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Abs t r ac t .  In this paper, taking an algorithmic viewpoint, we explore 
the differences existing between the class of non real-time computing 
problems (R~) versus the class of real-time computing problems (~). We 
show how a problem in class RN can be transformed into its counterpart 
in class ~. Claims of real-time behavior made for solutions to prob- 
lems in class ~ are examined. Ah example of a distributed computing 
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problem arising m class Is studmd, along with its solutmn. It is shown 
why off-line strategies or scheduling algorithms that are not driven by 
real-time/timeliness requirements ~ are incorrect for class ~. Finally, a 
unified approach to conceiving and measuring the efficiency of solutions 
to problems in classes R~ and ~ is proposed and illustrated with a few 
examples. 

1 I N T R O D U C T I O N  

Over the last 20 years, the distributed algorithms community  has spent consider- 
able effort solving problems in the areas of serializable or linearizable concurrent 
computing.  These problems belong to a class denoted R~, the class of non reM- 
t ime computing problems. 

Separately, over the last 30 years, the real-time algorithms communi ty  has 
spent considerable effort solving scheduling problems in the area of centralized 
computing,  considering preemptable  and non-preemptable resources. Only re- 
cently has distributed computing received some attention. These problems be- 
long to a class denoted ~, the class of real-time computing problems. 

In this paper, taking an algorithmic viewpoint, we embark on exploring the 
differences between both classes. The scope of this paper  is restricted to that  
of deterministic algorithms. Besides intellectual interest, investigation of these 
issues is expected to bring the two communities closer, via the clarification of a 
few essential concepts. In particular, we have observed that  the qualifiers "real- 
t ime" and "distributed" may  not carry the same meaning in both communities. 
Broadly speaking, with few exceptions, the distributed algorithms communi ty  
does not consider problem specifications that  include real-time requirements. 
Conversely, the real-time algorithms community  often fails to understand what 
is implied with considering a distributed computing problem. 

The remainder of this paper  is organized as follows. In section 2, we introduce 
the distinctive at tr ibutes of class ~. In section 3, we examine claims of real-t ime 
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behavior made for solutions to problems in class R~. In section 4, we introduce a 
problem of distributed computing that  belongs to class ~, along with its solution. 
A unified approach to conceiving and measuring the efficiency of solutions to 
problems in both classes is proposed in section 5. 

In this paper, we have purposedly put more emphasis on problems and solu- 
tions in class ~ ,  given the intended audience. 

2 CLASS ~ V E R S U S  CLASS R~R P R O B L E M S  

Quite often, it is believed that "real-time" means "fast". For example, the distinc- 
tion between "meeting specific time bounds that  are specified a priori" (which 
is a metric-free problem) on the one hand, and "observable response times are 
small" (which is an implementation dependent consideration) on the other hand, 
does not seem to be well understood. F~r example, it has been recently stated 
that  "... protocols like Isis, Horus, Transis and Totem are real-time protocols if 
one is concerned with real-time deadlines of minutes or tens of seconds...". 

As these protocols - and the related Asynchronous Consensus problem - are 
reasonably welt understood, it seems appropriate to use them to carry out an 
analysis in order to explain why statements such as the one reported above are 
meaningless. 

We will first introduce some notations, and then present the distinctive at- 
tributes of problems in class ~, before proceeding with the analysis in section 
3. 

2.1 N o t a t i o n s  

C o r r e c t n e s s  Recall that,  in the context of this paper, a solution is an algo- 
r i thm and its associated models and proofs. The specification of any problem P 
comprises the following subsets : 

- the specification of some assumptions, denoted 
- the specification of the properties sought, denoted A. 

Assumptions are equivalent to axioms in Mathematics. Essentially, assump- 
tions cover the models considered, namely the computational models, the failure 
models, the models of event releases. Examples of properties of interest are safety, 
liveness, timeliness. Similarly, the specification of any solution A comprises the 
following subsets, in addition to the specification of A : 

- the specification of some assumptions, denoted 7, 
- the presentation of the proofs that some properties F hold, given 7. 

Whenever a model or a set of properties xl dominates another model or 
another set of properties x2, i.e. xl is more general than x2, this will be denoted 
by xl __D x2, _D being the inclusion symbol. It is said that  A solves problem P if 
the following correctness conditions hold : 
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[ccl]: F(A) D A(P) and [cc2]: 7(A) __D A(P). 

For most problems, establishing correctness conditions entails the expression 
of feasibility conditions, denoted [fc]. 

A useful interpretation of these correctness conditions is as follows : with A, 
a system is proved to be endowed with properties that are at least equal to (as 
strong as) those required, assuming advance knowledge that is at most equal to 
(not "richer" than) that given in the exposition of P. 

These conditions may seem trivial. Nevertheless, quite surprisingly, many 
published papers describe results that violate [cct] or [cc2] or both. Typically, 
some papers explore "tradeoffs" between various solutions, and conclude with 
some particular decision such as At is "better" than A2, because At is less 
"costly" than A~, totally ignoring the fact that A1 is less "costly" for the sole 
reason that A1 is based on postulating gl, which violates [cc2] whereas A2, 
assumed for A2, does not. Such meaningless analyses are commonplace when 
off-line solutions are compared with on-line solutions for problems in class ~. 

Very often, it is useful to view the models included in ~ as defining an ad- 
versary that is endowed with some bounded power. For example, the adversary 
contemplated with non-public concurrent data structures is more restricted than 
the one embodied in problems involved with public concurrent data structures 
[5]. Similarly, periodic or sporadic releases models characterize adversaries that 
are more constrained that those embodied in arbitrary event releases models. 

O p t i m a l i t y  Informally, an algorithm A is optimal for a given problem if, (i) 
whenever the desired properties L can hold, they do hold via A, and if, (ii) A 
not being able to enforce these properties, there cannot exist an algorithm that 
would enforce them, given ~. More precisely, a correct algorithm A is optimal 
for a given problem if the following optimality condition holds : 

[oc]: the [fc] under which [ccl] and [ec2] hold true are necessary and sufficient. 
Let us give a few examples of necessary and sufficient feasibility conditions, 

denoted NS[fc]. In class ~, examples of NS[fc]s are, (i) those given with the proof 
that the centralized non-preemptive earliest-deadline-first algorithm is optimal 
for periodic and sporadic arrival laws, when relative deadlines are equal to pe- 
riods [15], (ii) those given with the proof that the centralized D-Over algorithm 
is optimal for aperiodic arrival laws in the presence of overload [3]. 

