
How to Implement a Time-Free Perfect Failure
Detector in Partially Synchronous Systems

Gérard Le Lann
INRIA Rocquencourt

Domaine de Voluceau BP 105
F-78153 Le Chesnay Cedex (France)

Email: gerard.le lann@inria.fr

Ulrich Schmid
Technische Universität Wien

Embedded Computing Systems Group E182/2
Treitlstraße 3, A-1040 Vienna (Austria)

Email: s@ecs.tuwien.ac.at

Abstract— This paper1 shows how to implement a time-
free perfect failure detector in a partially synchronous
distributed system. Rather than upper and lower bounds
on the minimum and maximum end-to-end computation
+ transmission delays between correct processors, our
algorithm needs to know only an upper bound on their
ratio. Since this bound may still hold when an assumed
bound on the maximum delay is violated, our perfect
failure detector may still work correctly in situations
where synchronous ones fail, i.e., has higher coverage.
We prove that our solution, which employs heartbeat
messages and a timer-free “timeout” mechanism based
upon synchronized heartbeat rounds, indeed satisfies the
properties of a perfect failure detector and provides a
number of attractive features.

Keywords: Fault-tolerant distributed systems, perfect fail-
ure detectors, partially synchronous system models, consis-
tent broadcasting, real-time scheduling, queueing systems,
coverage.

1This paper emanated from a visit of the first named author
at TU Vienna, which has been supported by the Austrian START
programme Y41-MAT. Our work is also supported by the Austrian
BM:vit FIT-IT project DCBA (808198).

I. INTRODUCTION

It has been taken for granted for many years that fault-
tolerant distributed real-time computing problems admit
solutions designed in synchronous computational models
only. Unfortunately, given the difficulty of ensuring that
stipulated bounds on computation times and transmission
delays are always met (which is notoriously difficult with
many systems, especially those built out of COTS prod-
ucts), the safety/liveness/timeliness properties achieved
with such systems may have a poor coverage.2 This
holds true for any design that rests upon (some) timed
semantics, including timed asynchronous systems [1] and
the Timely Computing Base [2]. With such solutions, the
core question is: How do you set your timers?

Some safety and liveness properties, like agreement
in consensus, can be guaranteed in purely asynchronous
computational models, however. Since asynchronous al-
gorithms do not depend upon timing assumptions, those
properties hold regardless of the underlying system’s
actual timing conditions. The coverage of such time-
free solutions is hence necessarily higher than that of
a solution involving some timing assumptions.

The apparent contradiction between time-free algo-
rithms and timeliness properties can be resolved by
adhering to the design immersion principle, which was
introduced in [3] and referred to as the late binding prin-
ciple in [4]. Design immersion permits to consider time-
free (pure asynchronous) algorithms for implementing
high-level services in real-time systems, by enforcing
that timing-related conditions (like “delay for time �”)
are expressed as time-free logical conditions (like “delay
for � round-trips”). Safety and liveness properties can

2The coverage of an assertion is the probability or the likelihood
that this assertion holds true in some given universe. Coverage is
hence the central issue in many systems, critical systems in particular.

hence be proved independently of the timing proper-
ties of the system where the time-free algorithm will
eventually be run. Timeliness properties are established
only late in the design process, by conducting a worst-
case schedulability analysis, when a time-free solution
is immersed in a real system with its specific low-level
timing properties.

Given that many important problems in fault-tolerant
distributed computing do not have deterministic solu-
tions in the purely asynchronous model [5], the latter
must be enriched with some additional semantics for
circumventing impossibility results. In order to achieve
some very high coverage, such added semantics should
be time-free. The present paper explores the following
fundamental theoretical and practical question: Is there
a time-free solution for implementing a powerful time-
free semantics? Such a solution could be proved correct
independently of the timing properties of the system
where it is eventually run, and just immersed into the
system to be fielded as any other time-free design.

Our paper answers this fundamental question in the
affirmative, by providing a time-free design of a perfect
failure detector � [6]. It is based upon a new partially
synchronous system model, refered to as the �-model,
which stipulates a bounded end-to-end computational +
transmission delay ratio � only. Since our solution does
not incorporate any bound on delays, and works even
in situations where actual delays are unbounded, our
�-model effectively allows us to escape from both the
impossibility of implementing � in presence of unknown
delay bounds of [7] and the impossibility of consensus in
presence of unbounded delays of [8]. Consequently, the
numerous failure detector-based distributed algorithms
developed during the last decade can be used for building
real-time systems with a coverage that cannot be met by
existing synchronous solutions.

The remaining sections are organized as follows: Fol-
lowing a detailed relation to existing work in Section II,
we introduce a simple queueing system model of a
distributed system in Section III. The latter will help us
to justify the �-model presented in Section IV. Section V
introduces the basic operation principle of our novel
design for implementing � . The detailed algorithm is
presented and proved correct in Section VI. A number
of extensions of our approach in Section VII eventually
conclude our paper.

II. PROBLEM DESCRIPTION AND RELATED WORK

Failure detectors (FD’s) [6] were introduced in the

context of asynchronous systems with crash failures.
They consist of a set of (low level) modules, one per
processor, which can be queried locally by the higher
level processes in order to obtain information about
which processors have crashed. This information neither
needs to be always correct nor consistent at different pro-
cessors. It must be in accordance with some axiomatic
(time-free) FD specification, however, which is usually
made up of two parts: Completeness, addressing an
FD’s ability to correctly suspect crashed processors, and
accuracy, addressing an FD’s ability not to incorrectly
suspect non-crashed processors.

Several classes of FD specifications have been intro-
duced in [6], which differ primarily in their accuracy
requirements. The strongest one is the perfect failure
detector � , defined by

(SC) Strong completeness: Eventually, every processor
that crashes is permanently suspected by every
correct processor.

(SA) Strong accuracy: No processor is suspected before
it crashes.

It has been shown in [6] and in the wealth of sub-
sequent work that most problems in fault-tolerant dis-
tributed computing, such as consensus, atomic broadcast
or leader election, can be solved in systems where �
(even some weaker FD) is implementable. Note that this
requires at least a partially synchronous system model,
since an implementation of � in a purely asynchronous
system would contradict [5].

Any work on partially synchronous systems we are
aware of assumes that delay bounds are either known,
see e.g. [9], [10], or are unknown but finite and can
hence be learned during the execution via “incremental”
timeouts [11]. It has in fact been shown in [8] that
consensus—and hence �—cannot be implemented in
systems where just one process could crash if either
processing or communication delays are unbounded.

