
On Real-Time and Non Real-Time
Distributed Computing

G. Le Lann

INRIA - BP 105
78153 Le Chesnay Cedex, France
E-ma~l : Gerard.Le_Lann@inria.fr

Abs t r ac t . In this paper, taking an algorithmic viewpoint, we explore
the differences existing between the class of non real-time computing
problems (R~) versus the class of real-time computing problems (~). We
show how a problem in class RN can be transformed into its counterpart
in class ~. Claims of real-time behavior made for solutions to prob-
lems in class ~ are examined. Ah example of a distributed computing

. I

problem arising m class Is studmd, along with its solutmn. It is shown
why off-line strategies or scheduling algorithms that are not driven by
real-time/timeliness requirements ~ are incorrect for class ~. Finally, a
unified approach to conceiving and measuring the efficiency of solutions
to problems in classes R~ and ~ is proposed and illustrated with a few
examples.

1 I N T R O D U C T I O N

Over the last 20 years, the distributed algorithms community has spent consider-
able effort solving problems in the areas of serializable or linearizable concurrent
computing. These problems belong to a class denoted R~, the class of non reM-
t ime computing problems.

Separately, over the last 30 years, the real-time algorithms communi ty has
spent considerable effort solving scheduling problems in the area of centralized
computing, considering preemptable and non-preemptable resources. Only re-
cently has distributed computing received some attention. These problems be-
long to a class denoted ~, the class of real-time computing problems.

In this paper, taking an algorithmic viewpoint, we embark on exploring the
differences between both classes. The scope of this paper is restricted to that
of deterministic algorithms. Besides intellectual interest, investigation of these
issues is expected to bring the two communities closer, via the clarification of a
few essential concepts. In particular, we have observed that the qualifiers "real-
t ime" and "distributed" may not carry the same meaning in both communities.
Broadly speaking, with few exceptions, the distributed algorithms communi ty
does not consider problem specifications that include real-time requirements.
Conversely, the real-time algorithms community often fails to understand what
is implied with considering a distributed computing problem.

The remainder of this paper is organized as follows. In section 2, we introduce
the distinctive at tr ibutes of class ~. In section 3, we examine claims of real-t ime

52

behavior made for solutions to problems in class R~. In section 4, we introduce a
problem of distributed computing that belongs to class ~, along with its solution.
A unified approach to conceiving and measuring the efficiency of solutions to
problems in both classes is proposed in section 5.

In this paper, we have purposedly put more emphasis on problems and solu-
tions in class ~ , given the intended audience.

2 CLASS ~ V E R S U S CLASS R~R P R O B L E M S

Quite often, it is believed that "real-time" means "fast". For example, the distinc-
tion between "meeting specific time bounds that are specified a priori" (which
is a metric-free problem) on the one hand, and "observable response times are
small" (which is an implementation dependent consideration) on the other hand,
does not seem to be well understood. F~r example, it has been recently stated
that "... protocols like Isis, Horus, Transis and Totem are real-time protocols if
one is concerned with real-time deadlines of minutes or tens of seconds...".

As these protocols - and the related Asynchronous Consensus problem - are
reasonably welt understood, it seems appropriate to use them to carry out an
analysis in order to explain why statements such as the one reported above are
meaningless.

We will first introduce some notations, and then present the distinctive at-
tributes of problems in class ~, before proceeding with the analysis in section
3.

2.1 N o t a t i o n s

C o r r e c t n e s s Recall that, in the context of this paper, a solution is an algo-
r i thm and its associated models and proofs. The specification of any problem P
comprises the following subsets :

- the specification of some assumptions, denoted
- the specification of the properties sought, denoted A.

Assumptions are equivalent to axioms in Mathematics. Essentially, assump-
tions cover the models considered, namely the computational models, the failure
models, the models of event releases. Examples of properties of interest are safety,
liveness, timeliness. Similarly, the specification of any solution A comprises the
following subsets, in addition to the specification of A :

- the specification of some assumptions, denoted 7,
- the presentation of the proofs that some properties F hold, given 7.

Whenever a model or a set of properties xl dominates another model or
another set of properties x2, i.e. xl is more general than x2, this will be denoted
by xl __D x2, _D being the inclusion symbol. It is said that A solves problem P if
the following correctness conditions hold :

53

[ccl]: F(A) D A(P) and [cc2]: 7(A) __D A(P).

For most problems, establishing correctness conditions entails the expression
of feasibility conditions, denoted [fc].

A useful interpretation of these correctness conditions is as follows : with A,
a system is proved to be endowed with properties that are at least equal to (as
strong as) those required, assuming advance knowledge that is at most equal to
(not "richer" than) that given in the exposition of P.

These conditions may seem trivial. Nevertheless, quite surprisingly, many
published papers describe results that violate [cct] or [cc2] or both. Typically,
some papers explore "tradeoffs" between various solutions, and conclude with
some particular decision such as At is "better" than A2, because At is less
"costly" than A~, totally ignoring the fact that A1 is less "costly" for the sole
reason that A1 is based on postulating gl, which violates [cc2] whereas A2,
assumed for A2, does not. Such meaningless analyses are commonplace when
off-line solutions are compared with on-line solutions for problems in class ~.

Very often, it is useful to view the models included in ~ as defining an ad-
versary that is endowed with some bounded power. For example, the adversary
contemplated with non-public concurrent data structures is more restricted than
the one embodied in problems involved with public concurrent data structures
[5]. Similarly, periodic or sporadic releases models characterize adversaries that
are more constrained that those embodied in arbitrary event releases models.

O p t i m a l i t y Informally, an algorithm A is optimal for a given problem if, (i)
whenever the desired properties L can hold, they do hold via A, and if, (ii) A
not being able to enforce these properties, there cannot exist an algorithm that
would enforce them, given ~. More precisely, a correct algorithm A is optimal
for a given problem if the following optimality condition holds :

[oc]: the [fc] under which [ccl] and [ec2] hold true are necessary and sufficient.
Let us give a few examples of necessary and sufficient feasibility conditions,

denoted NS[fc]. In class ~, examples of NS[fc]s are, (i) those given with the proof
that the centralized non-preemptive earliest-deadline-first algorithm is optimal
for periodic and sporadic arrival laws, when relative deadlines are equal to pe-
riods [15], (ii) those given with the proof that the centralized D-Over algorithm
is optimal for aperiodic arrival laws in the presence of overload [3].

In class R~, examples of NS[fc]s are, (i) the 3t + 1 lower bound for sustaining
up to t arbitrary failures in synchronous computational models [20], (ii) the
�9 unreliable failure detector semantics for solving the consensus problem in
the presence of crash failures in asynchronous computational models [6].

