorem 2 (Properties). In the presence of f < n faults, the algorithm given
in Fig. 1 satisfies the following properties:

(P) Uniform Progress. If all correct processes set their round numbers to k by
time t, then every process sets its round number at least to k + 1 by time
t + Δ.

(U) Uniform Unforgeability. If no process sets its round number to k by time t,
then no process sets its round number to k + 1 by time t + δr or earlier.

(S) Uniform Simultaneity. If some process sets its round number to k at time
t, then every process sets its round number at least to k by time t + ε.

Lemma 2 (Fastest Progress). Let the first correct process set its round num-
ber to k at time t. Then no correct process can reach a larger round number
k′ > k before t + δr(k′ − k).

After discussing the fundamental round synchronization properties we now turn
our attention to the problem of failure detection. We start with the behavior of
instantiations.

Definition 2 (Instantiation). The start of instantiation i is defined to be the
earliest time bi by which n − f processes have sent (round, i, 0). Further, the
end of instantiation i is defined to be the time ei the last process sets its round
number to k > Ξ.

The following corollary follows directly from (P) and Definition 2, which intro-
duces D as the worst-case time between start and end of an instantiation.

Corollary 1 (Instantiation Termination Time). For all instantiations i it
holds that ei − bi ≤ D, where D = (Ξ + 1)Δ.
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As discussed above, we would like to fine tune the overhead of the FD algorithm
to application requirements by inserting silent periods in our algorithm. In order
to give a bound on detection latency we have to assume an upper bound on
the duration of these periods. The value τ that we introduce in the following
definition can in fact be arbitrary (depending on the required overhead) such that
it cannot be used as a weak clock [3] that could be used to timeout processes.

Definition 3 (Intermission). τ ≥ 0 is the upper bound on the timeout of the
control overhead call.

Corollary 2 (Intermission Period). For all instantiations i and i+1 it holds
that bi+1 − ei ≤ τ .

With the results regarding timing we now turn our attention to FD semantics.

Theorem 3 (Strong Completeness). Let Ξ be some positive integer. In a
system with n > f processes, the algorithm given in Fig. 1 ensures that each
process p that crashes by time bi is suspected by all correct processes by time ei.

We now give two theorems for strong accuracy. Theorem 5 is typical for results
in the Θ-Model as no time unit parameters show up but just the integer Ξ ≥ Θ.
From Theorem 4, however, one sees the parameters that have to be evaluated
during immersion more explicitly, i.e., Δ, ε, and δr.

Theorem 4 (Strong Accuracy). Let Ξ ≥
⌊

Δ
δr + ε

δr

⌋
+ 1. In a system with

n > f processes, the algorithm given in Fig. 1 ensures that no process is suspected
before it crashes.

Theorem 5 (Strong Accuracy in the Θ-Model). Let Ξ ≥ �2Θ�. In a sys-
tem with n > f processes, the algorithm given in Fig. 1 ensures that no process
is suspected before it crashes.

Assume that we have a system with ε = 0 and
⌊

Δ
δr

⌋
= 1 which according to

Theorem 4 requires Ξ ≥ 2 for failure detection with our algorithm. Following
Theorem 5, we say that the system behaves as a system obeying the Θ-Model
with Θ = 1. Similarly we show in Sect. 5 that our architecture built upon
Deterministic Ethernet requires just Ξ ≥ 2 as well.

To achieve real-time behavior we require an upper bound on detection time.
We give such a bound only for crashes that happen after time b0, since obvi-
ously we cannot bound detection latencies for crashes that occurred before the
algorithm was running. Such crashes, however, will be detected by all correct
processes by time e0 by Theorem 3.

Theorem 6 (Detection Latency). Let Ξ be according to Theorem 4 resp.
Theorem 5. In a system with n > f processes, the algorithm given in Fig. 1
ensures that a crash occurring at time t ≥ b0 is detected by time t + L, with
detection latency L = τ + 2D.
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Theorems 3 and 5 show that completeness and accuracy just depend on Θ while
only timeliness depends on Θ and Δ (i.e., the assumed time bound). If Δ is
violated but Θ still holds (which is possible in many real systems/networks [9])
we still guarantee completeness and accuracy while just timely detection is lost.
This is the best one can hope for, given that Δ is violated here!