The seminal paper [11] classifies partial synchrony
according to whether bounds upon the maximum relative
processing speeds (�) and the maximum absolute com-
munication delays (�) exist but are either unknown, or
are known but hold only after some unknown global sta-
bilization time GST. Those two models were combined
into a single generalized partially synchronous model in
[6]. It assumes that relative speeds, delays and message
losses are arbitrary up to GST; after GST, no message
may be lost and all relative speeds and all communi-
cation delays must be smaller than the unknown upper
bounds � and �, respectively. This model underlies most

2

research on failure detectors.

Since perpetual FDs cannot be implemented in par-
tially synchronous systems with unknown delay bounds
[6], [11], see [7], perpetual accuracy properties like
strong accuracy (“no processor is suspected before it
crashes”) are usually replaced by eventual ones (“there
is a time after which correct processors are not suspected
by any correct processor”). Many papers deal with the
implementation of such eventual-type FDs [6], [12]–[24],
and we will survey some of their core ideas below. We
note, however, that eventual properties are in conflict
with the timeliness requirements of real-time systems:
The algorithms running atop of an eventual-type FD
are usually guaranteed to terminate only after the FD
becomes perfect.

In [6], a simple implementation of an eventually
perfect failure detector �� for the generalized partially
synchronous model was given. It is based upon mon-
itoring periodic “I am alive”-messages using adaptive
(increasing) timeouts at all receiver processors. Starting
from an a priori given initial value, the timeout value is
increased every time a false suspicion is detected (which
occurs when an “I am alive”-message from a suspected
processor drops in). By restricting the recipients of “I am
alive”-messages from all processors to suitably chosen
subsets, a less costly implementation of an eventually
strong failure detector �� was derived in [17].

Alternative FD implementations, which use polling
by means of ping/reply roundtrips instead of “I am
alive”-messages, have also been proposed for partially
synchronous systems. The message-efficient algorithms
of [15] use a logical ring, where processors poll only
their neighbors and use an adaptive (increasing) timeout
for generating suspicions. A similar technique is used in
the adaptive failure detection protocol implementing ��
in systems with finite average delays [21]. It uses piggy-
backing of FD messages upon application messages in
order to reduce the message load.

A major deficiency of most existing adaptive timeout
approaches is their inability to also decrease the timeout
value, cp. [17]. Obviously, such solutions cannot adapt
to (slowly) varying delays over time. Stochastic delay
estimation techniques as in [18], [22] could be used if
one accepts decreased performance w.r.t. accuracy. QoS
aspects—as well as scalability and overall system load—
in a probabilistic framework are also addressed in [20].

A different type of unreliable failure detectors that
received considerable attention recently is �, which
outputs just a single—eventually common—processor

that is considered up and running. � also allows to solve
consensus [14] and can be implemented very efficiently
even in partially synchronous systems where only some
links eventually respect communication delay bounds
[23].

In purely asynchronous systems, it is impossible to
implement even eventual-type failure detectors. FDs with
very weak specifications [13], [19] have been proposed
as an alternative here. The heartbeat failure detectors of
[19] do not output a list of suspects but rather a list of
unbounded counters. Like �� , they permit to solve the
important problem of quiescent reliable communication
in the presence of crashes, but unlike �� , they can easily
be implemented in purely asynchronous systems.

In view of the impossibility results of [8] and [7], it
was taken for granted until recently that implementing
perpetual failure detectors requires accurate knowledge
of delay bounds and hence a synchronous system model.
Still, the algorithms presented in [24] reveal that perpet-
ual FDs can be implemented in a time-free manner in
systems with specific properties. For example, there is
a time-free implementation of � in systems where it
can be assumed a priori that every correct processor
is connected to a set of � � � processors via links
that are not among their � slowest ones. The algorithm
cannot verify whether the underlying system actually
satisfies this assumption, however, and no design for
implementing this property was given.

In [4], we showed that the problem of implementing
perpetual failure detectors in a synchronous system com-
prising � processors initially can be stated as a generic
real-time scheduling problem. A fast failure detector
algorithm was given as a function of �, which serves
to dynamically recompute timeout values. It implements
FDs �, � , or � , by assigning � value 1, �, or �,
respectively, where � is the smallest number of stable
processors that cannot be suspected unless they fail.
The proposed FD achieves very low detection time [18],
[25] by exploiting the fact that failure detection can be
separated from the application (i.e., the atop running
consensus algorithm). The failure detector service can in
fact be run as a low-level service implemented as high-
priority processes, which exchange high-priority FD-
level messages scheduled according to some head-of-
the-line policy. As a consequence, fast failure detectors
admit an accurate worst-case schedulability analysis,
which provides tight bounds on the (inherently small)
end-to-end delay of FD-level messages.

3

III. QUEUEING SYSTEM MODEL

We consider a distributed system of � processors,
which are fully interconnected by perfect links. There
is no need to specify a particular failure model for this
section; we will just assume that up to � � � � � � �
processors may be faulty in some way. Let Æ�� denote the
end-to-end computational + transmission delay required
for assembly, transmission and processing of any FD-
level message sent from some correct processor � to
some correct processor �. Note that Æ�� includes any
computation of the distributed (failure detector) algo-
rithm at both � and � as well.

CPU

CPUC

C

C

C

C

C

proc.

proc.

��

��

��

��

Fig. 1. A simple queueing system representation of a fully connected
distributed system of 4 processors.

In real systems, Æ�� consists not only of physical
data transmission and processing times. Rather, queueing
delays due to the inevitable scheduling of the concurrent
execution of multiple processes and message arrival in-
terrupts/threads on every processor must be added to the
picture. Fig. 1 shows a simple queueing system model
of a fully connected distributed system: All messages
that drop in over one of the � � � incoming links
of a processor must eventually be processed by the
single CPU. Every message that arrives while the CPU
processes former ones must hence be put into the CPU
queue for later processing. In addition, all messages
produced by the CPU must be scheduled for transmission
over every outgoing link. Messages that find an outgoing
link busy must hence be put into the send queue of the
link’s communication controller for later transmission.