In class R~, examples of NS[fc]s are, (i) the 3t + 1 lower bound for sustaining 
up to t arbitrary failures in synchronous computational models [20], (ii) the 
�9 unreliable failure detector semantics for solving the consensus problem in 
the presence of crash failures in asynchronous computational models [6]. 

2.2 The  d is t inc t ive  a t t r i b u t e s  of  class 

What makes a problem belong to class ~ rather than to class R~ ? There is 
no general agreement on the answer. What follows in an attempt to clarify the 
issue. Two attributes seem to be necessary and sufficient. 
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(i) A first distinctive attribute of a real-time computing problem is the pres- 
ence, in its specification, of arbitrary and individual time bounds to be met by 
every operation that  can be performed by every process. 

In the real-time computing community parlance, such time bounds are often 
referred to as timeliness constraints (earliest/latest deadlines for termination, 
relative to release times, bounded jitters, linear or non-linear functions of sys- 
tem's parameters, etc.). They are the expression of a property that  is essential 
and specific to this class of problems, that of timeliness. Timeliness is a composi- 
tion of a safety property (it should never be the case that  specified t ime bounds 
are not met) and a liveness property (progress is mandatory) .  Operations per- 
formed by processes are triggered by the occurrence, also called the release, 
of events. Timeliness properties cannot be achieved for unbounded densities of 
event releases. Hence : 

(ii) A second distinctive attribute of a real-time computing problem is the 
presence, in its specification, of an event releases model. 

In the distributed algorithms community, "real-time" is sometimes equated 
with considering synchronous or t imed transitions computational models (in con- 
trast with considering partially synchronous or asynchronous or fair transitions 
computational models). We believe it is essential to understand that,  whatever 
computational models are considered in )~, it is the presence or the absence of 
timeliness constraints in A that  determines whether a problem belongs to class 

or to class 1 ~  (respectively). 
According to the above, we argue that  some papers, such as e.g. [2], do not 

address real-time algorithmic issues. The problems considered in these types of 
papers consist in demonstrating that some time independent safety property 
- such as, e.g. mutual exclusion - is achieved for some [fc] to be met by the 
synchronous computational model assumed. These problems are not equivalent 
to those where it is asked to demonstrate that  specific and arbitrarily chosen 
timeliness constraints - such as, e.g., strict relative deadlines to be met by the 
competing processes - are satisfied for some [fc] to be met by the models con- 
sidered in ),, namely the event releases model and the - possibly synchronous - 
computational model. 

To summarize, the distinctive attributes of any problem in class ~ are as 
follows : 

- specification set A includes a subset, denoted A~, that  specifies timeliness 
constraints 

- specification set )~ includes a subset, denoted , ~ ,  that  specifies an event 
releases model. 

Real-time computing problems either are decision problems or are optimiza- 
tion problems. Decision problems arise whenever it required to meet A~ while 
; ~  is not violated. The [fc]s serve the purpose of telling whether or not a real- 
t ime computing problem is feasible. Such problems are often referred to as "hard 
real-time" problems. Optimization problems arise whenever it is accepted or an- 
ticipated that  , ~  may be violated (e.g., "overloads"). In such cases, some of the 
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timeliness constraints specified in A~ cannot be met. Value functions are then 
defined for every computation. Such functions can be constants or functions of 
times of (computation) termination. Optimization consists in maximizing the 
accumulated value for every possible run - to be derived from ~ - or, equiva- 
lently, to minimize a value loss (e.g., minimum regret). Such problems are often 
referred to as "soft real-time" problems. 

3 CLASS ~ A N D  REAL-TIME C O M P U T I N G  

3.1 T h e  A s y n c h r o n o u s  C o n s e n s u s  p r o b l e m  

The Asynchronous Consensus problem, denoted [AC], is in class ~ .  [AC] is the 
following problem : )~ _-- a group of n processors, asynchronous computational 
model, up to f processor crashes, reliable message broadcast, processors have 
arbitrary initial values A - all correct processors eventually decide (termination); 
they decide on the same final value (agreement) ; that  final value must be the 
initial value of some correct processor (non triviality). 

Over the last 10 years, a great deal of research has been devoted to circum- 
venting a famous impossibility result [11]. A significant number of papers contain 
descriptions of algorithms and extensions to ~ aimed at showing how [AC] can 
become tractable. Let 5(~) be the assumptions that need be made, in addition 
to ~, in order to solve [AC]. 

3.2 H o w  n o t  to  so lve  [AC] 

With few exceptions, published solutions exploit the idea of augmenting the 
original asynchronous model with physical or logical timers. For example, this is 
the approach followed to implement Atomic Broadcast in such systems as Isis, 
Horus, Transis or Totem. Atomic Broadcast is equivalent to [AC] in asynchronous 
models. 

It is reasonably obvious that timers are of no help. Timers that would be 
arbitrary timers are not ruled out by the original asynchronous model. Even 
if 5()~) = perfect timers, it has been shown that [AC] cannot be solved [9]. 
Therefore, approaches based on 5()~) = arbitrary timers cannot solve [AC] either. 
The reason why such approaches fail simply is that the 5()~) considered does 
not bring in more common knowledge than what is provided by the original 1. 
Consequently, the impossibility result still applies fully. 

The analysis of existing "solutions" reveals that two categories are considered, 
namely the primary-partition category and the multi-partition category. Simple 
adversary arguments can be developed to show that any of these "solutions" 
either violates the termination requirement of A (e.g., because of unjustified 
exclusions) or violates the agreement requirements of A (e.g., because any two 
partitions reach different decisions). Some "solutions" assume that  some group 
membership service GMS is available. Thanks to GMS, [AC] is solved with no ex- 
tra 6(A). But this is a violation of correctness condition [cc2]. In many instances, 
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assuming GMS is tantamount to assuming that [AC] is solved, which yields cir- 
cular "solutions". Furthermore, it has been demonstrated that primary-partition 
GMS cannot be solved in asynchronous models [7]. 