2.2 The d is t inc t ive a t t r i b u t e s of class

What makes a problem belong to class ~ rather than to class R~ ? There is
no general agreement on the answer. What follows in an attempt to clarify the
issue. Two attributes seem to be necessary and sufficient.

54

(i) A first distinctive attribute of a real-time computing problem is the pres-
ence, in its specification, of arbitrary and individual time bounds to be met by
every operation that can be performed by every process.

In the real-time computing community parlance, such time bounds are often
referred to as timeliness constraints (earliest/latest deadlines for termination,
relative to release times, bounded jitters, linear or non-linear functions of sys-
tem's parameters, etc.). They are the expression of a property that is essential
and specific to this class of problems, that of timeliness. Timeliness is a composi-
tion of a safety property (it should never be the case that specified t ime bounds
are not met) and a liveness property (progress is mandatory) . Operations per-
formed by processes are triggered by the occurrence, also called the release,
of events. Timeliness properties cannot be achieved for unbounded densities of
event releases. Hence :

(ii) A second distinctive attribute of a real-time computing problem is the
presence, in its specification, of an event releases model.

In the distributed algorithms community, "real-time" is sometimes equated
with considering synchronous or t imed transitions computational models (in con-
trast with considering partially synchronous or asynchronous or fair transitions
computational models). We believe it is essential to understand that, whatever
computational models are considered in)~, it is the presence or the absence of
timeliness constraints in A that determines whether a problem belongs to class

or to class 1 ~ (respectively).
According to the above, we argue that some papers, such as e.g. [2], do not

address real-time algorithmic issues. The problems considered in these types of
papers consist in demonstrating that some time independent safety property
- such as, e.g. mutual exclusion - is achieved for some [fc] to be met by the
synchronous computational model assumed. These problems are not equivalent
to those where it is asked to demonstrate that specific and arbitrarily chosen
timeliness constraints - such as, e.g., strict relative deadlines to be met by the
competing processes - are satisfied for some [fc] to be met by the models con-
sidered in),, namely the event releases model and the - possibly synchronous -
computational model.

To summarize, the distinctive attributes of any problem in class ~ are as
follows :

- specification set A includes a subset, denoted A~, that specifies timeliness
constraints

- specification set)~ includes a subset, denoted , ~ , that specifies an event
releases model.

Real-time computing problems either are decision problems or are optimiza-
tion problems. Decision problems arise whenever it required to meet A~ while
; ~ is not violated. The [fc]s serve the purpose of telling whether or not a real-
t ime computing problem is feasible. Such problems are often referred to as "hard
real-time" problems. Optimization problems arise whenever it is accepted or an-
ticipated that , ~ may be violated (e.g., "overloads"). In such cases, some of the

55

timeliness constraints specified in A~ cannot be met. Value functions are then
defined for every computation. Such functions can be constants or functions of
times of (computation) termination. Optimization consists in maximizing the
accumulated value for every possible run - to be derived from ~ - or, equiva-
lently, to minimize a value loss (e.g., minimum regret). Such problems are often
referred to as "soft real-time" problems.

3 CLASS ~ A N D REAL-TIME C O M P U T I N G

3.1 T h e A s y n c h r o n o u s C o n s e n s u s p r o b l e m

The Asynchronous Consensus problem, denoted [AC], is in class ~ . [AC] is the
following problem :)~ _-- a group of n processors, asynchronous computational
model, up to f processor crashes, reliable message broadcast, processors have
arbitrary initial values A - all correct processors eventually decide (termination);
they decide on the same final value (agreement) ; that final value must be the
initial value of some correct processor (non triviality).

Over the last 10 years, a great deal of research has been devoted to circum-
venting a famous impossibility result [11]. A significant number of papers contain
descriptions of algorithms and extensions to ~ aimed at showing how [AC] can
become tractable. Let 5(~) be the assumptions that need be made, in addition
to ~, in order to solve [AC].

3.2 H o w n o t to so lve [AC]

With few exceptions, published solutions exploit the idea of augmenting the
original asynchronous model with physical or logical timers. For example, this is
the approach followed to implement Atomic Broadcast in such systems as Isis,
Horus, Transis or Totem. Atomic Broadcast is equivalent to [AC] in asynchronous
models.

It is reasonably obvious that timers are of no help. Timers that would be
arbitrary timers are not ruled out by the original asynchronous model. Even
if 5()~) = perfect timers, it has been shown that [AC] cannot be solved [9].
Therefore, approaches based on 5()~) = arbitrary timers cannot solve [AC] either.
The reason why such approaches fail simply is that the 5()~) considered does
not bring in more common knowledge than what is provided by the original 1.
Consequently, the impossibility result still applies fully.

The analysis of existing "solutions" reveals that two categories are considered,
namely the primary-partition category and the multi-partition category. Simple
adversary arguments can be developed to show that any of these "solutions"
either violates the termination requirement of A (e.g., because of unjustified
exclusions) or violates the agreement requirements of A (e.g., because any two
partitions reach different decisions). Some "solutions" assume that some group
membership service GMS is available. Thanks to GMS, [AC] is solved with no ex-
tra 6(A). But this is a violation of correctness condition [cc2]. In many instances,

56

assuming GMS is tantamount to assuming that [AC] is solved, which yields cir-
cular "solutions". Furthermore, it has been demonstrated that primary-partition
GMS cannot be solved in asynchronous models [7].

To summarize, [AC], or any problem equivalent to [AC], has no deterministic
solution that would be based on 5(~) = timers. It follows trivially that claims of
"real-time behavior", even in the order of centuries, are totally unfounded.

The evidence that timer-based approaches can only solve [AC] probabilisti-
cally is being acknowledged more openly than was the case previously. Having
admitted this, some scientists develop the following "argument". The behav-
ior of any real system can only be predicted with some probability - including
real-time behavior. Therefore, everything being only probabilistically true, those
deterministic algorithms that solve [AC] only approximately can be considered
as yielding "sufficiently good" real-time behavior. Unfortunately, this superficial
argument is flawed (this is discussed further in section 4.2.6). At best, this ar-
gument is void. Indeed, the real-time problem that we are told is solved is not
even defined, as specifications A~ and ~R~ are not given.

3.3 How to solve [AC]

Conversely, very few papers describe provably correct solutions to [AC]. The
concept of unreliable failure detectors was first introduced in [8]. It was subse-
quently demonstrated that the completeness and the accuracy properties that
define ~ W are the NS 6(~) under which [AC] can be solved [6]. Hence, correct
and optimal solutions are available.