Consequently, the end-to-end delay Æ�� � ��� � 	��
between sender � and receiver � actually consists of a
“fixed” part ��� and a “variable” part 	��. The fixed
part ���
 � is solely determined by the processing
speeds of � and � and the data transmission charac-
teristics (distance, speed, etc.) of the interconnecting
link. It determines the minimal conceivable Æ�� and is
easily determined from the physical characteristics of the
system. The real challenge is the variable part 	�� � �,
however, which captures all scheduling-related variations
of the end-to-end delay:

� Precedences, resource sharing and contention, with
or without resource preemption, which creates wait-
ing queues,

� Varying (application-induced) load,
� Varying process execution times (which may de-

pend on actual values of process variables and
message contents),

� Occurrence of failures.

It is apparent that 	�� and thus Æ�� depend critically
upon (1) the scheduling strategy employed (determining
which message is put at which place in a queue), and
(2) the particular distributed algorithm(s) executed in
the system: If the usual FIFO scheduling is replaced by
head-of-the-line scheduling favoring FD-level messages
and computations over all application-level ones, for
example, the variability of 	�� at the FD-level can be
decreased by orders of magnitude, see [4] and Table I.
That the queue sizes and hence the end-to-end delays Æ ��
increase with the number and processing requirements of
the messages sent by the particular distributed algorithm
that is run atop of the system is immediately evident.

The above queueing system model thus reveals that the
popular synchronous and partially synchronous models
rest upon a very strong assumption: That an a priori given
upper bound3 �� � Æ�� exists, which is—as part of the
model—essentially independent of the particular algo-
rithm. In reality, such a bound can only be determined by
a detailed worst-case schedulability analysis4 [26], [27].
In order to deal with all the causes of delays listed above,
this schedulability analysis requires complete knowledge
of the underlying system, the scheduling strategies, the

3Overbars are used for stipulated (= a priori known) bounds on
actual (= unknown) values.

4Measurement-based approaches are a posteriori solutions. Assert-
ing a priori knowledge of an upper bound implies predictability,
which is achievable only via worst-case schedulability analyses. With
measurement-based approaches, the actual bounds remain unknown
(even “a posteriori”), which might suffice for non-critical systems,
but is out of question with safety-critical systems.

4

failure model and, last but not least, the particular algo-
rithms that are to be executed in the system. Compiling
�� into the latter algorithms, as required by solutions
that rest upon timing assumptions, hence generates a
cyclic dependency. Moreover, conducting any detailed
worst-case schedulability analysis is notoriously difficult.
Almost inevitably, it rests on simplified models of reality
(environments, technology) that may not always hold.
As a consequence, �� and hence any non time-free
solution’s basic assumptions might be violated at run
time in certain situations.

IV. �-MODEL

In this section, we briefly introduce our �-model and
argue why it makes sense. Lacking space does not allow
us to incorporate a detailed relation to existing models
and an in-depth analysis of its coverage here, however.
They will be provided in a forthcoming paper.

The following Definition 1 captures the essentials of
our �-model.

Definition 1 (�-Model): For any execution � of a
distributed algorithm � under some failure model � , let
��	
 resp. ��	
, with uncertainty �	
 � ��	
���	
,
be the minimum resp. maximum end-to-end computa-
tional + transmission delay of the messages in some
subset �	
 of all the messages in transit by real-time
in execution �. The system must be such that the delay
ratio �	
 � ��	
���	
 respects a given5 upper bound
� for any execution �.

The set �	
 in Definition 1 connects system model,
failure model, and the particular distributed algorithm
under study, which cannot be completely independent
of each other according to Section III. Typically, �	

consists of messages exchanged by correct processors
that are in transit in a short time window—of duration
�	��	

—around . Refer to Section VI for the defini-
tion of �	
 in case of our failure detector.

Obviously, we assume that the algorithm does not
know ��	
, ��	
 and �	
: Only � may be compiled
into its code. Still, we will use ��	
 	 ��, ��	
 	 ��

and �	
 	 � for all as (unevaluated) variables in
our analysis. Note carefully that they are considered
constant, i.e., time-invariant, here in order to simplify our
arguments. It can be shown, however, that this simplified
analysis is also sufficient for dealing with the time-
varying case: By introducing a suitably defined notion of
“stretched” real-time � � �	
, time-varying quantities

5There are variants of the �-model where � is unknown, or known
but holds after some unknown GST, as in [6], [11].

w.r.t. can be transformed in constant quantities w.r.t.
�. The inverse function � ����	�
 may then be used to
translate the results back to the real-time domain again.

The actual value of �, which obviously depends
upon many system parameters, can only be determined
by a detailed schedulability analysis. Typical values
reported for � in real-time systems research [28], [29]
are � � � � ��. To get an idea of how �	
 behaves in a real
system, we conducted some experiments on a network of
Linux workstations running our FD algorithm. A custom
monitoring software was used to determine bounds �� �
��	
 and �� � ��	
 as well as � � �	
 under a
variety of operating conditions. The FD algorithm was
run at the application level (AL-FD), as an ordinary
Linux process, and as a fast failure detector (F-FD) using
high-priority threads and head-of-the-line scheduling [4].
Table I shows some measurement data for 5 machines
(with at most � � � arbitrary faulty one) under low
(5 % network load) and medium (0–60 % network load,
varying in steps) application-induced load. Additional
data will be provided in a forthcoming paper.

FD Load �� (�s) �� (�s) �
�
�

��
� �

AL-FD low 55 15080 228.1 1.20
F-FD low 54 648 9.5 1.26
F-FD med 56 780 10.9 1.27

TABLE I

Some typical experimental data from a small network of Linux

workstations running our FD algorithm.

In the remainder of this section, we will argue why
the �-model has higher coverage in real systems than
existing synchronous and partially synchronous models.
First of all, we note that the time-variance of ��	
 and
��	
 rules out a straightforward approach for simulating
a synchronous system in the �-model: One could try to
determine an upper bound �� � �
 ���� on the end-
to-end delays Æ�� by using just a single (correct) round-
trip delay measurement ��, which must of course satisfy
�� � ���. The bound �� computed via this approach
is not necessarily valid at the future time when it is
computed and used, however, since it is based upon a
round-trip taken at some past time � � . Hence, in
general, it is impossible to reliably compute a message
timeout value for some future real-time out of present
measurements at time � � .

As far as its relation to synchronous and partially syn-
chronous computing models is concerned, the �-model
is obviously weaker than the synchronous model with

5

upper bound ��. After all, �� may exceed any �� in
cases of overload without violating � � �, provided that
�� goes up as well. As we will argue below, this is likely
or even certain to be true, depending on the particular
system under consideration. Similarly, the �-model is
weaker than the partially synchronous model of [11]: The
latter model stipulates a ratio � for computational speeds
but also needs a (known or unknown) upper bound �
on absolute communication delays. Since � includes the
queueing delays 	�� introduced in Section III, �� and
hence � need not be bounded when � is bounded.