To summarize, [AC], or any problem equivalent to [AC], has no deterministic 
solution that would be based on 5(~) = timers. It follows trivially that claims of 
"real-time behavior", even in the order of centuries, are totally unfounded. 

The evidence that timer-based approaches can only solve [AC] probabilisti- 
cally is being acknowledged more openly than was the case previously. Having 
admitted this, some scientists develop the following "argument". The behav- 
ior of any real system can only be predicted with some probability - including 
real-time behavior. Therefore, everything being only probabilistically true, those 
deterministic algorithms that solve [AC] only approximately can be considered 
as yielding "sufficiently good" real-time behavior. Unfortunately, this superficial 
argument is flawed (this is discussed further in section 4.2.6). At best, this ar- 
gument is void. Indeed, the real-time problem that we are told is solved is not 
even defined, as specifications A~ and ~R~ are not given. 

3.3 How to solve [AC] 

Conversely, very few papers describe provably correct solutions to [AC]. The 
concept of unreliable failure detectors was first introduced in [8]. It was subse- 
quently demonstrated that the completeness and the accuracy properties that 
define ~ W  are the NS 6(~) under which [AC] can be solved [6]. Hence, correct 
and optimal solutions are available. 

An interesting question to ask is whether a real-time extension of [AC] could 
be solved with some real-time extension of ~W. This also raises the question as 
whether asynchronous computational models can be considered in class ~. This 
discussion is deferred to section 5. 

Let us now examine a problem in class ~ and its solution. Before doing so, 
we will first re-state the well-known principles of partial advance knowledge and 
partial common knowledge that characterize problems in distributed comput- 
ing. This is felt useful mainly for the reason that we keep seeing papers aimed 
at solving "distributed real-time computing" problems that violate these basic 
principles. 

4 C L A S S  ~ A N D  D I S T R I B U T E D  C O M P U T I N G  

4.1 Pa r t i a l  knowledge 

A distinctive attribute of any problem in distributed computing is incomplete 
information, or partial knowledge. If we look at the classes of problems considered 
by the distributed algorithms community over the last 20 years, we find such 
computational models as synchronous, partially synchronous and asynchronous 
models and such failure models as crash, timing and arbitrary failures, which 
induce a significant amount of uncertainty w.r.t, future system runs. Hence, 
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a first principle is that of partial advance knowledge (of future system runs). 
Furthermore, distributed computations have to cope with an additional source 
of uncertainty, that  is lack of knowledge of the current system state (even if 
the most conservative models are assumed). Hence a second principle is that  of 
partial common knowledge (shared by the processors). 

Consider a set of processors involved in some distributed computation. At 
best, via some algorithm, some processors may end up sharing some common 
knowledge about some partial past system state. Therefore, a distributed algo- 
ri thm may be viewed as the union of two algorithms, one in charge of build- 
ing/maintaining some common knowledge, referred to as the dissemination al- 
gorithm, the other one in charge of acting on the system state, referred to as the 
decision algorithm. Let ~ be a measure of the common knowledge accessible to 
processors, as achieved by the dissemination algorithm. Of course, ~ is a (possi- 
bly complex) function of the number of the different shared partial states as well 
as of the number of processors sharing each partial state. Let C(g) be the cost 
of obtaining n. Cost may be measured in various ways, e.g. a number of steps 
(of the dissemination algorithm). In general, C is a monotonically increasing 
positive function of n. Theoretically, ~ ranges between 0 (0-common knowledge) 
and K, the best achievable approximation of full-common knowledge. 

If we look at the classes of problems considered by the real-time algorithms 
community over the last 30 years, we mainly find event releases models such 
as periodic and sporadic releases and timeliness constraints that  are expressed 
as simple linear functions of periods (equality, very often). Furthermore, most 
systems considered are centralized (typically, single-processor systems or central- 
ized multiprocessors). These models do not fit well with those considered for dis- 
tributed computations. Hence the growing recognition that  more general releases 
models should be investigated, such as aperiodic or arbitrary event releases mod- 
els, as well as more general properties such as arbitrary timeliness constraints. 
Clearly, such models induce a significant amount of uncertainty w.r.t, future 
system runs. However, given the principles of partial advance knowledge and 
partial common knowledge, it is not at all clear that these more general releases 
models yield increased uncertainty compared to that  resulting from considering 
a distributed computational model. 

In the recent past, we have noticed that these more general models and 
objectives are sometimes perceived as being "unnecessarily complicated". It is 
quite surprising that  such views can be taken by scientists who address real-time 
distributed computing issues. Indeed, these more general models and objectives 
reflect reality more accurately than the good old models (periodic/sporadic re- 
leases, time bounds related to periods). Note that  the event releases models in lq~ 
and the timeliness constraints in A~ are specified by the "clients" (e.g., the end 
users of the systems to be designed). As these systems can only start operating in 
the future, specifying these models and constraints is tantamount to predicting 
the future behavior of the system's environment. Which client would be foolish 
enough to pretend that  every possible external event can only be released period- 
ically or sporadically for the next 10 years of operation and that  the appropriate 
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relative deadlines must always be equal to the periods ? Such assumptions are 
clearly unacceptable in the case of critical applications or whenever the envi- 
ronment is, by nature, non-cooperative. Condition [cc2] makes it mandatory for 
designers to consider assumptions g that  do not artificially weaken the problem 
under consideration. Hence, any solution to a real-time distributed computing 
problem that  would be based on clairvoyance assumptions or, more generally, 
on a violation of condition [cc2], is a nomsolution. Let us refine this condition. 

When considering a given problem P, the related $ yields the following two 
bounds on a : 

- t~($), the upper bound on g that  is accessible at cost C(t~($)) = 0 ;g($) is a 
measure of partial advance knowledge as embodied in $, 

- ~(~), the upper bound on tr that  is achievable at some non-zero cost by a 
dissemination algorithm (given the models considered in $). 

For example, for problem [HRTDM] considered in section 4.2, we would have 
tr = atomic channel state transitions ; ternary channel. 

For any optimal dissemination algorithm and for any given ~, this ~ is reach- 
able at a cost that  matches some lower bound, denoted C*(~) Depending on 
the types of problems considered, it may or may not be the case that  [oc] is 
met with any algorithm A that  needs K(A), obtained at cost C*(K()t)) only. 
This is particularly true with problems in class ~. More generally, this is true 
with any problem where A embeds some "performance" objectives. On-line job 
assignment, with minimization of makespan, would be an example ([Bet al. 92], 
[DP92]). Optimality is further discussed in section 5. 

