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Abstract

We examine how computer system problems can be de-
rived from real application problems, with a particular
focus on the relevance of some assumptions, especially
those related to computational models. Then, we com-
pare these models, ranging from pure synchronous to pure
asynchronous semantics, to conclude that synchrony does
not necessarily dominate asynchrony whenever one is con-
cerned with real operational systems. The issue as to
whether asynchronous solutions can be considered for de-
signing and building real-time distributed dependable sys-
tems is addressed. A priori, time free solutions are antag-
onistic with proving timeliness properties. We show how
to circumvent this apparent contradiction via the late bind-
ing principle. This principle, as well as drawbacks of syn-
chronous solutions, are illustrated.

1 Introduction

Most real computer-based systems are bound to meet
safety and/or liveness and/or dependability and/or timeli-
ness requirements, to some degree. For example, most real
applications specify timeliness constraints, be they “hard”
real-time constraints (critical applications) or performance
objectives (non critical applications). Consequently, a num-
ber of open theoretical questions are worth investigating
from a practical perspective as well. We examine the fol-
lowing question: When designing a real-time system, meant
to be used for some real application, is it mandatory to con-
sider a synchronous computational model?

This issue seems to be highly controversial, for obscure
reasons in some cases, for obvious non scientific reasons in
other cases. We believe that any useful contribution to this
long lasting controversy should be based on an understand-
ing of how real application specifications are established,
as well as on how a real system specification can be proved
correct vis-à-vis some given real application specification.

In Section 2, we elaborate on an essential system engi-
neering activity, namely the “application requirements cap-
ture” phase, which raises complex theoretical and practical

issues. This serves to explain why a designer – a computer
scientist, an engineer – is not entitled to “simplify” the spec-
ification of a user’s problem. For any given pair fproblem,
solutiong, specified logical properties and QoS should be
guaranteed to hold true with some coverage, which depends
on a number of assumptions, computational models in par-
ticular. In Sections 3 and 4, merits of various computational
models are discussed, as well as the superiority of asyn-
chronous solutions for some problems in distributed fault-
tolerant computing. The late binding principle is presented
and illustrated in Section 5. Related work is briefly exam-
ined in Section 6.

Our results permit to conclude that, for some appli-
cations, real-time distributed systems built out of asyn-
chronous solutions are safer and more efficient than systems
based upon (partially) synchronous solutions. Whether sim-
ilar results can be established for other applications is an
open – and interesting – question.

2 Real application problems and computer
system problems

Let hA�i denote the exact (ideal) specification of some
real application problem, and let hAi denote some real
specification of that same problem, arrived at after con-
ducting a “requirements capture” phase. A solution, i.e. a
computer-based system, denoted S, is looked for.

As is the case with every (theoretical, practical) prob-
lem, hAi is the union of two specifications, one that stipu-
lates axiomatics/assumptions, another that stipulates prop-
erties sought (to be demonstrated to hold under stated as-
sumptions). Therefore, hAi writes fhm�Ai; hp�Aig, where
hm�Ai stipulates problem models, i.e. environmental and
technological assumptions regarding future S, and hp�Ai
stipulates those services and QoS that S should deliver
(problem properties). hAi also specifies cov(hp�Ai), a lower
bound set for the coverage of hp�Ai under hm�Ai. The cov-
erage of an assertion � - denoted C(�) – is the probability
or the likelihood that this assertion holds true [16].

Of course, hAi can only be expressed in some natural
language. For example, in air traffic control, hp�Ai would
include “The discrepancy between the exact coordinates of

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time  
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE 



an airplane and the coordinates seen by an air traffic con-
troller should never exceed so much”, hm�Ai would include
“Radio communications may go down from time to time”,
cov(hp�Ai) � �� ����.

Given that “requirements capture” involves human in-
terventions as well as tools built by humans, that phase
cannot perfect. Hence, hAi can only be an approxima-
tion of hA�i. Usually, hp�Ai matches hp�A�i quite well –
users know what they want. Conversely, hm�Ai may differ
from hm�A�i to a certain extent. Humans cannot predict
the future accurately. For example, hm�Ai stipulates some
“worst-case” radiation level, which is later revealed to be
lower than real levels.