Still, both the standard synchronous model (with lower
bound �� � �) and the above partially synchronous
model are weaker than the �-model w.r.t. the lower
bound: Assuming �� � � has of course higher coverage
than assuming some ��
 � as required for � � �.
We argue, however, that the assumption �� � � is
overly conservative and may be dropped without loosing
signigicant coverage. In fact. ��
 � can be determined
by means of a best-case schedulability analysis [29],
[30], which relies upon the best case scenario for the
end-to-end delays. Since this involves ideal conditions,
in particular, no queueing delays, �� is typically easily
determined with a coverage close to 1 via the physical
properties of processors and transmission links. More-
over, from a theoretical perspective, stipulating �� � � is
equivalent to assuming infinite processing an networking
speeds. In this case, �� � � as well.

It follows that, under strictly equivalent assumptions,
the coverage of the �-model is as least as high as the
coverage of the corresponding synchronous and partially
synchronous models. If there is just one load/failure
scenario where ��
 �� but still � � � holds, its
coverage is in fact higher. Of course, the real gain in
coverage depends upon the particular system considered
and can only be determined by a detailed coverage
analysis. Below we explain why (possibly significant)
gains in coverage may be expected.

Our experimental data reveal that a considerable cor-
relation between ��	
 and ��	
 indeed exists: The last
column in Table I shows that � is nearly 30 % smaller
than �����. Hence, when �� increases, �� goes up
to some extent as well. Note that �� must in fact only
increase by ��� to compensate some � ��� here. This
correlation can be explained as follows.

First of all, the set �	
 typically restricts ��, �� to
messages exchanged between correct processes. If, say,
Æ��
 �� for less than � processes � and/or �, this can
be attributed to process timing failures and is hence tol-
erated transparently by proper fault-tolerant algorithms.

An actual violation of �� is hence a phenomenon that
must occur in a significantly large part of the system,
which makes it likely that it affects every processor to
some extent. For certain types of networks, like broadcast
buses, this is even a certainty. Note that this hypothesis
is also supported by our experimental data, which reveal
that the correlation between �� and �� increases when
� is increased.

Consequently, if Æ�� � ��
 �� occurs at some
processor pair �, � due to an increasing application-
induced load in some significant portion of a system that
employs “fully distributed” algorithms (as opposed to
leader-based ones) like our FD, additional messages are
generated and sent to all processors in the system. They
will hence populate the CPU queue at every processor
in Fig. 1. Even if the computations of interest are
the highest-priority ones and messages are transmitted
using head-of-the-line policies, it may well be the case
that this high-load situation does not allow the (often
quite unlikely per se) best-case scenario Æ�� � ��

to occur at some processor pair �� � simultaneously:
In fact, �� usually assumes that no blocking of high-
priority processes by non-preemptable operations like
sending a low-priority message occurs, which becomes
increasingly difficult to maintain if the number of such
messages increases. Consequently, the ratio of maximum
over minimum delay need not grow as fast (if at all) as
the maximum delay when the load increases.

Given such correlations between minimum and max-
imum end-to-end delays, the probability of violating �
is indeed smaller than the probability of violating ��.
Consequently, �-based designs like the failure detector
of Section V indeed surpass synchronous solutions in
terms of coverage here.

V. PRINCIPLE OF OPERATION

In this section, we introduce the principle of oper-
ation of our time-free perfect failure detector, which
is based upon the consistent broadcasting primitive of
[31]. Consistent broadcasting is implemented by means
of two functions, broadcast and accept, which can be
used to trigger a nearly simultaneous global event in the
system: For example, a processor executing the clock
synchronization algorithm of [31] (see Fig. 2) invokes
broadcast to signal that it is ready for the resynchro-
nization event to happen. It waits for the occurrence of
this resynchronization event by calling accept, where it
blocks until the event happens. The detailed semantics of
consistent broadcasting is captured by three properties,

6

namely, correctness, unforgeability and relay, which are
defined as follows:

Definition 2 (Consistent Broadcasting Properties):

(C) Correctness: If at least ��� correct processors call
broadcast by time , then accept is unblocked at
every correct processor by time � ���� , for some
���� � �.

(U) Unforgeability: If no correct processor calls broad-
cast by time , then accept cannot unblock at any
correct processor by � ���� or earlier, for some
���� � �.

(R) Relay: If accept is unblocked at a correct processor
at time , then every correct processor does so by
time � ��, for some �� � �.

Implementations of consistent broadcasting, providing
specific values of ���� , �

�

�� and ��, can be found in [32],
[33].

Now consider a very simple algorithm, which executes
infinitely many instances of consistent broadcasting � �
�� �� � � � in direct6 succession: If broadcast� is called
by sufficiently many processors, accept� will eventually
unblock and trigger broadcast�, which in turn starts the
same sequence for instance �, . . . Let ��

� denote the time
when instance � terminates, that is, accept� unblocks
and broadcast��� starts at processor �. It is easy to show
that the following holds for this algorithm:

Lemma 1 (Consecutive Consistent Broadcasting):
Let � � � � � be two arbitrary instances of successive
consecutive consistent broadcasting. Then,

���� � ��� � � �� (1)

��� � �	� � 	�� �
���� � �� (2)

��� � �	� � 	�� �
���� � �� (3)

for any two correct processors �, �.

Proof: Equation (1) follows immediately from the relay
property (R), which establishes (2) and (3) for � � �
as well. We can hence assume that (2) holds for � �
� � � � � � � � � and have to show that it holds
for � � � � � as well. Since processor � unblocks
accept� at time ��� , at least one non-faulty processor ��
must have called broadcast� by time ��� � ���� by the
unforgeability property (U) of consistent broadcasting.
Hence ��� � ������ � ���� . By the induction hypothesis,
we have ������ ��	� � 	��� ��
���� ���, from which
(2) follows immediately by adding up.

6To reduce the system load caused by FD messages, some delay
could of course be introduced in between, see [33].