An interesting question to ask is whether a real-time extension of [AC] could
be solved with some real-time extension of ~W. This also raises the question as
whether asynchronous computational models can be considered in class ~. This
discussion is deferred to section 5.

Let us now examine a problem in class ~ and its solution. Before doing so,
we will first re-state the well-known principles of partial advance knowledge and
partial common knowledge that characterize problems in distributed comput-
ing. This is felt useful mainly for the reason that we keep seeing papers aimed
at solving "distributed real-time computing" problems that violate these basic
principles.

4 C L A S S ~ A N D D I S T R I B U T E D C O M P U T I N G

4.1 Pa r t i a l knowledge

A distinctive attribute of any problem in distributed computing is incomplete
information, or partial knowledge. If we look at the classes of problems considered
by the distributed algorithms community over the last 20 years, we find such
computational models as synchronous, partially synchronous and asynchronous
models and such failure models as crash, timing and arbitrary failures, which
induce a significant amount of uncertainty w.r.t, future system runs. Hence,

57

a first principle is that of partial advance knowledge (of future system runs).
Furthermore, distributed computations have to cope with an additional source
of uncertainty, that is lack of knowledge of the current system state (even if
the most conservative models are assumed). Hence a second principle is that of
partial common knowledge (shared by the processors).

Consider a set of processors involved in some distributed computation. At
best, via some algorithm, some processors may end up sharing some common
knowledge about some partial past system state. Therefore, a distributed algo-
ri thm may be viewed as the union of two algorithms, one in charge of build-
ing/maintaining some common knowledge, referred to as the dissemination al-
gorithm, the other one in charge of acting on the system state, referred to as the
decision algorithm. Let ~ be a measure of the common knowledge accessible to
processors, as achieved by the dissemination algorithm. Of course, ~ is a (possi-
bly complex) function of the number of the different shared partial states as well
as of the number of processors sharing each partial state. Let C(g) be the cost
of obtaining n. Cost may be measured in various ways, e.g. a number of steps
(of the dissemination algorithm). In general, C is a monotonically increasing
positive function of n. Theoretically, ~ ranges between 0 (0-common knowledge)
and K, the best achievable approximation of full-common knowledge.

If we look at the classes of problems considered by the real-time algorithms
community over the last 30 years, we mainly find event releases models such
as periodic and sporadic releases and timeliness constraints that are expressed
as simple linear functions of periods (equality, very often). Furthermore, most
systems considered are centralized (typically, single-processor systems or central-
ized multiprocessors). These models do not fit well with those considered for dis-
tributed computations. Hence the growing recognition that more general releases
models should be investigated, such as aperiodic or arbitrary event releases mod-
els, as well as more general properties such as arbitrary timeliness constraints.
Clearly, such models induce a significant amount of uncertainty w.r.t, future
system runs. However, given the principles of partial advance knowledge and
partial common knowledge, it is not at all clear that these more general releases
models yield increased uncertainty compared to that resulting from considering
a distributed computational model.

In the recent past, we have noticed that these more general models and
objectives are sometimes perceived as being "unnecessarily complicated". It is
quite surprising that such views can be taken by scientists who address real-time
distributed computing issues. Indeed, these more general models and objectives
reflect reality more accurately than the good old models (periodic/sporadic re-
leases, time bounds related to periods). Note that the event releases models in lq~
and the timeliness constraints in A~ are specified by the "clients" (e.g., the end
users of the systems to be designed). As these systems can only start operating in
the future, specifying these models and constraints is tantamount to predicting
the future behavior of the system's environment. Which client would be foolish
enough to pretend that every possible external event can only be released period-
ically or sporadically for the next 10 years of operation and that the appropriate

58

relative deadlines must always be equal to the periods ? Such assumptions are
clearly unacceptable in the case of critical applications or whenever the envi-
ronment is, by nature, non-cooperative. Condition [cc2] makes it mandatory for
designers to consider assumptions g that do not artificially weaken the problem
under consideration. Hence, any solution to a real-time distributed computing
problem that would be based on clairvoyance assumptions or, more generally,
on a violation of condition [cc2], is a nomsolution. Let us refine this condition.

When considering a given problem P, the related $ yields the following two
bounds on a :

- t~($), the upper bound on g that is accessible at cost C(t~($)) = 0 ;g($) is a
measure of partial advance knowledge as embodied in $,

- ~(~), the upper bound on tr that is achievable at some non-zero cost by a
dissemination algorithm (given the models considered in $).

For example, for problem [HRTDM] considered in section 4.2, we would have
tr = atomic channel state transitions ; ternary channel.

For any optimal dissemination algorithm and for any given ~, this ~ is reach-
able at a cost that matches some lower bound, denoted C*(~) Depending on
the types of problems considered, it may or may not be the case that [oc] is
met with any algorithm A that needs K(A), obtained at cost C*(K()t)) only.
This is particularly true with problems in class ~. More generally, this is true
with any problem where A embeds some "performance" objectives. On-line job
assignment, with minimization of makespan, would be an example ([Bet al. 92],
[DP92]). Optimality is further discussed in section 5.

4.2 T h e H a r d R e a l - T i m e D i s t r i b u t e d Mul t i a cce s s c h a n n e l p r o b l e m

This problem has been selected for the purpose of demonstrating that distributed
real-time computing problems cannot be solved with solutions based on off-line
computations, such as precomputed schedules or scheduling algorithms based
on fixed priorities. More to the point, tc standing for the timeliness constraints
specified by A~, distributed real-time computing problems can only be solved
with on-line tc-driven scheduling algorithms [18].

T h e p r o b l e m The Hard Real-Time Distributed Multiaccess channel problem,
denoted [HRTDM], arises when considering a broadcast communication channel
that is shared by stations for transmitting messages. A station comprises a source
and a sender. Messages released by a source are queued up for transmission by
the local sender. Channels considered are equivalent to multi-writer/multi-reader
concurrent atomic ternary objects. More precisely, [HRTDM] is as follows :

Set ~ - ~ ~ Computational model :
Synchronous. In the absence of access control, a channel can enter three states,
namely "idle", "busy", "jammed". A channel is "idle" when no message trans-
mission is attempted or under way. State "busy" corresponds to exactly one

59

message being transmitted. State "jammed" is an undesired state, which corre-
sponds to many messages being transmitted concurrently (garbled transmission).
Over such ternary channels, stations can only observe global channel states and
global channel state transitions that result from their collective behavior. The
number of stations that are active at any time is unknown. The number of sta-
tions has a finite upper bound, denoted n. The channel end-to-end propagation
delay is small compared to message durations.