Clearly, the smaller the “distance” – denoted �, mea-
sured on a scale (0, 1) – between hAi and ideal hA�i, the
better in terms of future user’s satisfaction. Without trying
to be formal, let us consider that the coverage of a specifi-
cation hAi is equal to 1 - �. Consequently, “simplifying” a
user’s problem is not a very good idea, for this amounts to
diminish the coverage of initial specification hAi.

Various analyses of project failures and accidents with
computer-based systems have identified faulty requirements
capture as being the major cause of failures and catastro-
phes, rather than “software faults”. A relatively well docu-
mented case is the failure of Ariane 5 flight 501 [17].1

hAi being informal, it is mandatory to translate hAi into
hXi, a specification of a matching computer system prob-
lem (e.g., computer science, computer and electrical engi-
neering) so that proof techniques can be applied. Given
hXi, one can undertake design activities, and demonstrate
whether [�], i.e. system S specification, satisfies hXi. If
hXi is a correct translation of hAi, and [�] satisfies hXi,
then [�] is a correct solution for hAi – which cannot be
established directly.

Subsequent phases, which consist in proving that [�] is
correctly implemented in hardware, software or any conve-
nient technology, are of no concern here.

In order to eliminate most likely faults, it is recom-
mended that hAi and hXi be constructed simultaneously.
Set hm�Xi, which is the translation of hm�Ai, specifies
the future operational “adversary” of system S, i.e. event
arrival models (“loads”), process models, failure models
and so on. Obviously, every model in hm�Xi must have
a coverage at least equal to cov(hp�Ai). Set hp�Xi speci-
fies such properties as, e.g., 1-copy data serializability, uni-
form atomic broadcast, strict termination deadlines. For our
purposes, properties of interest in hp�Xi are safety, live-
ness, and timeliness (“real-time”), denoted SafeP, LiveP,
and TimeP, respectively. Dependability properties are “en-
capsulated” within SafeP, LiveP and TimeP, which proper-
ties should hold for failure models and failure occurrence
models specified in hm�Xi.

1Ariane is the name of the European satellite launcher.

Rather than trying to translate informal hAi directly
into a formal specification hXi (such attempts have always
failed), we have devised a less ambitious, albeit rigorous,
goal. Only those terms that have formal definitions may
appear in sets hm�Xi and hp�Xi. Proof obligations are un-
ambiguous, and can be fulfilled. These principles underlie
TRDF, a proof-based system engineering method that we
have developed and used to conduct projects with a number
of partners since 1995 [13]. Whenever some COTS product
is selected a priori, TRDF is particularly helpful in showing
whether such a choice is or is not incompatible with hm�Xi.
In a particular instance (air traffic control, with DGAC –
French FAA), an impossibility result [7] helped us in catch-
ing this kind of mistake early enough.

Obviously, the smaller the “distance” – denoted � – be-
tween hAi and hXi, the better in terms of future user’s sat-
isfaction. Without trying to be formal, let us consider that
the coverage of a specification hXi varies proportionally to
�� � ���� � ��. Consequently, “simplifying” a computer
system problem so as to facilitate system design and val-
idation work is not a very good idea, for this amounts to
diminish the coverage of initial specification hXi.

Examples of simplifications can be given. In hm�Xi, the
failure model for a processor is stated to be “not worse” than
the omission model, and an event arrival model is specified
to be periodic, period p, when in fact, real hm�Xi should
state a Byzantine failure model, and a “periodically spo-
radic” event arrival model, with some sporadicity parame-
ters smaller than p. Real hXi being “falsified”, future sys-
tem S cannot behave as desired, even if it has been proven
that (1) [�] correctly satisfies (simplified) hXi, (2) S cor-
rectly implements [�]. This is so for the reason that the
future adversary of S will be “stronger” than postulated as
per (simplified) hm�Xi.

A common instance of an arbitrary simplification is the
(systematic) choice of a synchronous computational model,
stated in hm�Xi, when some “less simple” model should in
fact be selected. There are many real applications which are
poorly modeled with synchrony assumptions. Examples are
applications involving mobile users, wireless communica-
tions, applications meant to tolerate intrusions (e.g., denial
of service), to name a few.

Too often, users are led to make unfounded (and risky)
choices, under the influence of designers, who know that it
is easier to solve problems in a synchronous model. Even
when synchrony assumptions are founded – low level cyclic
kinds of computations – cost considerations may lead to
conclude that asynchronous solutions should be favored.