For the upper bound, we can assume that (3) holds for
� � � � �� � � � � � and have to show that it holds
for � � � � � as well. Since we know that even the
last correct processor unblocks accept��� at some time
������	 satisfying ������	 � �	� � 	�� � � �
���� � �� by
the induction hypothesis, it follows from the correctness
property (C) of consistent broadcasting that processor �
must unblock accept� by time ������	 � ���� , from where
(3) follows again by adding up. �

Equipped with this result, we can make the following
important observation: Let us extend our simple succes-
sive consistent broadcasting algorithm by additionally
broadcasting an � � �-heartbeat message (containing
� � � as data) when calling broadcast��� at every
processor. Now consider some correct processor � at
time ��� (when it sends its ���-heartbeat): If � did not
see a � � �-heartbeat, � � �, from some processor �
(which should have been sent at time �	

�) by time ��� ,
it must be the case that this heartbeat travels longer than
��� ��	� � 	���
���� � �� according to (2). Since we
assumed that a heartbeat from a correct processor takes
at most �� to arrive, choosing

� � �� � �
�� � ��

����
(4)

such that �� � ����� � �� ensures that � cannot miss
�’s � � �-heartbeat if � is correct. So if � did not see
the � � �-heartbeat from � by time ��� , � must have
crashed and can safely be put on the list of suspects at
processor �.

Of course, as it appears in (4), � depends upon � �

and cannot be computed if this value is unknown. Our
detailed analysis of consistent broadcasting in [32], [33]
reveals, however, that actually ���� � ��� and �� �
������. Plugging this into our expression for � yields
� � ����������, i.e., a value that only depends upon
the ratio � � �����. If an upper bound � on � was
known, we could compute � even when bounds � � and
�� on �� and ��, respectively, are unknown! Recall that
neither �� nor �� are built into our algorithm’s code.

To further illustrate this important issue, we discuss
an alternative implementation of � , which works only in
synchronous systems. The alternative algorithm is based
upon the simple fact that consistent broadcasting allows
to implement approximately synchronized clocks [31].
Each processor � must be equipped with a clock device
��	
 for this purpose, which is used to implement
round �’s clock ��

� 	
 � ��	
 � ����� , by choosing

7

a suitable time offset ����� set by the clock synchroniza-
tion algorithm in round �� �. Note that we stipulate a
round �� clock ���

� 	
 � ��	
 to be used in round �.
A single “composite” clock � �

�	
 that equals the round
clocks at the respective round switching times can be
implemented atop of this, see [31, Sec. 7] for details.

Fig. 2 shows the simple clock synchronization al-
gorithm of [31], which concurrently executes one in-
stance of consistent broadcasting per resynchronization
round �. Invoking broadcast� indicates that the calling
processor is ready to resynchronize and hence starts
resynchronization round �, which is done every � sec-
onds. Note carefully that the period � measures time ac-
cording to every processor’s clock, hence is a parameter
of the algorithm that must assume some specific value.
Consistent broadcasting ensures nearly simultaneous un-
blocking of accept�—and hence resynchronization—of
all non-faulty processors within �� by the relay property
(R). A suitably chosen offset � is used to ensure that a
clock is never set backwards.

Processor � � �:
if ������� � � �� /* ready to start �� */

� broadcast�;
fi if accept

�

� ����� �� � �� � �; /* resynchronize */
fi

Fig. 2. A clock synchronization algorithm based upon consistent
broadcasting

The proof of correctness of this algorithm only de-
pends upon the properties of consistent broadcasting. A
detailed analysis in [31], [32] yields the following worst-
case synchronization precision of the composite clock
� �

�	
:

 ��	 � �	���
	� � !
 � ���� ���� ��	� � !
 ��� (5)

where ! is the worst-case clock drift and �� � !	� �
!
�	� � !
.

In order to implement a failure detector, it suffices to
add the same �� �-heartbeat broadcast as before when
broadcast��� is called. Obviously, processor �’s � ��-
heartbeat is sent at time 	� � �
� on �’s clock, when
processor �’s clock reads at most 	���
�� ��	. When
this heartbeat does not arrive by the time processor �
performs broadcast���, i.e., at time 	� � �
� on �’s
clock, � must have crashed if � � ��� is chosen such
that 	���
�� ��	 � �� (assuming clock drift ! � �
for simplicity). With � � � and � � ���� as the minimal

conceivable7 choice of �, we find ��	 � �� and hence

� � �� � �
�� � ��

����
(6)

exactly as in (4). Consequently, both the algorithm of
Fig. 4 and the one based upon Fig. 2 can (ideally) achieve
approximately the same detection time. However, apart
from the fact that the correctness of the above algorithm
depends upon the correct operation of a processor’s
clock, it also needs the parameter � for properly ad-
justing the periodic broadcasts. In order to ensure that
the computed precision ��	 according to (5) is valid, �
must be sufficiently large to ensure that any instance of
consistent broadcasting is completed before the next one
starts, which implies � � ���. Therefore, the failure
detector built atop of the algorithm in Fig. 2 is not time-
free and may fail if �� increases beyond the limit set
forth by the choice of �.

VI. A TIMER-FREE FAILURE DETECTOR

As explained in Section V, our failure detector imple-
mentation uses consistent broadcasting for implementing
a time- and timer-free timeout mechanism based upon
approximately synchronized rounds. Fig. 3 shows an
implementation of the pivotal consecutive consistent
broadcasting primitive, which works in presence of at
most � arbitrary processor failures8 if � � �� � �. It
has been derived from [31, Fig. 2] by simply replacing
“accept” with “broadcast���”, which immediately starts
the next instance.

Note carefully that all instances � � �� �� � � � of
our algorithm must be created at boot time, in order
to be ready when started by their predecessors. Again,
��� denotes the time when round � � � is started by
broadcast���.

By extending the proof of [31, Thm. 5], it is not diffi-
cult to show that the above algorithm satisfies the prop-
erties of consistent broadcasting in our system model.

7Those settings are smaller than the ones required by the analysis
in [31], but serve as a means to illustrate the smallest conceivable
lower bound on �� 	 only.

8The classic perfect failure detector specification is of course only
meaningful for simple crash failures. The existing work on muteness
detector specifications [12], [16], [34]–[36] suggests to consider also
more severe types of failures, however. Note also that there is a
simpler implementation for
 omission faulty processors, which only
needs � � �
 � 	 [31]. We use the more demanding version
here, since it also tolerates arbitrary processor timing failures, i.e.,

 processors that inconsistently emit apparently correct messages at
arbitrary times. An even more advanced hybrid version of consistent
broadcasting, which tolerates hybrid processor and link failures, can
be found in [33].