Despite Theorem 6 we have no solution to a real-time problem yet, since we
did not show how to implement both the system model and the algorithm in a
real network. To this end we have to show that the assumed timing behavior in
the abstract model can be matched by demonstrated timeliness properties in real
systems. We do so in the following section in order to give a complete solution to
the RT FD problem for a network architecture based on Deterministic Ethernet
and suitable scheduling algorithms.

4 Architectural Model

In this section, we sketch out a generic architectural model of the systems under
consideration. See [11] for a detailed presentation of that model.

We consider a finite set Π of processors, interconnected by a network, re-
ferred to as Net. The nominal size of Π is n > 1. The model of a processor
is given in Fig. 2. The software/hardware architecture is modeled after a num-
ber of levels, such as the application software level, the middleware level, the
executive/operating system level, various communication protocol levels, the in-
put/output (I/O) level. Processors act as sources of messages. There are two

I/O

COM

APP

outQ

...

outq

...

inQ ...

inq ...

FD-message
generated by

FD-proc

•
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processed by
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write
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read

SL

(list
o
f
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sp
ected

p
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Fig. 2. Architectural model of a processor
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types of messages. Messages handled by FDs are denoted FD-messages. Mes-
sages other than FD-messages are referred to as ordinary messages (e.g. ap-
plication, middleware, system). Let COM denote the level of communication
protocols where one finds FD modules. An FD module consists of a process,
denoted FD-proc, which maintains a local list of suspects, denoted SL. At any
time, SL(p) contains the names of those processors that p’s FD suspects (rightly
or erroneously) of having failed. In addition, FD-proc receives and broadcasts
FD-messages so as to “prove” that its processor has not failed. Let APP denote
the application level.

Let us model those waiting queues visited by outgoing messages, from the
APP level down to the COM level, as a single queue, denoted outQ, and those
waiting queues visited by outgoing messages, from the COM level down to the
I/O level, as a single queue, denoted outq. We define inq and inQ similarly. An
FD-message is initially deposited by FD-proc in outQ, moved to outq after being
serviced in outQ, transmitted across Net after being serviced in outq, deposited in
inq, then delivered to FD-proc after being serviced in inq. An ordinary message
is initially deposited by an algorithm A in outQ, moved to outq after being
serviced in outQ, transmitted across Net after being serviced in outq, deposited
in inq, then moved to inQ after being serviced in inq, and delivered to A after
being serviced in inQ.

Correct modeling of reality leads to considering that a processor servicing a
message pending in a waiting queue is not preempted. Consequently, we define
variables woutQ, woutq, winq , and winQ as the service times corresponding to
the four waiting queues, respectively, that is the worst-case times for servicing
a message pending in each of these queues. We define dm as the blocking factor
with Net, i.e., dm is the exact time needed for transmitting the longest ordinary
message over the physical link between a processor and Net.

Let γ stand for an upper bound on end-to-end delays for an FD-message,
measured at the COM level.

Under worst-case processor and Net “loads”, waiting queues build up and Net
contention arises for transmitting concurrent FD-messages and ordinary mes-
sages on the one hand, concurrent FD-messages on the other hand. Fast failure
detection is achievable only if upper bounds for FD-messages’ sojourn times in
waiting queues and Net nodes are optimal, the case whenever FD-messages are
serviced prior to ordinary messages. This can be enforced by resorting to clas-
sical priority-driven, or deadline-driven, scheduling policies that implement the
well-known head-of-the-line policy. Consequently, we retain the following SW
algorithm:

SW . In every visited waiting queue, an FD-message is always deposited ahead
of ordinary messages and behind possibly pending FD-messages. It is
serviced prior to any ordinary message.

In order to resolve interprocessor competition for network and processor re-
sources optimally, processors may be assigned priorities or messages may be
assigned different relative deadlines. Priorities or deadlines being fixed, they de-
fine a total order over any set of FD-messages whenever contention develops.
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Any such assignment is equivalent to assigning indices 1, . . . , n over set Π , one
index per processor. Moreover, whenever possible, preemption (of a broadcast
medium, of a Net node) should be exercised, to the benefit of FD-messages, for
it is known that preemption may be needed to achieve optimality. Therefore, we
retain the following SN algorithm:

SN . Net resources are allocated to FD-messages, prior to ordinary messages;
in case of interprocessor competition for transmitting FD-messages, FD-
messages are serviced in increasing index order.