It may also happen that no computational model is stated
in hm�Xi, in which case the choice of a model is under
the responsibility of a designer. However, such a choice is
constrained by cov(hp�Ai) – see ((R1), (R2)) in Section 3.1.

When conducting theoretical work, any computational
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model may be considered. Theoretical works are essential,
in that they permit to establish optimality and/or impos-
sibility results. However, when considering real systems,
that is when issues raised with (1) implementing a postu-
lated model, (2) assessing the coverage of an implemented
model, must be addressed, then the choice of a computa-
tional model is constrained by a number of requirements.

Let Proofs be the set of demonstrations proving that [�]
solves hXi under some design assumptions. [�] should be
such that the specification of desired properties hp�Xi can-
not be violated as long as (1) the adversary behaves as spec-
ified by hm�Xi, (2) design assumptions are not violated.

Trivially, the simpler “falsified” hXi, the easier the es-
tablishment of Proofs. Unfortunately, such Proofs are of no
interest. Being established for “falsified” hXi, their cov-
erage is arbitrarily poor. This explains many operational
“difficulties” encountered with systems based upon static
synchronous designs and/or built out of software compo-
nents coded via some “synchronous” language. Resorting
to a “time-triggered” approach or to some “synchronous
programming language” a priori and systematically, with-
out questioning the appropriateness of such choices, are ex-
amples of implicit arbitrary – hence risky – simplifications.

3 On computational models and coverage

For our purposes, it suffices to consider that a design so-
lution � consists of a set of (virtual or physical) software
and hardware modules, structured after some architecture,
and equipped with a set of algorithms that govern their col-
lective behavior. We restrict our scope of attention to de-
terministic algorithms. System S that implements [�] is
structured after a number of levels of abstraction or imple-
mentation, ranging from 1 for the lowest level (basic hard-
ware) to z, the highest level encompassed by [�], i.e. the
level of specification hXi. The discussions that follow ap-
ply to models encompassing levels up to z.

3.1 The computational model spectrum

Let M��� stand for a model considered at design time.
M��� may be either stated in hm�Xi or chosen when start-
ing a design phase.

Computational models range from pure synchronous –
denoted Sync, to pure asynchronous – denoted pure Async,
characterized by their intrinsic timing assumptions [15].
Consider, in [�] and Proofs, variables that represent tim-
ing assumptions for computational or communication steps,
for every level of interest. As defined in [5] and [6], pure
synchrony means that every such variable is assumed to be
finite and bounded, (upper, lower) bounds being known at
design time, while pure asynchrony means that any such
variable may be infinite. As will be seen, asynchrony means

that every such variable is assumed to be finite and un-
bounded. By definition, coverage C(M���) is the proba-
bility or likelihood that none of those timings postulated via
M��� can be violated at runtime.

The choice of M���, when stated in hm�Xi, is bound
to meet the following coverage requirements (obvious):

- (R1): C(M���) can be accurately computed,
- (R2): C(M���) � cov(hp�Ai).
When the choice of M��� is left to a designer, for a

correct design to be an acceptable solution, it must be that
C(design assumptions) � cov(hp�Ai). M��� being an el-
ement of design assumptions, the choice of M��� must
meet coverage requirements ((R1), (R2)) as well.

A non-existing assumption cannot be violated. Hence,
coverage issues involved with ((R1), (R2)) do not arise with
the pure Async model. Unfortunately, many problems of in-
terest in dependable distributed computing do not have de-
terministic solutions in this model [7]. This has motivated
work directed at “augmenting” this model with some se-
mantics, so as to circumvent impossibility results. One can
identify two classes of “added semantics”, namely timed
semantics and time-free semantics. Unreliable Failure De-
tectors [3] are an example of time-free semantics.

Models that match the pure Async model augmented
with timed semantics are known under the name of par-
tially synchronous models [5], [6]. Within this set, we
consider models where some modules and/or some levels
are assumed to match pure synchrony assumptions whereas
others match pure asynchrony assumptions.2 They will be
denoted ParSync. In the Sync model, every module or level
matches pure synchrony assumptions. Sync being a partic-
ular case of ParSync models, every result established for
ParSync models applies to Sync a fortiori. Models that
match the pure Async model augmented with time-free se-
mantics will be referred to as asynchronous models – de-
noted Async. Let lM��� stand for the highest level encom-
passed by timing assumptions proper to M���. By defini-
tion: lAsync � � and lParSync � �.