8

Implementation of broadcast�:
send �init� �� to all;

Code for process �:
cobegin
/* Concurrent block 1 */
if received �init� �� from
 � 	 distinct processors

� send �echo� �� to all [once]; /* sufficient evidence */
fi
/* Concurrent block 2 */
if received �echo� �� from
 � 	 distinct processors

� send �echo� �� to all [once]; /* sufficient evidence */
fi
if received �echo� �� from �
 � 	 distinct processors

� broadcast���; /* start next instance */
fi
coend

Fig. 3. A simple consecutive consistent broadcasting algorithm

Theorem 1 (Consistent Broadcasting Properties): In
a system with � � �� � � processors, where at most
� may be arbitrary faulty during the entire execution,
the consistent broadcasting primitive of Fig. 3 created
at boot time guarantees the properties of Definition 2
with ���� � ���, ���� � ���, and �� � � � �� � ���� .
System-wide, at most �� broadcasts of 	�����
 ��
-bit
messages are performed by non-faulty processors, where
�� denotes the cardinality of the round number space
(for �).

Proof: See [33] (or [32]). �

Figure 3 allows us to briefly describe the set of
messages �	
 used in Definition 1 in case of our failure
detector. As explained in Section V, our FD exploits the
fact that the fastest message that could have contributed
to processor �’s round switching at time ��� must have
had a delay of at least �� � ���� � ����, provided
that some heartbeat message with delay at least � � is
in transit at time ��� . �	
 is hence essentially the set
of FD-level messages "�	���
 in transit between correct
processes at time � ��� . More specifically, if Æ��
denotes the ���-shortest delay of an 	echo� �
 message
from some process � (correct or not) sent to � that
contributed to round switching, �	���
 consists of this
message and all messages in "�	�

�
�
 with delay at least

Æ��. Note that this also removes the typically very small
self-reception delay Æ��. A similar definition of �	
 is
used for time � !�� , where 	echo� �
 is emitted by
processor �. Otherwise, �	
 � .

We note, however, that � resulting from this sim-
ple definition of �	
 is overly conservative: Using a

slightly more refined analysis9 that is based upon �
and �
 � �����
 , where ��
 is the � � �-shortest
message delay between correct processes, the �� � �-
shortest-delay 	echo� �
 messages sent to � by some
processor can be used instead of the � � �-shortest one
for constructing �	���
. The real � for our FD is hence
considerably smaller.

From Section V, we know that we only have to add the
heartbeat-broadcast and the suspicion technique to the
algorithm in Fig. 3 to get our timer-free failure detector
as given in Fig. 4. Fortunately, we can simply use the
	init� �
 message as a processor’s �-heartbeat message,
since it is emitted at the time ����� when broadcast� is
started.

Global variables:
suspect
�� ��false; /* list of suspected processors */
saw max
�� �� �; /* maximum heartbeat seen */

Implementation start�: /* Start heartbeat round � */
send �init� �� to all;

Code process �:
cobegin
/* Concurrent block 1 */
if received �init� �� from
� if � � saw max
�

� saw max
� �� �; /* saw new heartbeat */
fi

fi
if received �init� �� from
 � 	 distinct processors
� send �echo� �� to all [once]; /* sufficient evidence */

fi
/* Concurrent block 2 */
if received �echo� �� from
 � 	 distinct processors
� send �echo� �� to all [once]; /* sufficient evidence */

fi
if received �echo� �� from �
 � 	 distinct processors
� �: if �� 	 � � � saw max
�

� suspect
� ��true; /* has crashed */
fi

start���; /* Start next heartbeat round */
fi
coend

Fig. 4. Our time-free perfect failure detector algorithm

The following major Theorem 2 shows that the al-
gorithm of Fig. 4 indeed implements a perfect failure
detector in partially synchronous systems where only
� � � � ����� is known. Recall that it is only the
classic specification of the perfect failure detector � that
forces us to consider crash failures; our implementation
works even in presence of arbitrary faulty processors.

9Or, preferably, by employing an alternative implementation of
consistent broadcasting.

9

Theorem 2 (Failure Detector Properties): Let � be
an integer with � � �	�� � �
���. In a system with
� � ���� processors, the algorithm given in Fig. 4 with
all processes created at boot time implements a perfect
failure detector with detection time at most �	���
���
��. During �� � � rounds, every correct processor has
running time within �	�����
������� �	����
���
��� and broadcasts at most �� messages of size at most
	� � ���
��
 bits per round system-wide.

Proof: We have to show that the properties (SC) and
(SA) of a perfect failure detector, given in Section II,
are satisfied.

As far as strong accuracy (SA) is concerned, we use
the argument developed in Section V. It confirms that
every correct processor � gets the � � �-heartbeat of
any alive processor � by the time ��

� when � emits its
�� �-heartbeat, provided that � is chosen according to
(4). This evaluates to

� �
�� � ��

����
�

��� � ��

���
�

��� �

�
(7)

according to the latencies of consistent broadcasting
given in Theorem 1. Inequality (7) obviously holds when
� is chosen as stated in our theorem.

As far as strong completeness is concerned, it is
obvious that a processor � that has crashed stops emit-
ting heartbeats. Hence, eventually, every alive processor
recognizes that the expected heartbeat is missing and
suspects �. The worst case for detection time occurs if
a processor � crashes immediately after broadcasting its
� -heartbeat, for some �
 �, at time �	��

� . At time
��� with � � � � �, processor � recognizes that the
� ��-heartbeat from � (which should have been emitted
at time �	�) is missing. According to (3) in Lemma 1,
the detection time must hence be less than

��� � �	��
� � 	� � �
���� � �� � �	� � �
�� � ��

according to Theorem 1 as asserted.
The bounds for the algorithm’s running time for ��

rounds are determined by the running times of consistent
broadcasting, hence follow immediately from (2) and (3)
in conjunction with Theorem 1. The number of messages
broadcast (= “send to all”) and the message complexity
follows immediately from Theorem 1. �

Remarks:
1) In the presence of crash (and even omission)

failures, our failure detector guarantees that the
properties (SC) and (SA) are maintained at all
processors, i.e., even at faulty processors, until they

crash. This is due to the fact that Theorem 1 is ac-
tually uniform [37], i.e., holds for such processors
as well.

2) The algorithm does not need to know �, except for
the size of the suspect list.

3) Initializing saw max���� �� � in Fig. 4 ensures that
the very first �-heartbeat is not used for suspecting
a processor. This must be avoided, since we can-
not assume that all correct processors start their
execution within �� (which would be required to
extend Lemma 1 to � � ��).