Let ψ(x) stand for the worst-case time it takes for x processors to preempt Net
locally and to fully resolve Net contention involving x FD-messages and ψ′(x′)
stand for the worst-case time it takes for a processor to fully service a set of x
incoming FD-messages, both measured at the COM level (x′ is a function of x).
Let ν be the smallest FD-message inter-arrival delay. Bound x′ is the maximum
number of FD-messages (out of x) that are not serviced at the time the last
incoming FD-message is deposited into inq. Given SW , x′ = 1 if ν ≥ winq ,
x′ = 	x (1 − ν/winq)
 if ν < winq , and ψ′(x′) = x′ winq.

Bound ψ(x) is determined by policies SW and SN and bound ψ′(x′) is deter-
mined by algorithm SW . Hence, ψ(x) and ψ′(x′) are tight. Let θ stand for the
worst-case time needed for transmitting an FD-message across Net, measured
at the I/O level, including the time needed for delivery into inq. A tight bound
θ can be computed, considering that optimal schedulers (proper to Net) ser-
vice FD-messages prior to ordinary messages. Consequently, for an FD-message
generated by that processor assigned index x, tight bound γ(x) is as follows:

γ(x) = woutQ + woutq + dm + ψ(x) + θ + x′ winq .

Note the importance of differentiating between end-to-end delays proper to
every process in a system. If no such differentiation is made, one faces a circu-
lar dependency. A distributed system consists of some architecture (processors,
links) and all the system processes and application processes that run on the
architecture. It makes no sense to talk about upper bounds on message delays
in the “system” if one part of the system, i.e., the system processes and appli-
cation processes are not known since they may produce unknown loads on the
processors and/or links. Conversely, if one specifies the exact scheduling policy
used for every class of processes, the circular dependency vanishes. For a given
process p, only processes scheduled prior to p may influence upper bounds on
response times. When choosing a head-of-the-line policy for a process (our case,
for the FD process), then it is possible to conduct a worst-case schedulability
analysis for that process ignoring all other processes (to the exception of simple
blocking factors in case of non preemption). This is what we have shown how
to do.

In Sect. 5, we consider Deterministic Ethernets and establish the analytical
expression of γ for such networks. Then, we derive ρ, the worst-case overhead
induced by FD-messages, and finally L, a tight upper bound on processor failure
detection latencies. Before that we shortly discuss the network traffic which is
induced by our FD implementation.
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5 Illustration with Ethernets

We illustrate our generic results with Ethernet-like networks. Let COM be the
ISO/OSI data link level. With Ethernets, θ = 0 as ψ(x) includes local physical
transmission delays and there is no additional transmission delay. Hence, γ(x) =
woutQ + woutq + dm + ψ(x) + x′ winq . Being concerned with real-time systems,
we must consider a deterministic variant of the original Ethernet CSMA/CD
protocol. This variant has been implemented in COTS products and is called
CSMA/DCR (Carrier Sense Multi Access / Deterministic Collision Resolution),
which is based on distributed deterministic balanced m-ary tree searches [13].

5.1 CSMA/DCR

Broadcast media are physically characterized by a channel slot time, denoted σ.
Sources of messages are processors. Channel sharing between sources works like
CSMA-CD whenever there is no unresolved collision pending. When a collision
is detected (and there is no previous collision pending), sources initiate a de-
terministic balanced m-ary tree search collectively. To this end, every source is
assigned some unique index. For this illustration, it suffices to consider exactly
one index per source. A tree search proceeds from left to right, searching for
subtrees that either are empty or contain exactly one active leaf. A leaf is active
if its index is that of a source which has a message pending. Obviously, during
a tree search, a message submitted by a source assigned index i is transmitted
prior to messages submitted by sources assigned indexes greater than i. A tree
search is time bounded, which permits computing ψ(x).