3.2 Implemented computational models

Let us now consider system S, to be built out of basic
technology assumed to exhibit basic timing properties that
ought to be fully trusted (no coverage issue, by assumption).
It follows that basic timing properties are restricted to be
plain physical hardware timing properties, such as proces-
sor instruction-level timings or bit propagation delays over
a communication link.

Let s� stand for the highest level encompassed by ba-
sic timing properties. Ideally, s� = 1. Any timing assump-

2Partially synchronous models where postulated timing bounds hold
true only after some unknown future time do not match real-time seman-
tics.
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tion stated for some level higher than s� has some coverage,
bound to meet requirements ((R1), (R2)).

Let l�ParSync (resp., l�Async) stand for the highest level
concerned with a provably correct implementation of a
ParSync (resp., an Async) model. With ParSync, trivially,
l�ParSync � lParSync. With Async, although lAsync � �,
l�Async � �, given that some synchrony must be assumed in
order to implement the time-free semantics of interest.

Typically, l�ParSync is the application or middleware
level (z or “close to” z) whereas l�Async is some low level
communication protocol level. In [10], one gives an im-
plementation of Strong and Perfect Failure Detectors [3] –
denoted FDs – that makes lists of suspected/crashed pro-
cessors available at a level denoted COM, which can be
the UDP/TCP protocol level in general-purpose systems,
or the physical link protocol level in special-purpose sys-
tems. For example, Fast FDs [10] can be implemented
at the link protocol level in spaceborne systems [2]. Pro-
cesses are provided with those (time-free) safety and live-
ness properties that define FDs, which makes it possible to
use pure asynchronous algorithmic solutions at level l�Async
and above. With ParSync, it is argued that processes are
provided with some timed properties, which makes it pos-
sible to use pure synchronous algorithmic solutions at level
l�ParSync and above.

Recall that time-free semantics of interest are those
strictly necessary for circumventing impossibility results in
distributed fault-tolerant computing. They are “low level”
semantics. Therefore:

(F1) l�ParSync � l�Async.
Let us now consider timing assumptions relative to level

(s� � �). There are two possibilities.
One is that values of variables involved with these timing

assumptions are “guessed”, in which case it is impossible to
compute their coverage. Requirements ((R1),(R2)) cannot
be met.3 Such “guesses” underlie the TA model [4] and the
TCB approach [18].

The other possibility – the correct one – consists in con-
ducting a worst-case schedulability analysis – denoted wcs
analysis – for level (s� � �) processes, assuming level s�

basic timing properties, which yields computable analytic
predicted worst-case timeliness bounds, which are proven
timing assumptions valid for level (s���). And so on, until
reaching level l�ParSync or l�Async.

Let T k stand for level k predicted worst-case timeliness
bounds. In Section 4.1, we recall what is involved with a
wcs analysis, which must be conducted whenever X is a

3The conventional counter-argument is as follows: Let us pick up “very
large” timing values, so that they are “almost never” violated. This is
flawed, for the reason that without a schedulability analysis, it is impos-
sible to tell whether or not congestion or thrashing may occur at level
(s� � �) or higher. If the case, real timing values are infinite, which ruins
any expectation regarding the achievement of some decent coverage.

real-time problem. What we have established at this point
is the following:

� Even if X is not a real-time computing problem, one
must conduct wcs analyses whenever a ParSync model has
been selected, so as to prove its implementation correctness.

� Any (correct) implementation of a ParSync model is
problem X-dependent. Indeed, �k, s� � k � l�ParSync,
boundsT k must derive fromwcs analyses conducted for the
entire set of models (processes, data, event arrivals, failures,
etc.) identified at level k, which necessarily depends on the
set of models specified in hm�Xi.

Given the three possible outcomes of a wcs analysis –
see Section 4.1 – one can conclude as follows:

� In the absence of wcs analyses, the coverage of a
ParSync design is unknown.

� In the presence ofwcs analyses, with a ParSync design,
- SafeP, LiveP and TimeP may have a “poor” coverage,
- real performance/efficiency may be “poor”.
� It is always the case that C(Async) � C(ParSync).
� Some problems have optimal Async solutions that

dominate optimal ParSync solutions, in terms of achieved
performance and/or efficiency.