4.2 T h e  H a r d  R e a l - T i m e  D i s t r i b u t e d  Mul t i a cce s s  c h a n n e l  p r o b l e m  

This problem has been selected for the purpose of demonstrating that  distributed 
real-time computing problems cannot be solved with solutions based on off-line 
computations, such as precomputed schedules or scheduling algorithms based 
on fixed priorities. More to the point, tc standing for the timeliness constraints 
specified by A~, distributed real-time computing problems can only be solved 
with on-line tc-driven scheduling algorithms [18]. 

T h e  p r o b l e m  The Hard Real-Time Distributed Multiaccess channel problem, 
denoted [HRTDM], arises when considering a broadcast communication channel 
that  is shared by stations for transmitting messages. A station comprises a source 
and a sender. Messages released by a source are queued up for transmission by 
the local sender. Channels considered are equivalent to multi-writer/multi-reader 
concurrent atomic ternary objects. More precisely, [HRTDM] is as follows : 

Set ~ - ~ ~ Computational model : 
Synchronous. In the absence of access control, a channel can enter three states, 
namely "idle", "busy", "jammed". A channel is "idle" when no message trans- 
mission is attempted or under way. State "busy" corresponds to exactly one 
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message being transmitted. State "jammed" is an undesired state, which corre- 
sponds to many messages being transmitted concurrently (garbled transmission). 
Over such ternary channels, stations can only observe global channel states and 
global channel state transitions that  result from their collective behavior. The 
number of stations that  are active at any time is unknown. The number of sta- 
tions has a finite upper bound, denoted n. The channel end-to-end propagation 
delay is small compared to message durations. 

Failure models : Crash failures and send-omission failures allowed for  sta- 
tions. (Receive-omission failures can be considered, although this is not done 
here, for the sake of conciseness). Channel state transitions are assumed to be 
reliably propagated along the channel. We do not require that a message being 
transmitted by a correct sender (channel state = "busy") be correctly delivered 
to every station. However, we require that an erroneous message reception be 
distinguished from channel state "jammed". 

Set ~ 
Message releases model : Messages released by source i, i E [1, n], belong to a 
set denoted Mi = mi,1, m~,2, ..., mi,p(i). Every message has a finite transmission 
duration. Release times of messages follow arbitrary laws. Arbitrary laws are 
characterized via a sliding window model, as follows. W being the size of the 
sliding window considered, for every i, p(i) integers x~,~ are specified, k e [1, p(i)]. 
Integer xi,k is the highest number of releases of message rni,k that  can be found 
in any window of size W. Indirectly, this defines, Ti = Xi/W, the upper bound 
on the density of message releases from source i, with X~ = ~P=I  (i)xi,k. 

Set A - As 
Message transmissions must be mutually exclusive (a safety property). Every 
message must be transmitted in bounded time (a liveness property). 

Set As 
Timeliness constraints : A relative latest deadline is assigned to each message. 
Relative deadline of message mi,k is denoted d(mi,k). Deadline values are arbi- 
trary. Let W be maxd(mi,k), k E [1,p(i)], over all sets Mi. 

- (T) every message released by a source must be transmitted before its dead- 
line (a timeliness property) 

- (D) the distributed algorithm selected belongs to a class that  dominates 
every other class (a dominance property). 

Note that  (D) is equivalent to requiring that the feasibility conditions are 
"close enough" to NS[fc]s. 

P r e l i m i n a r i e s  First, consider sets M~ that  are derived from sets Mi, by creat- 
ing xi,k releases of every message mi,k, k E [1, p(i)]. A scenario is any collection 
comprising the n sets M[, the set of p(i) relative deadlines assigned to the X~ 
messages in every set/14/I, as well as every possible pattern of release times that 
satisfies bounds ~i. Feasibility conditions can be viewed as an (algorithm depen- 
dent) oracle that  answers "yes" or "no" to any such question as "is (T) satisfied 
with this scenario ?". 
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In order to prove that [HRTDM] is solved, one must prove first that  (T) 
holds whenever the set of senders considered is presented feasible scenarios. A 
feasible scenario is a scenario such that there exists a schedule that  achieves 
property (T). At this point, it is useful to consider that  the feasible scenarios 
embodied within the exposition of [HRTDM] are those that  can be generated by 
an all-knowing adversary - referred to as Z in the sequel - which is free to decide 
on when sources will release messages over the set of stations, provided that  the 
definition of sets M" and the ~ boundaries are not violated. Hence, we have no 
other choice left than to consider releases referred to as non-concrete releases 
in the real-time scheduling algorithms community. In particular, note that  the 
sliding window-based arbitrary releases model is more general than the sporadic 
releases model, in that multiple messages may be released simultaneously. With 
this type of model, the distinction between time-triggered versus event-triggered 
computations [KV93] is meaningless. 

Proving that  (T) holds consists in devising some distributed multiaccess al- 
gorithm A which, when being used to play against Z, guarantees that  every 
deadline is satisfied. Hence, [CCl] translates into having to meet the following 
double requirement, given A, in the presence of Z, Vi E [1, n], Vj E [1, X~] : 

- (RI) establish the expression of a function B(mij) that  gives a guaranteed 
upper bound on response times for message mi,j 

- (R2) verify that  B(mi,j) -'< d(m~,j) holds true. 

Proving that  (D) holds consists in proving that  A belongs to a class of algo- 
rithms that  yield bounds B(mi,j) that  are always smaller than those obtained 
when considering other classes. 

Adversary arguments can be developed considering Z as a global adversary 
or considering that Z is the union of several distinct adversaries. The former 
approach has been used in [IILLR95] to demonstrate that  [HRTDM] cannot be 
solved with algorithms based on decisions made (fully, partially) off-line. The 
latter approach consists in proceeding as follows : 

- pick up a distributed algorithm A, that defines the rule of the game played 
(i.e. imposed to the adversary/adversaries) 

- extract one station, say i, from the set of stations considered 
- consider that  all other stations coalesce to "defeat" i, i.e. they are an adver- 

sary Zi against which i is playing 
[cc2] : prove that  Zi is not "weaker" than (i.e. as unrestricted as) Z 
[CCl] : establish BA(mi,j, Zi) and prove that the double requirement {R1,/~2} 
is met for i (in the presence of Zi, given A). 