Consider x sources, each attempting to transmit a pending message (rank 1
in outq). Let Σ(x) be the time needed to physically transmit these x messages
locally, in the absence of contention. Consider now that these x sources “collide.”
Let ξl

x be the maximum number of steps needed to search x leaves in a m-ary
tree of l leaves. In [18] and [19], one shows for x ∈ {2, . . . , l}:

ξl
x =

m	logm(m� x
2 �)
 − 1

m − 1
+ m

⌊x

2

⌋
⌊

logm

(
l

m
⌊

x
2

⌋

)⌋

−
(
x − m

⌊x

2

⌋)
.

This formula applies for any assignment of x indexes over l sources. The
worst-case delay involved with resolving a collision fully is Σ(x) + ξl

x σ.
CSMA/DCR has been designed to be fault-tolerant. This protocol may be

defeated whenever sources get out of synchrony, which is revealed by detecting
a collision on some tree leaf. Whenever this occurs, a channel jamming sequence
J S of duration at least equal to logm(l)σ is generated by the sources. Message
transmissions are resumed when the channel returns to idle.

5.2 Behavior of the FD in Our Architecture

Evaluating ε. Our FD algorithm requires a priori knowledge of Ξ. Therefore,
we examine the timing of our architecture in order to derive values for the
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timing parameters used in Theorem 4. Due to the physical properties of Net, all
messages are received by all processes at I/O level within σ. Due to our queuing
algorithm SW , all FD-messages are taken out of inq by the FD-processes within
σ as well. That is, ε = σ.

Bound on γ. We now derive a term for calculating the worst-case end-to-end
delay of a message that participates in a collision on Net with x messages.

We use the J S mechanism to indicate that an on-going tree search performed
for ordinary messages must be stopped, in order to transmit FD-messages. The
channel is preempted without aborting any ordinary message, hence the blocking
factor is dm. After J S has been generated, only FD-messages are transmitted
during the same tree search. Transmission of ordinary messages is resumed from
its preemption state when the channel returns to idle. Given that the body of an
FD-message requires only to contain 2 bits3 (which can easily be stored within
the smallest possible Ethernet message), its physical transmission delay is that
of a message of minimum duration, i.e., slot time σ. Therefore, Σ(x) = xσ.
Tight bound ψ(x) is as follows:

ψ(x) =
(
logm(l) + x + ξl

x

)
σ.

The smallest FD-message inter-arrival delay is σ. Hence, x′ = 	x (1 − σ/winq)

if σ < winq , x′ = 1 if σ ≥ winq . Tight bound γ for the xth FD-message is:

γ(x) = woutQ + woutq + dm + ψ(x) + x′ winq .

Evaluating δr. We already partially discussed the expression of Theorem 4
(i.e., ε), which can be used to determine a numerical value for Ξ. What remains
to do is to give an analytical expression of Δ

δr . In the worst-case, Δ = γ(n). It
remains to derive an expression for δr. Recall that δr is defined as a lower bound
on the time between when the first of n − f messages is sent to some process p
and when p receives the last of the n−f messages. Let us assume pessimistically
that on the bus the n − f messages are sent back to back, i.e., on the bus they
require (n − f) · σ time units. (Note that this lower bound is by no means tight
as our solution always requires J S which leads to a distributed tree search.)
At inq the (n − f) messages, however, queue up such that from the time the
last message arrives additional (n − f)′ · winq time units are required. At the
respective outgoing queues at the first sender we have to add woutQ and woutq

while we assume that there is no congestion at Net. Summing up, we see that:

δr = woutQ + woutq + (n − f) · σ + (n − f)′ · winq .

5.3 Numerical Examples and Discussion

We use the same numerical values as in [11] to have a meaningful comparison. Let
us consider 10 MBit/s Ethernets. According to the ISO/OSI standard, n ≤ 1, 024

3 We will justify this in Sect. 5.3 by showing that Ξ = 2 suffices for failure detection.
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Case 1: n = l = 16 Case 2: n = l = 1, 024
results of [11] our results
D = 5.93 ms D = 17.78 ms

τ = 103.55 ms τ = 292.87 ms

L = 114.61 ms L = 328.44 ms

results of [11] our results
D = 275.39 ms D = 826.18 ms

τ = 6.52288 s τ = 18.74246 s

L = 7.07287 s L = 20.39482 s

Fig. 3. Comparison to [11]

and σ = 51.2 μs (microseconds). We assume that the size of the longest ordinary
message (I/O level framing) is 10, 000 bits, i.e., dm = 1 ms (millisecond). Let
us pick up 250 μs for each of the service times woutQ, woutq, and winq . Hence
γ(x) = 1.5 + ψ(x) + 0.25 x′ (in ms), with x′ = 	0.7952 x
. Results shown below
are rounded up to a precision of 10 μs. We consider quaternary trees (m = 4).