4 TimeP, SafeP and LiveP

4.1 Timeliness

Consider real-time computing problem X – TimeP ap-
pear in hp�Xi. Any (proven) solution comprises, for every
level k, from z to (s� � �) – see scheduling theory:

� some solution [�] based upon scheduling algorithms,
such as e.g., HPF, EDF [14] or more complex schemes, tra-
ditionally designed in some ParSync model,

� timeliness proofs derived from worst-case (“loads” and
failures) scheduling analyses, valid for level k derivation
of pair fhXi, [�]g, conducted considering some ParSync
model, necessarily,

� computable analytical expressions of worst-case time-
liness bounds T k (bounds T z matching those specified as
per TimeP), such as, e.g. termination deadlines, as well as
feasibility conditions valid for pair fhXi, [�]g.

Ability to predict values of bounds T before S is turned
on is an absolute requirement with real-time systems. Un-
fortunately, as is well known, wcs analyses are involved
(NP-complete problems, most often), despite the fact that,
inevitably, they rest on simplified models of (1) COTS prod-
ucts (e.g., processors, system-level software), (2) internal
system architectures, (3) external and internal event arrivals
(“loads”), (4) tasks, (5) faulty behaviors. Moreover, in order
to bring the inherent complexity of such analyses down to
some tractable level, approximations are often resorted to.
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Although sound from a mathematical viewpoint, such ap-
proximations add to the inaccuracy due to considering sim-
plified models of technology, of reality.

A worst-case execution time (denoted wcet) must be pre-
dicted for every process under consideration. A wcet de-
pends on a number of system parameters and technological
choices (e.g., processor hardware types and speed), not al-
ways accessible with sufficient accuracy. Moreover, finding
a wcet for a process that is distributed or replicated across
processors necessarily involves a wcs analysis. For exam-
ple, worst-cases for message delays cannot be computed or
measured assuming that every process runs “alone”.

Let �k stand for real worst-case timeliness bounds ex-
perienced at run-time at level k and �k stand for real delays.
By definition, �k might be significantly smaller than �k.

As is well known, there are three possible outcomes for
a wcs analysis:

(��) “optimistic” analysis, i.e. T k � �k, hence bounds
T k may be violated at run-time,

(��) exact analysis, i.e. feasibility conditions are neces-
sary and sufficient, hence T k � �k,

(��) “pessimistic” analysis, i.e. T k � �k, hence bounds
T k are overdimensioned.

Consider some level k � l�Async. A ParSync design
makes explicit use of bounds T k via timers, watchdogs,
clocks, and so on. Bounds T k being “wired in”, the tem-
poral behavior of a ParSync design is entirely determined
by the “quality” of wcs analyses. Which is not the case
with Async designs, where bounds T k serve solely to pre-
dict worst-case temporal behaviors. They are not integrated
into a design.

In case of outcome (��), all properties SafeP, LiveP,
TimeP are lost with a ParSync design. Moreover, as pointed
out previously, at every level, wcs analyses depend fully on
problemX under consideration. Conversely, with an Async
model, the design of an implementation of time-free seman-
tics does not depend on problem X . Hence, wcs analy-
ses needed to prove Async implementation correctness can
be conducted ignoring X fully or quasi-fully. In [10], the
only dependencies are due to the non-preemptive nature of
some resources. For example, one must know the maxi-
mum length of a message at the physical link level. Conse-
quently:

(F2) The complexity of a wcs analysis is (significantly)
smaller with an Async model.

Also, recall that wcs analyses encompass every level up
to l�ParSync with a ParSync model whereas they encompass
every level up to l�Async with an Async model.

Given (F2) and (F1), the probability of outcome (��� is
smaller with Async. Hence the conclusion:

(C1) C(Async) � C(ParSync).
Note that (C1) rewrites C(Async) � C(ParSync)

whenever COTS products are used to implement levels

above l�Async. This is due to the fact that the [�COTS]
internal to a COTS product is never disclosed with suffi-
cient accuracy. Furthermore, no COTS product is accom-
panied with TimeP proved for some models. Hence, it is
very difficult – if not unfeasible – to conduct a wcs anal-
ysis that would be valid for pair fhXi, [�]g. Hence, re-
quirements ((R1), (R2)) are almost never met whenever a
ParSync model is to be implemented using COTS products.