Doing the above for every possible value of i results into establishing condi- 
tions under which (T) holds true with A in the presence of Z (which is at most 
as strong as UiZi). 

Given the communication channels considered, a very basic issue that  need 
be solved is how to enforce mutual exclusion among senders, i.e. how to handle 
contention. 



6] 

H o w  to  h a n d l e  c o n t e n t i o n  Many existing network standards or off-the-shelf 
products or proposals from the research community are based on contention 
avoidance or on contention detection-and-resolution. Representatives of the con- 
tention avoidance category are decentralized polling/round-robin or token-passing 
algorithms. Representatives of the contention detection-and-resolution category 
are carrier-sense algorithms. It is reasonably obvious that  probabilistic algo- 
rithms, such as that  used in Ethernet, cannot solve [HP~TDM]. 

Other off-the-shelf products or proposals from the research community are 
based on Synchronous Time Division (STDMA). It is also reasonably obvious 
that  STDMA algorithms cannot solve [HRTDM]. Such algorithms can only work 
with a time slotted channel. How such slots can be instantiated is a crucial issue. 
If a unique (central) clock is used, then the solution is not distributed, hence 
it is unacceptable. If multiple clocks are used (e.g., one per station), then the 
question arises as how do they exchange messages so as to reach and maintain 
mutual  synchrony. Inevitably, such message exchanges are conducted via either a 
contention avoidance or a contention detection-and-resolution algorithm. Hence, 
distributed STDMA does not solve [HRTDM]. Distributed STDMA can only be 
a "synchronous" extension of some underlying algorithm that solves [HlZTDM]. 

It looks like the only correct solutions belong to the class of contention avoid- 
ance algorithms. This is a well accepted view, as demonstrated by recent survey 
publications such as [MZ95]. It is easy to demonstrate that such a view is mis- 
taken. Note also that  ternary channels are needed for a correct functioning of 
contention avoidance algorithms. Whenever structural changes occur (voluntar- 
ily or because of station failures), contention is unavoidable. State "jammed" is 
needed. 

H o w  n o t  to  solve [HRTDM]  Deterministic contention avoidance algorithms 
cannot solve [HRTDM]. It is easy to show that  Z can defeat any algorithm be- 
longing to this class. This is essentially due to the fact that  every such algorithm 
is based on static decisions, i.e. scheduling decisions made off-line. Such static de- 
cisions being known to Z, Z is able to generate feasible scenarios that  will never 
match those assumptions made for the sake of computing scheduling decisions 
off-line. Let us briefly review three well known examples of contention avoidance 
algorithms. A detailed examination of this issue can be found in [HLLR95]. 

(i) Decentralized polling/round-robin 
Senders are served in some predetermined order, which reflects the polling se- 
quence. Consider that  Z is given n messages exactly, 1 message per station, and 
assume that  the corresponding scenario is feasible. For example, a valid schedule 
would be any schedule whereby mi,1 and mr,1 are transmitted first (in any or- 
der). Knowing the fixed polling sequence, Z can pick up release times that  will 
lead senders to schedule some message(s) belonging to some station(s) k(ki, kr) 
between ml,i and mr,1 or ahead of mi,i and mr,1. Either d(m~,i) or d(mr,1) or 
both deadlines are missed. 

(ii) Token-Passing with timers 
The addition of individual timers to polling algorithms does not help either to 
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solve [HRTDM]. A timer (THT's with the Token Bus or FDDI) is an upper 
bound 0 on the service time granted to a sender. Let be 0q the value of the 
timer associated with sender h, h E [1, n], by the virtue of some off-line compu- 
tation. The same adversary argument used' with polling can be invoked. In fact, 
decentralized polling defines individual timers implicitly. Considering the same 
feasible scenario as above, the only valid off-line computation of timer values 
should be 0q =0, k r i, k r r. This would be, of course, a ridiculous decision. 
More generally, being aware of the fixed qk's, Z can easily pick up release times 
such that deadlines are missed with feasible scenarios. 

(iii) Token-Passing with fixed priorities 
With this type of algorithms, some method must be applied off-line to transform 
deadlines into fixed priorities. Given that we must solve [HRTDM], a "good" 
method would consist in defining a mapping function such that "short dead- 
lines" are translated into "high priorities" (e.g., ranging between 0 and 7, 7 the 
highest, in the case of ISO-OSI 8802/5). The problem is, whatever the method, 
unbounded starvation can be experienced by any message assigned a fixed pri- 
ority that is not the highest one. For such messages, deadlines are inevitably 
missed. If we now concentrate on the set of messages that, at any given time, are 
assigned the highest priority, it is obvious that such algorithms (e.g., the Token 
Ring protocol) boil down to (decentralized) polling. Conclusions drawn above 
fully apply. 

In the real-time algorithms community, significant effort has been devoted 
to identifying good methods for transforming deadlines into fixed priorities off- 
line. It might be worth mentioning that Rate-Monotonic (Deadline Monotonic as 
well), which is a well publicized method in certain circles, does not help either in 
solving [HRTDM]. The correctness and the optimality of Rate-Monotonic have 
been established for a preemptable processor, considering a periodic releases 
model and assuming that a known relation holds between message periods and 
message deadlines [17]. The corresponding type of adversary is much weaker 
than the one embodied within [I-IRTDM], where releases and deadlines are arbi- 
trary. Furthermore, a channel is a distributed resource (unlike a processor) that 
is not preemptable (unlike the assumptions that underly the optimality of the 
Monotonic methods). So called Generalized Rate Monotonic (GRM) is a method 
that is claimed to overcome these limitations. In particular, GRM is claimed to 
be applicable to distributed systems. As (unvoluntarily) demonstrated in [22], 
such claims are unfounded. The unsolvable problem faced with GRM is that 
there cannot exist a method that could be used off-line to transform the dead- 
lines into fixed priorities, while demonstrating that the transformed problem is 
equivalent to [HRTDM] or without violating [cc2]. It is in fact easy to demon- 
strate that GRM cannot solve general distributed scheduling problems, contrary 
to the claims made in [22]. GRM is a typicM example of an approach based on 
an artificially restrictive view of reality (see section 4.1). 