Failure models : Crash failures and send-omission failures allowed for sta-
tions. (Receive-omission failures can be considered, although this is not done
here, for the sake of conciseness). Channel state transitions are assumed to be
reliably propagated along the channel. We do not require that a message being
transmitted by a correct sender (channel state = "busy") be correctly delivered
to every station. However, we require that an erroneous message reception be
distinguished from channel state "jammed".

Set ~
Message releases model : Messages released by source i, i E [1, n], belong to a
set denoted Mi = mi,1, m~,2, ..., mi,p(i). Every message has a finite transmission
duration. Release times of messages follow arbitrary laws. Arbitrary laws are
characterized via a sliding window model, as follows. W being the size of the
sliding window considered, for every i, p(i) integers x~,~ are specified, k e [1, p(i)].
Integer xi,k is the highest number of releases of message rni,k that can be found
in any window of size W. Indirectly, this defines, Ti = Xi/W, the upper bound
on the density of message releases from source i, with X~ = ~P=I (i)xi,k.

Set A - As
Message transmissions must be mutually exclusive (a safety property). Every
message must be transmitted in bounded time (a liveness property).

Set As
Timeliness constraints : A relative latest deadline is assigned to each message.
Relative deadline of message mi,k is denoted d(mi,k). Deadline values are arbi-
trary. Let W be maxd(mi,k), k E [1,p(i)], over all sets Mi.

- (T) every message released by a source must be transmitted before its dead-
line (a timeliness property)

- (D) the distributed algorithm selected belongs to a class that dominates
every other class (a dominance property).

Note that (D) is equivalent to requiring that the feasibility conditions are
"close enough" to NS[fc]s.

P r e l i m i n a r i e s First, consider sets M~ that are derived from sets Mi, by creat-
ing xi,k releases of every message mi,k, k E [1, p(i)]. A scenario is any collection
comprising the n sets M[, the set of p(i) relative deadlines assigned to the X~
messages in every set/14/I, as well as every possible pattern of release times that
satisfies bounds ~i. Feasibility conditions can be viewed as an (algorithm depen-
dent) oracle that answers "yes" or "no" to any such question as "is (T) satisfied
with this scenario ?".

60

In order to prove that [HRTDM] is solved, one must prove first that (T)
holds whenever the set of senders considered is presented feasible scenarios. A
feasible scenario is a scenario such that there exists a schedule that achieves
property (T). At this point, it is useful to consider that the feasible scenarios
embodied within the exposition of [HRTDM] are those that can be generated by
an all-knowing adversary - referred to as Z in the sequel - which is free to decide
on when sources will release messages over the set of stations, provided that the
definition of sets M" and the ~ boundaries are not violated. Hence, we have no
other choice left than to consider releases referred to as non-concrete releases
in the real-time scheduling algorithms community. In particular, note that the
sliding window-based arbitrary releases model is more general than the sporadic
releases model, in that multiple messages may be released simultaneously. With
this type of model, the distinction between time-triggered versus event-triggered
computations [KV93] is meaningless.

Proving that (T) holds consists in devising some distributed multiaccess al-
gorithm A which, when being used to play against Z, guarantees that every
deadline is satisfied. Hence, [CCl] translates into having to meet the following
double requirement, given A, in the presence of Z, Vi E [1, n], Vj E [1, X~] :

- (RI) establish the expression of a function B(mij) that gives a guaranteed
upper bound on response times for message mi,j

- (R2) verify that B(mi,j) -'< d(m~,j) holds true.

Proving that (D) holds consists in proving that A belongs to a class of algo-
rithms that yield bounds B(mi,j) that are always smaller than those obtained
when considering other classes.

Adversary arguments can be developed considering Z as a global adversary
or considering that Z is the union of several distinct adversaries. The former
approach has been used in [IILLR95] to demonstrate that [HRTDM] cannot be
solved with algorithms based on decisions made (fully, partially) off-line. The
latter approach consists in proceeding as follows :

- pick up a distributed algorithm A, that defines the rule of the game played
(i.e. imposed to the adversary/adversaries)

- extract one station, say i, from the set of stations considered
- consider that all other stations coalesce to "defeat" i, i.e. they are an adver-

sary Zi against which i is playing
[cc2] : prove that Zi is not "weaker" than (i.e. as unrestricted as) Z
[CCl] : establish BA(mi,j, Zi) and prove that the double requirement {R1,/~2}
is met for i (in the presence of Zi, given A).

Doing the above for every possible value of i results into establishing condi-
tions under which (T) holds true with A in the presence of Z (which is at most
as strong as UiZi).

Given the communication channels considered, a very basic issue that need
be solved is how to enforce mutual exclusion among senders, i.e. how to handle
contention.

6]

H o w to h a n d l e c o n t e n t i o n Many existing network standards or off-the-shelf
products or proposals from the research community are based on contention
avoidance or on contention detection-and-resolution. Representatives of the con-
tention avoidance category are decentralized polling/round-robin or token-passing
algorithms. Representatives of the contention detection-and-resolution category
are carrier-sense algorithms. It is reasonably obvious that probabilistic algo-
rithms, such as that used in Ethernet, cannot solve [HP~TDM].

Other off-the-shelf products or proposals from the research community are
based on Synchronous Time Division (STDMA). It is also reasonably obvious
that STDMA algorithms cannot solve [HRTDM]. Such algorithms can only work
with a time slotted channel. How such slots can be instantiated is a crucial issue.
If a unique (central) clock is used, then the solution is not distributed, hence
it is unacceptable. If multiple clocks are used (e.g., one per station), then the
question arises as how do they exchange messages so as to reach and maintain
mutual synchrony. Inevitably, such message exchanges are conducted via either a
contention avoidance or a contention detection-and-resolution algorithm. Hence,
distributed STDMA does not solve [HRTDM]. Distributed STDMA can only be
a "synchronous" extension of some underlying algorithm that solves [HlZTDM].

It looks like the only correct solutions belong to the class of contention avoid-
ance algorithms. This is a well accepted view, as demonstrated by recent survey
publications such as [MZ95]. It is easy to demonstrate that such a view is mis-
taken. Note also that ternary channels are needed for a correct functioning of
contention avoidance algorithms. Whenever structural changes occur (voluntar-
ily or because of station failures), contention is unavoidable. State "jammed" is
needed.