Given (F2) and (F1), the probablity of outcome (��� is
higher with Async. See [10] for an example, where ex-
act bounds are established for FD-message transmission de-
lays. It is in general highly unlikely that exact bounds can
be established for “high level” delays, that fully depend on
some problem X . Regarding performance/efficiency fig-
ures, the observations made for outcome (��) – see below –
apply also for outcome (��), given that worst-case scenar-
ios do not occur too often in general.

In case of outcome (��), bounds T k being “wired in”
ParSync solutions, these solutions are necessarily slower
and/or less efficient than Async solutions, whenever solu-
tions are of comparable logical complexity – the case for,
e.g., Uniform Consensus (see further).

A typical example is the use of bounds for end-to-end
transmission delays experienced by interprocess messages,
whenever desired orderings (of events, of state transitions)
must be enforced. Let T k (resp., tk) stand for the predicted
worst-case upper (resp., best-case lower) bound. If global
time is assumed – precision � – a transmission delay can be
measured by a receiver, with precision �. Consider a mes-
sage that has travelled in real �k, measured �k . A receiving
process should wait T k � �k � � before making an order-
ing decision, which entails a T k � �� worst-case latency.
If “good” non synchronized clocks are assumed (no global
time), a receiving process should wait T k � tk before mak-
ing an ordering decision, which entails a �k � T k � tk

worst-case latency.
Such latencies are not experienced with Async solutions.

Indeed, an Async solution “works” at speeds determined
by �k most of the time, by �k under worst-case scenarios.
In our example, with an Async solution, ordering decisions
can be made whenever some logical (i.e. time-free) condi-
tion is met, which may occur any time between �k and �k,
entailing a �k worst-case latency. Hence the conclusion:

(C2) When coverage is not an issue, Async solutions
may be faster and/or more efficient than ParSync solutions.

Novel solutions for the Uniform Consensus problem [10]
illustrate (C2). We conjecture that similar results can be
established for other problems in distributed real-time de-
pendable computing.

Note that conclusions (C1) and (C2) are in accordance
with observations made previously by many researchers.4

4Excerpt from [15]: “It is impossible or inefficient to implement the
synchronous model in many types of distributed systems”.
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4.2 Safety and liveness

Assume X is not a real-time computing problem – SafeP
and LiveP only appear in hp�Xi. From (C1), for k � s�, it
follows trivially that C(SafePkAsync) � C(SafePkParSync)
and C(LivePkAsync) � C(LivePkParSync).

Let us illustrate the above with SafeP. Many asyn-
chronous algorithms that preserve SafeP regardless of
hm�Xi being or not being violated have been published.
Moreover, Async algorithms may preserve SafeP despite
violations of M���, i.e. violations of time-free seman-
tics “added” to the pure Async model. Such algorithms
are called “indulgent” in [8]. An example with Uniform
Consensus is the �S rotating coordinator algorithm of [3],
which preserves SafeP even if �S FD semantics are vio-
lated. Consequently, for some problems, SafeP hold true
under no conditions with Async algorithms, not the case
with ParSync algorithms.

Then the question: Given that, whenever X is not a
real-time computing problem, choosing an Async model
maximizes C(SafeP) and C(LiveP), why is it that ParSync
models are considered when SafeP and LiveP only must be
demonstrated?5

Conclusions (C1) and (C2) are the foundations of the
late binding principle.

5 The late binding principle

Let X be a real-time computing problem (“hard” real-
time or specific “performance” properties) and S be a real-
time computing system proved correct vis-à-vis X . How
can TimeP be proved with Async designs? An essential ob-
servation is as follows: In a project life-cycle, it is necessary
to consider some ParSync model only when time has come
to conduct schedulability analyses.

Let M�S� be the implementation model that matches
system S. That M�S� might be some Sync or ParSync
model does not imply that M��� has to be a Sync or
ParSync model as well.
� may well be designed in some Async model. Indeed,

wcs analyses for asynchronous designs are feasible – con-
trary to assertions repeatedly stated in some circles.

The idea of deferring the consideration of some M�S�
until after having devised and proved some design � in
some M��� less “restrictive” than M�S� has been stated
first in [12], echoed in [9] and [11], and detailed in [13],
under the name of “design immersion” (in a computational
model). This is equivalent to the concept of late binding
(of a design to some computational model), a well known
concept in the areas of programming languages and compi-
lation.