With Perfect FDs, x = n. As in [11] we pick up f = 5 as the upper bound on
the number of processes that can crash during the execution of the algorithm (a
very high number given practical fault probabilities). Thus, we get:
Case 1: n = l = 16, f = 5. x′ = 13, ψ(16) = ψ1 = 1.18 ms, hence
γ(16) = γ1 = 5.93 ms.

(n − f)′ = 9, δr
1 = 3.31 ms, hence Δ

δr
1

= γ1
δr
1

= 5.93 ms
3.31 ms = 1.79. Adding ε

δr
1

=
51.2 μs
3.31 ms = 0.02 to this and applying the floor function (cf. Theorem 4) we get
Ξ = 2. By Corollary 1 the termination time of an instantiation D = (Ξ + 1)Δ
such that we get D1 = 3γ1 = 17.78 ms
Case 2: n = l = 1024, f = 5. x′ = 815, ψ(1, 024) = ψ2 = 70.14 ms, hence
γ(1, 024) = γ2 = 275.39 ms.

(n − f)′ = 811, δr
2 = 255.42 ms, hence Δ

δr
2

= γ2
δr
2

= 275.39 ms
255.42 ms = 1.08. Addition-

ally, ε
δr
2

= 51.2 μs
255.42 ms = 0.0002 such that again Ξ = 2. D2 = 3γ2 = 826.18 ms.

The worst-case FD-message overhead is ρ = 3(ψ(x)+ xwinq)/(D + τ). Let us
pick up ρ = 5%. We get τ = 60 (ψ(x) + 0.25 x) − D (in ms). Thus we derive the
following values for the mute periods τ and the tight upper bound on the failure
detection latency L (cf. Theorem 6).
Case 1: τ1 = 292.87 ms, L1 = 328.44 ms.
Case 2: τ2 = 18.74246 s, L2 = 20.39482 s.

Let us compare our results with those presented in [11]. In Fig. 3, we see that
the “worst-case price” for our message-driven implementation is a factor 3. This
means that we have a worst-case detection latency that is 3 times larger with the
same overhead or that one can achieve the same detection latency by tripling
the overhead.

At first sight, these results seem to contradict one of the arguments (perfor-
mance) at the core of the design immersion or late binding principle (cf. Sect. 1).
This is not the case. Firstly, a complete comparison should take coverage into
consideration. In other words, one should compare numerical results considering
violations of the assumed timing behavior postulated in a synchronous model,
i.e. timing bounds that are not tight, these bounds being such that the probabil-
ity of having a bound violated or Θ violated is the same. Secondly, the run-time
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behavior induced by the synchronous design of [11] is always the actual worst-
case behavior, even if actual delays are smaller than their postulated bounds
most of the time (e.g. the blocking factor dm). Conversely, the run-time behav-
ior induced by the asynchronous design given in this paper simply matches the
best-case or average-case message delay scenarios, yielding actual failure detec-
tion latencies (much) smaller than values computed for L.

Finally, experimental results [20] confirm the analytical ones, showing that
broadcast bus based systems are particularly well suited for the Θ-Model. In
our architecture we have seen that the value of Θ (derived from Ξ) is much
smaller than the ratio of absolute bounds on worst-case and best-case message
end-to-end delays.

6 Conclusions

In this paper, we have illustrated a number of concepts related to real-time com-
puting and asynchronous models of computation. From a theoretical viewpoint,
an interesting result is that we showed that local physical clocks are not re-
quired to detect crashed processes in bounded finite time. To this end, we have
presented an implementation of the perfect FD P in the Θ-Model. One major
merit of this implementation is its very high coverage, since the FD P semantics
are not violated when postulated end-to-end upper bounds are violated, provided
that Θ is not violated, which is not the case with implementations in partially
synchronous models.

Acknowledgments. We are grateful to Gérard Le Lann and Ulrich Schmid for
many valuable discussions on the Θ-Model.
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