H o w n o t to solve [HRTDM] Deterministic contention avoidance algorithms
cannot solve [HRTDM]. It is easy to show that Z can defeat any algorithm be-
longing to this class. This is essentially due to the fact that every such algorithm
is based on static decisions, i.e. scheduling decisions made off-line. Such static de-
cisions being known to Z, Z is able to generate feasible scenarios that will never
match those assumptions made for the sake of computing scheduling decisions
off-line. Let us briefly review three well known examples of contention avoidance
algorithms. A detailed examination of this issue can be found in [HLLR95].

(i) Decentralized polling/round-robin
Senders are served in some predetermined order, which reflects the polling se-
quence. Consider that Z is given n messages exactly, 1 message per station, and
assume that the corresponding scenario is feasible. For example, a valid schedule
would be any schedule whereby mi,1 and mr,1 are transmitted first (in any or-
der). Knowing the fixed polling sequence, Z can pick up release times that will
lead senders to schedule some message(s) belonging to some station(s) k(ki, kr)
between ml,i and mr,1 or ahead of mi,i and mr,1. Either d(m~,i) or d(mr,1) or
both deadlines are missed.

(ii) Token-Passing with timers
The addition of individual timers to polling algorithms does not help either to

62

solve [HRTDM]. A timer (THT's with the Token Bus or FDDI) is an upper
bound 0 on the service time granted to a sender. Let be 0q the value of the
timer associated with sender h, h E [1, n], by the virtue of some off-line compu-
tation. The same adversary argument used' with polling can be invoked. In fact,
decentralized polling defines individual timers implicitly. Considering the same
feasible scenario as above, the only valid off-line computation of timer values
should be 0q =0, k r i, k r r. This would be, of course, a ridiculous decision.
More generally, being aware of the fixed qk's, Z can easily pick up release times
such that deadlines are missed with feasible scenarios.

(iii) Token-Passing with fixed priorities
With this type of algorithms, some method must be applied off-line to transform
deadlines into fixed priorities. Given that we must solve [HRTDM], a "good"
method would consist in defining a mapping function such that "short dead-
lines" are translated into "high priorities" (e.g., ranging between 0 and 7, 7 the
highest, in the case of ISO-OSI 8802/5). The problem is, whatever the method,
unbounded starvation can be experienced by any message assigned a fixed pri-
ority that is not the highest one. For such messages, deadlines are inevitably
missed. If we now concentrate on the set of messages that, at any given time, are
assigned the highest priority, it is obvious that such algorithms (e.g., the Token
Ring protocol) boil down to (decentralized) polling. Conclusions drawn above
fully apply.

In the real-time algorithms community, significant effort has been devoted
to identifying good methods for transforming deadlines into fixed priorities off-
line. It might be worth mentioning that Rate-Monotonic (Deadline Monotonic as
well), which is a well publicized method in certain circles, does not help either in
solving [HRTDM]. The correctness and the optimality of Rate-Monotonic have
been established for a preemptable processor, considering a periodic releases
model and assuming that a known relation holds between message periods and
message deadlines [17]. The corresponding type of adversary is much weaker
than the one embodied within [I-IRTDM], where releases and deadlines are arbi-
trary. Furthermore, a channel is a distributed resource (unlike a processor) that
is not preemptable (unlike the assumptions that underly the optimality of the
Monotonic methods). So called Generalized Rate Monotonic (GRM) is a method
that is claimed to overcome these limitations. In particular, GRM is claimed to
be applicable to distributed systems. As (unvoluntarily) demonstrated in [22],
such claims are unfounded. The unsolvable problem faced with GRM is that
there cannot exist a method that could be used off-line to transform the dead-
lines into fixed priorities, while demonstrating that the transformed problem is
equivalent to [HRTDM] or without violating [cc2]. It is in fact easy to demon-
strate that GRM cannot solve general distributed scheduling problems, contrary
to the claims made in [22]. GRM is a typicM example of an approach based on
an artificially restrictive view of reality (see section 4.1).

(iv) Conclusions
Simple adversary arguments have been used to demonstrate that [HRTDM]
cannot be solved with contention avoidance algorithms. Such arguments help

63

in avoiding the conventional byzantine debates on the hypothetized "real-time
properties" of polling/round-robin or token-passing algorithms. A much often
used argument developed in favor of such algorithms is the following one : iup-
per bounds B(mi,j) - see section 4.2.2 - can be computed with such deterministic
algorithms ; the double requirement {R1, R2}, i.e. [CCl], can be met ; hence, these
algorithms are "good" for solving "real-time" computing problems/,.

The fundamental flaw of this argument is that such bounds are of no value,
for the reason that they may never hold true (property (T) is not enforced) or
they hold true under assumptions that violate [cc2] or they are too pessimistic
(property (D) is not achieved). Distributed polling/round-robin or token-passing
algorithms inevitably incorporate some off-line decisions. Such decisions match
only a subset of the possible scenarios. Hence, the problem is not that the double
requirement {R1,/~2} cannot be expressed. The problem is that the correspond-
ing oracle may respond "yes" when it should respond "no" or it will respond
"no" arbitrarily often when it should respond "yes". Adversary Z as embod-
ied within [HRTDM] is too powerful to be mastered by a contention avoidance
algorithm.

Another way of explaining why contention avoidance/off-line decision algo-
rithms cannot solve [ttRTDM] is as follows : such algorithms enforce sequential
scheduling decisions, each spanning a set of multiple messages pending for trans-
mission. Once such a decision is made, it cannot be altered. It is then easy for
Z to defeat such decisions. The larger the set, the easier for Z. It then becomes
obvious that the ideal way of playing (and winning) against Z is by providing
oneself with the possibility of making or changing scheduling decisions on a per
transmitted message basis (leaving aside the question of how fast such decisions
can be made).

The fact that such decisions should be deadline-driven should not come as
a surprise to readers familiar with the demonstrated optimality properties of
the Earliest-Deadline-First algorithm. It should then be obvious that the only
algorithms that make sense are those that make scheduling decisions based on
the deadline data provided on-line.

Ho w to solve [HRTDM] The solution builds upon the demonstrated optimal-
ity of centralized non-preemptive earliest-deadline-first (NP-EDF), in the class
of non-idling algorithms, in the absence of overload, for the following models :

- non-concrete periodic and sporadic message releases, relative deadlines being
equal to periods [15],

- aperiodic message releases, arbitrary deadlines [12].

The detailed solution can be found in [14]. A summary is provided below.

a) Timeliness property (T) Let us first have sets M[sorted by increasing relative
deadlines. Let mi,j refer to the message ranked j th in set M[, j E [1,Xi]. Let

X us write X = ~ = 1 i. Consider set M*, the ordered union of sets M[. Any
message ranked g in M . is some unique message ranked j th in some specific set

64

M[. Let # be the bijeetion g ~ , i, j and let message durations be denoted by
e .