4) A theoretical disadvantage of our solution is that
the message size is unbounded since it incorpo-
rates �. However, solutions to this problem—
construction of a bounded round numbering
scheme—are known, given that � is known.

As a final remark, we note that the perfect failure
detector algorithm of Fig. 4 could easily be transformed
into an eventually perfect failure detector �� that works
also when � is unknown but finite, possibly after some
unknown GST. All that needs to be done here is to
increment � every time a message from a suspected
processor drops in later.

VII. CONCLUSIONS

In this paper, we showed how to implement a time-
and timer-free perfect failure detector � . The partially
synchronous �-model utilized in our analysis requires
a bound � on the ratio � � ����� of maximum
vs. minimum end-to-end delays only. Since there are
systems or/and conditions where � � � holds true even
when some stipulated upper bound �� is violated (due to
overloads, failure occurrences, etc.), our implementation
of � achieves a coverage that is higher than what can be
expected with synchronous solutions. Using the design
immersion principle, our FD hence allows to build high-
coverage distributed real-time systems based upon time-
free (asynchronous) algorithms.

This result has important theoretical as well as prac-
tical implications. First, our FD works in a partially
synchronous system where delay bounds are unknown,
apparently contradicting [7]. Second, as discussed in
Section IV, � may remain bounded even when � �

exceeds some assumed bound � �. In other words, there
are conditions under which the correctness of our so-
lution for implementing � does not depend upon load
assumptions, apparently contradicting [8] as well.

The apparent contradictions are due to the fact that
both [7] and [8] consider �� and �� to be uncorrelated.
For example, it can be assumed in [7] that the time

10

 until correct suspicion in the strong completeness
property (SC) is independent of ��, since the latter is
unknown. This is not true if � is known, however, since
our FD can infer something about the maximum delay
�� of messages still in transit from already received
messages via �. Hence, an unknown upper bound upon
the transmission delay alone is not sufficient to cause the
impossibility result to apply. A similar argument applies
for the impossibility of consensus in case of unbounded
delays [8].

Part of our current/future work in this area is de-
voted to several extensions of our approach. In [33],
we show how to arbitrarily reduce � and system load
by introducing additional delays, and how to deal with
hybrid processor and link timing/value failures according
to our perception-based failure model [38]. In [39], we
present an alternative FD implementation based upon
clock synchronization in the �-model [40], which also
improves � and allows us to get rid of the simultane-
ous booting assumption. We also found out that other
problems in asynchronous distributed computing, like the
SDD problem [41] related to atomic commitment, can be
solved in the �-model.

VIII. ACKNOWLEDGMENTS

We are grateful to Josef Widder for many stimulating
discussions on the subject, and to Daniel Albeseder for
conducting the experimental evaluation.

REFERENCES

[1] Flaviu Cristian and Christof Fetzer, “The timed asynchronous
distributed system model,” IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no. 6, pp. 642–657, 1999.

[2] Paulo Verı́ssimo, António Casimiro, and Christof Fetzer, “The
timely computing base: Timely actions in the presence of uncer-
tain timeliness,” in Proceedings IEEE International Conference
on Dependable Systems and Networks (DSN’01 / FTCS’30),
New York City, USA, 2000, pp. 533–542.

[3] Gérard Le Lann, “On real-time and non real-time distributed
computing,” in Proceedings 9th International Workshop on
Distributed Algorithms (WDAG’95), Le Mont-Saint-Michel,
France, September 1995, vol. 972 of Lecture Notes in Computer
Science, pp. 51–70, Springer.

[4] J.-F. Hermant and Gérard Le Lann, “Fast asynchronous uniform
consensus in real-time distributed systems,” IEEE Transactions
on Computers, vol. 51, no. 8, pp. 931–944, Aug. 2002.

[5] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson, “Im-
possibility of distributed consensus with one faulty processor,”
Journal of the ACM, vol. 32, no. 2, pp. 374–382, Apr. 1985.

[6] Tushar Deepak Chandra and Sam Toueg, “Unreliable failure
detectors for reliable distributed systems,” Journal of the ACM,
vol. 43, no. 2, pp. 225–267, March 1996.

[7] Mikel Larrea, Antonio Fernández, and Sergio Arévalo, “On
the impossibility of implementing perpetual failure detectors
in partially synchronous systems,” in Proceedings of the 10th
Euromicro Workshop on Parallel, Distributed and Network-
based Processing (PDP’02), Gran Canaria Island, Spain, Jan.
2002.

[8] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer, “On
the minimal synchronism needed for distributed consensus,”
Journal of the ACM, vol. 34, no. 1, pp. 77–97, Jan. 1987.

[9] Stephen Ponzio and Ray Strong, “Semisynchrony and real
time,” in Proceedings of the 6th International Workshop on
Distributed Algorithms (WDAG’92), Haifa, Israel, November
1992, pp. 120–135.

[10] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stock-
meyer, “Bounds on the time to reach agreement in the presence
of timing uncertainty,” Journal of the ACM (JACM), vol. 41,
no. 1, pp. 122–152, 1994.

[11] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer, “Con-
sensus in the presence of partial synchrony,” Journal of the
ACM, vol. 35, no. 2, pp. 288–323, Apr. 1988.

[12] Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-
Smith, “Solving consensus in a byzantine environment using
an unreliable fault detector,” in Proceedings of the International
Conference on Principles of Distributed Systems (OPODIS),
Chantilly, France, Dec. 1997, pp. 61–75.

[13] Vijay K. Garg and J. Roger Mitchell, “Implementable failure
detectors in asynchronous systems,” in Proceedings of the 18th
Int. Conference on Foundations of Software Technology and
Theoretical Computer Science (FST & TCS’98), New-Dehli,
India, 1998, LNCS 1530, pp. 158–169, Springer.

[14] Leslie Lamport, “The part-time parliament,” ACM Transactions
on Computer Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[15] Mikel Larrea, Antonio Fernández, and Sergio Arévalo, “Effi-
cient algorithms to implement unreliable failure detectors in
partially synchronous systems,” in Proceedings of the 13th
International Symposium on Distributed Computing (DISC’99),
Bratislava, Slovaquia, Sept. 1999, LNCS 1693, pp. 34–48,
Springer.