(iv) Conclusions 
Simple adversary arguments have been used to demonstrate that [HRTDM] 
cannot be solved with contention avoidance algorithms. Such arguments help 
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in avoiding the conventional byzantine debates on the hypothetized "real-time 
properties" of polling/round-robin or token-passing algorithms. A much often 
used argument developed in favor of such algorithms is the following one : iup- 
per bounds B(mi,j) - see section 4.2.2 - can be computed with such deterministic 
algorithms ; the double requirement {R1, R2}, i.e. [CCl], can be met ; hence, these 
algorithms are "good" for solving "real-time" computing problems/,. 

The fundamental flaw of this argument is that such bounds are of no value, 
for the reason that they may never hold true (property (T) is not enforced) or 
they hold true under assumptions that violate [cc2] or they are too pessimistic 
(property (D) is not achieved). Distributed polling/round-robin or token-passing 
algorithms inevitably incorporate some off-line decisions. Such decisions match 
only a subset of the possible scenarios. Hence, the problem is not that the double 
requirement {R1,/~2} cannot be expressed. The problem is that the correspond- 
ing oracle may respond "yes" when it should respond "no" or it will respond 
"no" arbitrarily often when it should respond "yes". Adversary Z as embod- 
ied within [HRTDM] is too powerful to be mastered by a contention avoidance 
algorithm. 

Another way of explaining why contention avoidance/off-line decision algo- 
rithms cannot solve [ttRTDM] is as follows : such algorithms enforce sequential 
scheduling decisions, each spanning a set of multiple messages pending for trans- 
mission. Once such a decision is made, it cannot be altered. It is then easy for 
Z to defeat such decisions. The larger the set, the easier for Z. It then becomes 
obvious that the ideal way of playing (and winning) against Z is by providing 
oneself with the possibility of making or changing scheduling decisions on a per 
transmitted message basis (leaving aside the question of how fast such decisions 
can be made). 

The fact that such decisions should be deadline-driven should not come as 
a surprise to readers familiar with the demonstrated optimality properties of 
the Earliest-Deadline-First algorithm. It should then be obvious that the only 
algorithms that make sense are those that make scheduling decisions based on 
the deadline data provided on-line. 

Ho w to  solve [HRTDM] The solution builds upon the demonstrated optimal- 
ity of centralized non-preemptive earliest-deadline-first (NP-EDF), in the class 
of non-idling algorithms, in the absence of overload, for the following models : 

- non-concrete periodic and sporadic message releases, relative deadlines being 
equal to periods [15], 

- aperiodic message releases, arbitrary deadlines [12]. 

The detailed solution can be found in [14]. A summary is provided below. 

a) Timeliness property (T) Let us first have sets M[ sorted by increasing relative 
deadlines. Let mi,j refer to the message ranked j th  in set M[, j E [1,Xi]. Let 

X us write X = ~ = 1  i. Consider set M*, the ordered union of sets M[. Any 
message ranked g in M .  is some unique message ranked j th  in some specific set 
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M[. Let # be the bijeetion g ~ , i, j and let message durations be denoted by 
e .  

A NS[fc] for centralized NP-EDF is as follows : 
(G) Vg, 1 -< g -< X :  d(ma) >- B(ma) , 

= E =I with B(mg maxhe[a+l,x]{e(mh)) + g 
Hence, conditions [ccl], [cc2] and [oc] are met in the case of an ideal dis- 

tributed NP-EDF scheduling algorithm, denoted I, which would always be pro- 
vided with instantaneous perfect global knowledge (of the senders waiting queues) 
at zero cost. Trivially, we have Bx (mi,j) = BI (rag), with i, j = #(g).  Centralized 
NP-EDF or I being optimal, any valid schedule that  would not be EDF-ordered 
can be transformed into an EDF-ordered (valid) schedule [12]. Hence, for any 
given feasible scenario, the lower bound of the rank for any message is obtained 
with I. Therefore, bounds BI are the lower bounds of any real bounds that  can be 
enforced by any real distributed scheduling algorithm. For any such algorithm, 
denoted A, let us write BA(mi,j) = Bx(mi,j) + bA(mi,j), where bA(mi,j ) is an 
upper bound on the additional latency due to lack of perfect global knowledge. 

Hence, for any algorithm A in class D - N P  - E D F ,  (G) yields the following 
sufficient condition under which property (T) holds : V i e  [1, n], Vj E [1, Xi]: 
BD-NP-EDF(mi , j )  <<_ d(mi,j), with 

8D-NP-EDF (mi,j) = 
J 

max {e(mh)) + ~ e~ + bD-NP-EDF(mi, j )  
hE[j+l,X~] u=i 

b) Dominance property (D) What  follows is a sketch of the proof. Consider the 
class of D -  N P -  E D F  algorithms based on contention detection-and-resolution 
and the class of contention avoidance algorithms, denoted CA. Pick up an algo- 
r i thm in each class and consider a feasible scenario for which both algorithms 
generate a valid schedule (property (T) holds). Let us demonstrate that,  for any 
message m in this scenario, we have : 

bD-lVP-~DF(m) -< bcA(m) 

Any distributed algorithm is bound to create deadline inversions (which occur 
also in our case because a channel is a non-preemptable resource). EDF ordering 
being optimal, it follows that  b(m) is an increasing function of the number of 
deadline inversions. Recall that  b(m) is a worst-case bound and that  we are 
assuming that (T) holds. What  is the magnitude of the number of deadline 
inversions ? Let us introduce the notion of a deadline equivalence class, which is 
a t ime window of some duration denoted v. Any two messages whose absolute 
deadlines differ at most by v belong either to the same equivalence class or to 
two time adjacent equivalence classes. Therefore, deadline inversions can only 
occur among messages that  have absolute deadlines within v o'f each other. 