A NS[fc] for centralized NP-EDF is as follows :
(G) Vg, 1 -< g -< X : d(ma) >- B(ma) ,

= E =I with B(mg maxhe[a+l,x]{e(mh)) + g
Hence, conditions [ccl], [cc2] and [oc] are met in the case of an ideal dis-

tributed NP-EDF scheduling algorithm, denoted I, which would always be pro-
vided with instantaneous perfect global knowledge (of the senders waiting queues)
at zero cost. Trivially, we have Bx (mi,j) = BI (rag), with i, j = #(g). Centralized
NP-EDF or I being optimal, any valid schedule that would not be EDF-ordered
can be transformed into an EDF-ordered (valid) schedule [12]. Hence, for any
given feasible scenario, the lower bound of the rank for any message is obtained
with I. Therefore, bounds BI are the lower bounds of any real bounds that can be
enforced by any real distributed scheduling algorithm. For any such algorithm,
denoted A, let us write BA(mi,j) = Bx(mi,j) + bA(mi,j), where bA(mi,j) is an
upper bound on the additional latency due to lack of perfect global knowledge.

Hence, for any algorithm A in class D - N P - E D F , (G) yields the following
sufficient condition under which property (T) holds : V i e [1, n], Vj E [1, Xi]:
BD-NP-EDF(mi , j) <<_ d(mi,j), with

8D-NP-EDF (mi,j) =
J

max {e(mh)) + ~ e~ + bD-NP-EDF(mi, j)
hE[j+l,X~] u=i

b) Dominance property (D) What follows is a sketch of the proof. Consider the
class of D - N P - E D F algorithms based on contention detection-and-resolution
and the class of contention avoidance algorithms, denoted CA. Pick up an algo-
r i thm in each class and consider a feasible scenario for which both algorithms
generate a valid schedule (property (T) holds). Let us demonstrate that, for any
message m in this scenario, we have :

bD-lVP-~DF(m) -< bcA(m)

Any distributed algorithm is bound to create deadline inversions (which occur
also in our case because a channel is a non-preemptable resource). EDF ordering
being optimal, it follows that b(m) is an increasing function of the number of
deadline inversions. Recall that b(m) is a worst-case bound and that we are
assuming that (T) holds. What is the magnitude of the number of deadline
inversions ? Let us introduce the notion of a deadline equivalence class, which is
a t ime window of some duration denoted v. Any two messages whose absolute
deadlines differ at most by v belong either to the same equivalence class or to
two time adjacent equivalence classes. Therefore, deadline inversions can only
occur among messages that have absolute deadlines within v o'f each other.

With D - N P - E D F algorithms, which are deadline-driven, parameter
v is tunable. In particular, v does not depend on n, the highest number of

65

senders. Conversely, with C A algorithms, v is not freely tunable. The token
rotation time or the polling sequence/round-robin latency, which depend on n,
are lower bounds of v. Hence, except maybe for ridiculously small values of n,
v (D - N P - E D F) can always be chosen to be smaller than v (C A) . Therefore,
the number of deadline inversions being smaller with D-NP-EDF algorithms, it
follows that corresponding schedules are closer to ideal EDF-ordered schedules.
Consequently, message ranks are closer to lower bounds (than ranks obtained
with C A algorithms). This completes the demonstration.

Note that property (D) has been established without making any assump-
tion w.r.t, the algorithm used to schedule messages in senders waiting queues
when class C A is considered. This establishes that D - N P - E D F algorithms
always outperform C A algorithms, even if individual senders waiting queues are
scheduled according to E D F .

Having demonstrated that class D - N P - E D F dominates class C A when
considering [HRTDM], we have demonstrated that optimal solutions cannot be-
long to class C A . Given that possible solutions to the (basic) contention problem
belong either to the contention avoidance class or to the contention detection-
and-resolution class (that of D - N P - E D F) , we have therefore demonstrated
that optimal solutions to [HRTDM] can only belong to class D - N P - E D F ,

when considering non-idling algorithms.
Ideally, beyond proving (D), condition [oc] should be proved to hold. How-

ever, proving that a distributed on-line scheduling algorithm is optimal still raises
a few fundamental issues (see section 5).

c) A n e x a m p l e DOD/CSMA-CD (Deadline Oriented Deterministic/Carrier Sense
Multiple Access-Collision Detection) is an algorithm that belongs to class D -
N P - E D F . It is a deterministic deadline driven variation of the ISO/OSI
8802/3-Ethernet standard (see [LLR93] for a more complete presentation). De-
terministic deadline-driven binary tree search (called time trees) is used by
DOD/CSMA-CD to implement D - N P - E D F . We have considered an ar-
bitrarily devilish global adversary - referred to as Z0 - which is allowed to re-
lease messages in a fully unrestricted manner. In other words, with Z0, we have
considered n adversaries , every such adversary being characterized as follows :
Vi E [1, n], V k ~ i, ~k = co. Obviously, Z0 dominates every possible adversary
defined as per [HRTDM]. Using adversary techniques, we have established the
expression of the BDOD function and given the [fc] under which (T) holds.

/subsubsectionWhere are the probabilities ? Let Z be the adversary em-
bodied in some)~Re. There are obvious differences between the following three
approaches :

a) P r o b a b i l i s t i c or r a n d o m i z e d a l g o r i t h m s Worst-case behavior of adversary Z
is non-deterministic. Timeliness properties are established via the expression of
bounds B A (Z) that hold true with some computable probability. This proba-
bility is a function of the probability that the real future adversary matches
postulated Z - the assumption coverage - as well as of the accuracy of the mod-
elling of algorithm A. This probability depends on ARe and on the proof used to
demonstrate that [ccl] holds.

66

b) Deterministic algorithms Worst-case behavior of (non-deterministic) adver-
sary Z is deterministic. As shown with [HRTDM], timeliness properties are
established via the expression of bounds BA(Z) that always hold true in the
presence of Z. Hence, the computable probability that such bounds hold true
in the future is the assumption coverage of postulated Z. Probabilities are not
involved in the modelling of A or in the proof that [ccl] holds.

c) Approximately correct algorithms With such algorithms, most often, adver-
sary Z is not defined. Furthermore, such bounds as B(Z) are not given. Hence,
probabilities that [ccl] holds cannot be computed, as there is no a t tempt made
at establishing [ccl].