[16] Assia Doudou, Benoit Garbinato, Rachid Guerraoui, and André
Schiper, “Muteness failure detectors: Specification and imple-
mentation,” in Proceedings 3rd European Dependable Comput-
ing Conference (EDCC-3), Prague, Czech Republic, September
1999, vol. 1667 of LNCS 1667, pp. 71–87, Springer.

[17] Mikel Larrea, Antonio Fernández, and Sergio Arévalo, “Opti-
mal implementation of the weakest failure detector for solving
consensus,” in Proceedings of the 19th ACM Symposium on
Principles of Distributed Computing (PODC’00), Portland, OR,
USA, 2000, p. 334.

[18] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera, “On
the quality of service of failure detectors,” in Proceedings IEEE
International Conference on Dependable Systems and Networks
(ICDSN / FTCS’30), New York City, USA, 2000.

[19] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg, “On
quiescent reliable communication,” SIAM Journal of Comput-
ing, vol. 29, no. 6, pp. 2040–2073, April 2000.

[20] Indranil Gupta, Tushar D. Chandra, and Germán S. Goldszmidt,
“On scalable and efficient distributed failure detectors,” in
Proceedings of the 20th ACM Symposium on Principles of
Distributed Computing (PODC’01), Newport, RI, Aug. 2001,
pp. 170–179.

[21] Christof Fetzer, Michel Raynal, and Frederic Tronel, “An
adaptive failure detection protocol,” in Pacific Rim International

11

Symposium on Dependable Computing (PRDC 2001), Seoul,
Korea, Dec. 2001.

[22] Marin Bertier, Olivier Marin, and Pierre Sens, “Implementation
and performance evaluation of an adaptable failure detector,”
in Proceedings of the International Conference on Dependable
Systems and Networks (DSN’02), Washington, DC, June 23–26,
2002, pp. 354–363.

[23] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Faucon-
nier, and Sam Toueg, “On implementing Omega with weak
reliability and synchrony assumptions,” in Proceeding of the
22nd Annual ACM Symposium on Principles of Distributed
Computing (PODC’03), 2003.

[24] Anchour Mostefaoui, Eric Mourgaya, and Michel Raynal,
“Asynchronous implementation of failure detectors,” in Pro-
ceedings of the International Conference on Dependable Sys-
tems and Networks (DSN’03), San Francisco, CA, June 22–25,
2003.

[25] Marcos Aguilera, Gérard Le Lann, and Sam Toueg, “On
the impact of fast failure detectors on real-time fault-tolerant
systems,” in Proceedings of the 16th International Symposium
on Distributed Computing (DISC’02), Toulouse, France, Oct
2002, vol. 2508 of LNCS, pp. 354–369, Springer Verlag.

[26] Jane W. S. Liu, Real-Time Systems, Prentice Hall, 2000.
[27] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and

Giorgo C. Buttazzo, Deadline Scheduling for Real-Time Sys-
tems, Kluwer Academic Publishers, 1998.

[28] R. Ernst and W. Ye, “Embedded program timing analysis based
on path clustering and architecture classification,” in Digest
of Technical Papers of IEEE/ACM International Conference
on Computer-Aided Design. Apr. 1997, pp. 598–604, IEEE
Computer Society.

[29] J.C. Palencia Gutiérrez, J.J. Gutiérrez Garcia, and M. Gonzáles
Harbour, “Best-case analysis for improving the worst-case
schedulability test for distributed hard real-time systems,” in
Proceedings of the 10th Euromicro Workshop on Real-Time
Systems, Berlin, Germany, June 1998, pp. 35–44.

[30] Ola Redell and Martin Sanfridson, “Exact best-case response
time analysis of fixed priority scheduled tasks,” in Proceedings
of the 14th Euromicro Workshop on Real-Time Systems, Vienna,
Austria, June 2002, pp. 165–172.

[31] T. K. Srikanth and Sam Toueg, “Optimal clock synchroniza-
tion,” Journal of the ACM, vol. 34, no. 3, pp. 626–645, July
1987.

[32] Ulrich Schmid, “How to model link failures: A perception-
based fault model,” in Proceedings of the International
Conference on Dependable Systems and Networks (DSN’01),
Göteborg, Sweden, July 1–4, 2001, pp. 57–66.

[33] Gérard Le Lann and Ulrich Schmid, “How to maximize com-
puting systems coverage,” Tech. Rep. 183/1-128, Department
of Automation, Technische Universität Wien, April 2003.

[34] Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi,
“Failure detectors in omission failure environments,” in Proc.
16th ACM Symposium on Principles of Distributed Computing,
Santa Barbara, California, 1997, p. 286.

[35] Dahlia Malkhi and Michael Reiter, “Unreliable intrusion
detection in distributed computations,” in Proceedings of
the 10th Computer Security Foundations Workshop (CSFW97),
Rockport, MA, USA, June 1997, pp. 116–124.

[36] Assia Doudou, Benoit Garbinato, and Rachid Guerraoui, “En-
capsulating failure detection: From crash to byzantine failures,”
in Reliable Software Technologies - Ada-Europe 2002, Vienna,
Austria, June 2002, LNCS 2361, pp. 24–50, Springer.

[37] Vassos Hadzilacos and Sam Toueg, “Fault-tolerant broadcasts

and related problems,” in Distributed Systems, Sape Mullender,
Ed., chapter 5, pp. 97–145. Addison-Wesley, 2nd edition, 1993.

[38] Ulrich Schmid and Christof Fetzer, “Randomized asynchronous
consensus with imperfect communications,” in 22nd Symposium
on Reliable Distributed Systems (SRDS’03), Florence, Italy, Oct.
6–8, 2003, pp. 361–370.

[39] Josef Widder, Gérard Le Lann, and Ulrich Schmid, “Perfect
failure detection with booting in partially synchronous systems,”
Tech. Rep. 183/1-131, Department of Automation, Technische
Universität Wien, April 2003, (to appear in Proc. EDCC’05).

[40] Josef Widder, “Booting clock synchronization in partially
synchronous systems,” in Proceedings of the 17th International
Symposium on Distributed Computing (DISC’03), Sorrento,
Italy, Oct. 2003, vol. 2848 of LNCS, pp. 121–135, Springer
Verlag.

[41] Bernadette Charron-Bost, Rachid Guerraoui, and André
Schiper, “Synchronous system and perfect failure detector:
Solvability and efficiency issues,” in Proceedings of the IEEE
Int. Conf. on Dependable Systems and Networks (DSN’00), New
York, USA, 2000, pp. 523–532, IEEE Computer Society.

12