With D - N P  - E D F  algorithms, which are deadline-driven, parameter  
v is tunable. In particular, v does not depend on n, the highest number of 
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senders. Conversely, with C A  algorithms, v is not freely tunable. The token 
rotation time or the polling sequence/round-robin latency, which depend on n, 
are lower bounds of v. Hence, except maybe for ridiculously small values of n, 
v ( D  - N P  - E D F )  can always be chosen to be smaller than v ( C A ) .  Therefore, 
the number of deadline inversions being smaller with D-NP-EDF algorithms, it 
follows that  corresponding schedules are closer to ideal EDF-ordered schedules. 
Consequently, message ranks are closer to lower bounds (than ranks obtained 
with C A  algorithms). This completes the demonstration. 

Note that  property (D) has been established without making any assump- 
tion w.r.t, the algorithm used to schedule messages in senders waiting queues 
when class C A  is considered. This establishes that D - N P  - E D F  algorithms 
always outperform C A  algorithms, even if individual senders waiting queues are 
scheduled according to E D F .  

Having demonstrated that  class D - N P  - E D F  dominates class C A  when 
considering [HRTDM], we have demonstrated that optimal solutions cannot be- 
long to class C A .  Given that  possible solutions to the (basic) contention problem 
belong either to the contention avoidance class or to the contention detection- 
and-resolution class (that of D - N P  - E D F ) ,  we have therefore demonstrated 
that  optimal solutions to [HRTDM] can only belong to class D - N P  - E D F ,  

when considering non-idling algorithms. 
Ideally, beyond proving (D), condition [oc] should be proved to hold. How- 

ever, proving that  a distributed on-line scheduling algorithm is optimal still raises 
a few fundamental issues (see section 5). 

c) A n  e x a m p l e  DOD/CSMA-CD (Deadline Oriented Deterministic/Carrier Sense 
Multiple Access-Collision Detection) is an algorithm that  belongs to class D - 
N P  - E D F .  It is a deterministic deadline driven variation of the ISO/OSI 
8802/3-Ethernet standard (see [LLR93] for a more complete presentation). De- 
terministic deadline-driven binary tree search (called time trees) is used by 
DOD/CSMA-CD to implement D - N P  - E D F .  We have considered an ar- 
bitrarily devilish global adversary - referred to as Z0 - which is allowed to re- 
lease messages in a fully unrestricted manner. In other words, with Z0, we have 
considered n adversaries , every such adversary being characterized as follows : 
Vi  E [1, n], V k  ~ i, ~k = co. Obviously, Z0 dominates every possible adversary 
defined as per [HRTDM]. Using adversary techniques, we have established the 
expression of the BDOD function and given the [fc] under which (T) holds. 

/subsubsectionWhere are the probabilities ? Let Z be the adversary em- 
bodied in some )~Re. There are obvious differences between the following three 
approaches : 

a) P r o b a b i l i s t i c  or  r a n d o m i z e d  a l g o r i t h m s  Worst-case behavior of adversary Z 
is non-deterministic. Timeliness properties are established via the expression of 
bounds B A ( Z )  that  hold true with some computable probability. This proba- 
bility is a function of the probability that  the real future adversary matches 
postulated Z - the assumption coverage - as well as of the accuracy of the mod- 
elling of algorithm A. This probability depends on ARe and on the proof used to 
demonstrate that  [ccl] holds. 
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b) Deterministic algorithms Worst-case behavior of (non-deterministic) adver- 
sary Z is deterministic. As shown with [HRTDM], timeliness properties are 
established via the expression of bounds BA(Z) that always hold true in the 
presence of Z. Hence, the computable probability that  such bounds hold true 
in the future is the assumption coverage of postulated Z. Probabilities are not 
involved in the modelling of A or in the proof that [ccl] holds. 

c) Approximately correct algorithms With such algorithms, most often, adver- 
sary Z is not defined. Furthermore, such bounds as B(Z) are not given. Hence, 
probabilities that  [ccl] holds cannot be computed, as there is no a t tempt  made 
at establishing [ccl]. 

5 A U N I F I E D  A L G O R I T H M I C  V I E W  OF B O T H  
CLASSES 

Recall that tc stands for the timeliness constraints that  appear in Age. It should 
be clear by now that  only those (distributed) on-line scheduling algorithms that  
are tc-driven can be contemplated for solving distributed real-time computing 
problems. Non real-time concurrency also implies that  some decision algorithm 
is used to break ties in the case of actual simultaneity. Therefore, such algorithms 
enforce particular schedules whenever necessary. However, such algorithms are 
not tc-driven. Nevertheless, there is no reason why one could not take a problem 
in class ~ and augment it with specification sets AR~ and Ane, so as to transform 
it into a problem in class ~. In fact, recent work suggests that  convergence of 
both classes is feasible. Let us illustrate this observation with a comparison of 
wait-freedom and timeliness. 

5.1 W a i t - f r e e d o m  and t imel iness  

In asynchronous shared-memory computational models, unbounded wait-freedom 
is a liveness property. Bounded wait-freedom implies that  there is an upper 
bound Ui(op) on the number of (its own) steps that  some process i takes in 
order to complete the execution of a given operation (op). Prima faciae, the 
fact that  Ui (op) holds regardless of the behavior of other processes is disturbing 
in light of elementary results in queueing theory, where it is held that  Ui(op) 
depends on the amount of service that process i receives, this amount  being 
"what is left" by the other processes. (For example, other processes being re- 
leased infinitely often, Ui(op) could be infinite in the absence of a fair scheduling 
policy). 

A first observation is that waiting queues are not part of the models con- 
sidered when addressing problems of wait-free linearilizability. Nevertheless, the 
fact that  processes can release one operation at a time only is a constraint on 
their behavior. Futhermore, even under this constraint, there must be a rule that  
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serves to break ties whenever real concurrency occurs on an elementary object. 
Such a rule is a scheduling policy, which explains why such bounds as Ui(op) 
hold. Another explanation derives from the algorithms used to enforce wait- 
freedom. For example, in [H88], a general construction algorithm is described 
whereby a general wait-free concurrent object can be built out of multiple ele- 
mentary wait-free objects. One feature of the algorithm could be characterized 
as "limited altruism", for the reason that "fast" processes help "slow" processes 
to proceed, to a certain extent. For example, "fast" process i performs the op- 
eration that "slow" process j intends to perform, before process i proceeds with 
its own operation. This type of rule clearly is a scheduling policy. Bounds Ui(op) 
depend on the scheduling policy considered. Therefore, scheduling policies or 
algorithms being implicitly or explicitly considered, the apparent contradiction 
vanishes. 