5 A U N I F I E D A L G O R I T H M I C V I E W OF B O T H
CLASSES

Recall that tc stands for the timeliness constraints that appear in Age. It should
be clear by now that only those (distributed) on-line scheduling algorithms that
are tc-driven can be contemplated for solving distributed real-time computing
problems. Non real-time concurrency also implies that some decision algorithm
is used to break ties in the case of actual simultaneity. Therefore, such algorithms
enforce particular schedules whenever necessary. However, such algorithms are
not tc-driven. Nevertheless, there is no reason why one could not take a problem
in class ~ and augment it with specification sets AR~ and Ane, so as to transform
it into a problem in class ~. In fact, recent work suggests that convergence of
both classes is feasible. Let us illustrate this observation with a comparison of
wait-freedom and timeliness.

5.1 W a i t - f r e e d o m and t imel iness

In asynchronous shared-memory computational models, unbounded wait-freedom
is a liveness property. Bounded wait-freedom implies that there is an upper
bound Ui(op) on the number of (its own) steps that some process i takes in
order to complete the execution of a given operation (op). Prima faciae, the
fact that Ui (op) holds regardless of the behavior of other processes is disturbing
in light of elementary results in queueing theory, where it is held that Ui(op)
depends on the amount of service that process i receives, this amount being
"what is left" by the other processes. (For example, other processes being re-
leased infinitely often, Ui(op) could be infinite in the absence of a fair scheduling
policy).

A first observation is that waiting queues are not part of the models con-
sidered when addressing problems of wait-free linearilizability. Nevertheless, the
fact that processes can release one operation at a time only is a constraint on
their behavior. Futhermore, even under this constraint, there must be a rule that

67

serves to break ties whenever real concurrency occurs on an elementary object.
Such a rule is a scheduling policy, which explains why such bounds as Ui(op)
hold. Another explanation derives from the algorithms used to enforce wait-
freedom. For example, in [H88], a general construction algorithm is described
whereby a general wait-free concurrent object can be built out of multiple ele-
mentary wait-free objects. One feature of the algorithm could be characterized
as "limited altruism", for the reason that "fast" processes help "slow" processes
to proceed, to a certain extent. For example, "fast" process i performs the op-
eration that "slow" process j intends to perform, before process i proceeds with
its own operation. This type of rule clearly is a scheduling policy. Bounds Ui(op)
depend on the scheduling policy considered. Therefore, scheduling policies or
algorithms being implicitly or explicitly considered, the apparent contradiction
vanishes.

Furthermore, this opens the way to the concept of real-time wait-free con-
current objects. The specification of such an object is the specification of a
concurrent object augmented with :

- An~, the specification of the (arbitrary) timeliness constraints to be met by
every operation (denoted d)

- ARe, the specification of the event releases model.

As with every problem in class ~, one has to find a scheduling algorithm
such that, under ~n~, for some [fc] to be established, the following timeliness
property holds :

for every process i, for every operation (opi,.), 3Ui(opi,.): Ui(opi,.) ~ di(opi, .).
The "plugging" of ARe and ~R, yields the "unplugging" of the implicit/explicit

(tc-independent) scheduling algorithm yielding bounded wait-freedom, to be su-
perseded by a tc-driven on-line scheduling algorithm.

5.2 Which computat ional models for class

At first sight, asynchronous computational models do not make sense when con-
sidering a problem in class R. Unbounded delays for completing elementary
operations seem to be antagonistic with the goal of enforcing timeliness prop-
erties for global operations. However, if we clearly distinguish the design phase
of an algorithm from its implementation phase, there is no reason to reject
asynchronous models. Consider for example the (deterministic) algorithms and
constructs used to build wait-free concurrent objects or to solve [AC]. Imag-
ine that such algorithms or constructs are "immersed" in a real system that is
endowed with timeliness properties, via some other algorithm(s). For example,
upper bounds are proved to hold for elementary computation/communication
steps. It is then possible to establish which are the timeliness properties achieved
by those algorithms or constructs that were proved correct in some asynchronous
model. For example, the "immersion" of <>W [6] in a communication system that
solves [HRTDM] yields a perfect failure detector, which can be used to solve any
real-time extension of problem [AC].

68

Of course, a similar observation applies afortiori in the case of solutions devel-
oped for partially synchronous models. Quite systematically until now, the real-
time algorithms community has considered synchronous computational models
for the design phase. This a sound approach whenever assumption set A and
related [fc] cannot be violated (or whenever such violations can be ignored).
However, the danger with such models is that they lead to algorithms that can-
not provably keep enforcing some minimal property whenever the postulated
computation/communication bounds are violated, in contrast with algorithms
designed for asynchronous or partially synchronous models which, in many cases,
maintain some safety property (e.g. silence rather than disagreement in the case
of [AC]), would the assumption set)~ be invalidated at run-time. Such concerns
typically arise with critical systems.

5.3 Optimal i ty

Not much is known yet about optimal distributed real-time scheduling. It is not
even clear that we have a satisfactory definition at hand (see further). It may
then be more appropriate to begin with the identification of which is the class of
algorithms that necessarily contains the optimal one(s), for any given problem.
This is precisely what we have accomplished with [HRTDM], in establishing
the dominance property of class D - N P - E D F over any other known class.
Optimality within class D - N P - E D F is an open issue. Idling algorithms
may dominate non-idling ones. Dissemination may yield feasibility conditions
closer to NS[fc]s. For example, every message transmitted (i.e. ranked first in its
waiting queue) could carry the deadlines of some of the pending messages. Such
a dissemination scheme may greatly reduce the likelihood of collision occurrence,
which would bring bounds B closer to optimal bounds. More generally, using the
notations introduced in section 4.1, one could be tempted to equate optimality
with a necessary and sufficient condition for ~, denoted ~*. Any algorithm that
needs n* only, obtained at cost C* (n*) would be optimal. However, the decision
algorithm embedded within A must also be taken into account. The "quality"
of the decisions may improve significantly with "small" increments of common
knowledge (in addition to ~*).

The general issue of optimality of distributed algorithms is being addressed
through various concepts and definitions that have emerged recently. Many of
them resemble concepts and definitions explored in game theory. Examples are
competitive analysis of on-line algorithms s explored in game theory. Examples
are competitive analysis of on-line algorithms [23], competitive analysis of dis-
tributed (on-line) algorithms (e.g., [10], [1]). An early application of competitive
analysis to demonstrating optimality in the case of centralized preemptive on-line
scheduling, in the presence of overload, can be found in [3].