5Again, theoretical works are not concerned with this question.

According to this principle, bounds T k
Async are es-

tablished only after SafePkAsync and LivePkAsync have
been proven, which is done without assuming any bounds
T
j
Async, j � k. This has definite advantages (see Sections 3

and 4), that are inaccessible to those approaches based upon
“early binding” to a ParSync model, where one must first
establish bounds T k��

ParSync – or, even worse, postulate such
bounds – prior to proving SafePkParSync and LivePkParSync.

With this principle, the apparent contradiction between,
(1) retaining Async solutions when designing real-time sys-
tems and (2) the need to consider some ParSync model to
conduct wcs analyses for proving TimeP, vanishes.

The late binding principle consists of the following three
steps, step 1 preceding steps 2 and 3. Steps 2 and 3 may be
concurrent.
� Step 1: Given hAi or hXi, select asM��� the most ap-

propriate Async model that meets the cov(hp�Ai) constraint.
Then, specify � (selecting asynchronous algorithms only)
with time-free predicates stating activation conditions for
schedulers. For example: “Service waiting queue W when-
ever W is non empty”, or “Make local scheduling decisions
whenever distributed consensus has been reached”. Prove
SafeP and LiveP.
� Step 2: Design a solution for implementing the time-

free semantics of M��� out of level s� basic timing prop-
erties. Conduct a wcs analysis in the ParSync model that
matches M�S� and provide computable timeliness bounds
proper to that solution (e.g., failure detection latency).
� Step 3: Do a “late binding” of � to the ParSync model

that matchesM�S�, so as to conductwcs analyses yielding
computable timeliness bounds T for pair fhXi, [�]g.

We have applied the late binding principle while revisit-
ing the Uniform Consensus (UC) problem. In [10], M���
is the pure Async model augmented with Strong or Perfect
FDs. The FD “immersion” process (in a Sync model) has
led us to introduce Fast FDs, i.e. FDs that achieve com-
putable failure detection times d that are worst-case opti-
mal, i.e. small compared to worst-case interprocess mes-
sage transmission delays D. This has resulted into novel
algorithms that have optimal wcet’s – denoted Z below.

With FastUC, a novel Async solution for UC, ZAsync
is sublinear in f D, f standing for the maximum number
of processor crashes. Under conditions easily met most of-
ten with real systems, FastUC achieves ZAsync � D (the
absolute lower bound).

This lower bound is inaccessible to solutions proven op-
timal in the pure Sync model that do not take advantage
of Fast FDs. Indeed, by definition, given that f � �,
ZSync � �D.

In [1], Fast FDs are considered along with the Sync
model. Novel optimal wcet’s have been established. For
example, for UC, we have shown that ZSync � D � f d.
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6 Related work

Examples of ParSync models are the Timed Asyn-
chronous Distributed System (TA) model [4] – where
“asynchrony” means “pure Sync with mistakes” – and the
Timely Computing Base (TCB) approach [18]. TA and
TCB rest explicitly on timing assumptions, that are an in-
tegral part of designs/solutions – “early binding” to a Sync
model. Given that there is no difference between TA or
TCB and the pure Sync model, TA and TCB are unin-
teresting from a theoretical viewpoint (nothing new). They
are uninteresting also from a practical perspective. It is ac-
knowledged that “guessed” timing assumptions may be vi-
olated. One would then expect to see convincing solutions
such that requirements ((R1), R2)) – see Section 3.1 – are
met. Unfortunately, such solutions are not given.

With TA, the very difficult issues raised with computing
the coverage of pure Sync assumptions are believed to be
addressed satisfactorily simply by stating that “A TA sys-
tem alternates between good and bad periods”, “Violations
of “guessed” timings occur infrequently”, which are mean-
ingless assertions in the absence of wcs analyses. Assume
that cov(hp�Ai) � � � ����, a very modest requirement.
How can it be “believed” that every “good” period will last
3,599.64 seconds at least every hour? It is suggested that
the coverage of pure Sync assumptions can be derived from
measurements performed on pre-existing systems. This is
flawed for obvious reasons. ProblemsX addressed with the
TA model are not real-time computing problems. Hence,
the question asked end of Section 4.2 arises with TA.