Furthermore, this opens the way to the concept of real-time wait-free con- 
current objects. The specification of such an object is the specification of a 
concurrent object augmented with : 

- An~, the specification of the (arbitrary) timeliness constraints to be met by 
every operation (denoted d) 

- ARe, the specification of the event releases model. 

As with every problem in class ~, one has to find a scheduling algorithm 
such that, under ~n~, for some [fc] to be established, the following timeliness 
property holds : 

for every process i, for every operation (opi,.), 3Ui(opi,.): Ui(opi,.) ~ di(opi, .). 
The "plugging" of ARe and ~R, yields the "unplugging" of the implicit/explicit 

(tc-independent) scheduling algorithm yielding bounded wait-freedom, to be su- 
perseded by a tc-driven on-line scheduling algorithm. 

5.2 Which  computat ional  models  for class 

At first sight, asynchronous computational models do not make sense when con- 
sidering a problem in class R. Unbounded delays for completing elementary 
operations seem to be antagonistic with the goal of enforcing timeliness prop- 
erties for global operations. However, if we clearly distinguish the design phase 
of an algorithm from its implementation phase, there is no reason to reject 
asynchronous models. Consider for example the (deterministic) algorithms and 
constructs used to build wait-free concurrent objects or to solve [AC]. Imag- 
ine that such algorithms or constructs are "immersed" in a real system that is 
endowed with timeliness properties, via some other algorithm(s). For example, 
upper bounds are proved to hold for elementary computation/communication 
steps. It is then possible to establish which are the timeliness properties achieved 
by those algorithms or constructs that were proved correct in some asynchronous 
model. For example, the "immersion" of <>W [6] in a communication system that 
solves [HRTDM] yields a perfect failure detector, which can be used to solve any 
real-time extension of problem [AC]. 
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Of course, a similar observation applies afortiori in the case of solutions devel- 
oped for partially synchronous models. Quite systematically until now, the real- 
time algorithms community has considered synchronous computational models 
for the design phase. This a sound approach whenever assumption set A and 
related [fc] cannot be violated (or whenever such violations can be ignored). 
However, the danger with such models is that they lead to algorithms that can- 
not provably keep enforcing some minimal property whenever the postulated 
computation/communication bounds are violated, in contrast with algorithms 
designed for asynchronous or partially synchronous models which, in many cases, 
maintain some safety property (e.g. silence rather than disagreement in the case 
of [AC]), would the assumption set )~ be invalidated at run-time. Such concerns 
typically arise with critical systems. 

5.3 Optimal i ty  

Not much is known yet about optimal distributed real-time scheduling. It is not 
even clear that we have a satisfactory definition at hand (see further). It may 
then be more appropriate to begin with the identification of which is the class of 
algorithms that necessarily contains the optimal one(s), for any given problem. 
This is precisely what we have accomplished with [HRTDM], in establishing 
the dominance property of class D - N P  - E D F  over any other known class. 
Optimality within class D - N P  - E D F  is an open issue. Idling algorithms 
may dominate non-idling ones. Dissemination may yield feasibility conditions 
closer to NS[fc]s. For example, every message transmitted (i.e. ranked first in its 
waiting queue) could carry the deadlines of some of the pending messages. Such 
a dissemination scheme may greatly reduce the likelihood of collision occurrence, 
which would bring bounds B closer to optimal bounds. More generally, using the 
notations introduced in section 4.1, one could be tempted to equate optimality 
with a necessary and sufficient condition for ~, denoted ~*. Any algorithm that 
needs n* only, obtained at cost C* (n*) would be optimal. However, the decision 
algorithm embedded within A must also be taken into account. The "quality" 
of the decisions may improve significantly with "small" increments of common 
knowledge (in addition to ~*). 

The general issue of optimality of distributed algorithms is being addressed 
through various concepts and definitions that have emerged recently. Many of 
them resemble concepts and definitions explored in game theory. Examples are 
competitive analysis of on-line algorithms s explored in game theory. Examples 
are competitive analysis of on-line algorithms [23], competitive analysis of dis- 
tributed (on-line) algorithms (e.g., [10], [1]). An early application of competitive 
analysis to demonstrating optimality in the case of centralized preemptive on-line 
scheduling, in the presence of overload, can be found in [3]. 

Competitive ratios are a measure of "how well" an on-line player can perform 
agMnst some adversary, in worst-case conditions. Competitive ratios depend on 
the ratio of advance knowledge given to the player, who selects the on-line algo- 
rithm, over the knowledge given to the adversary who, knowing the algorithm 
selected, is able to generate those scenarios that maximize some regret function. 
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In the context of [ttRTDM], s being the scenarios that  can be generated by Z, 
the competitive ratio of any algorithm A with respect to timeliness is defined to 
be sup(c~ bound B(A, cr)/inf bound B(Z, c O. 

Of course, Z also is a distributed player. In departure from the original 
definitions, we consider that  Z also incurs some cost due to distribution. Z wins 
over A because Z can generate schedules that minimize its deadline inversions 
while maximizing deadline inversions experienced by A. 

Another departure from the original definitions is explored in [1], where any 
algorithm A is evaluated against other algorithms called champions (denoted H), 
that  are optimal for specific schedules in s and correct for every possible schedule 
in s. The competitive ratio of an algorithm A with respect to latency, using the 
notations proper to this paper, is defined to be sup~ bound B(A, o')/infH bound 
B(H, ~). Competit ive latency is examined only for schedules and algorithms that  
are said compatible. This restriction is equivalent to considering event releases 
models such that  no queueing phenomenon ever develops, or, stated differently, 
to ignoring sojourn times in waiting queues. This is reminiscent of the observa- 
tion made relative to wait-free concurrent objects. 

Equating optimality with best achievable competitive ratios is not entirely 
satisfactory, for the reason that  competitive ratios are not an homogeneous mea- 
sure. By this, we mean that  an algorithm whose competitive ratio would match 
the optimal ratio could still be dominated by some other algorithm, when being 
presented scenarios other than worst-c~se. 

Nevertheless, competitive analysis fof distributed algorithms seems to be a 
promising analytical vehicle, powerful enough to explore problems in both classes 
~ and ~ homogeneously. This view is backed by the recent explosion of papers 
in this area. 
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