Competitive ratios are a measure of "how well" an on-line player can perform
agMnst some adversary, in worst-case conditions. Competitive ratios depend on
the ratio of advance knowledge given to the player, who selects the on-line algo-
rithm, over the knowledge given to the adversary who, knowing the algorithm
selected, is able to generate those scenarios that maximize some regret function.

69

In the context of [ttRTDM], s being the scenarios that can be generated by Z,
the competitive ratio of any algorithm A with respect to timeliness is defined to
be sup(c~ bound B(A, cr)/inf bound B(Z, c O.

Of course, Z also is a distributed player. In departure from the original
definitions, we consider that Z also incurs some cost due to distribution. Z wins
over A because Z can generate schedules that minimize its deadline inversions
while maximizing deadline inversions experienced by A.

Another departure from the original definitions is explored in [1], where any
algorithm A is evaluated against other algorithms called champions (denoted H),
that are optimal for specific schedules in s and correct for every possible schedule
in s. The competitive ratio of an algorithm A with respect to latency, using the
notations proper to this paper, is defined to be sup~ bound B(A, o')/infH bound
B(H, ~). Competit ive latency is examined only for schedules and algorithms that
are said compatible. This restriction is equivalent to considering event releases
models such that no queueing phenomenon ever develops, or, stated differently,
to ignoring sojourn times in waiting queues. This is reminiscent of the observa-
tion made relative to wait-free concurrent objects.

Equating optimality with best achievable competitive ratios is not entirely
satisfactory, for the reason that competitive ratios are not an homogeneous mea-
sure. By this, we mean that an algorithm whose competitive ratio would match
the optimal ratio could still be dominated by some other algorithm, when being
presented scenarios other than worst-c~se.

Nevertheless, competitive analysis fof distributed algorithms seems to be a
promising analytical vehicle, powerful enough to explore problems in both classes
~ and ~ homogeneously. This view is backed by the recent explosion of papers
in this area.

Acknowledgments

I would like to thank Vassos Hadzilacos and Sam Toueg for fruitful discussions
on Asynchronous Consensus and on bounded wait-freedom.

References

1. M. Ajtal, J. Aspnes, C. Dwork, O. Waarts, "A theory of competitive analysis for
distributed algorithms", 35th Symposium on Foundations of Computer Science,
Nov. 1994, 401-411.

2. M. Abadi, L. Lamport, "An old-fashioned recipe for real-time", ACM Trans. on
Programming Languages and Systems, vol. 16, 5, Sept. 1994, 1543-1571.

3. S. Baruah et al., "On the competitiveness of on-line real-time task scheduling",
IEEE Real-Time Systems Symposium, Dec. 1991, 106-115.

4. Y. Bartal et al., "New algorithms for an ancient scheduling problem", 24th ACM
STOC, May 1992, 51-58.

5. H. Brit, S. Moran, "Wait-freedom vs. bounded wait-freedom in public data struc-
tures", Proc. of the 13th ACM Symp. on Principles of Distributed Computing,
Aug. 1994, 52-60.

70

6. T. Chandra, V. Hadzilacos, S. Toueg, "The weakest failure detector for solving
consensus", Proc. of the l l th ACM Symp. on Principles of Distributed Computing,
Aug. 1992, 147-158.

7. T. Chandra, V. ttadzilacos, S. Toueg, "Impossibility of group membership in asyn-
chronous systems", in preparation.

8. T. Chandra, S. Toueg, "Unreliable failure detectors for asynchronous systems",
Proc. of the 10th ACM Syrup. on Principles of Distributed Computing, Aug. 1991,
325-340.

9. D. Dolev, C. Dwork, L. Stockmeyer, "On the minimal synchronism needed for
distributed consensus", Journal of the ACM, vol. 34, 1, Jan. 1987, 77-97.

10. X. Deng, C.tt. Papadimitriou, "Competitive distributed decision-making", 12th
IFIP Congress (Elsevier North-Holland Pub.), vol. 1, 1992, 350-355.

11. M. Fischer, N. Lynch, M. Paterson, "Impossibility of distributed consensus with
one faulty process", Journal of the ACM, voh 32, 2, April 1985, 374-382.

12. L. George, P. Mfihlethaler, N. Rivierre, "Optimality and non-preemptive real-time
scheduling revisited", INRIA Research Rep. n 2516, March 1995.

13. M.P. Herfihy, "Impossibility and universality results for wait-free synchronization",
Proc. of the 7th ACM Symp. on Principles of Distributed Computing, Aug. 1988,
276-290.

14. J.F. Hermant, G. Le Lann, N. Rivierre, "A general approach to real-time mes-
sage scheduling over distributed broadcast channels, to appear in Proc. of the
IEEE/INRIA Conf. on Emerging Technologies and Factory Automation, Oct. 1995.

15. K. Jeffay, D.F. Stanat, C.U., Martel, "On non-preemptive scheduling of periodic
and sporadic tasks", IEEE Real-Time Systems Symposium, San-Antonio, Dec.
1991, 129-139.

16. H. Kopetz, P. Verissimo, "Real-time and dependability concepts", in Distributed
Systems, chapter 16, S.J. Mullender Ed. (Addison-Wesley Pub.), 1993.

17. C.L. Liu, J.W. Layland, "Scheduling algorithms for multiprogramming in a hard
real-time environment", Journal of the ACM, vol. 20, 1, Jan. 1973, 46-61.

18. G. Le Lann, "Scheduling in critical real-time systems : a manifesto", Third Intl.
Syrup. on Formal Techniques in Real-Time and Fault-Tolerant systems, Liibeck
(D), Sept. 1994, Lecture Notes in Computer Science n 863 (Springer-Veflag pub.),
511-528.

19. G. Le Lann, N. Rivierre, "Real-time communication over broadcast networks : the
CSMA-DCR and the DOD/CSMA-CD protocols", INRIA Research Rep. n 1863,
March 1993, 35 p.

20. L. Lamport, R. Shostak, M. Pease, "The Byzantine generals problem", ACM Trans.
on Programming Lang. and Syst., vol. 4, 3, July 1982, 382-401.

21. N. Malcolm, W. Zhao, "Hard real-time communication in multiple-access net-
works", Journal of Real-Time Systems (Kliiwer Academic Pub.), vol. 8, 1, Jan.
1995, 35-77.

22. L. Sha, S.S. Sathaye, "A systematic approach to designing distributed real-time
systems", IEEE Computer, Sept. 1993, 68-78.

23. D.D. Sleator, R.E. Tarjan, "Amortized efficiency of list update and paging rules",
Com. of the ACM, vol. 28, 2, Feb. 1985, 202-208.