Proponents of TCB allude to the need for conducting
wcs analyses, but fail to address it. Rather, they resort to
the very classical – mistaken – “receipe”: Find some “good”
hardware that does away with the problems. What is called
a “control system/network” is supposed to implement the
pure Sync components central to TCB, so that timing as-
sumptions are (magically) transformed into “guaranteed”
timed services, made accessible to other components such
as, e.g. application-level processes. Obviously, varying –
possibly “high” – loads are experienced by a “control sys-
tem/network”. Loads within a TCB system are problem X-
dependent, those developing at the exposed interface of a
“control system/network” and within it in particular. Hence
the question: How can requirements ((R1), (R2)) be met
without conducting problem X-dependent wcs analyses?
Basically, there is no difference between TCB and what
has always been known under the name of a “real-time dis-
tributed” computing system.

Knowing that violations of optimistic level k “guessed”
timing assumptions lead to violations of SafeP and LiveP
(in addition to TimeP) at level k, proponents of TA and
TCB have suggested that timing assumptions could be “en-
forced” via on-line detection of “performance failures”, by

supplementing design�with measure-compare-and-kill al-
gorithms that serve to (1) timestamp every significant state
transition, (2) measure every actual delay value, for every
level k delay variable that appears in � or Proofs, (3) com-
pare every measured delay with its postulated bound. In
case a “performance failure” occurs, that failure is trans-
formed into a provoked abort, – discard a “late” incoming
message, abort a “late” process, crash a processor that has
received a “late” message or performed a “late” computa-
tion. In [10], it is explained why “performance failures”
may go undetected arbitrarily often. Hence, SafeP, LiveP
(in addition to TimeP) may be violated arbitrarily often.
Whenever a “performance failure” is detected, a TA or a
TCB system turns mute, which may also happen arbitrarily
often. Who could be interested in using such systems?

The pure Sync model is a particular case of ParSync.
With pure Sync, one considers variable delays. The static
Sync model – denoted StatSync – is a particular case of
pure Sync, where delays are assumed to be constant. This
assumption is not questionable when considering levels up
to level s�. For any other level, this assumption serves
to “hide” contention and/or waiting queue phenomena that
arise from resource/data sharing. Examples of use of Stat-
Sync are the “time-triggered” (TT) approach and the seman-
tics that underlie many “synchronous programming lan-
guages” (Statecharts, Esterel, to name a few).

Contrary to intuition, variability cannot be avoided with
real systems and environments, even for the “simplest”
cases. Real systems comprise a number of software com-
ponents, every component having an execution time deter-
mined by a number of parameters, which themselves may
depend on external operational conditions. Hence variabil-
ity. Software components are usually multiplexed over pro-
cessors.6 Consequently, they must be scheduled, which in-
troduces variations in their actual start times and termina-
tion times. StatSync designs such as TT designs may be
very inefficient/slow, for they consist in devising a cyclic
time frame of fixed duration, decomposed into a fixed num-
ber of time slots, each slot having some fixed duration
and being assigned to a given process. Anything new?
Of course not. This type of designs has been known for
more than 30 years under the name of SSTDM (static syn-
chronous time division multiplexing). Obviously, the ineffi-
ciency of such designs is proportional to the “silence ratio”
in time slots. In fact, as is well known, SSTDM leads to
designs that are dimensioned so as to accommodate simul-
taneous individual (per processor) worst-case scenarios – a
max fmaxg function – which inevitably results into (pos-
sibly significantly) overdimensioned and/or slow systems,
given that, most often, some individual worst-case scenar-
ios are mutually exclusive – a min fmaxg function suffices.

6If not the case, then so-called “distributed” systems are plain juxtapo-
sitions of independent processors – the case with many TT systems.
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7 Conclusions

The late binding principle seems to be an interesting
novel concept that reconciles real-time computing and asyn-
chrony. This opens up new territories to researchers and
practitionners. The superiority of asynchronous compu-
tational models and solutions in terms of coverage are
believed to be generic, i.e. valid for every real prob-
lem/system. Results regarding the superiority of asyn-
chronous designs/solutions in terms of efficiency or perfor-
mance have been established for some problems. Whether
similar results can be established for other problems is an
open – and interesting – issue. Cross-fertilization of vari-
ous disciplines – e.g., scheduling theory, distributed algo-
rithms – should lead to new fundamental results, helping to
advance theory and practice in areas of crucial importance.
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